JP2012126980A - Electromagnetic steel sheet and method for manufacturing the same - Google Patents

Electromagnetic steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2012126980A
JP2012126980A JP2010281354A JP2010281354A JP2012126980A JP 2012126980 A JP2012126980 A JP 2012126980A JP 2010281354 A JP2010281354 A JP 2010281354A JP 2010281354 A JP2010281354 A JP 2010281354A JP 2012126980 A JP2012126980 A JP 2012126980A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281354A
Other languages
Japanese (ja)
Other versions
JP5794409B2 (en
Inventor
Takeshi Imamura
今村  猛
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010281354A priority Critical patent/JP5794409B2/en
Publication of JP2012126980A publication Critical patent/JP2012126980A/en
Application granted granted Critical
Publication of JP5794409B2 publication Critical patent/JP5794409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose an electromagnetic steel sheet which has a crystal orientation different from conventional two-oriented electromagnetic steel sheets, but has a feature as a two-oriented electromagnetic steel sheet, and to provide a method for manufacturing the same.SOLUTION: The method for manufacturing a grain-oriented electromagnetic steel sheet includes a series of steps of: hot-rolling a steel material containing, by mass%, 0.002 to 0.10% C, 1.0 to 8.0% Si, 0.005 to 1.0% Mn, 0.0100% or less Al, 0.0050% or less N, 0.0050% or less S, and 0.0050% or less Se; optionally annealing the hot-rolled sheet; cold-rolling the hot-rolled sheet once or twice or more while applying a process annealing to thereby obtain a cold-rolled sheet having a final thickness; then subjecting the cold-rolled sheet to primary recrystallization annealing which is also for the purpose of decarbonization; and subsequently subjecting the resulting sheet to finish annealing. The manufacturing method provides the electromagnetic steel sheet, in which crystal grains having a direction within 20° from {110} <112> occupy 50% or more, by the area rate of the crystal grains, by setting the final cold-rolling reduction in the cold-rolling step to 94% or more.

Description

本発明は、変圧器やモータ等の鉄心材料に用いて好適な電磁鋼板と、その製造方法に関するものである。   The present invention relates to a magnetic steel sheet suitable for use in iron core materials such as transformers and motors, and a method for manufacturing the same.

電磁鋼板は、変圧器やモータ等の鉄心の材料として広く用いられており、大別して無方向性電磁鋼板と方向性電磁鋼板がある。このうち、方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積しているため、鋼板の圧延方向に優れた磁気特性を有していることが特徴である。   Electrical steel sheets are widely used as materials for iron cores such as transformers and motors, and are roughly classified into non-oriented electrical steel sheets and directional electrical steel sheets. Among these, the grain-oriented electrical steel sheet is characterized by having excellent magnetic properties in the rolling direction of the steel sheet because the crystal orientation is highly accumulated in the {110} <001> orientation called the Goss orientation. is there.

この方向性電磁鋼板は、インヒビターと呼ばれる析出物を利用して、仕上焼鈍中にGoss方位粒を優先的に二次再結晶させる方法で製造するのが一般的であり、例えば、特許文献1には、インヒビターとしてAlNやMnSを利用する方法が、また、特許文献2には、インヒビターとしてMnSやMnSeを利用する方法が開示されており、いずれも工業的に実用化されている。   This grain-oriented electrical steel sheet is generally manufactured by a method of preferentially recrystallizing Goss orientation grains during finish annealing using precipitates called inhibitors. Discloses a method using AlN or MnS as an inhibitor, and Patent Document 2 discloses a method using MnS or MnSe as an inhibitor, both of which have been industrially put into practical use.

また、最近では、インヒビターを含まない素材を用いて、二次再結晶を起こさせ、ゴス方位粒を発達させる技術が提案されている(例えば、特許文献3参照。)。この技術は、インヒビターとなる成分を極力排除し、一次再結晶粒の結晶粒界が有する粒界エネルギーの粒界方位差角依存性を顕在化させることで、インヒビターを用いることなく二次再結晶させてGoss方位粒を成長させるものである。この方法は、二次再結晶後にインヒビターを除去する工程が不要であるため、純化焼鈍を行う必要がないこと、また、インヒビターを鋼中に微細分散させる必要がないため、高温スラブ加熱も必要ないことなどから、コスト面や設備メンテナンス面で有利な方法である。   Recently, a technique for causing secondary recrystallization to develop goth-oriented grains using a material that does not contain an inhibitor has been proposed (see, for example, Patent Document 3). This technology eliminates the inhibitory component as much as possible, and reveals the grain boundary orientation angle dependence of the grain boundary energy of the primary recrystallized grain boundary, thereby enabling secondary recrystallization without using an inhibitor. To grow Goss-oriented grains. This method does not require the step of removing the inhibitor after the secondary recrystallization, so there is no need for purification annealing, and there is no need to finely disperse the inhibitor in the steel, so no high-temperature slab heating is required. This is an advantageous method in terms of cost and equipment maintenance.

また、上記方向性電磁鋼板に類似したものとして、磁化容易軸が鋼板面上に二方向に存在する、いわゆる二方向性電磁鋼板が知られている。例えば、特許文献4には、珪素鋼素材を一方向に冷間圧延し、さらにその圧延方向と交差する方向に冷間圧延を加える、いわゆるクロス圧延した後、短時間焼鈍と高温焼鈍を行うことで二次再結晶させて二方向性電磁鋼板を得る方法が開示されている。また特許文献5には、珪素鋼スラブを熱間圧延し、熱間圧延方向に交差する方向に冷間圧延し、一次再結晶焼鈍した後、純化を兼ねた最終仕上焼鈍を施し、インヒビターとしてAlNを利用して二次再結晶させる方法が開示されている。また、特許文献6には、冷間圧延した珪素鋼板に、焼鈍分離剤として脱炭、脱Mnを促進する物質を用いて高温焼鈍することで、{100}面集積度の高い二方向性電磁鋼板を製造する方法が開示されている。   Moreover, what is called a bi-directional electrical steel sheet in which an easy axis of magnetization exists in two directions on the steel sheet surface is known as being similar to the above-mentioned grain-oriented electrical steel sheet. For example, in Patent Document 4, a silicon steel material is cold-rolled in one direction, and further cold-rolled in a direction crossing the rolling direction, so-called cross-rolling, followed by short-time annealing and high-temperature annealing. Discloses a method of obtaining a bidirectional electrical steel sheet by secondary recrystallization. In Patent Document 5, a silicon steel slab is hot-rolled, cold-rolled in a direction crossing the hot-rolling direction, subjected to primary recrystallization annealing, and then subjected to final finish annealing that also serves as purification, and AlN as an inhibitor. A method of secondary recrystallization using the above is disclosed. Patent Document 6 discloses a bi-directional electromagnetic with a high degree of {100} integration by performing high-temperature annealing on a cold-rolled silicon steel sheet using a material that promotes decarburization and de-Mn as an annealing separator. A method of manufacturing a steel sheet is disclosed.

