JP2012132524A - Belt type continuously variable transmission - Google Patents

Belt type continuously variable transmission Download PDF

Info

Publication number
JP2012132524A
JP2012132524A JP2010286197A JP2010286197A JP2012132524A JP 2012132524 A JP2012132524 A JP 2012132524A JP 2010286197 A JP2010286197 A JP 2010286197A JP 2010286197 A JP2010286197 A JP 2010286197A JP 2012132524 A JP2012132524 A JP 2012132524A
Authority
JP
Japan
Prior art keywords
sliding member
belt
axial direction
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010286197A
Other languages
Japanese (ja)
Inventor
Tatsuya Saito
達也 齋藤
Toshishige Sano
敏成 佐野
Akira Ijichi
彬 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010286197A priority Critical patent/JP2012132524A/en
Publication of JP2012132524A publication Critical patent/JP2012132524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a belt type continuously variable transmission including resin bushes that improves shifting speed, power transmission efficiency, and the like.SOLUTION: The belt type continuously variable transmission includes a drive pulley 3 and a driven pulley 5 which are formed by fixed sheaves 7, 9 and movable sheaves 8, 10, the fixed sheaves being integrated with shafts 2, 4, the movable sheaves being movably axially-attached to the shafts 2, 4 to be close to/apart from the fixed sheaves 7, 9. In the transmission, cylindrical sliding members 12, 13 for facilitating sliding between the shaft parts 2, 4 and the movable sheaves 8, 10 lie between outer peripheral surfaces of the shafts 2, 4 and inner peripheral surfaces of the movable sheaves 8, 10, in at least one of the drive pulley 3 and the driven pulley 5. The sliding members 12, 13 are subjected to radial loads of the sliding members to elastically and compressively deform, and the hardnesses on both end sides thereof vary mutually.

Description

この発明は、複数のプーリに巻き掛けられてそれら複数のプーリ間で動力伝達を行うベルト式無段変速機に関するものである。   The present invention relates to a belt type continuously variable transmission that is wound around a plurality of pulleys and transmits power between the plurality of pulleys.

変速比を無段階すなわち連続的に変化させることのできる無段変速機として、ベルトを伝動部材としたベルト式無段変速機が知られている。ベルト式無段変速機は、ベルトとプーリとの間の摩擦力を利用してトルクを伝達するように構成されているから、ベルトとプーリとは基本的には滑りを生じない。したがって変速比を変更するためにプーリに対するベルトの巻き掛け半径を変更する場合、プーリおよびベルトが回転していることにより、ベルトの各部分がプーリに新たに巻掛かる際に、先行する部分とは半径方向に異なる位置に順次ずれて巻掛かることにより、ベルトの巻き掛け半径が次第に変化する。すなわち、車両の走行に必要なトルクを伝達できる定常的な状態では、無段変速機を回転させつつ変速比を変化させることになる。これは、乾式のベルト式無段変速機および湿式のベルト式無段変速機のいずれでも同様である。   As a continuously variable transmission capable of continuously changing the gear ratio, that is, continuously changing, a belt type continuously variable transmission using a belt as a transmission member is known. Since the belt-type continuously variable transmission is configured to transmit torque using the frictional force between the belt and the pulley, the belt and the pulley basically do not slip. Therefore, when changing the belt winding radius with respect to the pulley in order to change the gear ratio, the pulley and the belt are rotating so that when each part of the belt is newly wound around the pulley, the preceding part is By sequentially shifting and winding at different positions in the radial direction, the winding radius of the belt gradually changes. That is, in a steady state in which torque necessary for traveling of the vehicle can be transmitted, the transmission gear ratio is changed while rotating the continuously variable transmission. This is the same for both dry belt-type continuously variable transmissions and wet belt-type continuously variable transmissions.

車両が発進する場合には大きい駆動力が要求されるので、無段変速機の変速比は発進時に最大変速比γmaxとすることが望ましい。しかしながら、無段変速機の変速比は無段変速機が回転している状態で変更できるので、車両が停止する直前に最大変速比γmaxとする必要があるが、急減速や急停止する場合などには、変速が間に合わずに、発進時の変速比を最大に設定できない場合がある。この場合、車両の発進において駆動力が不足するため、車両の発進が困難となる可能性がある。特に乾式ベルトは、湿式ベルトよりもプーリとベルトとの摩擦係数が大きいため、最大変速比γmaxまで戻りにくい。   Since a large driving force is required when the vehicle starts, it is desirable that the speed ratio of the continuously variable transmission be the maximum speed ratio γmax when starting. However, since the gear ratio of the continuously variable transmission can be changed while the continuously variable transmission is rotating, it is necessary to set the maximum gear ratio γmax immediately before the vehicle stops. In some cases, the speed change at the time of start cannot be set to the maximum because the speed change is not in time. In this case, since the driving force is insufficient in starting the vehicle, it may be difficult to start the vehicle. In particular, since the dry belt has a larger friction coefficient between the pulley and the belt than the wet belt, it is difficult to return to the maximum gear ratio γmax.

ところで、この種の動力伝達装置は、略円錐である可動シーブの円錐面(テーパ面)の母線と固定シーブの回転軸直交平面とがなす角で定義されたプーリの傾き角度(倒れ角)が大きいほど、変速速度が速くなることが知られている。このような特性を生かして最大変速比γmaxまでベルトを素速く戻す発明が、特許文献1や特許文献2に記載されている。   By the way, this type of power transmission device has a pulley inclination angle (tilt angle) defined by an angle formed by a generatrix of a conical surface (tapered surface) of a movable sheave that is substantially a cone and a plane orthogonal to a rotation axis of a fixed sheave. It is known that the larger the speed, the faster the speed change. Patent Document 1 and Patent Document 2 describe an invention that takes advantage of such characteristics to quickly return the belt to the maximum gear ratio γmax.

特許文献1に記載された無段変速機は、変速速度を速くすることを目的としたものであって、駆動プーリおよび従動プーリにおける可動シーブの傾き角度(倒れ角)を変速比に応じて変化させるように構成されている。具体的には、プーリ軸の外周面に段付のテーパ部を形成するとともに、段部で区分されているそれらのテーパ部のテーパ角を異ならせ、また可動シーブの内周面を、プーリ軸のテーパ部と対応する段付のテーパ形状に形成し、大きい変速比を設定する場合には、その可動シーブの傾き角度を大きくし、これとは反対に小さい変速比を設定する場合には、可動シーブの傾き角度が小さくなるように構成されている。   The continuously variable transmission described in Patent Document 1 is intended to increase the shifting speed, and the inclination angle (tilt angle) of the movable sheave in the driving pulley and the driven pulley is changed according to the gear ratio. It is configured to let you. Specifically, stepped taper portions are formed on the outer peripheral surface of the pulley shaft, the taper angles of the taper portions divided by the step portions are made different, and the inner peripheral surface of the movable sheave is connected to the pulley shaft. In the case of setting a large gear ratio, the inclination angle of the movable sheave is increased, and on the contrary, when setting a small gear ratio, The tilt angle of the movable sheave is configured to be small.

