JP2012132899A - Wheel body and tire rolling resistance measuring method using the same - Google Patents

Wheel body and tire rolling resistance measuring method using the same Download PDF

Info

Publication number
JP2012132899A
JP2012132899A JP2011258006A JP2011258006A JP2012132899A JP 2012132899 A JP2012132899 A JP 2012132899A JP 2011258006 A JP2011258006 A JP 2011258006A JP 2011258006 A JP2011258006 A JP 2011258006A JP 2012132899 A JP2012132899 A JP 2012132899A
Authority
JP
Japan
Prior art keywords
axial force
wheel body
tire
rolling resistance
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011258006A
Other languages
Japanese (ja)
Other versions
JP5735903B2 (en
Inventor
Shoichi Wada
祥一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011258006A priority Critical patent/JP5735903B2/en
Publication of JP2012132899A publication Critical patent/JP2012132899A/en
Application granted granted Critical
Publication of JP5735903B2 publication Critical patent/JP5735903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure tire rolling resistance.SOLUTION: A wheel body 1 measures tire rolling resistance. The wheel body 1 is composed of a disc-shaped disc body 2 made from a rigid body; a ring body 3 disposed at an interval on an outer side in a radial direction of the disc body 2 and made from a rigid body; a spring body 4 connecting the ring body 3 and the disc body 2, and relatively displacing a gravity center position of the disc body 2 to the ring body 3; and rubber 5 arranged on an outer peripheral surface of the ring body 3. The spring body 4 is preferably a coil spring.

Description

本発明は、精度良くタイヤの転がり抵抗を測定する際に利用される車輪体及びこれを用いたタイヤの転がり抵抗の測定方法に関する。   The present invention relates to a wheel body used when measuring the rolling resistance of a tire with high accuracy and a method for measuring the rolling resistance of a tire using the same.

従来、タイヤの転がり抵抗を測定する方法として、図3に示されるような、走行ドラム11を具えた転がり抵抗測定機10を用いた測定方法が知られている。この方法では、先ず、走行ドラム11と測定用のタイヤTとを所定の荷重で押圧接触させ、前記走行ドラム11を回転させたときのタイヤの軸力F1を測定する。このタイヤTの軸力F1には、タイヤ単体の転がり抵抗と、タイヤを支持する回転軸12及び走行ドラム回転軸15の軸受による抵抗、並びにタイヤT及び走行ドラム11の空気抵抗の和である機械的抵抗とが含まれている。従って、タイヤの転がり抵抗を正確に調べるには、前記軸力F1から、上記機械的抵抗成分を除く必要がある。   Conventionally, as a method for measuring the rolling resistance of a tire, a measuring method using a rolling resistance measuring machine 10 including a running drum 11 as shown in FIG. 3 is known. In this method, first, the traveling drum 11 and the measurement tire T are pressed and contacted with a predetermined load, and the axial force F1 of the tire when the traveling drum 11 is rotated is measured. The axial force F1 of the tire T is a machine that is the sum of the rolling resistance of the tire alone, the resistance due to the bearings of the rotating shaft 12 and the traveling drum rotating shaft 15 that support the tire, and the air resistance of the tire T and the traveling drum 11. And resistance. Therefore, in order to accurately check the rolling resistance of the tire, it is necessary to remove the mechanical resistance component from the axial force F1.

従来、上記機械的抵抗成分を求める方法として、同じ転がり抵抗測定機10を用いて、走行ドラム11と測定用のタイヤTとを微小の荷重で押圧接触させ、前記走行ドラム11を回転させたときのタイヤTの軸力Faを測定することが行われている。そして、前記所定の荷重におけるタイヤTの軸力F1と微小の荷重におけるタイヤTの軸力Faとの差(F1−Fa)に基づいてタイヤの転がり抵抗が算出されていた。   Conventionally, as a method of obtaining the mechanical resistance component, when the running drum 11 is rotated by pressing the running drum 11 and the measurement tire T with a minute load using the same rolling resistance measuring machine 10. The axial force Fa of the tire T is measured. And the rolling resistance of the tire was calculated based on the difference (F1-Fa) between the axial force F1 of the tire T at the predetermined load and the axial force Fa of the tire T at a minute load.

しかしながら、この軸力Faには、測定用のタイヤTに微小な荷重が付加されてゴム部分の変形が生じるため、ヒステリシス損が含まれていた。即ち、上記方法では、正確に機械的抵抗を求めることはできず、ひいては、精度の良い転がり抵抗を測定できないという問題があった。   However, this axial force Fa includes a hysteresis loss because a minute load is applied to the measurement tire T and the rubber portion is deformed. That is, the above-described method has a problem that the mechanical resistance cannot be obtained accurately and as a result, the rolling resistance with high accuracy cannot be measured.

そこで、発明者らは軸力Faからヒステリシス損を取り除いた軸力を測定するために、ゴム部分の変形を考慮しなくて良い円盤状の剛体からなる車輪体(図示せず)を作製した。そして、この車輪体と前記転がり抵抗測定機10を用いて機械的抵抗を求めようとした。しかしながら、この車輪体では、前記荷重を付加しても該車輪体と走行ドラムとの軸間距離が変化せず、転がり測定機10の荷重測定器では、荷重を計測できないという問題があった。   Therefore, the inventors produced a wheel body (not shown) made of a disk-shaped rigid body that does not need to consider the deformation of the rubber portion in order to measure the axial force obtained by removing the hysteresis loss from the axial force Fa. And it tried to obtain | require mechanical resistance using this wheel body and the said rolling resistance measuring machine 10. FIG. However, this wheel body has a problem that even if the load is applied, the inter-axis distance between the wheel body and the traveling drum does not change, and the load measuring instrument of the rolling measuring machine 10 cannot measure the load.

また、前記軸力F1には、該軸力F1と同一方向かつ荷重と軸力との相互干渉及び姿勢角誤差によって生じる力(以下、「クロストーク」という。)が含まれている。従って、タイヤの転がり抵抗をさらに正確に測定するには、このクロストークも軸力F1から除く必要がある。このクロストークを測定する方法として、前記転がり抵抗測定機10を用いて、走行ドラム11と測定用のタイヤTとを所定の荷重で押圧接触させ、前記走行ドラム11を周方向の一方側に回転させたときのタイヤの軸力Fb1と、周方向の他方側に回転させたときのタイヤの軸力Fb2とを測定し、これらの差(Fb1−Fb2)を2で除して算出する方法が知られている。しかしながら、この方法では、上述のように、周方向の一方側及び他方側に回転させてタイヤの軸力Fb1とFb2とを測定しなければならず、さらに、周方向の一方側に回転させたことによるタイヤのゴム部分の変形を解消するために、周方向の他方側に回転させたときにはならし走行時間が必要となり、測定に時間が掛かりすぎるという問題があった。   Further, the axial force F1 includes a force (hereinafter referred to as “crosstalk”) generated in the same direction as the axial force F1, and due to mutual interference between the load and the axial force and an attitude angle error. Therefore, in order to measure the rolling resistance of the tire more accurately, it is necessary to remove this crosstalk from the axial force F1. As a method of measuring this crosstalk, the rolling resistance measuring machine 10 is used to press and contact the traveling drum 11 and the measurement tire T with a predetermined load, and the traveling drum 11 is rotated in one circumferential direction. A method of measuring the axial force Fb1 of the tire when rotated and the axial force Fb2 of the tire when rotating to the other side in the circumferential direction, and dividing the difference (Fb1-Fb2) by 2 to calculate Are known. However, in this method, as described above, the tire must be rotated to one side and the other side in the circumferential direction to measure the axial forces Fb1 and Fb2 of the tire, and further rotated to one side in the circumferential direction. In order to eliminate the deformation of the rubber part of the tire caused by this, a running time is required when rotating to the other side in the circumferential direction, and there is a problem that the measurement takes too much time.