特公昭40−015644号公報Japanese Patent Publication No. 40-015644 特公昭51−013469号公報Japanese Patent Publication No.51-013469 特開2000−129356号公報JP 2000-129356 A 特公昭35−002657号公報Japanese Patent Publication No. 35-002657 特開平04−362132号公報JP 04-362132 A 特開平07−173542号公報Japanese Patent Laid-Open No. 07-173542

しかしながら、上記特許文献4〜6に記載された二方向性電磁鋼板は、いずれも板面平行方向に{100}<001>方位を有するものである。この方位は、板面上に磁化容易軸が二方向に存在しているため、磁歪が大きいという特徴がある。磁歪は、騒音の原因となるため、極力低減することが望ましい。さらに、上記特許文献4〜6の方法は、圧延方向を90°変えて圧延することが必要であったり、脱Mnのために高温焼鈍が必要であったりするため、極めて複雑な工程を経る必要があるという問題がある。   However, the bi-directional electrical steel sheets described in Patent Documents 4 to 6 all have {100} <001> orientations in the plate surface parallel direction. This orientation is characterized in that the magnetostriction is large because the easy axis of magnetization exists in two directions on the plate surface. Since magnetostriction causes noise, it is desirable to reduce it as much as possible. Furthermore, the methods of Patent Documents 4 to 6 require that the rolling direction be changed by 90 °, or that high-temperature annealing is required for removing Mn, and thus it is necessary to go through extremely complicated processes. There is a problem that there is.

本発明は、上記従来技術が抱える問題点に鑑みてなされたものであり、その目的は、従来の二方向性電磁鋼板とは異なる結晶方位を有しながらも、二方向性電磁鋼板としての特徴を有する新規な電磁鋼板とその製造方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is a characteristic as a bidirectional magnetic steel sheet while having a crystal orientation different from that of a conventional bidirectional electromagnetic steel sheet. The present invention proposes a novel electrical steel sheet having a slab and a method for producing the same.

発明者らは、上記従来技術が抱える課題を解決するべく鋭意検討を重ねた。その結果、インヒビターを用いない成分系において、最終冷間圧下率を従来よりも高圧下率とし、二次再結晶させることで、{110}<112>近傍方位を有する二次再結晶粒を得ることに成功した。この方位粒は、一つの単結晶を考えると、板面上の磁化容易軸は一方向であるが、複数の粒が存在することで二方向性としても特徴を有するものである。しかも、この方法は、上述したような複雑な工程を経る必要がないという点でも優れている。   The inventors have intensively studied to solve the problems of the conventional technology. As a result, in a component system that does not use an inhibitor, the final cold reduction ratio is set to a higher pressure reduction ratio than before and secondary recrystallization is performed to obtain secondary recrystallized grains having {110} <112> neighboring orientations. Succeeded. In consideration of one single crystal, this orientation grain has a unidirectional easy axis of magnetization on the plate surface. However, the presence of a plurality of grains has a characteristic of being bi-directional. Moreover, this method is also superior in that it does not need to go through the complicated steps described above.

上記知見に基づく本発明は、Si:1.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、結晶粒の方位が{110}<112>から20°以内である比率が面積率で50%以上である電磁鋼板である。   The present invention based on the above knowledge contains Si: 1.0 to 8.0 mass% and Mn: 0.005 to 1.0 mass%, and the balance is composed of Fe and inevitable impurities, Is a magnetic steel sheet in which the ratio in which the orientation is within 20 ° from {110} <112> is 50% or more in terms of area ratio.

本発明の電磁鋼板は、上記Si,Mnの他に、C:0.005mass%未満、Mn:0.005〜1.0mass%、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびNb:0.001〜0.050mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above Si and Mn, the electrical steel sheet of the present invention is C: less than 0.005 mass%, Mn: 0.005-1.0 mass%, Ni: 0.010-1.50 mass%, Cr: 0.01 -0.50 mass%, Cu: 0.01-0.50 mass%, P: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass%, and Nb: 0.001 to 0.050 mass%, containing one or more types To do.

また、本発明は、C:0.002〜0.10mass%、Si:1.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、さらに、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭を兼ねた一次再結晶焼鈍し、その後、仕上焼鈍する一連の方向性電磁鋼板の製造方法において、上記冷間圧延における最終冷延圧下率を94%以上とすることを特徴とする上記電磁鋼板の製造方法である。   Moreover, this invention contains C: 0.002-0.10 mass%, Si: 1.0-8.0mass% and Mn: 0.005-1.0mass%, Furthermore, Al: 0.0100mass% Hereinafter, N: 0.0050 mass% or less, S: 0.0050 mass% or less and Se: 0.0050 mass% or less, hot-rolling a steel material having a component composition consisting of Fe and inevitable impurities, If necessary, hot-rolled sheet annealed, cold rolled twice or more sandwiched once or intermediately annealed to obtain a cold-rolled sheet with the final thickness, followed by primary recrystallization annealing also serving as decarburization, In the method for producing a series of grain-oriented electrical steel sheets for finish annealing, the final cold rolling reduction in the cold rolling is 94% or more.

本発明の上記電磁鋼板の製造方法における鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびNb:0.001〜0.050mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the steel material in the method for manufacturing the electrical steel sheet according to the present invention further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo : One or more selected from 0.005 to 0.100 mass% and Nb: 0.001 to 0.050 mass%.

本発明によれば、インヒビターを含まない成分系において、最終冷延圧下率を94%とすることで、二方向性電磁鋼板の特徴を有する{110}<112>方位を優先的に発達させた電磁鋼板を複雑な工程を経ることなく製造することができる。この電磁鋼板は、大型の分割コアに適している他、磁歪が小さいという特徴を有するため、騒音規制のあるトランスのコーナー部などにも好適に用いることができる。   According to the present invention, in a component system that does not contain an inhibitor, the {110} <112> orientation having the characteristics of a bi-directional electrical steel sheet was preferentially developed by setting the final cold rolling reduction rate to 94%. An electromagnetic steel sheet can be manufactured without going through a complicated process. This electromagnetic steel sheet is suitable for a large divided core and has a feature that the magnetostriction is small. Therefore, it can be suitably used for a corner portion of a transformer with noise regulation.

最終冷延圧下率と、二次再結晶後のGoss方位粒と{110}<112>方位粒の面積率との関係を示すグラフである。It is a graph which shows the relationship between the final cold rolling reduction rate, the area ratio of the Goss orientation grain after secondary recrystallization, and the {110} <112> orientation grain. 一次再結晶集合組織のGoss方位および{110}<112>方位に対する高エネルギー粒界頻度を示すグラフである。It is a graph which shows the high energy grain boundary frequency with respect to the Goss orientation and {110} <112> orientation of a primary recrystallization texture. {110}<112>方位粒が有する2つの磁化容易軸を説明する図である。It is a figure explaining the two easy axes which a {110} <112> orientation grain has. {110}<112>方位粒の磁区構造をマグネットビュワーで観察した写真である。It is the photograph which observed the magnetic domain structure of {110} <112> orientation grain with the magnet viewer.