また、特許文献2には、出力プーリにおける固定シーブが出力軸に対して傾くことができるように取り付けられ、またその固定シーブの背面の外周側の部分に対向する箇所には、固定シーブの背面を押圧するピストンを備えた傾動アクチュエータが設けられた変速機が記載されている。   Further, in Patent Document 2, the fixed sheave in the output pulley is attached so as to be inclined with respect to the output shaft, and the portion facing the outer peripheral portion of the back surface of the fixed sheave has a back surface of the fixed sheave. There is described a transmission provided with a tilting actuator having a piston for pressing.

特開2003−184973号公報JP 2003-184993 A 特開2002−206605号公報JP 2002-206605 A

特許文献1,2に記載された装置は、可動プーリを積極的に傾けるように構成されているので、変速速度を向上させることができる。しかし、複数の部品で構成する必要があるため、無段変速機の構造が複雑になり、材料費や組み付け工数などのコストが高くなってしまうので、この点での改善の余地がある。   Since the devices described in Patent Documents 1 and 2 are configured to positively tilt the movable pulley, the speed change speed can be improved. However, since it is necessary to configure with a plurality of parts, the structure of the continuously variable transmission becomes complicated, and costs such as material costs and assembly man-hours increase, so there is room for improvement in this respect.

この発明は上記の技術的課題に着目してなされたものであり、可動シーブを支持しているブッシュを改良して変速速度や動力伝達効率などを向上させることのできるベルト式無段変速機を提供することを目的とするものである。   The present invention has been made paying attention to the above technical problem, and provides a belt-type continuously variable transmission capable of improving a speed change speed and power transmission efficiency by improving a bush supporting a movable sheave. It is intended to provide.

上記の目的を達成するために、請求項1の発明は、軸部と一体の固定シーブとその固定シーブに対して接近・離隔するように前記軸部に軸線方向に移動可能に取り付けられた可動シーブとによってそれぞれ形成された駆動プーリおよび従動プーリを備え、それら駆動プーリと従動プーリとの少なくとも一方における前記軸部の外周面と前記可動シーブの内周面とに前記軸部と前記可動シーブとの摺動を円滑にする円筒状の摺動部材が介在させられているベルト式無段変速機において、前記摺動部材は、前記摺動部材の半径方向の荷重を受けて弾性的に圧縮変形するように構成されるとともに、その両端側での硬度が互いに異なることを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is a movable sheave attached to the shaft portion so as to be movable in the axial direction so as to approach and separate from the fixed sheave integrated with the shaft portion. A drive pulley and a driven pulley respectively formed by the sheave, and the shaft portion and the movable sheave on the outer peripheral surface of the shaft portion and the inner peripheral surface of the movable sheave in at least one of the drive pulley and the driven pulley. In a belt-type continuously variable transmission in which a cylindrical sliding member that smoothly slides is interposed, the sliding member is elastically compressed and deformed in response to a radial load of the sliding member. And the hardness at both end sides is different from each other.

また、請求項2の発明は、請求項1の発明において、前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で高く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で低いことを特徴とするベルト式無段変速機である。   According to a second aspect of the present invention, in the first aspect of the invention, the hardness of the sliding member provided in the drive pulley is high at one end portion on the fixed sheave side in the axial direction of the sliding member, The belt type continuously variable transmission is characterized by being low at the other end portion on the movable sheave side in the axial direction of the sliding member.

また、請求項3の発明は、請求項1の発明において、前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で低く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で高いことを特徴とするベルト式無段変速機である。   The invention of claim 3 is the invention of claim 1, wherein the hardness of the sliding member provided in the driven pulley is low at one end on the fixed sheave side in the axial direction of the sliding member, The belt type continuously variable transmission is characterized in that it is high at the other end portion on the movable sheave side in the axial direction of the sliding member.

また、請求項4の発明は、請求項1の発明において、前記駆動プーリまたは前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、もう一方の前記従動プーリまたは前記駆動プーリに設けられている前記摺動部材の硬度は、その両端側で互いに異なることを特徴とするベルト式無段変速機である。   According to a fourth aspect of the present invention, in the first aspect of the invention, the hardness of the sliding member provided in the driving pulley or the driven pulley is configured to be constant in the axial direction of the sliding member. In the belt type continuously variable transmission, the hardness of the sliding member provided in the other driven pulley or the driving pulley is different from each other at both ends thereof.

また、請求項5の発明は、請求項4の発明において、前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で低く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で高いことを特徴とするベルト式無段変速機である。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, the hardness of the sliding member provided in the driving pulley is configured to be constant in the axial direction of the sliding member, and the driven pulley The hardness of the sliding member provided in the sliding member is low at one end portion on the fixed sheave side in the axial direction of the sliding member and high at the other end portion on the movable sheave side in the axial direction of the sliding member. This is a belt type continuously variable transmission.

そして、請求項6の発明は、請求項4の発明において、前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で高く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で低いことを特徴とするベルト式無段変速機である。   According to a sixth aspect of the invention, in the fourth aspect of the invention, the hardness of the sliding member provided in the driven pulley is configured to be constant in the axial direction of the sliding member, and the driving pulley The hardness of the sliding member provided in the sliding member is high at one end portion on the fixed sheave side in the axial direction of the sliding member and low at the other end portion on the movable sheave side in the axial direction of the sliding member. This is a belt type continuously variable transmission.

この発明によれば、駆動プーリと従動プーリとの少なくとも一方におけるプーリ軸と可動シーブとの間に円筒状をなす摺動部材が設けられており、その摺動部材は、摺動部材の半径方向の荷重を受けて弾性的に圧縮変形するように構成されるとともに、その両端側での硬度が互いに異なるよう形成されている。また、駆動プーリに設けられている摺動部材の硬度は、摺動部材の軸線方向で固定シーブ側の一端部で高く、摺動部材の軸線方向で可動シーブ側の他端部で低く形成されている。さらに、従動プーリに設けられている摺動部材の硬度は、摺動部材の軸線方向で固定シーブ側の一端部で低く、摺動部材の軸線方向で可動シーブ側の他端部で高く形成されている。したがって、摺動部材の硬度に応じてプーリの傾きを変化させることができるので、無段変速機の構造は簡素となり、その結果、材料費や組み付け工数などのコストを低減させることができる。   According to this invention, the cylindrical sliding member is provided between the pulley shaft and the movable sheave in at least one of the driving pulley and the driven pulley, and the sliding member is in the radial direction of the sliding member. It is configured to be elastically compressed and deformed under the load, and to have different hardness at both ends. Also, the hardness of the sliding member provided in the drive pulley is high at one end on the fixed sheave side in the axial direction of the sliding member and low at the other end on the movable sheave side in the axial direction of the sliding member. ing. Further, the hardness of the sliding member provided on the driven pulley is low at one end on the fixed sheave side in the axial direction of the sliding member and high at the other end on the movable sheave side in the axial direction of the sliding member. ing. Therefore, since the inclination of the pulley can be changed according to the hardness of the sliding member, the structure of the continuously variable transmission is simplified, and as a result, costs such as material costs and assembly man-hours can be reduced.