また、前記クロストークを測定する他の方法として、走行ドラム11と測定用のタイヤTとを所定の荷重によって押圧接触させ、静止した状態でのタイヤの軸力Fbをクロストークとして測定する方法も知られている。しかしながら、この方法では、荷重を負荷するタイヤ軸位置の微小変化によってクロストークが大きく異なるため、精度良くクロストークを計測することが困難であるという問題があった。関連する技術としては、下記の技術文献がある。   As another method for measuring the crosstalk, there is a method in which the running drum 11 and the measurement tire T are pressed and contacted with a predetermined load, and the axial force Fb of the tire in a stationary state is measured as crosstalk. Are known. However, this method has a problem that it is difficult to accurately measure the crosstalk because the crosstalk greatly varies depending on a minute change in the tire shaft position where the load is applied. As related technologies, there are the following technical documents.

特開昭61−116637号公報JP-A-61-116637 特開平2−115739号公報Japanese Patent Laid-Open No. 2-115739 特開平6−018372号公報JP-A-6-018372 特開2003−004598号公報JP 2003-004598 A 特開2009−222639号公報JP 2009-22239A 特開2010−139470号公報JP 2010-139470 A

本発明は、以上のような問題点に鑑み案出なされたもので、簡単な構成で精度良くタイヤの転がり抵抗を測定する際に用いられる車輪体及びこれを用いたタイヤの転がり抵抗の測定方法を提供することを主たる目的としている。   The present invention has been devised in view of the above problems, a wheel body used when measuring the rolling resistance of a tire with a simple configuration with high accuracy, and a method for measuring the rolling resistance of a tire using the same. The main purpose is to provide

本発明のうち請求項1記載の発明は、タイヤの転がり抵抗を測定するために利用される車輪体であって、前記車輪体は、剛体からなる円板状のディスク体と、該ディスク体の半径方向外側に離間して配される剛体からなるリング体と、該リング体とディスク体とを接続しかつ該リング体に対してディスク体の重心位置を相対変位させるバネ体と、前記リング体の外周面に配されかつ厚さが1〜3mmのゴムからなる接地部とを含むことを特徴とする。   The invention according to claim 1 of the present invention is a wheel body used for measuring rolling resistance of a tire, and the wheel body includes a disk-shaped disk body made of a rigid body, and a disk body of the disk body. A ring body made of a rigid body spaced apart radially outward; a spring body connecting the ring body and the disk body and displacing the center of gravity of the disk body relative to the ring body; and the ring body And a grounding portion made of rubber having a thickness of 1 to 3 mm.

また請求項2記載の発明は、前記バネ体は、コイルばねである請求項1記載の車輪体である。   The invention according to claim 2 is the wheel body according to claim 1, wherein the spring body is a coil spring.

また請求項3記載の発明は、前記ゴムの損失正接(tanδ)が、0.04〜0.08である請求項1又は2に記載の車輪体である。   The invention according to claim 3 is the wheel body according to claim 1 or 2, wherein the loss tangent (tan δ) of the rubber is 0.04 to 0.08.

また請求項4記載の発明は、請求項1乃至3のいずれかに記載された車輪体を用いたタイヤの転がり抵抗測定方法であって、周方向に回転する走行ドラムの外周面に、該走行ドラムの軸方向と平行な回転軸に取り付けられたタイヤを荷重Naで押圧接触させて、前記回転軸に作用する軸力F1を測定する第1の軸力測定工程と、前記回転軸に前記車輪体を取り付けて周方向に回転する前記走行ドラムの外周面に前記車輪体を荷重Nbで押圧接触させて、前記回転軸に作用する軸力F2を測定する第2の軸力測定工程と、前記第1の軸力測定工程により測定された軸力F1と前記第2の軸力測定工程により測定された軸力F2との差からタイヤの転がり抵抗を算出する算出工程とを含むことを特徴とするタイヤの転がり抵抗測定方法である。   According to a fourth aspect of the present invention, there is provided a tire rolling resistance measuring method using the wheel body according to any one of the first to third aspects, wherein the running resistance is applied to an outer circumferential surface of a running drum that rotates in a circumferential direction. A first axial force measuring step of measuring an axial force F1 acting on the rotary shaft by pressing and contacting a tire attached to a rotary shaft parallel to the axial direction of the drum with a load Na; A second axial force measuring step of measuring the axial force F2 acting on the rotating shaft by pressing and contacting the wheel body with a load Nb on the outer peripheral surface of the traveling drum rotating in the circumferential direction with the body attached; And a calculation step of calculating a rolling resistance of the tire from a difference between the axial force F1 measured by the first axial force measurement step and the axial force F2 measured by the second axial force measurement step. This is a method for measuring the rolling resistance of a tire.

また請求項5記載の発明は、前記算出工程に先立ち、前記回転軸に前記車輪体を取り付けて、前記走行ドラムの外周面に前記車輪体を、前記荷重Naで押圧接触させて、前記車輪体を周方向の一方側に回転させたときの軸力F3aと前記車輪体を周方向の他方側に回転させたときの軸力F3bとを測定する第3の軸力測定工程を含み、前記算出工程は、前記軸力F1と前記軸力F2との差及び、前記第3の軸力測定工程により測定された軸力F3aと軸力F3bとの差を2で除した(F3a−F3b)/2を減じることを含む請求項4記載のタイヤの転がり抵抗測定方法である。   Further, in the invention according to claim 5, prior to the calculation step, the wheel body is attached to the rotating shaft, the wheel body is pressed and contacted with the outer peripheral surface of the traveling drum with the load Na, and the wheel body is obtained. Including a third axial force measurement step of measuring an axial force F3a when the wheel body is rotated to one side in the circumferential direction and an axial force F3b when the wheel body is rotated to the other side in the circumferential direction, In the step, the difference between the axial force F1 and the axial force F2 and the difference between the axial force F3a and the axial force F3b measured in the third axial force measuring step are divided by 2 (F3a−F3b) / The tire rolling resistance measuring method according to claim 4, comprising subtracting 2.