本発明を開発する契機となった実験について説明する。
C:0.043mass%、Si:3.22mass%、Mn:0.10mass%、Al:0.0020mass%、N:0.0011mass%、S:0.0007mass%およびSe:0.0010mass%を含有する鋼素材(スラブ)を連続鋳造にて製造し、このスラブを1220℃に加熱した後、熱間圧延して板厚3.0mmの熱延板とした。次いで、この熱延板に1000℃×30秒の熱延板焼鈍を施した後、冷間圧延における圧下率を種々に変えて板厚が0.05〜0.35mmの冷延板とした。その後、この冷延板を50vol%N−50vol%H湿潤雰囲気中で、均熱条件が850℃×60秒の脱炭を兼ねた再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1200℃×5時間保持する仕上焼鈍を施した。その後、リン酸マグネシウムと硼酸を主体とした張力付与絶縁被膜の形成を兼ねた平坦化焼鈍を900℃×15秒の条件で施し、製品板とした。
An experiment that triggered the development of the present invention will be described.
C: 0.043 mass%, Si: 3.22 mass%, Mn: 0.10 mass%, Al: 0.0020 mass%, N: 0.0011 mass%, S: 0.0007 mass% and Se: 0.0010 mass% are contained. A steel material (slab) to be manufactured was manufactured by continuous casting, and this slab was heated to 1220 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 3.0 mm. Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, and then the rolling reduction in cold rolling was variously changed to obtain a cold-rolled sheet having a thickness of 0.05 to 0.35 mm. After that, this cold-rolled sheet was subjected to recrystallization annealing in a 50 vol% N 2 -50 vol% H 2 humid atmosphere, which also served as a decarburization under a soaking condition of 850 ° C. × 60 seconds, followed by annealing mainly composed of MgO. A separating agent was applied, and finish annealing was performed at 1200 ° C. for 5 hours. Thereafter, flattening annealing was performed under the conditions of 900 ° C. × 15 seconds to form a tension-imparting insulating film mainly composed of magnesium phosphate and boric acid to obtain a product plate.

上記のようにして得た各製品板について、酸洗して被膜を除去し、板面を目視で観察した結果、いずれの鋼板も二次再結晶が発現し、結晶粒が5mmを超える粗大粒となっていることを確認された。また、上記二次再結晶粒のうちの貫通粒の比率は95%以上で、ほぼ100%であった。   About each product plate obtained as described above, pickling and removal of the coating, and as a result of visually observing the plate surface, secondary recrystallization appears in any steel plate, coarse grains exceeding 5 mm of crystal grains It was confirmed that Moreover, the ratio of the through grains in the secondary recrystallized grains was 95% or more and almost 100%.

次いで、上記各製品板の結晶方位をラウエ法で測定し、Goss方位粒および{110}<112>方位粒の面積比率を算出した。ただし、上記各方位粒は、方位差角が20°以内であれば、その方位粒とした。また、結晶方位の測定は、300mm×200mmの範囲を7mmピッチで行った。図1に、上記の測定結果を、冷延圧下率と各方位の面積比率との関係として示した。この結果から、冷延圧下率が92%を超えて高くなるほど、Goss方位が減少し、{110}<112>方位が増加していることがわかる。   Next, the crystal orientation of each product plate was measured by the Laue method, and the area ratio of Goss orientation grains and {110} <112> orientation grains was calculated. However, each of the above-mentioned azimuth grains was taken as the azimuth grain if the azimuth difference angle was within 20 °. The crystal orientation was measured at a pitch of 7 mm in a range of 300 mm × 200 mm. FIG. 1 shows the above measurement results as the relationship between the cold rolling reduction ratio and the area ratio in each direction. From this result, it can be seen that the Goss orientation decreases and the {110} <112> orientation increases as the cold rolling reduction rate exceeds 92%.

この原因について、発明者らは以下のように考えている。
発明者らは、先に、ゴス方位粒が二次再結晶を起こす理由について調査し、一次再結晶組織におけるGoss方位粒との方位差角が20〜45°である粒界が重要な役割を果たしていることを知見し、その結果を、Acta Material 45巻(1997)1285頁に報告した。この報告は、方向性電磁鋼板の二次再結晶直前の状態における一次再結晶組織を解析し、様々な結晶方位を持つ各結晶粒の周囲の粒界について調査した結果、ゴス方位粒が、粒界方位差角が20〜45°である粒界の割合(%)が最も高いことを示したものである。C.G.Dunnらによる実験結果(AIME Transac 188巻(1949)368頁)によれば、方位差角が20〜45°の粒界は、高エネルギー粒界であることから、二次再結晶によりGoss方位粒が成長するのは、高エネルギー粒界を蚕食することで系のエネルギーを低減する機構が働いているものと推測された。
The inventors consider this cause as follows.
The inventors previously investigated the reason why Goss-oriented grains cause secondary recrystallization, and grain boundaries having an orientation difference angle of 20-45 ° with Goss-oriented grains in the primary recrystallized structure play an important role. The results were reported in Acta Material 45 (1997) 1285. This report analyzed the primary recrystallization structure in the state immediately before the secondary recrystallization of grain-oriented electrical steel sheets and investigated the grain boundaries around each crystal grain with various crystal orientations. It shows that the ratio (%) of the grain boundary having a field orientation difference angle of 20 to 45 ° is the highest. C. G. According to an experimental result by Dunn et al. (AIME Transac 188 (1949) 368), a grain boundary having an orientation difference angle of 20 to 45 ° is a high energy grain boundary. It is speculated that the mechanism of growth is that the mechanism that reduces the energy of the system by phagocytosing high-energy grain boundaries is working.

そこで、上記実験で得られた脱炭後の一次再結晶集合組織をX線回折法で測定し、その結果からGoss方位粒と{110}<112>方位粒における高エネルギー粒界頻度を計算した結果を図2に示した。この結果から、二次再結晶後にGoss方位が100%を占めていた冷延圧下率が90%の一次再結晶集合組織では、Goss方位粒の高エネルギー粒界頻度が高いが、二次再結晶後に{110}<112>方位が増加した冷延圧下率96.7%の一次再結晶集合組織では、{110}<112>方位の高エネルギー粒界頻度がGoss方位のそれを上回っていることがわかる。すなわち、冷延圧下率が高くなると、一次再結晶集合組織が変化し、{110}<112>方位に対する高エネルギー粒界頻度が増加していることが明らかとなった。   Therefore, the primary recrystallization texture after decarburization obtained in the above experiment was measured by the X-ray diffraction method, and the high energy grain boundary frequency in the Goss orientation grain and {110} <112> orientation grain was calculated from the result. The results are shown in FIG. From this result, in the primary recrystallized texture in which the cold rolling reduction ratio was 90%, where the Goss orientation accounted for 100% after the secondary recrystallization, the high energy grain boundary frequency of the Goss orientation grain is high. In the primary recrystallized texture with a cold rolling reduction ratio of 96.7% whose {110} <112> orientation increased later, the high energy grain boundary frequency in the {110} <112> orientation exceeds that in the Goss orientation. I understand. That is, as the cold rolling reduction ratio increased, the primary recrystallization texture changed, and it became clear that the high-energy grain boundary frequency for the {110} <112> orientation increased.