また、変速比が最大側に近づいた場合、駆動プーリ側において、可動シーブと加圧接触している摺動部材の接触部分は、その軸線方向で固定シーブ側の一端部よりも硬度が低いため、その半径方向の荷重を受けて弾性的に圧縮変形する。その結果、駆動プーリの傾きが大きくなり、最大変速比まで変速速度が速くなることで、ベルト戻り性能を向上させることができる。一方、従動プーリ側において、可動シーブと加圧接触している摺動部材の接触部分は、その軸線方向で可動シーブ側の一端部よりも硬度が低いため、その半径方向の荷重を受けて弾性的に圧縮変形する。その結果、従動プーリの傾きが大きくなり、変速速度が速くなることで、よりアップシフトがしやすくなるため、車両走行性能を向上させることができる。   Also, when the gear ratio approaches the maximum side, the contact portion of the sliding member that is in pressure contact with the movable sheave on the drive pulley side is lower in hardness in the axial direction than one end portion on the fixed sheave side. In response to the radial load, it is elastically compressed and deformed. As a result, the inclination of the drive pulley is increased and the speed change speed is increased to the maximum speed ratio, so that the belt return performance can be improved. On the other hand, on the driven pulley side, the contact portion of the sliding member that is in pressure contact with the movable sheave has a lower hardness in the axial direction than one end portion on the movable sheave side. Compressively deform. As a result, the inclination of the driven pulley is increased and the shift speed is increased, thereby making it easier to upshift, thereby improving the vehicle running performance.

さらに、変速比が常用域の最小側に近づいた場合、駆動プーリ側において、可動シーブと加圧接触している摺動部材の接触部分は、その軸線方向で可動シーブ側の一端部よりも硬度が高いため、その半径方向の荷重を受けて弾性的に圧縮変形しない。その結果、駆動プーリは傾かないため、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。一方、従動シーブ側において、可動シーブと加圧接触している摺動部材の接触部分は、その軸線方向で固定シーブ側の一端部よりも硬度が高いため、その半径方向の荷重を受けて弾性的に圧縮変形しない。その結果、従動プーリは傾かないため、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。   Furthermore, when the gear ratio approaches the minimum side of the normal range, the contact portion of the sliding member that is in pressure contact with the movable sheave on the drive pulley side is harder than the one end portion on the movable sheave side in the axial direction. Therefore, it is not elastically compressed and deformed in response to the radial load. As a result, since the drive pulley does not tilt, the contact surface pressure between the pulley and the belt does not increase, the wear of the belt can be prevented, and the durability and efficiency of the belt can be improved. On the other hand, on the driven sheave side, the contact portion of the sliding member that is in pressure contact with the movable sheave has a higher hardness in the axial direction than one end portion on the fixed sheave side, so that it is elastic under the radial load. Does not compressively deform. As a result, since the driven pulley does not tilt, the contact surface pressure between the pulley and the belt does not increase, the wear of the belt can be prevented, and the durability and efficiency of the belt can be improved.

この発明にかかる無段変速機の第1実施例を示す模式図である。1 is a schematic diagram showing a first embodiment of a continuously variable transmission according to the present invention. この発明における駆動プーリに設けられた樹脂ブッシュの構成と硬度とを示す模式図である。It is a schematic diagram which shows the structure and hardness of the resin bush provided in the drive pulley in this invention. この発明における従動プーリに設けられた樹脂ブッシュの構成と硬度とを示す模式図である。It is a schematic diagram which shows the structure and hardness of the resin bush provided in the driven pulley in this invention. この発明にかかる無段変速機の第1実施例において変速比最大側時の動作を示す模式図である。FIG. 6 is a schematic diagram showing an operation at the maximum speed ratio side in the first embodiment of the continuously variable transmission according to the present invention. この発明にかかる無段変速機の第1実施例において変速比最小側時の動作を示す模式図である。FIG. 6 is a schematic diagram showing an operation at the minimum speed ratio side in the first embodiment of the continuously variable transmission according to the present invention. この発明にかかる無段変速機の第2実施例の構成を示す模式図である。It is a schematic diagram which shows the structure of 2nd Example of the continuously variable transmission concerning this invention. この発明にかかる無段変速機の第3実施例の構成を示す模式図である。It is a schematic diagram which shows the structure of 3rd Example of the continuously variable transmission concerning this invention. この発明における樹脂ブッシュの他の例を示す模式図である。It is a schematic diagram which shows the other example of the resin bush in this invention. この発明にかかる無段変速機の第4実施例の構成を示す模式図である。It is a schematic diagram which shows the structure of 4th Example of the continuously variable transmission concerning this invention. この発明における樹脂ブッシュの他の例を示す半径方向に沿う断面図である。It is sectional drawing which follows the radial direction which shows the other example of the resin bush in this invention. この発明における樹脂ブッシュの他の例を示す半径方向に沿う断面を拡大した模式図である。It is the schematic diagram which expanded the cross section along the radial direction which shows the other example of the resin bush in this invention.