本発明の車輪体では、剛体からなる円板状のディスク体と、該ディスク体の半径方向外側に離間して配される剛体からなるリング体と、該リング体とディスク体とを接続しかつ該リング体に対してディスク体の重心位置を相対変位させるバネ体と、前記リング体の外周面に配される厚さが1〜3mmのゴムとからなる。このように、本発明の車輪体は、ディスク体の重心位置に対してリング体を相対変位させるバネ体を有するため、車輪体と走行ドラムとに付加される荷重によって、該車輪体と走行ドラムとの軸間距離が変化するため容易に計測できる。即ち、本発明の車輪体は、転がり抵抗試験機に使用できる。さらに本発明の車輪体は、剛体からなるディスク体とリング体と厚さが1〜3mmに規定されたゴムからなる接地部とを含むため、ヒステリシス損を限りなく小さくできる。従って、この車輪体の転がり抵抗を0とみなすことができるため、機械的抵抗やクロストークを短時間かつ精度良く測定できる。   In the wheel body of the present invention, a disc-shaped disk body made of a rigid body, a ring body made of a rigid body spaced apart on the outer side in the radial direction of the disk body, the ring body and the disk body are connected, and A spring body for displacing the center of gravity of the disk body relative to the ring body and a rubber having a thickness of 1 to 3 mm disposed on the outer peripheral surface of the ring body. Thus, since the wheel body of the present invention has the spring body that relatively displaces the ring body with respect to the center of gravity of the disk body, the wheel body and the traveling drum are caused by the load applied to the wheel body and the traveling drum. Because the distance between the axes changes, it can be measured easily. That is, the wheel body of the present invention can be used for a rolling resistance tester. Furthermore, since the wheel body of the present invention includes a disk body made of a rigid body, a ring body, and a ground contact portion made of rubber having a thickness of 1 to 3 mm, the hysteresis loss can be minimized. Therefore, since the rolling resistance of the wheel body can be regarded as 0, the mechanical resistance and the crosstalk can be measured in a short time with high accuracy.

本発明の一実施形態の車輪体の左半分を示す平面図である。It is a top view which shows the left half of the wheel body of one Embodiment of this invention. 図1の断面図である。It is sectional drawing of FIG. 測定用のタイヤを用いて機械的抵抗を含む転がり抵抗を測定する模式図である。It is a schematic diagram which measures rolling resistance including mechanical resistance using the tire for a measurement. 本実施形態の車輪体を用いて機械的抵抗及びクロストークを計測する模式図である。It is a schematic diagram which measures mechanical resistance and crosstalk using the wheel body of this embodiment.

以下、本発明の実施の一形態が図面に基づき説明される。
図1及び2に示されるように、本発明の車輪体1は、周知の転がり抵抗試験機10(図4に示す)を用いてタイヤの転がり抵抗を測定する際の機械的抵抗成分(いわゆる寄生損失)を精度よく測定するためのものである。なお、本明細書において、機械的抵抗とは、転がり抵抗試験機10が具える回転軸12及び走行ドラム11の軸15を支持する軸受の損失と、前記タイヤT、ホイールH(図3に示す)及び走行ドラム11の空気抵抗損失とを含む抵抗成分である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the wheel body 1 of the present invention has a mechanical resistance component (so-called parasitic) when measuring the rolling resistance of a tire using a known rolling resistance tester 10 (shown in FIG. 4). Loss) is accurately measured. In this specification, the mechanical resistance refers to the loss of the bearing that supports the rotating shaft 12 and the shaft 15 of the traveling drum 11 provided in the rolling resistance tester 10, the tire T, and the wheel H (shown in FIG. 3). ) And air resistance loss of the traveling drum 11.

本発明において、転がり抵抗の測定対象として、例えば、乗用車用、トラック用又は自動二輪車用など種々のカテゴリーの空気入りタイヤが含まれるが、ソリッドタイヤなどが含まれても良い。   In the present invention, the rolling resistance measurement target includes pneumatic tires of various categories such as passenger cars, trucks, and motorcycles, but may include solid tires.

本実施形態の車輪体1は、円板状のディスク体2と、該ディスク体2の半径方向外側に配されるリング体3と、該リング体3と前記ディスク体2とを接続するバネ体4と、前記リング体3の外周面3aに配されるゴムからなる接地部5とを含んで構成される。   The wheel body 1 of the present embodiment includes a disk-shaped disk body 2, a ring body 3 disposed on the outer side in the radial direction of the disk body 2, and a spring body that connects the ring body 3 and the disk body 2. 4 and a grounding portion 5 made of rubber disposed on the outer peripheral surface 3 a of the ring body 3.

本実施形態のディスク体2は、均一な厚さを有しかつその主要部をなす円盤状の主部6と、該主部6のタイヤ半径方向の外周面6aに形成されかつ主部6よりも厚さの小さいフランジ状の外側部7とからなる。   The disc body 2 of the present embodiment is formed on a disk-shaped main portion 6 having a uniform thickness and forming the main portion thereof, and an outer peripheral surface 6a of the main portion 6 in the tire radial direction. Also comprises a flange-shaped outer portion 7 having a small thickness.

前記主部6は、中心cに転がり抵抗試験機10の回転軸12が取り付けられる取付孔Kが設けられる。   The main portion 6 is provided with a mounting hole K to which the rotating shaft 12 of the rolling resistance tester 10 is attached at the center c.

前記外側部7は、該外側部7の半径方向の中央部分かつ円周方向に隔設される透孔7aが設けられる。   The outer portion 7 is provided with a through hole 7a that is radially spaced apart from the central portion of the outer portion 7 in the radial direction.

また、前記リング体3は、ディスク体2の半径方向外側に、該ディスク体2とは離間して配される、例えば均一の厚さで幅広にのびるディスク本体8と、該ディスク本体8の内周面8aの中央部から半径方向の内側にのびるフランジ部9とを含む断面視T字状で形成される。   Further, the ring body 3 is arranged on the outer side in the radial direction of the disk body 2 so as to be separated from the disk body 2, for example, a disk main body 8 having a uniform thickness and extending widely; It is formed in a T shape in a sectional view including a flange portion 9 extending inward in the radial direction from the center portion of the peripheral surface 8a.

ディスク本体8の軸方向の幅W1は、特に限定されるものではないが、測定用のタイヤTの空気抵抗と近似させる観点より、前記タイヤTの接地幅(図示せず)の好ましくは70%以上、より好ましくは80%以上が望ましく、また好ましくは130%以下、より好ましくは120%以下が望ましい。なお、本明細書において、前記接地幅とは、転がり抵抗試験において前記走行ドラム11上に接地するタイヤTの最大幅である。   The axial width W1 of the disc body 8 is not particularly limited, but is preferably 70% of the ground contact width (not shown) of the tire T from the viewpoint of approximating the air resistance of the tire T for measurement. Above, more preferably 80% or more, and preferably 130% or less, more preferably 120% or less. In the present specification, the contact width is the maximum width of the tire T that contacts the running drum 11 in a rolling resistance test.