この{110}<112>方位粒は、板面上の磁化容易軸は一方向であり、その方向は圧延方向から板面法線を回転軸として40〜45°の方向を向いている。しかし、{110}<112>方位粒には、上記回転方向が時計周りの粒と反時計回りの粒とが存在するため、2つの粒の磁化容易軸はおよそ90°ずれていることになる(図3参照。)。図4は、本実験で得られた製品板の磁区をマグネットビュワーで観察した結果の一例を示したものであり、二次再結晶粒AとBの磁区の方向のなす角がほぼ90°であることが確認できる。すなわち、{110}<112>方位粒は、各々の粒は一方向性であるが、多数の粒をマクロ的に見ると二方向性と言っても過言ではない。しかも、{110}<112>方位粒は、個々の粒は板面上に磁化容易軸が1つしかないので、磁歪の点でも極めて有利である。したがって、{110}<112>方位粒を優先的に成長させることができれば、二方向性電磁鋼板としての特性を有するものとなり得る。   In the {110} <112> oriented grains, the easy axis of magnetization on the plate surface is one direction, and the direction is in the direction of 40 to 45 ° with the plate surface normal as the rotation axis from the rolling direction. However, in {110} <112> oriented grains, there are grains whose rotation directions are clockwise and counterclockwise, so that the easy magnetization axes of the two grains are shifted by about 90 °. (See FIG. 3). FIG. 4 shows an example of the result of observing the magnetic domains of the product plate obtained in this experiment with a magnet viewer. The angle formed by the directions of the magnetic domains of the secondary recrystallized grains A and B is approximately 90 °. It can be confirmed that there is. That is, in {110} <112> oriented grains, each grain is unidirectional, but it is no exaggeration to say that it is bidirectional when a large number of grains are viewed macroscopically. Moreover, {110} <112> oriented grains are extremely advantageous in terms of magnetostriction because each grain has only one easy axis of magnetization on the plate surface. Therefore, if the {110} <112> oriented grains can be preferentially grown, they can have characteristics as a bi-directional electrical steel sheet.

上記新規な知見に立脚して開発された本発明の電磁鋼板は、製品板における結晶方位が{110}<112>に集積していることが特徴であり、具体的には、結晶粒の方位が{110}<112>から20°以内である比率が面積率で50%以上であることが必要である。上記比率が50%未満であると、二方向性としての機能を失うからである。好ましくは70%以上、さらに好ましくは80%以上である。   The magnetic steel sheet of the present invention developed based on the above-mentioned novel findings is characterized in that the crystal orientations in the product plate are accumulated at {110} <112>. Specifically, the orientation of the crystal grains Is within 20 ° from {110} <112>, the area ratio needs to be 50% or more. This is because when the ratio is less than 50%, the bi-directional function is lost. Preferably it is 70% or more, More preferably, it is 80% or more.

なお、上記面積率は、鋼板表面の面積率である。というのは、本発明の電磁鋼板(製品板)における{110}<112>方位の結晶粒は、粗大化して、鋼板板厚を貫通していることが前提であるからである。したがって、{110}<112>方位の結晶粒は、板厚貫通粒であれば、二次再結晶粒でも、正常粒成長した結晶粒でも構わないが、貫通粒の比率は75%以上であることが好ましい。なお、本発明における貫通粒の比率は、電磁鋼板(製品板)の断面組織を観察したときの、全断面積に対する貫通粒の断面積が占める比率(%)と定義する。   In addition, the said area ratio is an area ratio of the steel plate surface. This is because it is a premise that the crystal grains of the {110} <112> orientation in the electromagnetic steel plate (product plate) of the present invention are coarsened and penetrate the steel plate thickness. Therefore, the crystal grains in the {110} <112> orientation may be secondary recrystallized grains or normal grains grown as long as they are plate-thickness through grains, but the ratio of the through grains is 75% or more. It is preferable. In addition, the ratio of the penetration grain in this invention is defined as the ratio (%) which the cross-sectional area of the penetration grain accounts with respect to the total cross-sectional area when the cross-sectional structure of an electromagnetic steel plate (product board) is observed.

次に、本発明の方向性電磁鋼板(製品板)の成分組成について説明する。
Si:1.0〜8.0mass%
Siは、鋼の比抵抗を高めて鉄損を低減するのに有効な元素であるが、含有量が1.0mass%未満では鉄損低減効果は小さい。一方、8.0mass%を超えて添加すると、飽和磁束密度が顕著に低下するほか、硬質化して圧延して製造することが難しくなる。よって、本発明では、Siは1.0〜8.0mass%の範囲とする。好ましくは、2.0〜4.0mass%の範囲である。
Next, the component composition of the grain-oriented electrical steel sheet (product board) of the present invention will be described.
Si: 1.0-8.0 mass%
Si is an element effective for increasing the specific resistance of steel and reducing iron loss, but if the content is less than 1.0 mass%, the effect of reducing iron loss is small. On the other hand, if the addition exceeds 8.0 mass%, the saturation magnetic flux density is remarkably lowered, and it becomes difficult to harden and roll and manufacture. Therefore, in the present invention, Si is in the range of 1.0 to 8.0 mass%. Preferably, it is in the range of 2.0 to 4.0 mass%.

Mn:0.005〜1.0%
Mnは、熱間加工性を改善する元素であるため、0.005mass%以上の添加を必要とする。一方、1.0mass%を超えると、製品板の磁束密度が低下する。よって、Mnは0.005〜1.0mass%の範囲とする。好ましくは、0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0%
Since Mn is an element that improves hot workability, it needs to be added in an amount of 0.005 mass% or more. On the other hand, when it exceeds 1.0 mass%, the magnetic flux density of a product board will fall. Therefore, Mn is set to a range of 0.005 to 1.0 mass%. Preferably, it is in the range of 0.02 to 0.20 mass%.

C:0.005mass%未満
本発明の電磁鋼板(製品板)は、上記Si,Mn以外の成分は、Feおよび不可避的不純物である。ただし、製品板中にCが0.005mass%以上残存していると、磁気時効を起こして磁気特性が低下する。したがって、素材Cが高い場合には、後述する脱炭焼鈍を兼ねた再結晶焼鈍で、Cを0.005mass%未満に低減しておくのが好ましい。
C: Less than 0.005 mass% In the electromagnetic steel sheet (product plate) of the present invention, components other than the Si and Mn are Fe and inevitable impurities. However, if C remains in the product plate by 0.005 mass% or more, magnetic aging occurs and the magnetic properties deteriorate. Therefore, when the material C is high, it is preferable to reduce C to less than 0.005 mass% by recrystallization annealing that also serves as decarburization annealing described later.