つぎにこの発明を具体例に基づいて説明する。図1は、この発明に係る乾式ベルトの無段変速機の第1実施例を模式的に示している。まず、構成について説明する。無段変速機1は、駆動軸2と同一軸線上に配置された駆動プーリ3と、従動軸4と同一軸線上に配置された従動プーリ5と、これらに巻き掛けられたベルト6とを有している。各プーリ3,5は、互いに接近・離隔する固定シーブ7,9と可動シーブ8,10とから構成され、これらのシーブの間に、ベルト11を巻き掛けるいわゆるV溝が形成されるようになっている。その固定シーブ7,9は軸部2,4に一体化され、これに対して可動シーブ8,10は軸部2,4と一体に回転するものの軸部の軸線に沿って前後動するように構成されている。固定シーブ7,9の軸部2,4は、ケーシング(図示せず)で固定されている軸受部(図示せず)に嵌合されており、軸受部によって回転自在に支持されている。この軸受部は、ケーシングもしくはその一部を構成しているエンドカバー(図示せず)の内面に突出した軸状の部分であって、ケーシングもしくはエンドカバーの一部として一体に形成され、あるいは軸状の部材をケーシングもしくはエンドカバーの内面に取り付けることにより形成されている。そして、可動シーブ8,10の背面側には、可動シーブ8,10を前後動させるための油圧アクチュエータ(図示せず)が設けられている。   Next, the present invention will be described based on specific examples. FIG. 1 schematically shows a first embodiment of a continuously variable transmission for a dry belt according to the present invention. First, the configuration will be described. The continuously variable transmission 1 includes a drive pulley 3 disposed on the same axis as the drive shaft 2, a driven pulley 5 disposed on the same axis as the driven shaft 4, and a belt 6 wound around these. is doing. The pulleys 3 and 5 are composed of fixed sheaves 7 and 9 and movable sheaves 8 and 10 that approach and separate from each other, and so-called V-grooves around which the belt 11 is wound are formed between these sheaves. ing. The fixed sheaves 7 and 9 are integrated with the shaft portions 2 and 4, whereas the movable sheaves 8 and 10 are rotated integrally with the shaft portions 2 and 4, but move back and forth along the axis of the shaft portion. It is configured. The shaft portions 2 and 4 of the fixed sheaves 7 and 9 are fitted into a bearing portion (not shown) fixed by a casing (not shown), and are rotatably supported by the bearing portion. The bearing portion is a shaft-like portion that protrudes from the inner surface of an end cover (not shown) that constitutes the casing or a part thereof, and is integrally formed as a part of the casing or the end cover. It is formed by attaching a shaped member to the inner surface of the casing or end cover. A hydraulic actuator (not shown) for moving the movable sheaves 8 and 10 back and forth is provided on the back side of the movable sheaves 8 and 10.

この発明において、自己潤滑性の円筒状である摺動部材(樹脂ブッシュ)12,13が、駆動プーリ3と従動プーリ5との少なくとも一方における固定シーブ7,9の軸部2,4の外周面と可動シーブ8,10の内周面との間に介在されており、軸部2,4と可動シーブ8,10との摺動を円滑にするよう構成されている。樹脂ブッシュ12,13は、樹脂ブッシュの半径方向の荷重を受けて弾性的に圧縮変形するように構成されるとともに、その両端側での硬度が互いに異なるよう形成されている。図2を用いて具体的に説明すると、駆動プーリ3に設けられている樹脂ブッシュ12の硬度は、樹脂ブッシュ12の軸線方向で固定シーブ側の一端部14で高く、樹脂ブッシュ12の軸線方向で可動シーブ側の他端部15で低く構成されている。また、図3に示すように、従動プーリ5に設けられている樹脂ブッシュ13の硬度は、樹脂ブッシュ13の軸線方向で固定シーブ側の一端部16で低く、樹脂ブッシュ13の軸線方向で可動シーブ側の他端部17で高く構成されている。   In this invention, self-lubricating cylindrical sliding members (resin bushings) 12 and 13 are outer peripheral surfaces of shaft portions 2 and 4 of fixed sheaves 7 and 9 in at least one of drive pulley 3 and driven pulley 5. Between the shaft portions 2 and 4 and the movable sheaves 8 and 10 so that the sliding between the shaft portions 2 and 4 and the movable sheaves 8 and 10 is smooth. The resin bushes 12 and 13 are configured to be elastically compressed and deformed in response to a load in the radial direction of the resin bush, and are formed to have different hardness at both ends. Specifically, the hardness of the resin bush 12 provided in the drive pulley 3 is high at the one end portion 14 on the fixed sheave side in the axial direction of the resin bush 12, and in the axial direction of the resin bush 12. The other end 15 on the movable sheave side is configured to be low. Further, as shown in FIG. 3, the hardness of the resin bush 13 provided in the driven pulley 5 is low at the one end portion 16 on the fixed sheave side in the axial direction of the resin bush 13 and is movable in the axial direction of the resin bush 13. The other end 17 on the side is high.

次に、作用について説明する。上記のベルトを、図1に示すように駆動プーリ3および従動プーリ5に巻き掛けるとともに、動力源のトルクが駆動プーリ3に伝達されると、駆動プーリ3が軸部2を中心に回転し、その駆動プーリ3の動力が摩擦力によりエレメント6に伝達される。エレメント6はゴムベルト11によって結合されており、駆動プーリ3から押し出されるエレメント6が先行するエレメント6を押し、そのエレメント6が従動プーリ5に巻き掛かることによりトルクが伝達される従動プーリ5が軸部4を中心に回転する。   Next, the operation will be described. As shown in FIG. 1, the belt is wound around the drive pulley 3 and the driven pulley 5, and when the torque of the power source is transmitted to the drive pulley 3, the drive pulley 3 rotates around the shaft portion 2, The power of the driving pulley 3 is transmitted to the element 6 by a frictional force. The element 6 is coupled by a rubber belt 11, the element 6 pushed out from the driving pulley 3 pushes the preceding element 6, and the driven pulley 5 to which torque is transmitted when the element 6 is wound around the driven pulley 5 has the shaft portion. Rotate around 4.

エレメント6がプーリ3,5に巻き掛かった状態では、固定シーブ7,9と可動シーブ8,10との挟圧力によりエレメント6に対してはこれをプーリ3,5の半径方向で外側に押す力が作用し、ゴムベルト11がこれに抵抗するように結束力を生じさせ、結局、ゴムベルト11の張力により、エレメント6はプーリ3,5の半径方向で内側に向けて押圧される。その押圧力により固定シーブ7,9と可動シーブ8,10とに対してはこれらをプーリの半径方向で内側に向かう荷重Fp,Fsが作用し、その結果、固定シーブ7,9の軸部2,4の軸線上を摺動する可動シーブ8,10はその軸部2,4の半径方向で内側に向けて押圧された状態となる。つまり、エレメント6がプーリ3,5に巻き掛かった状態では、ゴムベルト11の張力により、可動シーブ8,10は固定プーリの軸部2,4の半径方向で内側に向けて押圧され、その結果、可動シーブ8,10の内周面と固定プーリの軸部2,4の外周面とが加圧接触状態となる。   In a state where the element 6 is wound around the pulleys 3 and 5, the force that pushes the element 6 outward in the radial direction of the pulleys 3 and 5 due to the clamping pressure between the fixed sheaves 7 and 9 and the movable sheaves 8 and 10. Acts to generate a binding force so that the rubber belt 11 resists this. As a result, the tension of the rubber belt 11 causes the element 6 to be pressed inward in the radial direction of the pulleys 3 and 5. Due to the pressing force, the fixed sheaves 7 and 9 and the movable sheaves 8 and 10 are subjected to loads Fp and Fs inwardly acting in the radial direction of the pulley, and as a result, the shaft portion 2 of the fixed sheaves 7 and 9 is applied. The movable sheaves 8 and 10 that slide on the axes 4 are pressed inward in the radial direction of the shafts 2 and 4. That is, in the state where the element 6 is wound around the pulleys 3 and 5, the movable sheaves 8 and 10 are pressed inward in the radial direction of the shaft portions 2 and 4 of the fixed pulley by the tension of the rubber belt 11, and as a result, The inner peripheral surfaces of the movable sheaves 8 and 10 and the outer peripheral surfaces of the shaft portions 2 and 4 of the fixed pulley are in a pressure contact state.