また、ディスク本体8の厚さt1は、車輪体1の耐久性を考慮して、好ましくは8mm以上、より好ましくは10mm以上が望ましく、また好ましくは17mm以下、より好ましくは15mm以下が望ましい。   In consideration of the durability of the wheel body 1, the thickness t1 of the disk body 8 is preferably 8 mm or more, more preferably 10 mm or more, and preferably 17 mm or less, more preferably 15 mm or less.

本実施形態のフランジ部9は、該フランジ部9の半径方向の内側に小厚さでのびる内側部10を有し、該内側部10には、円周方向に隔設された透孔10aが設けられる。   The flange portion 9 of the present embodiment has an inner portion 10 extending in a small thickness on the inner side in the radial direction of the flange portion 9, and the inner portion 10 has through-holes 10a spaced in the circumferential direction. Provided.

このようなディスク体2及びリング体3は、限り無くヒステリシス損を小さくして精度良く機械的抵抗やクロストークを測定する観点より、剛体で構成される。このような剛体としては、チタン合金やステンレス合金などの金属材料が望ましく、とりわけ比重の小さいアルミニウム合金が好適である。   The disk body 2 and the ring body 3 are made of rigid bodies from the viewpoint of measuring the mechanical resistance and crosstalk with high accuracy by reducing the hysteresis loss as much as possible. As such a rigid body, a metal material such as a titanium alloy or a stainless alloy is desirable, and an aluminum alloy having a small specific gravity is particularly suitable.

また、本実施形態のバネ体4は、一端部4aが前記外側部7に設けられた透孔7aに、また、他端部4bが前記内側部10に設けられた透孔10aに貫通して、車輪体1の半径方向に引張状態で円周方向に等角度間隔で複数個取り付けられている。   Further, the spring body 4 of the present embodiment has one end portion 4 a penetrating through a through hole 7 a provided in the outer side portion 7 and the other end portion 4 b penetrating through a through hole 10 a provided in the inner side portion 10. A plurality of wheel bodies 1 are attached at equal angular intervals in the circumferential direction in a tension state in the radial direction of the wheel body 1.

このようなバネ体4としては、耐久性を向上させる観点からステンレス鋼などの金属材料からなるコイルばねが好適である。   As such a spring body 4, a coil spring made of a metal material such as stainless steel is suitable from the viewpoint of improving durability.

また、バネ体4の車輪体1の円周方向の配設角度θは、精度良く機械的抵抗やクロストークを測定する観点より、好ましくは20°以上、より好ましくは24°以上が望ましく、また好ましくは45°以下、より好ましくは40°以下で配されるのが望ましい。また、バネ体4は、等角度間隔で配設されるのがさらに望ましい。   The circumferential angle θ of the wheel body 1 of the spring body 4 is preferably 20 ° or more, more preferably 24 ° or more from the viewpoint of measuring mechanical resistance and crosstalk with high accuracy. It is desirable that it is arranged at 45 ° or less, more preferably at 40 ° or less. Further, it is more desirable that the spring bodies 4 are arranged at equiangular intervals.

上記の配設角度θを前提とした場合、バネ体4のバネ定数Kは、好ましくは15N/mm以上、より好ましくは20N/mm以上が望ましく、また好ましくは35N/mm以下、より好ましくは30N/mm以下が望ましい。   Assuming the above-described arrangement angle θ, the spring constant K of the spring body 4 is preferably 15 N / mm or more, more preferably 20 N / mm or more, and preferably 35 N / mm or less, more preferably 30 N. / Mm or less is desirable.

以上のように構成されたバネ体4は、弾性力によりリング体3に対してディスク体2の重心位置を相対変位できる。さらにバネ体4は、円周方向に隔設されているため、車輪体1の回転による走行ドラム11からの荷重点が移動しても前記相対変位を一定にできる。さらに、バネ定数が、上記値に規制されているため、バネ体4の変位量が適切化されて、走行ドラム11と車輪体1との荷重や軸力が精度よく測定される。   The spring body 4 configured as described above can relatively displace the center of gravity of the disk body 2 with respect to the ring body 3 by elastic force. Furthermore, since the spring bodies 4 are spaced apart in the circumferential direction, the relative displacement can be made constant even if the load point from the traveling drum 11 is moved by the rotation of the wheel body 1. Furthermore, since the spring constant is regulated to the above value, the amount of displacement of the spring body 4 is optimized, and the load and axial force between the traveling drum 11 and the wheel body 1 are accurately measured.

前記接地部5は、リング本体8の外周面8bの円周方向の全面に配されている。このような接地部5のゴム厚さt2は、1.0mm以上かつ3.0mm以下に限定される必要がある。前記ゴム厚さt2が3.0mmより大きくなると、この部分の変形が大きくなりヒステリシス損が大きくなるため、機械的抵抗やクロストークを精度良く測定できないおそれがあり、逆に、ゴム厚さt2が1.0mm未満であると、走行ドラム11の外周面11aに対してスリップし、精度良く機械的抵抗やクロストークを測定できないおそれがある。   The grounding portion 5 is disposed on the entire circumferential surface of the outer peripheral surface 8 b of the ring body 8. The rubber thickness t2 of the grounding part 5 needs to be limited to 1.0 mm or more and 3.0 mm or less. If the rubber thickness t2 is larger than 3.0 mm, the deformation of this portion becomes large and the hysteresis loss becomes large. Therefore, there is a possibility that the mechanical resistance and the crosstalk cannot be accurately measured. If it is less than 1.0 mm, it may slip with respect to the outer peripheral surface 11a of the traveling drum 11, and the mechanical resistance and crosstalk may not be measured with high accuracy.

また同様の観点より、前記ゴム5の損失正接(tanδ)は、好ましくは0.04以上、より好ましくは0.05以上が望ましく、また好ましくは0.08以下、より好ましくは0.07以下が望ましい。なおゴム5の「損失正接(tan δ)」は、粘弾性スペクトロメータを用い、温度25℃においてJISK5394に準拠し、初期歪3%、動的歪±2%、周波数10Hzの条件にて測定した値である。   From the same viewpoint, the loss tangent (tan δ) of the rubber 5 is preferably 0.04 or more, more preferably 0.05 or more, and preferably 0.08 or less, more preferably 0.07 or less. desirable. The “loss tangent (tan δ)” of the rubber 5 was measured using a viscoelastic spectrometer at a temperature of 25 ° C. in accordance with JISK5394 under conditions of an initial strain of 3%, a dynamic strain of ± 2%, and a frequency of 10 Hz. Value.