また、本発明の電磁鋼板は、磁気特性の改善を目的として、Ni,Cr,Cu,P,Sn,Sb,Bi,MoおよびNbのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。
Ni:0.010〜1.50mass%
Niは、磁気特性を向上するのに有効な元素である。しかし、添加量が0.010mass%未満では向上効果が小さく、一方、1.50mass%を超えると、二次再結晶が不安定になり磁気特性が劣化するおそれがあるので、0.010〜1.50mass%の範囲で添加することができる。
Moreover, the electrical steel sheet of the present invention has at least one selected from Ni, Cr, Cu, P, Sn, Sb, Bi, Mo and Nb in the following range for the purpose of improving magnetic properties. Can be contained.
Ni: 0.010 to 1.50 mass%
Ni is an element effective for improving magnetic properties. However, if the addition amount is less than 0.010 mass%, the improvement effect is small. On the other hand, if it exceeds 1.50 mass%, secondary recrystallization may become unstable and the magnetic characteristics may be deteriorated. It can be added in the range of .50 mass%.

Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%
Cr,CuおよびPは、鉄損を低減させるのに有効な元素である。しかし、添加量が上記範囲を下回る場合には、鉄損低減効果が十分に得られず、一方、上記範囲を超えると、二次再結晶粒の成長が抑制され、却って磁気特性が低下するので、上記範囲内で添加するのが好ましい。
Cr: 0.01-0.50 mass%, Cu: 0.01-0.50 mass% and P: 0.005-0.50 mass%
Cr, Cu and P are effective elements for reducing iron loss. However, when the addition amount is less than the above range, the iron loss reduction effect is not sufficiently obtained. On the other hand, when the addition amount exceeds the above range, the growth of secondary recrystallized grains is suppressed, and on the contrary, the magnetic properties are deteriorated. It is preferable to add within the above range.

Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびNb:0.001〜0.050mass%
Sn,Sb,Bi,MoおよびNbは、磁束密度を向上させるのに有効な元素である。しかし、添加量が上記範囲を下回る場合には、磁束密度向上効果が十分に得られず、一方、上記範囲を超えると、二次再結晶粒の成長が抑制され、却って磁気特性が低下するので、上記範囲内で添加するのが好ましい。
Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, and Nb: 0.001- 0.050 mass%
Sn, Sb, Bi, Mo and Nb are effective elements for improving the magnetic flux density. However, when the addition amount is below the above range, the effect of improving the magnetic flux density cannot be sufficiently obtained. On the other hand, when the addition amount exceeds the above range, the growth of secondary recrystallized grains is suppressed, and on the contrary, the magnetic characteristics are deteriorated. It is preferable to add within the above range.

次に、本発明の電磁鋼板の製造方法について説明する。
本発明の電磁鋼板の製造方法は、方向性電磁鋼板を製造する一般的な方法を用いることができる。すなわち、所定の成分組成に調整した鋼を溶製し、鋼素材(スラブ)とした後、そのスラブを熱間圧延して熱延板とし、必要に応じて熱延板焼鈍し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷間板とし、その後、脱炭を兼ねた再結晶焼鈍を施した後、二次再結晶と純化を兼ねた仕上焼鈍を施し、必要に応じて絶縁被膜の被成と、平坦化焼鈍を行う一連の方法である。
以下、具体的に各工程について説明する。
Next, the manufacturing method of the electrical steel sheet of this invention is demonstrated.
The manufacturing method of the electrical steel sheet of this invention can use the general method which manufactures a grain-oriented electrical steel sheet. That is, after melting steel adjusted to a predetermined component composition to obtain a steel material (slab), the slab is hot-rolled to form a hot-rolled sheet, and if necessary, hot-rolled sheet is annealed once or Perform cold rolling at least twice with intermediate annealing to make a cold plate with the final thickness, then perform recrystallization annealing that also serves as decarburization, and then finish annealing that also serves as secondary recrystallization and purification It is a series of methods for applying an insulating film and performing planarization annealing as necessary.
Hereinafter, each step will be specifically described.

鋼素材(スラブ)が有すべき成分組成は、Si:1.0〜8.0mass%およびMn:0.005〜1.0%を含有すること以外に、C:0.002〜0.10mass%、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下であることが必要である。
Cは、磁気時効を起こして磁気特性を低下させる元素であるため、極力低減するのが好ましい。しかし、0.002mass%未満とすると、製鋼コストの上昇を招くので好ましくない。一方、0.10mass%を超えると、冷間圧延後の脱炭を兼ねた再結晶焼鈍で、磁気時効の起こらない0.0050mass%以下に低減することが困難になる。
In addition to containing Si: 1.0 to 8.0 mass% and Mn: 0.005 to 1.0%, the component composition that the steel material (slab) should have is C: 0.002 to 0.10 mass. %, Al: 0.0100 mass% or less, N: 0.0050 mass% or less, S: 0.0050 mass% or less, and Se: 0.0050 mass% or less.
Since C is an element that causes magnetic aging and deteriorates magnetic properties, it is preferable to reduce C as much as possible. However, if it is less than 0.002 mass%, an increase in steelmaking cost is caused, which is not preferable. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce to 0.0050 mass% or less at which recrystallization annealing also serves as decarburization after cold rolling and no magnetic aging occurs.

また、Al,N,SおよびSeの各元素は、インヒビター成分であるため、本発明の製造方法のように冷延圧下率を高くする場合には、二次再結晶が発現しなくなるので、極力低減するのが好ましい。ただし、完全に除去することは製造上困難であるので、許容できる上記範囲内に限定する。   In addition, since each element of Al, N, S and Se is an inhibitor component, secondary recrystallization does not appear when the cold rolling reduction ratio is increased as in the production method of the present invention. It is preferable to reduce. However, since it is difficult to remove completely, it is limited to the above allowable range.

なお、Siは、磁気特性の向上に必要な含有量1.0〜8.0mass%に、製鋼段階で調節してもよいが、製造性(圧延性)を向上する観点から、鋼素材ではSiを3.0mass%以下とし、最終板厚に冷間圧延後、浸珪処理等を施してSi量を増加させる方法を採用してもよい。   Si may be adjusted to a content of 1.0 to 8.0 mass% necessary for improving the magnetic properties at the steel making stage, but from the viewpoint of improving manufacturability (rollability), Si is a steel material. May be set to 3.0 mass% or less, and after the cold rolling to the final plate thickness, the silicon content may be applied to increase the Si amount.

上記成分組成に調整した鋼は、その後、鋼素材(スラブ)とするが、その製造方法は、連続鋳造法が好ましいが、造塊−分塊圧延法でもよい。また、直接鋳造法で、100mm以下の厚さの薄鋳片とする方法でもよく、特に制限はない。   The steel adjusted to the above component composition is then used as a steel material (slab). The production method is preferably a continuous casting method, but may be an ingot-bundling method. Moreover, the method of making it into the thin cast piece of thickness of 100 mm or less by a direct casting method may be sufficient, and there is no restriction | limiting in particular.

上記スラブは、その後、通常の方法で再加熱して熱間圧延して熱延板とするが、鋳造後、再加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進んでもよい。なお、本発明の鋼素材は、インヒビター成分を含まないため、インヒビター成分を固溶させる必要がないので、熱間圧延前のスラブ加熱温度は1250℃以下の温度とすることができる。また、熱間圧延条件は、特に制限はなく、常法に準じて行えばよい。   The slab is then reheated and hot-rolled into a hot-rolled sheet by a normal method, but may be immediately hot-rolled after casting without being reheated. In the case of a thin cast slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may proceed. In addition, since the steel raw material of this invention does not contain an inhibitor component, it is not necessary to make an inhibitor component solid solution, Therefore The slab heating temperature before hot rolling can be made into the temperature of 1250 degrees C or less. Moreover, the hot rolling conditions are not particularly limited, and may be performed according to a conventional method.