駆動プーリ3の軸部2の外周面には、円筒状をなし、かつ樹脂ブッシュ12の軸線方向で固定シーブ側の一端部14で高く、樹脂ブッシュ12の軸線方向で可動シーブ側の他端部15で低い硬度で構成されている樹脂ブッシュ12が設けられている。また、従動プーリ5の軸部4の外周面には、円筒状をなし、かつ樹脂ブッシュ13の軸線方向で固定シーブ側の一端部16で低く、樹脂ブッシュ13の軸線方向で可動シーブ側の他端部17で高い硬度で構成されている樹脂ブッシュ13が設けられている。このため、エレメント6がプーリ3,5に巻き掛かった状態では、可動シーブ8,10と樹脂ブッシュ12,13とが加圧接触状態となる。つまり、樹脂ブッシュの硬度に応じてプーリの傾きを変化させることができるので、無段変速機の構造は簡素となり、その結果、材料費や組み付け工数などのコストを低減させることができる。   The outer peripheral surface of the shaft portion 2 of the drive pulley 3 has a cylindrical shape and is higher at the one end portion 14 on the fixed sheave side in the axial direction of the resin bush 12, and the other end portion on the movable sheave side in the axial direction of the resin bush 12. A resin bushing 12 having a low hardness 15 is provided. Further, the outer peripheral surface of the shaft portion 4 of the driven pulley 5 has a cylindrical shape and is lower at the one end portion 16 on the fixed sheave side in the axial direction of the resin bush 13, and on the other side of the movable sheave side in the axial direction of the resin bush 13. A resin bush 13 having a high hardness at the end 17 is provided. For this reason, when the element 6 is wound around the pulleys 3 and 5, the movable sheaves 8 and 10 and the resin bushes 12 and 13 are in a pressure contact state. That is, since the inclination of the pulley can be changed according to the hardness of the resin bush, the structure of the continuously variable transmission is simplified, and as a result, costs such as material costs and assembly man-hours can be reduced.

変速比が最大側に近づく場合の作用を、図4を用いて説明する。駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ12の接触部分は、その軸線方向で固定シーブ側の一端部14よりも硬度が低いため、その半径方向の荷重Fpを受けて弾性的に圧縮変形する。樹脂ブッシュ12の接触部が圧縮変形することで可動シーブ8の傾き角度(駆動プーリ3の傾き角度)が大きくなり、その結果、変速速度を向上させることができ、ベルト戻り性能を向上させることができる。   The operation when the gear ratio approaches the maximum side will be described with reference to FIG. On the drive pulley side, the contact portion of the resin bush 12 that is in pressure contact with the movable sheave 8 is lower in hardness in the axial direction than the one end portion 14 on the fixed sheave side, and therefore receives the radial load Fp. Elastically compressively deforms. When the contact portion of the resin bush 12 is compressed and deformed, the inclination angle of the movable sheave 8 (inclination angle of the drive pulley 3) is increased. As a result, the speed change speed can be improved and the belt return performance can be improved. it can.

さらに、従動プーリ5の可動シーブ10と樹脂ブッシュ13とが加圧接触する状態において、樹脂ブッシュ13の接触部は、その軸線方向で可動シーブ側の一端部17よりも硬度が低いため、その半径方向の荷重Fsを受けて弾性的に圧縮変形する。樹脂ブッシュが圧縮変形することで可動シーブ10の傾き角度(従動プーリ5の傾き角度)が大きくなり、その結果、前述の駆動プーリにおける作用に加え、アップシフト性能が向上し、車両走行性能を向上させることができる。   Furthermore, in a state where the movable sheave 10 of the driven pulley 5 and the resin bush 13 are in pressure contact, the contact portion of the resin bush 13 is lower in hardness than the one end portion 17 on the movable sheave side in the axial direction, so that the radius It receives the direction load Fs and elastically compresses and deforms. When the resin bush is compressed and deformed, the inclination angle of the movable sheave 10 (inclination angle of the driven pulley 5) is increased. As a result, the upshift performance is improved in addition to the action of the drive pulley described above, and the vehicle running performance is improved. Can be made.

次に変速比が常用域の最小側に近づく場合の作用を、図5を用いて説明する。駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ12の接触部分は、その軸線方向で可動シーブ側の一端部15よりも硬度が高いため、その半径方向の荷重Fpを受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、駆動プーリ8は傾かないため、その結果、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。一方、従動シーブ側において、可動シーブ10と加圧接触している樹脂ブッシュ13の接触部分は、その軸線方向で固定シーブ側の一端部16よりも硬度が高いため、その半径方向の荷重を受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、従動プーリ10は傾かないため、その結果、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。   Next, the operation when the gear ratio approaches the minimum side of the normal range will be described with reference to FIG. On the drive pulley side, the contact portion of the resin bush 12 that is in pressure contact with the movable sheave 8 has a higher hardness in the axial direction than the one end portion 15 on the movable sheave side, and therefore receives the radial load Fp. Is also elastically difficult to compress and deform. In other words, the drive pulley 8 does not tilt on the minimum speed ratio side that is the normal range when the vehicle is running. As a result, the contact surface pressure between the pulley and the belt does not increase, and belt wear can be prevented. Durability and efficiency can be improved. On the other hand, the contact portion of the resin bush 13 that is in pressure contact with the movable sheave 10 on the driven sheave side is harder than the one end portion 16 on the fixed sheave side in the axial direction, and therefore receives a load in the radial direction. However, it is hardly elastically compressed and deformed. That is, the driven pulley 10 does not incline on the minimum gear ratio side that becomes the normal range when the vehicle is running, and as a result, the contact surface pressure between the pulley and the belt does not increase, and belt wear can be prevented. Durability and efficiency can be improved.

つぎに、図6を用いて、この発明の第2実施例を説明する。まず、構成について説明する。前述の第1実施例では、この発明における樹脂ブッシュ12,13が、駆動プーリ3と従動プーリ5とに設けられた構成の例を示しているが、この第2実施例で示す無段変速機1は、この発明における樹脂ブッシュ13が従動プーリ5に設けられ、樹脂ブッシュ18の軸線方向で硬度が一定に構成された樹脂ブッシュ18が駆動プーリ3に設けられている。   Next, a second embodiment of the present invention will be described with reference to FIG. First, the configuration will be described. In the first embodiment described above, the resin bushes 12 and 13 according to the present invention are provided on the drive pulley 3 and the driven pulley 5, but the continuously variable transmission shown in the second embodiment. 1, the resin bush 13 according to the present invention is provided on the driven pulley 5, and the resin bush 18 having a constant hardness in the axial direction of the resin bush 18 is provided on the drive pulley 3.