このように形成される車輪体1の外径R1は、特に限定されるものではないが、測定用のタイヤTの空気抵抗と近似させる観点より、前記タイヤTの外径の好ましくは80%以上、より好ましくは90%以上が望ましく、また好ましくは120%以下、より好ましくは110%以下が望ましい。   The outer diameter R1 of the wheel body 1 formed in this way is not particularly limited, but is preferably 80% or more of the outer diameter of the tire T from the viewpoint of approximating the air resistance of the tire T for measurement. More preferably, it is 90% or more, preferably 120% or less, more preferably 110% or less.

また、本実施形態の車輪体1は、主要な構成部材が剛体であるため、測定用のタイヤTに比してヒステリシス損を大幅に小さくできる。   Moreover, since the main structural member of the wheel body 1 of the present embodiment is a rigid body, the hysteresis loss can be significantly reduced as compared with the tire T for measurement.

次に、このように構成された車輪体1を用いて、タイヤの転がり抵抗を測定する方法が説明される。なお、本実施形態の測定方法は、機械的抵抗の測定を除いて、JISD−4234に規定されるフォース法に準拠して行われる。   Next, a method for measuring the rolling resistance of the tire using the wheel body 1 configured as described above will be described. In addition, the measuring method of this embodiment is performed based on the force method prescribed | regulated to JISD-4234 except the measurement of mechanical resistance.

図3及び4に示されるように、タイヤの転がり抵抗を測定する転がり抵抗測定機10は、周方向に回転する走行ドラム11と、該走行ドラム11の軸方向と平行に設けられかつ回転可能な回転軸12と、前記走行ドラム11を回転させる駆動装置13と、前記回転軸12を走行ドラム11に対して垂直方向に移動させる移動装置14と、前記回転軸12の軸力や試験荷重を計測する分力計(図示せず)とを含んで構成される。   As shown in FIGS. 3 and 4, a rolling resistance measuring machine 10 that measures the rolling resistance of a tire is provided with a traveling drum 11 that rotates in the circumferential direction, and is provided in parallel with the axial direction of the traveling drum 11 and is rotatable. The rotating shaft 12, the driving device 13 for rotating the traveling drum 11, the moving device 14 for moving the rotating shaft 12 in the direction perpendicular to the traveling drum 11, and the axial force and test load of the rotating shaft 12 are measured. And a component force meter (not shown).

本実施形態では、第1の軸力測定工程では、先ずタイヤTを走行ドラム11の外周面11aに前記移動装置14によりJISD−4234に規定される試験荷重Naで押圧接触させる。次に、駆動装置13により走行ドラム11を回転させる。そして、このときの回転軸12に作用する軸力F1が分力計により測定される。なお、この軸力F1には、タイヤTの転がり抵抗と機械的抵抗とクロストークとが含まれる。   In the present embodiment, in the first axial force measurement step, first, the tire T is brought into press contact with the outer peripheral surface 11a of the traveling drum 11 by the moving device 14 with the test load Na defined in JIS D-4234. Next, the traveling drum 11 is rotated by the driving device 13. And the axial force F1 which acts on the rotating shaft 12 at this time is measured with a force meter. The axial force F1 includes rolling resistance, mechanical resistance, and crosstalk of the tire T.

次に、本実施形態では、第2の軸力測定工程が行われる。該第2の軸力測定工程では、回転軸12から前記タイヤTを取り外し、車輪体1の開口部Kを回転軸12に取り付けて支持する。次に、移動装置14により、車輪体1を走行ドラム11の外周面11aに荷重Nbで押圧接触させる。次に、走行ドラム11を回転させる。そして、この回転軸12に作用する軸力F2が、分力計により測定される。本実施形態の車輪体1は、ヒステリシス損が限り無く小さいため、前記軸力F2は、転がり抵抗をゼロとできる。従って、軸力F2は、精度の良い機械的抵抗を示す値となる。なお、前記荷重Nbは、JISD−4234のスキムテスト法に基づく試験荷重が採用される。   Next, in the present embodiment, a second axial force measurement step is performed. In the second axial force measurement step, the tire T is removed from the rotating shaft 12, and the opening K of the wheel body 1 is attached to and supported by the rotating shaft 12. Next, the wheel body 1 is pressed and brought into contact with the outer peripheral surface 11 a of the traveling drum 11 by the load Nb by the moving device 14. Next, the traveling drum 11 is rotated. Then, the axial force F2 acting on the rotating shaft 12 is measured by a force meter. Since the wheel body 1 of this embodiment has an extremely small hysteresis loss, the axial force F2 can make the rolling resistance zero. Therefore, the axial force F2 is a value indicating a mechanical resistance with high accuracy. As the load Nb, a test load based on the skim test method of JIS D-4234 is adopted.

次に、本実施形態では、第3の軸力測定工程が行われる。該第3の軸力測定工程では、移動装置14により、車輪体1を走行ドラム11の外周面11aに前記試験荷重Naで押圧接触させる。次に、走行ドラム11を周方向の一方側に回転させたときの回転軸12に作用する軸力F3aと、走行ドラム11を周方向の他方側に回転させたときの回転軸12に作用する軸力F3bとが、分力計により測定される。本実施形態の車輪体1は、測定用のタイヤTの形状に応じた大きさである他、主要な構成部材が剛体でありゴム変形が小さいため、前記軸力F3aと軸力F3bとの差を2で除した(F3a−F3b)/2が、試験荷重NaにおけるタイヤTのクロストークF3を精度よく示す値となる。   Next, in the present embodiment, a third axial force measurement step is performed. In the third axial force measurement step, the wheel body 1 is pressed and brought into contact with the outer peripheral surface 11 a of the traveling drum 11 by the test load Na by the moving device 14. Next, an axial force F3a acting on the rotating shaft 12 when the traveling drum 11 is rotated to one side in the circumferential direction, and an acting force on the rotating shaft 12 when the traveling drum 11 is rotated to the other side in the circumferential direction. The axial force F3b is measured by a force meter. The wheel body 1 of the present embodiment has a size corresponding to the shape of the tire T for measurement, and the main constituent member is a rigid body and has a small rubber deformation, so the difference between the axial force F3a and the axial force F3b. (F3a−F3b) / 2 divided by 2 is a value that accurately indicates the crosstalk F3 of the tire T at the test load Na.

また、本実施形態の車輪体1を用いて算出された(F3a−F3b)/2は、この車輪体1に対応する全てのタイヤTのクロストークF3を示すものである。従って、一度、車輪体1の前記試験荷重Naにおける軸力F3aと、軸力F3bとの測定を行うと、従来の技術のように、タイヤT毎に周方向の他方側に回転させて軸力を測定することが不要となり、転がり抵抗(クロストーク)の測定時間を短縮できる。なお、前記第1乃至第3の軸力測定工程では、走行ドラム11は、同一の回転速度(本実施形態では80km/h)に保持される。   Further, (F3a−F3b) / 2 calculated using the wheel body 1 of the present embodiment indicates the crosstalk F3 of all tires T corresponding to the wheel body 1. Therefore, once the axial force F3a and the axial force F3b at the test load Na of the wheel body 1 are measured, the axial force is rotated to the other side in the circumferential direction for each tire T as in the prior art. It becomes unnecessary to measure the rolling resistance, and the measurement time of rolling resistance (crosstalk) can be shortened. In the first to third axial force measurement steps, the traveling drum 11 is held at the same rotational speed (80 km / h in this embodiment).