熱間圧延した熱延板は、その後、必要に応じて熱延板焼鈍を施すのが好ましい。良好な磁気特性を得るためには、熱延板焼鈍温度は800〜1150℃とするのが好ましい。800℃未満では、熱間圧延でのバンド組織が残留し、一次再結晶組織を整粒とすることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、やはり一次再結晶組織を整粒とすることが難しくなるからである。   The hot-rolled hot-rolled sheet is then preferably subjected to hot-rolled sheet annealing as necessary. In order to obtain good magnetic properties, the hot-rolled sheet annealing temperature is preferably 800 to 1150 ° C. If it is less than 800 degreeC, the band structure by hot rolling will remain, it will become difficult to make a primary recrystallized structure regular, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is too coarse, so that it is difficult to make the primary recrystallized structure uniform.

熱間圧延後または熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延して冷延板とする。この際、最終板厚に仕上げる最終冷間圧延の圧下率は、{110}<112>方位に対する高エネルギー粒界頻度を高くして、二次再結晶でこの方位を優先的に出現させる(成長させる)ため、94%以上とすることが必要である。好ましくは、96%以上である。   After hot rolling or after hot-rolled sheet annealing, cold rolling is performed once or twice or more with intermediate annealing interposed therebetween. At this time, the reduction ratio of the final cold rolling finished to the final plate thickness is such that the high energy grain boundary frequency with respect to the {110} <112> orientation is increased, and this orientation appears preferentially by secondary recrystallization (growth). Therefore, it is necessary to make it 94% or more. Preferably, it is 96% or more.

上記冷間圧延に続く再結晶焼鈍は、通常公知の温度、時間および雰囲気で行えばよく、特に制限はない。なお、磁気時効を防止するため、脱炭を行う場合には、雰囲気を湿潤雰囲気とするのが好ましい。また、この再結晶焼鈍後に、鋼中のSi量を増加させる浸珪処理を施してもよい。   The recrystallization annealing following the cold rolling may be performed at a generally known temperature, time and atmosphere, and is not particularly limited. In order to prevent magnetic aging, the atmosphere is preferably a moist atmosphere when decarburizing. In addition, after this recrystallization annealing, a siliconizing treatment for increasing the amount of Si in the steel may be performed.

再結晶焼鈍した鋼板は、その後、二次再結晶させる仕上焼鈍を施す。この際、仕上焼鈍の前に、鉄損を重視する場合、あるいは、変圧器の騒音を抑制する場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、その後、仕上焼鈍を施して、二次再結晶組織を発達させると共にフォルステライト被膜を形成させるのが好ましい。一方、打ち抜き加工性を重視する場合には、焼鈍分離剤を塗布しないか、フォルステライト被膜を形成しないシリカやアルミナ等を主体とした焼鈍分離剤を塗布した後、仕上焼鈍を施して、二次再結晶させるのが好ましい。
なお、焼鈍分離剤を塗布する場合には、水分を持ち込まない静電塗布を行うことが好ましい。また、上記焼鈍分離剤に代えて、シリカ、アルミナ、マイカ等からなる耐熱無機材料シートを用いてもよい。
The steel sheet subjected to recrystallization annealing is then subjected to finish annealing for secondary recrystallization. At this time, if the iron loss is prioritized before the finish annealing or if the noise of the transformer is to be suppressed, an annealing separator mainly composed of MgO is applied to the steel sheet surface, and then the finish annealing is performed. Thus, it is preferable to develop a secondary recrystallized structure and to form a forsterite film. On the other hand, when emphasizing punching workability, do not apply an annealing separator, or apply an annealing separator mainly composed of silica or alumina that does not form a forsterite film, and then apply a finish annealing to Recrystallization is preferred.
In addition, when apply | coating an annealing separation agent, it is preferable to perform the electrostatic application | coating which does not bring in a water | moisture content. Moreover, instead of the annealing separator, a heat resistant inorganic material sheet made of silica, alumina, mica, or the like may be used.

仕上焼鈍における焼鈍条件は、二次再結晶を発現させ、完了させるためには、800℃以上の温度で10時間以上保持することが好ましい。具体的には、フォルステライト被膜を形成させない場合には、二次再結晶さえ完了すればよいので、仕上焼鈍は850〜950℃の温度で行うことができる。しかし、フォルステライト被膜を形成させる場合には、1200℃程度の温度で仕上焼鈍するのが好ましい。また、鋼の純化を促進するためには、1100〜1200℃程度の温度で1時間以上保持するのが好ましい。   The annealing conditions in the finish annealing are preferably maintained at a temperature of 800 ° C. or higher for 10 hours or longer in order to develop and complete secondary recrystallization. Specifically, when the forsterite film is not formed, only the secondary recrystallization needs to be completed, so that the finish annealing can be performed at a temperature of 850 to 950 ° C. However, when forming a forsterite film, it is preferable to perform finish annealing at a temperature of about 1200 ° C. Moreover, in order to accelerate | stimulate the refinement | purification of steel, it is preferable to hold | maintain at the temperature of about 1100-1200 degreeC for 1 hour or more.

仕上焼鈍後の鋼板は、その後、水洗やブラッシング、酸洗等で鋼板表面に付着した焼鈍分離剤を除去した後、平坦化焼鈍を施して形状矯正することが好ましい。
なお、鋼板を積層して使用する場合には、鉄損を改善するために、上記平坦化焼鈍前もしくは後に、鋼板表面に絶縁被膜を形成するのが好ましく、より鉄損を低減するためには、鋼板表面に張力を付与することができる絶縁被膜を形成するのがより好ましい。
また、バインダーを介して張力付与被膜を形成したり、物理蒸着法や化学蒸着法で無機物を鋼板表層に蒸着させて絶縁被膜を形成したりすると、被膜密着性に優れかつ鉄損低減効果が大きい被膜を形成することができるので好ましい。
It is preferable that the steel sheet after finish annealing is subjected to flattening annealing and then straightened after removing the annealing separator attached to the steel sheet surface by washing, brushing, pickling or the like.
In addition, when using a laminated steel plate, in order to improve iron loss, it is preferable to form an insulating film on the steel plate surface before or after the flattening annealing, in order to further reduce iron loss. It is more preferable to form an insulating coating that can apply tension to the steel sheet surface.
In addition, when a tension-imparting film is formed via a binder, or when an insulating film is formed by vapor-depositing an inorganic material on the surface of a steel sheet by physical vapor deposition or chemical vapor deposition, the film adhesion is excellent and the iron loss reduction effect is large. Since a film can be formed, it is preferable.