つぎに、作用について説明する。変速比が最大側に近づいた場合、従動プーリ側において、可動シーブ10と加圧接触している樹脂ブッシュ13の接触部分は、その軸線方向で可動シーブ側の一端部17よりも硬度が低いため、その半径方向の荷重Fsを受けて弾性的に圧縮変形する。その結果、従動プーリ5の傾きが大きくなり、変速速度が速くなることで、よりアップシフトがしやすくなるため、車両走行性能を向上させることができる。   Next, the operation will be described. When the gear ratio approaches the maximum side, the contact portion of the resin bush 13 that is in pressure contact with the movable sheave 10 on the driven pulley side is lower in hardness than the one end portion 17 on the movable sheave side in the axial direction. In response to the radial load Fs, it is elastically compressed and deformed. As a result, the inclination of the driven pulley 5 is increased and the shift speed is increased, so that it is easier to upshift, so that the vehicle running performance can be improved.

さらに、変速比が常用域の最小側に近づいた場合、従動シーブ側において、可動シーブ10と加圧接触している樹脂ブッシュ13の接触部分は、その軸線方向で固定シーブ側の一端部16よりも硬度が高いため、その半径方向の荷重を受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、従動プーリ5は傾かないため、プーリとベルトとの接触面圧は高くならず、その結果、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。   Further, when the gear ratio approaches the minimum side of the normal range, the contact portion of the resin bush 13 that is in pressure contact with the movable sheave 10 on the driven sheave side is more than the one end portion 16 on the fixed sheave side in the axial direction. Because of its high hardness, it is hardly elastically compressed and deformed even when subjected to a load in the radial direction. That is, the driven pulley 5 does not incline on the minimum speed ratio side that is the normal range when the vehicle is running, so the contact surface pressure between the pulley and the belt does not increase, and as a result, the belt can be prevented from being worn. Durability and efficiency can be improved.

つぎに、図7を用いて、この発明の第3実施例を説明する。まず、構成について説明する。前述の第1実施例では、この発明における樹脂ブッシュが、駆動プーリと従動プーリとに設けられた構成の例を示しているが、この第3実施例で示す無段変速機は、この発明における樹脂ブッシュ12が駆動プーリ3に設けられ、樹脂ブッシュ19の軸線方向で硬度が一定に構成された樹脂ブッシュ19が従動プーリ5に設けられている。   Next, a third embodiment of the present invention will be described with reference to FIG. First, the configuration will be described. In the first embodiment described above, the resin bush in the present invention is shown as an example of a configuration provided in the drive pulley and the driven pulley. However, the continuously variable transmission shown in the third embodiment is the same as that in the present invention. A resin bush 12 is provided on the drive pulley 3, and a resin bush 19 having a constant hardness in the axial direction of the resin bush 19 is provided on the driven pulley 5.

つぎに、作用について説明する。変速比が最大側に近づいた場合、駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ12の接触部分は、その軸線方向で固定シーブ側の一端部14よりも硬度が低いため、その半径方向の荷重を受けて弾性的に圧縮変形する。その結果、駆動プーリ3の傾きが大きくなり、最大変速比まで変速速度が速くなることで、ベルト戻り性能を向上させることができる。   Next, the operation will be described. When the gear ratio approaches the maximum side, the contact portion of the resin bush 12 that is in pressure contact with the movable sheave 8 on the drive pulley side is lower in hardness than the one end portion 14 on the fixed sheave side in the axial direction. In response to the radial load, it is elastically compressed and deformed. As a result, the inclination of the drive pulley 3 is increased and the speed change speed is increased to the maximum speed ratio, so that the belt return performance can be improved.

さらに、変速比が常用域の最小側に近づいた場合、駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ12の接触部分は、その軸線方向で可動シーブ側の一端部15よりも硬度が高いため、その半径方向の荷重を受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、駆動プーリ3は傾かないため、その結果、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。   Further, when the gear ratio approaches the minimum side of the normal range, the contact portion of the resin bush 12 in pressure contact with the movable sheave 8 on the drive pulley side is more than the one end portion 15 on the movable sheave side in the axial direction. Because of its high hardness, it is hardly elastically compressed and deformed even when subjected to a load in the radial direction. That is, the drive pulley 3 does not tilt on the minimum speed ratio side that is the normal range when the vehicle is running. As a result, the contact surface pressure between the pulley and the belt does not increase, and belt wear can be prevented. Durability and efficiency can be improved.

つぎに、この発明の第4実施例を説明する。まず、構成について説明する。前述の第1実施例ないし第3実施例では、この発明における樹脂ブッシュは、樹脂ブッシュの半径方向の荷重を受けて弾性的に圧縮変形するように構成されるとともに、その両端側での硬度が互いに異なるよう形成されており、具体的な一例をあげると、樹脂ブッシュは、硬度が異なるいくつかの樹脂部材を軸線方向に配列することで構成されている。一方で、図8に示す一例のように、第4実施例の円筒状である樹脂ブッシュ20は、格子状に形成されるとともに、その両端側での格子の大きさが互いに異なるよう形成されている。図9を用いて具体的に説明すると、自己潤滑性の樹脂ブッシュ21,22は、駆動プーリ3と従動プーリ5との少なくとも一方における固定シーブ7,9の軸部2,4の外周面と可動シーブ8,10の内周面との間に介在されており、軸部2,4と可動シーブ8,10との摺動を円滑にするよう構成されている。駆動プーリ3に設けられている樹脂ブッシュ21の格子の大きさは、樹脂ブッシュの軸線方向で固定シーブ側の一端部23で小さく、樹脂ブッシュ21の軸線方向で可動シーブ側の他端部24で大きく構成されている。また、従動プーリ5に設けられている樹脂ブッシュ22の格子の大きさは、樹脂ブッシュ22の軸線方向で固定シーブ側の一端部25で大きく、樹脂ブッシュ22の軸線方向で可動シーブ側の他端部26で小さく構成されている。なお、第4実施例の樹脂ブッシュは、少なくとも一方のプーリに設けられていればよい。   Next, a fourth embodiment of the present invention will be described. First, the configuration will be described. In the first to third embodiments described above, the resin bush according to the present invention is configured to be elastically compressed and deformed by receiving a load in the radial direction of the resin bush, and has hardness at both ends thereof. The resin bushes are formed so as to be different from each other. For example, the resin bush is configured by arranging several resin members having different hardnesses in the axial direction. On the other hand, as in the example shown in FIG. 8, the cylindrical resin bushing 20 of the fourth embodiment is formed in a lattice shape, and is formed so that the sizes of the lattices on both ends thereof are different from each other. Yes. Specifically, referring to FIG. 9, the self-lubricating resin bushes 21 and 22 are movable with the outer peripheral surfaces of the shaft portions 2 and 4 of the fixed sheaves 7 and 9 in at least one of the driving pulley 3 and the driven pulley 5. It is interposed between the inner peripheral surfaces of the sheaves 8 and 10, and is configured to smoothly slide between the shaft portions 2 and 4 and the movable sheaves 8 and 10. The size of the grid of the resin bush 21 provided in the drive pulley 3 is small at the one end portion 23 on the fixed sheave side in the axial direction of the resin bush, and at the other end portion 24 on the movable sheave side in the axial direction of the resin bush 21. It is composed largely. Further, the size of the lattice of the resin bush 22 provided in the driven pulley 5 is large at one end 25 on the fixed sheave side in the axial direction of the resin bush 22 and the other end on the movable sheave side in the axial direction of the resin bush 22. The portion 26 is configured to be small. In addition, the resin bush of 4th Example should just be provided in at least one pulley.