なお、本実施形態の車輪体1は、主要な構成部材が剛体でありゴム変形が通常のタイヤに比して極めて小さいため、周方向の他方側に回転させたときのならし走行の走行時間を小さくできる。従って、車輪体1の軸力F3bの測定においても測定時間を短縮できる。   In addition, since the main structural member is a rigid body and the rubber deformation is extremely small as compared with a normal tire, the wheel body 1 of the present embodiment has a running time for running-in when rotated to the other side in the circumferential direction. Can be reduced. Therefore, the measurement time can be shortened also in the measurement of the axial force F3b of the wheel body 1.

そして、前記軸力F1とF2との差、及びこれとF3との差((F1−F2)−F3)に基づいて、測定用のタイヤTの転がり抵抗が算出される。   Based on the difference between the axial forces F1 and F2 and the difference between the axial forces F1 and F3 ((F1−F2) −F3), the rolling resistance of the tire T for measurement is calculated.

以上、本発明の好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施し得る。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the illustrated embodiments, and can be implemented in various forms.

本発明の効果を確認するために、表1の仕様に基づいた車輪体が試作され、車輪体が取り付けられる回転軸の軸力についてテストが行われた。表1に示すパラメータ以外はすべて同一であり、主な共通仕様は次の通りである。   In order to confirm the effect of the present invention, a wheel body based on the specifications of Table 1 was prototyped and tested for the axial force of the rotating shaft to which the wheel body is attached. The parameters other than those shown in Table 1 are all the same, and the main common specifications are as follows.

車輪体の外径R1と測定用のタイヤの外径との比:99〜100%
車輪体の質量と測定用タイヤの質量との比:60〜70%
ディスク本体の幅W1と接地幅との比:99〜101%
ディスク本体の厚さt1:12mm
ディスク体及びリング体の材質:アルミニウム合金
バネ体のバネ定数:30N/mm
バネ体の配設角度:30°
<接地部>
ゴムの損失正接(tanδ):0.06
ゴムの配合(phr(重量部))
天然ゴム:100
カーボン:45
WAX:1.5
老化防止剤:2.5
ステアリン酸:2.5
酸化亜鉛:4
5%油展硫黄:1.6
加硫促進剤NS:1.35
Ratio between the outer diameter R1 of the wheel body and the outer diameter of the tire for measurement: 99 to 100%
Ratio of wheel body mass to measurement tire mass: 60-70%
Ratio of disc body width W1 to ground contact width: 99 to 101%
Disc body thickness t1: 12 mm
Disc body and ring body material: Aluminum alloy Spring constant of spring body: 30 N / mm
Arrangement angle of spring body: 30 °
<Grounding part>
Loss tangent of rubber (tan δ): 0.06
Compounding rubber (phr (parts by weight))
Natural rubber: 100
Carbon: 45
WAX: 1.5
Anti-aging agent: 2.5
Stearic acid: 2.5
Zinc oxide: 4
5% oil-extended sulfur: 1.6
Vulcanization accelerator NS: 1.35

<回転軸の軸力F2(機械的抵抗)>
上記の各供試車輪体(実施例及び比較例)及びこの車輪体に応じたタイヤ(従来例)が取り付けられた回転軸の軸力F2を測定する。測定方法は、JISD−4234に準拠した転がり抵抗試験機を用いてフォース法及びスキムテスト法により測定される。
室温:25℃
ドラム直径:1.7m
ドラム回転速度:80Km/h
タイヤの空気圧:210kPa
各車輪体及びタイヤへの荷重:100N
テストの結果を表1に表す。
<Axial force F2 (mechanical resistance) of the rotating shaft>
The axial force F2 of the rotating shaft to which each of the above test wheel bodies (Examples and Comparative Examples) and a tire (conventional example) corresponding to the wheel bodies are attached is measured. The measuring method is measured by a force method and a skim test method using a rolling resistance tester compliant with JIS D-4234.
Room temperature: 25 ° C
Drum diameter: 1.7m
Drum rotation speed: 80km / h
Tire pressure: 210 kPa
Load to each wheel and tire: 100N
The test results are shown in Table 1.

Figure 2012132899
Figure 2012132899

テストの結果、実施例の車輪体の軸力は、従来例のタイヤや比較例のゴム厚さが大きい車輪体の軸力に比してヒステリシス損が取り除かれているため値が小さくなっている。このため、本実施形態の車輪体を使用することにより、前記車輪体に応じたタイヤの転がり抵抗が精度良く算出できることが理解できる。   As a result of the test, the axial force of the wheel body of the example has a smaller value because the hysteresis loss is removed compared to the axial force of the wheel body of the conventional example and the rubber body of the comparative example having a large rubber thickness. . For this reason, it can be understood that the rolling resistance of the tire corresponding to the wheel body can be calculated with high accuracy by using the wheel body of the present embodiment.

<クロストーク>
上記の各供試車輪体及びこの車輪体に応じたタイヤの負荷荷重毎のクロストークが測定された。
(車輪体のクロストークの測定方法)
上記転がり抵抗測定機を用い、車輪体を回転軸に取付け、車輪体を周方向の一方側に回転させたときの軸力と、車輪体を周方向の他方側に回転させたときの軸力とを測定し、その差を2で除した値をタイヤのクロストーク値とする。クロストークのテストの結果を表2に表す。
(タイヤのクロストークの測定方法)
上記転がり抵抗測定機を用い、上記車輪体に応じた、サイズ185/60R15のタイヤを回転軸に取付け、タイヤを周方向の一方側に回転させたときの軸力と、タイヤを周方向の他方側に回転させたときの軸力とを測定し、その差を2で除した値をタイヤのクロストーク値とする。
タイヤのクロストーク(N)は以下の通りである。
負荷荷重 2.0kN時:−2.6N
負荷荷重 4.0kN時:−5.1N
負荷荷重 6.0kN時:−7.6N
負荷荷重 8.0kN時:−10.1N
負荷荷重10.0kN時:−12.6N
<Crosstalk>
Crosstalk was measured for each of the test wheel bodies and the load load of the tire corresponding to the wheel bodies.
(Measuring method of crosstalk of wheel body)
Axial force when rotating the wheel body to the other side in the circumferential direction and axial force when the wheel body is rotated to the one side in the circumferential direction using the above rolling resistance measuring machine The value obtained by dividing the difference by 2 is taken as the tire crosstalk value. The results of the crosstalk test are shown in Table 2.
(Measurement method of tire crosstalk)
Using the rolling resistance measuring machine, a tire of size 185 / 60R15 corresponding to the wheel body is attached to the rotating shaft, the axial force when rotating the tire to one side in the circumferential direction, and the tire in the other circumferential direction The axial force when rotating to the side is measured, and the value obtained by dividing the difference by 2 is taken as the tire crosstalk value.
The crosstalk (N) of the tire is as follows.
When load is 2.0kN: -2.6N
When load is 4.0kN: -5.1N
When load is 6.0 kN: -7.6 N
Load 8.0 kN: -10.1N
When load is 10.0 kN: -12.6 N