また、本発明の電磁鋼板は、最終冷間圧延後から再結晶焼鈍の間に鋼板表面に複数の人工溝を形成したり、平坦化焼鈍後の鋼板表面にプラズマジェットやレーザー照射を線状に施したり、突起ロールによる線状の凹みを付与したりする磁区細分化処理を施して、鉄損の低減を図ってもよいことは勿論である。   In addition, the electrical steel sheet of the present invention forms a plurality of artificial grooves on the steel sheet surface during recrystallization annealing after the final cold rolling, or linearizes plasma jet or laser irradiation on the steel sheet surface after flattening annealing. Of course, it is possible to reduce the iron loss by applying a magnetic domain subdivision process such as applying a linear dent by a protruding roll.

C:0.065mass%、Si:3.33mass%、Mn:0.05mass%、Al:0.0040mass%、N:0.0012mass%、S:0.0006mass%、Se:0.0010mass%、Sb:0.03mass%、Cr:0.03mass%およびMo:0.05mass%を含有する鋼スラブを連続鋳造にて製造し、1200℃に再加熱した後、熱間圧延して板厚2.7mmの熱延板とし、950℃×30秒の熱延板焼鈍を施した後、圧下率を変えて冷間圧延して表1に示した各種板厚の冷延板とした。その後、上記冷延板を、50vol%N−50vol%H湿潤雰囲気中で、均熱条件が850℃×90秒の脱炭を兼ねた再結晶焼鈍し、MgOを主体とする焼鈍分離剤を塗布した後、1200℃×5時間の仕上焼鈍を施し、その後、リン酸マグネシウムと硼酸を主体とした張力付与絶縁被膜の形成を兼ねた平坦化焼鈍を900℃×15秒で施して製品板とした。 C: 0.065 mass%, Si: 3.33 mass%, Mn: 0.05 mass%, Al: 0.0040 mass%, N: 0.0012 mass%, S: 0.0006 mass%, Se: 0.0010 mass%, Sb : Steel slab containing 0.03 mass%, Cr: 0.03 mass% and Mo: 0.05 mass% by continuous casting, reheated to 1200 ° C, hot-rolled, and plate thickness 2.7 mm After subjecting to hot-rolled sheet annealing at 950 ° C. for 30 seconds, cold rolling was performed at different rolling reductions to obtain cold-rolled sheets having various thicknesses shown in Table 1. Thereafter, the cold-rolled sheet is recrystallized and annealed in a 50 vol% N 2 -50 vol% H 2 humid atmosphere, which also serves to decarburize soaking conditions at 850 ° C. for 90 seconds, and an annealing separator mainly composed of MgO. After applying the coating, finish annealing is performed at 1200 ° C. for 5 hours, and then flattening annealing is performed at 900 ° C. for 15 seconds, which is also used for forming a tension-imparting insulating film mainly composed of magnesium phosphate and boric acid. It was.

上記のようにして得た各製品板について、酸洗して被膜を除去し、板面を目視で観察した結果、いずれの鋼板も二次再結晶が発現していることが確認された。
また、各製品板の地鉄を成分分析した結果、Cが0.001〜0.003mass%の範囲内にあり、Al,N,SおよびSeは、分析限界以下まで低減しており、その他の成分はスラブ段階の組成から変化がないことを確認した。
About each product board obtained as mentioned above, it pickled, the film was removed, and as a result of observing the plate surface visually, it was confirmed that any steel plate expressed secondary recrystallization.
In addition, as a result of component analysis of the base iron of each product plate, C is in the range of 0.001 to 0.003 mass%, Al, N, S and Se are reduced to below the analysis limit, It was confirmed that the components did not change from the composition at the slab stage.

次いで、各製品板から試験片を採取し、ラウエ法により、結晶方位を300mm×200mmの範囲を7mmピッチで測定し、{110}<112>方位粒の面積率を算出した。なお、上記方位粒は、方位差角が20°以内であれば、その方位粒とした。また、貫通粒の比率は、製品板断面を光学顕微鏡で1200mmの長さに亘って観察し、全断面積に対する貫通粒の断面積の比率(%)とした。
得られた結果を表1に併記した。同表から、本発明の冷延圧下率の範囲内において製造した製品板は、いずれも{110}<112>方位粒が大きく増加していることがわかる。
Next, test pieces were collected from each product plate, and the crystal orientation was measured in the range of 300 mm × 200 mm at a pitch of 7 mm by the Laue method, and the area ratio of {110} <112> oriented grains was calculated. In addition, the said orientation grain was made into the orientation grain, if an orientation difference angle is less than 20 degrees. In addition, the through grain ratio was determined by observing the cross section of the product plate over a length of 1200 mm with an optical microscope, and taking the ratio (%) of the cross sectional area of the through grains to the total cross sectional area.
The obtained results are also shown in Table 1. From the same table, it can be seen that all the product plates manufactured within the range of the cold rolling reduction of the present invention have a large increase in {110} <112> orientation grains.

Figure 2012126980
Figure 2012126980

表2に示した成分組成を有する各種鋼スラブを連続鋳造にて製造し、1240℃に再加熱した後、熱間圧延して板厚3.0mmの熱延板とし、1025℃×60秒の熱延板焼鈍を施した後、冷間圧延して板厚0.10mm(冷延圧下率96.7%)の冷延板とした。次いで、上記冷延板を、45vol%N−55vol%H湿潤雰囲気中で、均熱条件が840℃×100秒の脱炭を兼ねた再結晶焼鈍し、MgOを主体とする焼鈍分離剤を塗布した後、1200℃×15時間の仕上焼鈍を施し、その後、リン酸マグネシウムと硼酸を主体とした張力付与絶縁被膜の形成を兼ねた平坦化焼鈍を850℃×15秒の条件で施したて製品板とした。 Various steel slabs having the composition shown in Table 2 were manufactured by continuous casting, reheated to 1240 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 3.0 mm, 1025 ° C. × 60 seconds. After hot-rolled sheet annealing, it was cold-rolled to obtain a cold-rolled sheet having a sheet thickness of 0.10 mm (cold rolling reduction 96.7%). Next, the cold-rolled sheet is recrystallized and annealed in a 45 vol% N 2 -55 vol% H 2 humid atmosphere, which also serves to decarburize soaking conditions at 840 ° C. × 100 seconds, and an annealing separator mainly composed of MgO. After coating, finish annealing was performed at 1200 ° C. for 15 hours, and then flattening annealing was performed under the conditions of 850 ° C. for 15 seconds, which also served as the formation of a tension-imparting insulating film mainly composed of magnesium phosphate and boric acid. The product board.

上記のようにして得た各製品板について、酸洗して被膜を除去し、板面を目視で観察した結果、いずれの鋼板でも二次再結晶が発現し、貫通粒の比率が75%以上となっていることが確認された。
また、得られた製品板の地鉄を成分分析した結果、C:0.001〜0.003mass%の範囲内にあり、Al,N,SおよびSeは、分析限界以下まで低減しており、その他の成分はスラブ段階の組成から変化がないことを確認した。
About each product plate obtained as described above, pickling and removal of the coating, and as a result of visually observing the plate surface, secondary recrystallization occurs in any steel plate, the ratio of the through grains is 75% or more It was confirmed that
In addition, as a result of component analysis of the obtained ground metal of the product plate, C is within the range of 0.001 to 0.003 mass%, Al, N, S and Se are reduced to below the analysis limit, It was confirmed that the other components did not change from the composition at the slab stage.