次に、作用について説明する。この発明における第4実施例の樹脂ブッシュは、単一の樹脂で構成することができるため、材料コストなどの製造コストを抑えることができる。   Next, the operation will be described. Since the resin bushing according to the fourth embodiment of the present invention can be composed of a single resin, manufacturing costs such as material costs can be suppressed.

また、変速比が最大側に近づいた場合、駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ21の接触部分は、その軸線方向で固定シーブ側の一端部23よりも格子の大きさが大きいため、その強度は一端部23よりも相対的に低くなり、その半径方向の荷重Fpを受けて弾性的に圧縮変形する。樹脂ブッシュ21の接触部が圧縮変形することで可動シーブ8の傾き角度(駆動プーリ3の傾き角度)が大きくなり、その結果、変速速度を向上させることができ、ベルト戻り性能を向上させることができる。   Further, when the gear ratio approaches the maximum side, the contact portion of the resin bush 21 in pressure contact with the movable sheave 8 on the drive pulley side is more latticed than the one end portion 23 on the fixed sheave side in the axial direction. Since the size is large, its strength is relatively lower than that of the one end portion 23, and elastically compresses and deforms in response to the radial load Fp. When the contact portion of the resin bush 21 is compressed and deformed, the inclination angle of the movable sheave 8 (inclination angle of the drive pulley 3) is increased. As a result, the speed change speed can be improved and the belt return performance can be improved. it can.

さらに、従動プーリ側において、可動シーブ10と加圧接触している樹脂ブッシュ22の接触部分は、その軸線方向で可動シーブ側の一端部26よりも格子の大きさが大きいため、その強度は相対的に低くなり、その半径方向の荷重Fsを受けて弾性的に圧縮変形する。樹脂ブッシュ22が圧縮変形することで可動シーブ10の傾き角度(従動プーリ5の傾き角度)が大きくなり、その結果、前述の駆動プーリにおける作用に加え、アップシフト性能が向上し、車両走行性能を向上させることができる。   Further, the contact portion of the resin bush 22 that is in pressure contact with the movable sheave 10 on the driven pulley side has a lattice size larger than that of the one end portion 26 on the movable sheave side in the axial direction, so that the strength is relatively high. And is elastically compressed and deformed in response to the radial load Fs. When the resin bush 22 is compressed and deformed, the inclination angle of the movable sheave 10 (inclination angle of the driven pulley 5) is increased. As a result, in addition to the action of the drive pulley described above, the upshift performance is improved and the vehicle running performance is improved. Can be improved.

さらに、可動シーブ8,10と樹脂ブッシュ21,22とが加圧接触している状態において、図10を用いて説明すると、樹脂ブッシュ21,22の接触部における格子の空間27には、中空部28の空気が取り込まれている。これを時間軸に沿って詳しく説明すると、接触初期時において、可動シーブ8,10と接触する樹脂ブッシュ21,22の接触部分は、その軸線方向で格子の大きさが大きいため、その強度は相対的に低くなり、図11(a)に示すようにその半径方向の荷重Fp,Fsを受けて弾性的に圧縮変形する。さらに、図11(b)に示すように接触初期後において、荷重Fp,Fsにより格子の空間27における気圧が高まるため、可動シーブ8,10とプーリの軸部2,4との接触荷重が緩和され、その結果、樹脂ブッシュ21,22の接触部の摺動抵抗を低減させることができる。   Furthermore, when the movable sheaves 8 and 10 and the resin bushes 21 and 22 are in pressure contact with each other, a description will be given with reference to FIG. 28 air is taken in. Explaining this in detail along the time axis, the contact portions of the resin bushes 21 and 22 that are in contact with the movable sheaves 8 and 10 at the initial contact stage have a large lattice size in the axial direction, so that the strength is relative. As shown in FIG. 11 (a), it is elastically compressed and deformed by receiving the radial loads Fp and Fs. Furthermore, as shown in FIG. 11 (b), since the atmospheric pressure in the lattice space 27 is increased by the loads Fp and Fs after the initial contact, the contact load between the movable sheaves 8 and 10 and the shaft portions 2 and 4 of the pulley is alleviated. As a result, the sliding resistance of the contact portions of the resin bushes 21 and 22 can be reduced.

また、変速比が常用域の最小側に近づいた場合、駆動プーリ側において、可動シーブ8と加圧接触している樹脂ブッシュ21の接触部分は、その軸線方向で可動シーブ側の一端部24よりも格子の大きさが小さいため、その強度は一端部24よりも相対的に高くなり、その半径方向の荷重Fpを受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、駆動プーリ5は傾かないため、その結果、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。一方、従動シーブ側において、可動シーブ10と加圧接触している樹脂ブッシュ22の接触部分は、その軸線方向で固定シーブ側の一端部25よりも格子の大きさが小さいため、その強度は一端部25よりも相対的に高くなり、その半径方向の荷重を受けても弾性的に圧縮変形しにくい。つまり、車両走行時において常用域となる変速比最小側では、従動プーリ5は傾かないため、その結果、プーリとベルトとの接触面圧は高くならず、ベルトの摩耗を防ぐことができ、ベルトの耐久性や効率性を向上させることができる。   When the gear ratio approaches the minimum side of the normal range, the contact portion of the resin bush 21 that is in pressure contact with the movable sheave 8 on the drive pulley side is more than the one end 24 on the movable sheave side in the axial direction. Since the size of the lattice is small, its strength is relatively higher than that of the one end portion 24, and it is difficult to elastically compressively deform even when it receives the radial load Fp. In other words, since the drive pulley 5 does not tilt on the minimum speed ratio side that becomes the normal range when the vehicle is traveling, the contact surface pressure between the pulley and the belt is not increased, and belt wear can be prevented. Durability and efficiency can be improved. On the other hand, on the driven sheave side, the contact portion of the resin bush 22 that is in pressure contact with the movable sheave 10 has a smaller lattice size in the axial direction than the one end portion 25 on the fixed sheave side, so that its strength is one end. It becomes relatively higher than the portion 25 and is hardly elastically compressed and deformed even when it receives a load in the radial direction. That is, the driven pulley 5 does not incline on the minimum speed ratio side that becomes the normal range when the vehicle is running, and as a result, the contact surface pressure between the pulley and the belt does not increase, and belt wear can be prevented. Durability and efficiency can be improved.