Figure 2012132899
Figure 2012132899

テストの結果、実施例のクロストークは、比較例のクロストークよりも、各荷重時においてタイヤのクロストークと近似する。また、タイヤのトレッド部のパターンを変えてテストを行ったが、本テストと同じ結果となった。さらにサイズを変更し、このサイズに該当する車輪体を作製してテストを行ったが、本テスト結果と同じ傾向を示した。   As a result of the test, the crosstalk of the example is closer to the crosstalk of the tire at each load than the crosstalk of the comparative example. In addition, the test was performed by changing the pattern of the tread portion of the tire, and the same result as in this test was obtained. Further, the size was changed, and a wheel body corresponding to this size was produced and tested, but showed the same tendency as this test result.

1 車輪体
2 ディスク体
3 リング体
4 バネ体
5 ゴム
1 Wheel body 2 Disc body 3 Ring body 4 Spring body 5 Rubber

Claims (5)

タイヤの転がり抵抗を測定するために利用される車輪体であって、
前記車輪体は、剛体からなる円板状のディスク体と、該ディスク体の半径方向外側に離間して配される剛体からなるリング体と、該リング体とディスク体とを接続しかつ該リング体に対してディスク体の重心位置を相対変位させるバネ体と、前記リング体の外周面に配されかつ厚さが1〜3mmのゴムからなる接地部とを含むことを特徴とする車輪体。
A wheel body used to measure rolling resistance of a tire,
The wheel body includes a disk-shaped disk body made of a rigid body, a ring body made of a rigid body that is spaced apart radially outward of the disk body, and the ring body and the disk body connected to each other and the ring. A wheel body, comprising: a spring body that displaces the center of gravity of the disk body relative to the body; and a grounding portion that is disposed on an outer peripheral surface of the ring body and is made of rubber having a thickness of 1 to 3 mm.
前記バネ体は、コイルばねである請求項1記載の車輪体。   The wheel body according to claim 1, wherein the spring body is a coil spring. 前記ゴムの損失正接(tanδ)が、0.04〜0.08である請求項1又は2に記載の車輪体。   The wheel body according to claim 1 or 2, wherein the loss tangent (tan δ) of the rubber is 0.04 to 0.08. 請求項1乃至3のいずれかに記載された車輪体を用いたタイヤの転がり抵抗測定方法であって、
周方向に回転可能な走行ドラムの外周面に、該走行ドラムの軸方向と平行な回転軸に取り付けられたタイヤを荷重Naで押圧接触させて、前記回転軸に作用する軸力F1を測定する第1の軸力測定工程と、
前記回転軸に前記車輪体を取り付けて周方向に回転可能な前記走行ドラムの外周面に前記車輪体を荷重Nbで押圧接触させて、前記回転軸に作用する軸力F2を測定する第2の軸力測定工程と、
前記第1の軸力測定工程により測定された軸力F1と前記第2の軸力測定工程により測定された軸力F2との差に基づいてタイヤの転がり抵抗を算出する算出工程とを含むことを特徴とするタイヤの転がり抵抗測定方法。
A method for measuring a rolling resistance of a tire using the wheel body according to any one of claims 1 to 3,
A tire attached to a rotating shaft parallel to the axial direction of the traveling drum is brought into pressure contact with the outer peripheral surface of the traveling drum rotatable in the circumferential direction with a load Na, and an axial force F1 acting on the rotating shaft is measured. A first axial force measurement step;
A second axial force F2 acting on the rotating shaft is measured by attaching the wheel body to the rotating shaft and pressing and contacting the wheel body with a load Nb on the outer peripheral surface of the traveling drum that is rotatable in the circumferential direction. Axial force measurement process;
A calculation step of calculating a rolling resistance of the tire based on a difference between the axial force F1 measured by the first axial force measurement step and the axial force F2 measured by the second axial force measurement step. A method for measuring the rolling resistance of a tire characterized by the above.
前記算出工程に先立ち、
前記回転軸に前記車輪体を取り付けて、前記走行ドラムの外周面に前記車輪体を、前記荷重Naで押圧接触させて、前記車輪体を周方向の一方側に回転させたときの軸力F3aと前記車輪体を周方向の他方側に回転させたときの軸力F3bとを測定する第3の軸力測定工程を含み、
前記算出工程は、前記軸力F1と前記軸力F2との差及び、前記第3の軸力測定工程により測定された軸力F3aと軸力F3bとの差を2で除した(F3a−F3b)/2を減じることを含む請求項4記載のタイヤの転がり抵抗測定方法。
Prior to the calculation step,
Axial force F3a when the wheel body is attached to the rotating shaft, the wheel body is pressed against the outer peripheral surface of the traveling drum with the load Na, and the wheel body is rotated to one side in the circumferential direction. And a third axial force measurement step for measuring the axial force F3b when the wheel body is rotated to the other side in the circumferential direction,
In the calculation step, the difference between the axial force F1 and the axial force F2 and the difference between the axial force F3a and the axial force F3b measured in the third axial force measurement step are divided by 2 (F3a−F3b). ) / 2 is subtracted from the tire rolling resistance measuring method according to claim 4.
JP2011258006A 2010-11-29 2011-11-25 Method for measuring rolling resistance of tires using wheel bodies Expired - Fee Related JP5735903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258006A JP5735903B2 (en) 2010-11-29 2011-11-25 Method for measuring rolling resistance of tires using wheel bodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010265569 2010-11-29
JP2010265569 2010-11-29
JP2011258006A JP5735903B2 (en) 2010-11-29 2011-11-25 Method for measuring rolling resistance of tires using wheel bodies

Publications (2)

Publication Number Publication Date
JP2012132899A true JP2012132899A (en) 2012-07-12
JP5735903B2 JP5735903B2 (en) 2015-06-17

Family

ID=46648640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258006A Expired - Fee Related JP5735903B2 (en) 2010-11-29 2011-11-25 Method for measuring rolling resistance of tires using wheel bodies

Country Status (1)