次いで、各製品板から試験片を採取し、ラウエ法により、結晶方位を300mm×200mmの範囲を7mmピッチで測定し、{110}<112>方位粒の面積率を算出した。なお、上記方位粒は、方位差角が20°以内であれば、その方位粒とした。
得られた結果を表2に併記した。同表から、本発明の成分組成を満たす鋼板は、いずれも{110}<112>方位粒が大きく増加していることがわかる。
Next, test pieces were collected from each product plate, and the crystal orientation was measured in the range of 300 mm × 200 mm at a pitch of 7 mm by the Laue method, and the area ratio of {110} <112> oriented grains was calculated. In addition, the said orientation grain was made into the orientation grain, if an orientation difference angle is less than 20 degrees.
The obtained results are also shown in Table 2. From the same table, it can be seen that the {110} <112> oriented grains are greatly increased in any steel sheet satisfying the composition of the present invention.

Figure 2012126980
Figure 2012126980

Claims (4)

Si:1.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、結晶粒の方位が{110}<112>から20°以内である比率が面積率で50%以上である電磁鋼板。 Si: 1.0 to 8.0 mass% and Mn: 0.005 to 1.0 mass%, the balance is composed of Fe and inevitable impurities, and the orientation of crystal grains is {110} <112 > The electrical steel sheet in which the ratio within 20 ° is 50% or more in terms of area ratio. 上記Si,Mnの他に、C:0.005mass%未満、Mn:0.005〜1.0mass%、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびNb:0.001〜0.050mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の電磁鋼板。 In addition to Si and Mn, C: less than 0.005 mass%, Mn: 0.005 to 1.0 mass%, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu : 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Bi: 0.005 to 0 2. One or more kinds selected from 50 mass%, Mo: 0.005 to 0.100 mass%, and Nb: 0.001 to 0.050 mass%, according to claim 1. Electrical steel sheet. C:0.002〜0.10mass%、Si:1.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、さらに、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭を兼ねた一次再結晶焼鈍し、その後、仕上焼鈍する一連の方向性電磁鋼板の製造方法において、上記冷間圧延における最終冷延圧下率を94%以上とすることを特徴とする請求項1または2に記載の電磁鋼板の製造方法。 C: 0.002 to 0.10 mass%, Si: 1.0 to 8.0 mass%, and Mn: 0.005 to 1.0 mass%, Al: 0.0100 mass% or less, N: 0.00. A steel material containing 0050 mass% or less, S: 0.0050 mass% or less, and Se: 0.0050 mass% or less, with the balance being composed of Fe and inevitable impurities, is hot-rolled, and hot-rolled as necessary A series of directions in which plate annealing is performed and cold rolling is performed twice or more with intermediate or intermediate annealing to obtain a cold-rolled sheet having a final thickness, followed by primary recrystallization annealing also serving as decarburization, and then finish annealing. The method for producing a magnetic steel sheet according to claim 1 or 2, wherein the final cold rolling reduction in the cold rolling is 94% or more. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびNb:0.001〜0.050mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項3に記載の電磁鋼板の製造方法。 In addition to the above component composition, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass% And Nb: one or more selected from 0.001 to 0.050 mass%, the method for producing an electrical steel sheet according to claim 3.
JP2010281354A 2010-12-17 2010-12-17 Electrical steel sheet and manufacturing method thereof Active JP5794409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281354A JP5794409B2 (en) 2010-12-17 2010-12-17 Electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281354A JP5794409B2 (en) 2010-12-17 2010-12-17 Electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012126980A true JP2012126980A (en) 2012-07-05
JP5794409B2 JP5794409B2 (en) 2015-10-14

Family

ID=46644337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281354A Active JP5794409B2 (en) 2010-12-17 2010-12-17 Electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5794409B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150073802A (en) * 2013-12-23 2015-07-01 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2017122269A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
KR20180073332A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP2021509441A (en) * 2017-12-26 2021-03-25 ポスコPosco Bidirectional electromagnetic steel sheet and its manufacturing method
CN113366125A (en) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
JP2022501516A (en) * 2018-09-27 2022-01-06 ポスコPosco Bidirectional magnetic steel sheet and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188116A (en) * 1992-12-21 1994-07-08 Nippon Steel Corp Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06220541A (en) * 1993-01-27 1994-08-09 Nippon Steel Corp High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP2000109931A (en) * 1998-10-01 2000-04-18 Kawasaki Steel Corp Production of high magnetic flux density grain oriented silicon steel sheet extremely low in core loss
JP2005179745A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for producing bi-directional silicon steel sheet
JP2008150697A (en) * 2006-12-20 2008-07-03 Jfe Steel Kk Production method of magnetic steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188116A (en) * 1992-12-21 1994-07-08 Nippon Steel Corp Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06220541A (en) * 1993-01-27 1994-08-09 Nippon Steel Corp High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP2000109931A (en) * 1998-10-01 2000-04-18 Kawasaki Steel Corp Production of high magnetic flux density grain oriented silicon steel sheet extremely low in core loss
JP2005179745A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for producing bi-directional silicon steel sheet
JP2008150697A (en) * 2006-12-20 2008-07-03 Jfe Steel Kk Production method of magnetic steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101594601B1 (en) * 2013-12-23 2016-02-16 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
KR20150073802A (en) * 2013-12-23 2015-07-01 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2017122269A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
KR20180073332A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101887605B1 (en) 2016-12-22 2018-08-10 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP2021509441A (en) * 2017-12-26 2021-03-25 ポスコPosco Bidirectional electromagnetic steel sheet and its manufacturing method
JP7174053B2 (en) 2017-12-26 2022-11-17 ポスコ Bidirectional electrical steel sheet and manufacturing method thereof
US11802319B2 (en) 2017-12-26 2023-10-31 Posco Co., Ltd Double oriented electrical steel sheet and method for manufacturing same
JP7312249B2 (en) 2018-09-27 2023-07-20 ポスコ カンパニー リミテッド Bidirectional electrical steel sheet and manufacturing method thereof
JP2022501516A (en) * 2018-09-27 2022-01-06 ポスコPosco Bidirectional magnetic steel sheet and its manufacturing method
CN113366125A (en) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
CN113366125B (en) * 2019-01-31 2023-01-20 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
US11959149B2 (en) 2019-01-31 2024-04-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Also Published As

Publication number Publication date
JP5794409B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5672273B2 (en) Method for producing grain-oriented electrical steel sheet
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CA2900111C (en) Method for producing grain-oriented electrical steel sheet
JP6587085B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
KR102427606B1 (en) Grain-oriented electrical steel sheet
JP2016060953A (en) Manufacturing method of oriented magnetic steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5888525B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009155731A (en) Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022255259A1 (en) Method for manufacturing oriented electrical steel sheet
WO2022255258A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2004285402A (en) Manufacturing method of grain-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5794409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250