2…(駆動プーリの)軸部、 4…(従動プーリの)軸部、 7,9…固定シーブ、 8,10…可動シーブ、 12,13,21,22…樹脂ブッシュ。   2. Shaft portion (of driving pulley), 4 ... Shaft portion (of driven pulley), 7, 9 ... Fixed sheave, 8, 10 ... Movable sheave, 12, 13, 21, 22 ... Resin bushing.

Claims (6)

軸部と一体の固定シーブとその固定シーブに対して接近・離隔するように前記軸部に軸線方向に移動可能に取り付けられた可動シーブとによって形成された駆動プーリおよび従動プーリを備え、それら駆動プーリと従動プーリとの少なくとも一方における前記軸部の外周面と前記可動シーブの内周面とに前記軸部と前記可動シーブとの摺動を円滑にする円筒状の摺動部材が介在させられているベルト式無段変速機において、
前記摺動部材は、前記摺動部材の半径方向の荷重を受けて弾性的に圧縮変形するように構成されるとともに、その両端側での硬度が互いに異なることを特徴とするベルト式無段変速機。
A drive pulley and a driven pulley formed by a fixed sheave integrated with the shaft portion and a movable sheave attached to the shaft portion so as to move toward and away from the fixed sheave in an axial direction. A cylindrical sliding member that smoothly slides between the shaft portion and the movable sheave is interposed between the outer peripheral surface of the shaft portion and the inner peripheral surface of the movable sheave in at least one of the pulley and the driven pulley. Belt type continuously variable transmission,
The belt-type continuously variable transmission characterized in that the sliding member is configured to be elastically compressed and deformed in response to a load in the radial direction of the sliding member, and has different hardness at both ends. Machine.
前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で高く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で低いことを特徴とする請求項1に記載のベルト式無段変速機。   The hardness of the sliding member provided in the drive pulley is high at one end portion on the fixed sheave side in the axial direction of the sliding member, and the other end portion on the movable sheave side in the axial direction of the sliding member. The belt type continuously variable transmission according to claim 1, wherein the belt type continuously variable transmission is low. 前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で低く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で高いことを特徴とする請求項1に記載のベルト式無段変速機。   The hardness of the sliding member provided on the driven pulley is low at one end portion on the fixed sheave side in the axial direction of the sliding member, and the other end portion on the movable sheave side in the axial direction of the sliding member. The belt-type continuously variable transmission according to claim 1, wherein the belt-type continuously variable transmission is high. 前記駆動プーリまたは前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、もう一方の前記従動プーリまたは前記駆動プーリに設けられている前記摺動部材の硬度は、その両端側で互いに異なることを特徴とする請求項1に記載のベルト式無段変速機。   The hardness of the sliding member provided in the driving pulley or the driven pulley is configured to be constant in the axial direction of the sliding member, and is provided in the other driven pulley or the driving pulley. The belt-type continuously variable transmission according to claim 1, wherein the hardness of the sliding member is different from each other at both ends thereof. 前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で低く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で高いことを特徴とする請求項4に記載のベルト式無段変速機。   The sliding member provided on the driving pulley has a constant hardness in the axial direction of the sliding member, and the sliding member provided on the driven pulley has a hardness of the sliding The belt-type continuously variable transmission according to claim 4, wherein the belt-type continuously variable transmission is low at one end portion on the fixed sheave side in the axial direction of the member and high at the other end portion on the movable sheave side in the axial direction of the sliding member. . 前記従動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で一定に構成されており、前記駆動プーリに設けられている前記摺動部材の硬度は、前記摺動部材の軸線方向で前記固定シーブ側の一端部で高く、前記摺動部材の軸線方向で前記可動シーブ側の他端部で低いことを特徴とする請求項4に記載のベルト式無段変速機。   The sliding member provided on the driven pulley has a constant hardness in the axial direction of the sliding member, and the sliding member provided on the drive pulley has a hardness of the sliding The belt-type continuously variable transmission according to claim 4, wherein the belt-type continuously variable transmission is high at one end portion on the fixed sheave side in the axial direction of the member and low at the other end portion on the movable sheave side in the axial direction of the sliding member. .
JP2010286197A 2010-12-22 2010-12-22 Belt type continuously variable transmission Pending JP2012132524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286197A JP2012132524A (en) 2010-12-22 2010-12-22 Belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286197A JP2012132524A (en) 2010-12-22 2010-12-22 Belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2012132524A true JP2012132524A (en) 2012-07-12

Family

ID=46648339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286197A Pending JP2012132524A (en) 2010-12-22 2010-12-22 Belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2012132524A (en)

Similar Documents

Publication Publication Date Title
US9334944B2 (en) Pulley assembly for belt drive
KR101029868B1 (en) Multi stage automatic transmission
EP1830103A1 (en) Self-adjustable tractive planetary gear transmission
US20090272614A1 (en) Power Transmission Device
CN108603585A (en) Stepless speed change device with the device for changing shift curve
US20110207566A1 (en) Driving pulley of a continuously variable transmission
EP2530349A1 (en) Centrifugal clutch device
WO2014155835A1 (en) Shaft support structure for belt-type stepless transmission
JP2012132524A (en) Belt type continuously variable transmission
CN1258655C (en) Drive ring CVT belt
WO2014115384A1 (en) Belt-type continuously variable transmission
HU223320B1 (en) Continuously variable transmission and variants
CN201083255Y (en) Split belt wheel type belt transmission stepless variable-speed gear
TWI732907B (en) Continuously variable transmission
JP5014196B2 (en) Pulley structure and accessory drive system using the same
JP2010065709A (en) Continuously variable automatic transmission mechanism and self-advancing model vehicle having the same
JP5339004B2 (en) Belt type continuously variable transmission
US6953413B2 (en) Axial position changing transmission mechanism
CN107289082B (en) Conical ring type stepless gearbox
JP2014098400A (en) Pulley structure of belt-type continuously variable transmission
JP5158259B2 (en) Power transmission belt
CN108506447B (en) Continuously variable transmission
JP4939040B2 (en) Belt type continuously variable transmission
JP5779129B2 (en) Continuously variable transmission
JP2013177930A (en) Dry belt type continuously variable transmission