Country Link
JP (1) JP5735903B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075503A (en) * 2014-10-03 2016-05-12 住友ゴム工業株式会社 Evaluation method of rolling resistance of tire
CN111391578A (en) * 2020-03-12 2020-07-10 南京航空航天大学 Pseudo-rigid inflation-free tire imitating hind leg structure of quadruped
CN111422007A (en) * 2020-05-25 2020-07-17 安徽禾臣新材料有限公司 Polyurethane elastomer rubber wheel and preparation method thereof
US10760903B2 (en) 2015-12-24 2020-09-01 Mitsubishi Heavy Industries Machinery Systems, Ltd. Master disk, master disk mounting method, and master disk removal method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116637A (en) * 1984-11-09 1986-06-04 Sumitomo Rubber Ind Ltd Rolling resistance tester for tire
JPH02115739A (en) * 1988-10-26 1990-04-27 Yokohama Rubber Co Ltd:The Correcting method for measured value of rolling resistance of tire
JPH0618372A (en) * 1990-12-21 1994-01-25 Sumitomo Rubber Ind Ltd Rolling resistance measuring tester
JPH07205608A (en) * 1994-01-13 1995-08-08 Sumitomo Rubber Ind Ltd Non-pneumatic tire
JP2000258277A (en) * 1999-03-12 2000-09-22 Honda Motor Co Ltd Method for measuring dynamic balance of tire tube with sealing compound
JP2003004598A (en) * 2001-04-20 2003-01-08 Nissho Denki Kk Method for measuring rolling resistance of tyre and apparatus for the same
JP2004150894A (en) * 2002-10-29 2004-05-27 Sumitomo Rubber Ind Ltd Method of keeping precision for tire testing machine, and method of measuring product performance of tire
JP2005500932A (en) * 2001-08-24 2005-01-13 ソシエテ ドゥ テクノロジー ミシュラン Non-pneumatic tire
JP2008074345A (en) * 2006-09-25 2008-04-03 Bridgestone Corp Non-pneumatic tire
JP2009222639A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Tire testing device and method
JP2010032248A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Master tire and inspection method of tire uniformity tester using master tire
JP2010139470A (en) * 2008-12-15 2010-06-24 Kobe Steel Ltd Tire rolling resistance testing machine and tire rolling resistance testing method
JP2010203908A (en) * 2009-03-03 2010-09-16 Kobe Steel Ltd Device for measuring rolling resistance of tire

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116637A (en) * 1984-11-09 1986-06-04 Sumitomo Rubber Ind Ltd Rolling resistance tester for tire
JPH02115739A (en) * 1988-10-26 1990-04-27 Yokohama Rubber Co Ltd:The Correcting method for measured value of rolling resistance of tire
JPH0618372A (en) * 1990-12-21 1994-01-25 Sumitomo Rubber Ind Ltd Rolling resistance measuring tester
JPH07205608A (en) * 1994-01-13 1995-08-08 Sumitomo Rubber Ind Ltd Non-pneumatic tire
JP2000258277A (en) * 1999-03-12 2000-09-22 Honda Motor Co Ltd Method for measuring dynamic balance of tire tube with sealing compound
JP2003004598A (en) * 2001-04-20 2003-01-08 Nissho Denki Kk Method for measuring rolling resistance of tyre and apparatus for the same
JP2005500932A (en) * 2001-08-24 2005-01-13 ソシエテ ドゥ テクノロジー ミシュラン Non-pneumatic tire
JP2004150894A (en) * 2002-10-29 2004-05-27 Sumitomo Rubber Ind Ltd Method of keeping precision for tire testing machine, and method of measuring product performance of tire
JP2008074345A (en) * 2006-09-25 2008-04-03 Bridgestone Corp Non-pneumatic tire
JP2009222639A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Tire testing device and method
JP2010032248A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Master tire and inspection method of tire uniformity tester using master tire
JP2010139470A (en) * 2008-12-15 2010-06-24 Kobe Steel Ltd Tire rolling resistance testing machine and tire rolling resistance testing method
JP2010203908A (en) * 2009-03-03 2010-09-16 Kobe Steel Ltd Device for measuring rolling resistance of tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075503A (en) * 2014-10-03 2016-05-12 住友ゴム工業株式会社 Evaluation method of rolling resistance of tire
US10760903B2 (en) 2015-12-24 2020-09-01 Mitsubishi Heavy Industries Machinery Systems, Ltd. Master disk, master disk mounting method, and master disk removal method
DE112015007230B4 (en) 2015-12-24 2022-01-05 Mitsubishi Heavy Industries Machinery Systems, Ltd. TIRE INSPECTION MACHINE AND TIRE INSPECTION PROCEDURE WITH TIRE INSPECTION MACHINE
CN111391578A (en) * 2020-03-12 2020-07-10 南京航空航天大学 Pseudo-rigid inflation-free tire imitating hind leg structure of quadruped
CN111391578B (en) * 2020-03-12 2022-05-24 南京航空航天大学 Pseudo-rigid non-pneumatic tire imitating quadruped hind leg structure
CN111422007A (en) * 2020-05-25 2020-07-17 安徽禾臣新材料有限公司 Polyurethane elastomer rubber wheel and preparation method thereof

Also Published As

Publication number Publication date
JP5735903B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5735903B2 (en) Method for measuring rolling resistance of tires using wheel bodies
JP4369983B1 (en) Master tire and inspection method of tire uniformity testing machine using the master tire
CN102914439B (en) The road surface member of tyre tester and manufacture method thereof
JP2018021613A (en) Clearance measurement method of hub unit bearing
JP2003004598A (en) Method for measuring rolling resistance of tyre and apparatus for the same
CN202442665U (en) Wheel jumping detecting device
US9885637B2 (en) Tire rolling resistance testing method and testing device
TW201241419A (en) Method for calibrating multi-component force detector provided in rolling resistance testing machine
JP6559637B2 (en) Tire uniformity machine characterization system and method
CN104913703A (en) Tubeless wheel rim end and radial runout detection device
WO2020196089A1 (en) Method of acquiring contact angle of angular contact ball bearing and method of manufacturing bearing device for wheels
CN110160810B (en) Method for testing rolling resistance of tire under indoor multiple working conditions
CN105814427B (en) The rigid measurement device of tread rings and the uniformity method of tread rings
RU2474482C1 (en) Method of straightening automotive wheel discs
US9370967B2 (en) Wheel reaction force detecting apparatus
JP2015175715A (en) Test device of tire characteristic
WO2019068425A3 (en) Running drum arrangement for a test stand and test stand comprising the running drum arrangement
JP2008089467A (en) Method for inspecting precision of tire testing machine
CN106169017B (en) A kind of steel ball matching process of the hub-bearing unit based on clearance size
JP7275945B2 (en) Spike tire evaluation method and evaluation device
CN111619581A (en) Vehicle information calculation device and vehicle control device
JP6178700B2 (en) Tread ring stiffness measuring apparatus and tread ring uniformity measuring method
JP2004122320A (en) Processing method for vehicle wheel and chuck device used for it
US6499347B1 (en) Method for determining a component-specific wobble component within a multi-part assembly of parts, and master part for carrying out the method
US20060288804A1 (en) Method and device for testing a run-flat tire support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150417

R150 Certificate of patent or registration of utility model

Ref document number: 5735903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees