JP2012126892A - Manufacturing method for silicone polymer - Google Patents

Manufacturing method for silicone polymer Download PDF

Info

Publication number
JP2012126892A
JP2012126892A JP2011245308A JP2011245308A JP2012126892A JP 2012126892 A JP2012126892 A JP 2012126892A JP 2011245308 A JP2011245308 A JP 2011245308A JP 2011245308 A JP2011245308 A JP 2011245308A JP 2012126892 A JP2012126892 A JP 2012126892A
Authority
JP
Japan
Prior art keywords
group
hydrocarbon group
silicone polymer
formula
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011245308A
Other languages
Japanese (ja)
Other versions
JP5854266B2 (en
Inventor
Takeshi Nishikawa
健 西川
Ryuji Ogawa
龍治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2011245308A priority Critical patent/JP5854266B2/en
Publication of JP2012126892A publication Critical patent/JP2012126892A/en
Application granted granted Critical
Publication of JP5854266B2 publication Critical patent/JP5854266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel silicone polymer capable of being formed into a high transparency and crack-resistant film at a temperature of not less than 500°C.SOLUTION: The silicone polymer includes a constitutional unit represented by general formula (1), where A represents a monovalent hydrocarbon group, B represents a bivalent hydrocarbon group. and n is 1 or 2.

Description

本発明は、液晶表示素子や半導体素子等の電子部品の耐熱性材料として有用なシリコーン重合体の製造方法に関するものである。   The present invention relates to a method for producing a silicone polymer useful as a heat resistant material for electronic parts such as liquid crystal display elements and semiconductor elements.

近年、液晶表示素子や半導体素子等の電子部品に用いられる電子材料としてしては、可視光で透過性が高い高透明性や、素子を製造する際の各種処理工程に耐えられる耐熱性、耐薬品性、クラック耐性などの特性を兼ね備えた樹脂の必要性が高まっている。   In recent years, as electronic materials used for electronic components such as liquid crystal display elements and semiconductor elements, high transparency that is highly transmissive with visible light, heat resistance and resistance to withstand various processing steps when manufacturing elements. There is an increasing need for resins that have properties such as chemical properties and crack resistance.

その中で、微細加工で用いられる材料としてアルカリ溶媒に可溶であるフェノール基を有するシリコーン材料が注目されてきた。このアルカリ可溶性シリコーン材料であるヒドロキシベンジルシルセスキオキサンは例えば2層レジスト法として用いられ、段差基板上に高アスペクト比のパターンを形成することができる(特許文献1)。   Among them, a silicone material having a phenol group that is soluble in an alkaline solvent has attracted attention as a material used in microfabrication. Hydroxybenzylsilsesquioxane, which is an alkali-soluble silicone material, is used as a two-layer resist method, for example, and can form a high aspect ratio pattern on a stepped substrate (Patent Document 1).

このフェノール基を有するシリコーン材料の前駆体であるフェノール基をメチル基やエチル基などのアルキル基で保護したアルコキシ基を含有するシリコーン重合体の合成例は、原料にクロロシランを用いて水で単純に加水分解して合成しており、クロロシランが水と反応して発生する塩酸を触媒にして、酸性条件で加水分解している例が、多い。しかしクロロシランを酸性条件で合成したシリコーン重合体は末端にシラノールが多く残る材料となり、例えばフェノール基を有するシリコーン重合体を合成する脱アルキル反応では、シラノール基が多く残っていると脱アルキル化反応が進行しないため、一旦末端シラノール基を保護した後脱アルキル反応を行わなければならないという欠点がある(特許文献1〜5)。   A synthesis example of a silicone polymer containing an alkoxy group in which a phenol group, which is a precursor of a silicone material having a phenol group, is protected with an alkyl group such as a methyl group or an ethyl group is simply made with water using chlorosilane as a raw material. There are many examples that are synthesized by hydrolysis and hydrolyzed under acidic conditions using hydrochloric acid generated by reaction of chlorosilane with water as a catalyst. However, a silicone polymer synthesized with acidic conditions of chlorosilane becomes a material in which a large amount of silanol remains at the terminal. For example, in a dealkylation reaction that synthesizes a silicone polymer having a phenol group, if a large amount of silanol groups remains, the dealkylation reaction may occur. Since it does not proceed, there is a disadvantage that the dealkylation reaction must be performed after protecting the terminal silanol group (Patent Documents 1 to 5).

一方、例えば半導体の導電部として使用されている配線は、近年の高機能化、高密度化により流れる電流が大きくなっており高い熱を発生させる。よってその工程で使用される絶縁膜はより耐熱性のものが求められ、500℃以上で膜形成が可能な高耐熱性材料が求められている。その中で、シルセスキオキサン骨格を有するシリコーン樹脂は、特に耐熱性が優れており、これらの特性を利用して広く利用されてきた。   On the other hand, for example, a wiring used as a conductive portion of a semiconductor generates a high heat due to an increase in flowing current due to recent high functionality and high density. Therefore, the insulating film used in the process is required to be more heat resistant, and a high heat resistant material capable of forming a film at 500 ° C. or higher is required. Among them, silicone resins having a silsesquioxane skeleton are particularly excellent in heat resistance, and have been widely used by utilizing these characteristics.

このシリコーン樹脂で形成した耐熱膜は、膜表面の平坦性が重要であり、加熱による膜形成後の膜表面にクラックが入らない膜が求められている。例えば、LSI製造の多層配線工程において、加熱により形成した膜にクラックが入っている場合は、その上に膜形成した場合、新たに形成した膜が均一にならずにムラのある膜が形成してしまう可能性がある。そのように形成した膜に露光した場合、不均一な膜界面付近で光の乱反射や散乱が生じ、均一なパターン形成そのものができない。このように膜表面にクラックが入ると光学特性、機械特性などの膜特性に影響を与える場合が多いため、通常クラックが入らない膜が求められている。   In the heat-resistant film formed of this silicone resin, the flatness of the film surface is important, and there is a demand for a film that does not crack on the film surface after film formation by heating. For example, in a multilayer wiring process of LSI manufacturing, if a film formed by heating has cracks, when a film is formed on it, a newly formed film is not uniform and a nonuniform film is formed. There is a possibility that. When the film thus formed is exposed to light, irregular reflection or scattering of light occurs near the non-uniform film interface, and a uniform pattern cannot be formed. Thus, since cracks on the film surface often affect film characteristics such as optical characteristics and mechanical characteristics, a film that does not normally crack is required.

例えば、一般的なフェニル基やメチル基で合成したシリコーン組成物を溶媒に溶解させ400℃に加熱して硬化させた硬化膜についてクラック耐性を評価しているが、400℃での硬化でクラック限界が生じており、500℃以上の高温での使用するプロセスでの適応は難しい。(特許文献6)
以上のことから、500℃以上の温度で製膜ができ、透明性が高く、得られた膜にクラックが入らないシリコーン材料が求められていた。
For example, the crack resistance of a cured film obtained by dissolving a general silicone composition synthesized with a phenyl group or methyl group in a solvent and heating and curing at 400 ° C. is evaluated. Therefore, it is difficult to adapt the process to be used at a high temperature of 500 ° C. or higher. (Patent Document 6)
From the above, there has been a demand for a silicone material that can be formed at a temperature of 500 ° C. or higher, has high transparency, and does not crack in the obtained film.

特開平9−87391号公報JP-A-9-87391 特開平8−334900号公報JP-A-8-334900 特開平8−334901号公報JP-A-8-334901 特開平9−274319号公報JP-A-9-274319 特開2002−338690号公報JP 2002-338690 A 特開2007−238848公報JP 2007-238848 A


本発明は、高透明性で、耐クラック性の特性を有する膜を形成できる新規シリコーン重合体を提供することを目的としてなされたものである。

The present invention has been made for the purpose of providing a novel silicone polymer capable of forming a film having high transparency and crack resistance.

本発明は、下記一般式   The present invention has the following general formula:

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
で示されるケイ素化合物を塩基性触媒存在下、加水分解し、さらに縮重合反応して下記一般式
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
In the presence of a basic catalyst, the silicon compound represented by

Figure 2012126892
Figure 2012126892

(式中、Aは一価の炭化水素基をBは二価の炭化水素基を示し、nは1または2を示す)
で示される構成単位を有するシリコーン重合体を製造するシリコーン重合体の製造方法である。
(In the formula, A represents a monovalent hydrocarbon group, B represents a divalent hydrocarbon group, and n represents 1 or 2.)
The manufacturing method of the silicone polymer which manufactures the silicone polymer which has a structural unit shown by these.

本発明のシリコーン重合体は、シリコンウェハーなどの基板にスピンコートした後、500℃以上で加熱しても基板と密着しており、かつ高い透明性と高いクラック耐性を有し、電子材料の絶縁膜や保護膜などに優れた材料となる。   The silicone polymer of the present invention is spin-coated on a substrate such as a silicon wafer, and is in close contact with the substrate even when heated at 500 ° C. or higher, has high transparency and high crack resistance, and is an insulating material for electronic materials. It is an excellent material for films and protective films.

また、本発明のシリコーン共重合体は、可視光領域の波長における透明性が良く、密着性、クラック耐性に優れた材料であり、液晶表示素子や半導体素子等の電子部品や焼成後も高クラック耐性を有していることから、電子デバイスや太陽電池などの高耐熱性材料として利用できる。   In addition, the silicone copolymer of the present invention is a material having good transparency in the visible light wavelength, excellent adhesion and crack resistance, and high cracking even after firing electronic parts such as liquid crystal display elements and semiconductor elements. Since it has resistance, it can be used as a highly heat-resistant material such as an electronic device or a solar battery.

また、本発明のシリコーン共重合体は電子分野に限らず、塗料や接着剤等、幅広い分野に応用できる。   Further, the silicone copolymer of the present invention can be applied not only to the electronic field but also to a wide range of fields such as paints and adhesives.

実施例1の化合物のIRチャートを示す。1 shows an IR chart of the compound of Example 1. 比較例1の化合物のIRチャートを示す。The IR chart of the compound of the comparative example 1 is shown.

本発明は、下記一般式   The present invention has the following general formula:

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
で示されるケイ素化合物を塩基性触媒存在下、加水分解し、さらに縮重合反応して下記一般式
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
In the presence of a basic catalyst, the silicon compound represented by

Figure 2012126892
Figure 2012126892

(式中、Aは一価の炭化水素基をBは二価の炭化水素基を示し、nは1または2を示す)
で示される構成単位を有するシリコーン重合体の製造方法である。
(In the formula, A represents a monovalent hydrocarbon group, B represents a divalent hydrocarbon group, and n represents 1 or 2.)
It is a manufacturing method of the silicone polymer which has a structural unit shown by these.

本発明において、シリコーン重合体の下記構造   In the present invention, the following structure of the silicone polymer

Figure 2012126892
Figure 2012126892

は、シルセスキオキサン骨格を示し、各ケイ素原子が3個の酸素原子に結合し、各酸素原子が2個のケイ素原子に結合していることを示す。シルセスキオキサン骨格は、例えば、下記一般式 Represents a silsesquioxane skeleton, wherein each silicon atom is bonded to three oxygen atoms, and each oxygen atom is bonded to two silicon atoms. The silsesquioxane skeleton has, for example, the following general formula

Figure 2012126892
Figure 2012126892

に示す構造式で示すことができる。 It can be shown by the structural formula shown in

本発明は、下記一般式   The present invention has the following general formula:

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
で示されるケイ素化合物を塩基性触媒存在下、加水分解し、さらに縮重合反応する。
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
Is hydrolyzed in the presence of a basic catalyst, followed by a condensation polymerization reaction.

ここで、Aは一価の炭化水素基を示し、好ましい炭化水素基としては、炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、環状炭化水素基である。直鎖状の炭化水素基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基などが挙げられる。分岐状炭化水素基としては、イソプロピル基、イソブチル基などの炭化水素基が挙げられる。環状炭化水素基として、シクロペンチル基、シクロヘキシル基、シクロヘプチル基などの環状炭化水素基が挙げられ、またノルボルナン骨格を有するような架橋型炭化水素基でも良い。これら炭化水素基の中で、メチル基、エチル基、プロピル基等の炭素数1〜5の炭化水素基がより好ましく、原料入手の容易さからメチル基がさらに好ましい。   Here, A represents a monovalent hydrocarbon group, and preferred hydrocarbon groups are a linear hydrocarbon group having 1 to 20 carbon atoms, a branched hydrocarbon group, and a cyclic hydrocarbon group. Examples of the linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. Examples of the branched hydrocarbon group include hydrocarbon groups such as isopropyl group and isobutyl group. Examples of the cyclic hydrocarbon group include cyclic hydrocarbon groups such as a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group, and may be a bridged hydrocarbon group having a norbornane skeleton. Among these hydrocarbon groups, a hydrocarbon group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group is more preferable, and a methyl group is more preferable because of easy availability of raw materials.

また、Bは二価の炭化水素基を示し、好ましい炭化水素基としては、炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、環状炭化水素基であり、炭素数1〜20の直鎖状炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基などの炭化水素基が挙げられる。分岐状炭化水素基としては、イソプロピレン基、イソブチレン基などの炭化水素基が好ましい。環状炭化水素基として、シクロペンチレン基、シクロヘキシレン基、シクロペンタレン基などの環状炭化水素基が好ましく、またノルボルナン骨格を有するような架橋型炭化水素基も好ましい。これら炭化水素基の中で、メチレン基、エチレン基、プロピレン基等の炭素数1〜5のアルキレン基がより好ましく、原料入手の容易さからメチレン基、エチレン基がさらに好ましい。   B represents a divalent hydrocarbon group, and preferred hydrocarbon groups are linear hydrocarbon groups having 1 to 20 carbon atoms, branched hydrocarbon groups, and cyclic hydrocarbon groups. Examples of the 20 linear hydrocarbon groups include hydrocarbon groups such as a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group. The branched hydrocarbon group is preferably a hydrocarbon group such as an isopropylene group or an isobutylene group. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentylene group, a cyclohexylene group and a cyclopentalene group is preferable, and a bridged hydrocarbon group having a norbornane skeleton is also preferable. Among these hydrocarbon groups, an alkylene group having 1 to 5 carbon atoms such as a methylene group, an ethylene group, and a propylene group is more preferable, and a methylene group and an ethylene group are more preferable because of easy availability of raw materials.

また、Xは一価の炭化水素基を示す。好ましい炭化水素基は炭素数1〜5の炭化水素基で、直鎖状炭化水素基ではメチル基、エチル基、n−プロピル基、n−ブチル基、分枝状炭化水素基としてはiso−プロピル基、iso-ブチル基、sec-ブチル基が好ましい。さらに原料入手の容易さから、メチル基、エチル基がより好ましい。   X represents a monovalent hydrocarbon group. A preferred hydrocarbon group is a hydrocarbon group having 1 to 5 carbon atoms, a straight chain hydrocarbon group is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a branched hydrocarbon group is iso-propyl. Group, iso-butyl group and sec-butyl group are preferred. Furthermore, a methyl group and an ethyl group are more preferable because of easy availability of raw materials.

nはフェニル基に結合したアルコキシ基の数を示し、nは1または2を示す。nが1の場合は、オルト位、メタ位、パラ位どれに結合しても良いが、原料の合成の容易さから考えるとパラ位に結合したものが好ましい。nが2の場合はアルコキシ基がフェニル基に2つ結合していることを示すが、オルト位、メタ位、パラ位どれに結合していても良い。   n represents the number of alkoxy groups bonded to the phenyl group, and n represents 1 or 2. When n is 1, it may be bonded to any of the ortho, meta, and para positions, but those bonded to the para position are preferred in view of the ease of synthesis of the raw materials. When n is 2, it indicates that two alkoxy groups are bonded to the phenyl group, but they may be bonded to any of the ortho, meta, and para positions.

特に下記一般式   Especially the following general formula

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
の中では、下記式
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
In the following formula

Figure 2012126892
Figure 2012126892

(式中、Xは一価の炭化水素基を示す)
は、分子量が小さく蒸留精製が可能で純度も高いものが得られることから、より好ましい
また、好ましくは、下記一般式
(Wherein X represents a monovalent hydrocarbon group)
Is more preferable because it has a low molecular weight and can be purified by distillation and has high purity.

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
と下記一般式
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
And the following general formula

Figure 2012126892
Figure 2012126892

(式中、RとX’は炭化水素基を示す)
のケイ素化合物の混合物を加水分解し、さらに縮重合反応を行うと、下記一般式の
(In the formula, R and X ′ represent a hydrocarbon group)
Hydrolysis of a mixture of silicon compounds and further condensation polymerization reaction yields the following general formula:

Figure 2012126892
Figure 2012126892

(式中、Aは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
の構造の他に、下記一般式
(In the formula, A represents a monovalent hydrocarbon group, B represents a divalent hydrocarbon group, and n represents 1 or 2.)
In addition to the structure of

Figure 2012126892
Figure 2012126892

(式中、Rは炭化水素基を示す)
の構造を含むシリコーン共重合体を製造することができる。この場合、Rに様々な特性を有する置換基を導入することによる特性効果が期待でき、さらに好ましいシリコーン重合体を製造することができる。
(Wherein R represents a hydrocarbon group)
A silicone copolymer containing the structure can be produced. In this case, a characteristic effect can be expected by introducing substituents having various characteristics into R, and a more preferable silicone polymer can be produced.

式中、Rは炭化水素基を示す。好ましい炭化水素基は、炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、環状炭化水素基、芳香族炭化水素基である。   In the formula, R represents a hydrocarbon group. A preferred hydrocarbon group is a linear hydrocarbon group having 1 to 20 carbon atoms, a branched hydrocarbon group, a cyclic hydrocarbon group, or an aromatic hydrocarbon group.

炭素数1〜20の直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基などの炭化水素基が挙げられる。分岐状炭化水素基としては、イソプロピル基、イソブチル基などの炭化水素基が好ましい。環状炭化水素基として、シクロペンチル基、シクロヘキシル基、シクロヘプチル基などの環状炭化水素基が好ましく、またノルボルナン骨格を有するような架橋型炭化水素基も好ましい。これら炭化水素基の中で、メチル基、エチル基、プロピル基等の炭素数1〜5の炭化水素基は、シリコーン共重合体全体のシリコン含有率を向上させるため、シリコーン樹脂の耐熱性が向上することからより好ましく、原料入手の容易さからメチル基がさらに好ましい。   Examples of the linear hydrocarbon group having 1 to 20 carbon atoms include hydrocarbon groups such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. As the branched hydrocarbon group, a hydrocarbon group such as isopropyl group and isobutyl group is preferable. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group is preferable, and a bridged hydrocarbon group having a norbornane skeleton is also preferable. Among these hydrocarbon groups, hydrocarbon groups having 1 to 5 carbon atoms such as methyl, ethyl and propyl groups improve the silicon content of the entire silicone copolymer, thus improving the heat resistance of the silicone resin. Therefore, a methyl group is more preferable from the viewpoint of easy availability of raw materials.

また、芳香族炭化水素基としては、フェニル基、ベンジル基、フェネチル基、フェニルプロピル基、ジフェニルメチル基、シンナミル基、スチリル基、トリチル基などのベンゼン環と炭化水素基とを有した置換基、トルイル基、クメニル基、メシル基、キシリル基などのベンゼン環に置換基が結合した芳香族炭化水素基も好ましい。4−メチルフェニルエチル基、4−メチルフェニルプロピル基、2,4−ジメチルフェニルエチル基等、ベンゼン環に置換基が結合していても良い。芳香族炭化水素基は、樹脂の耐熱性を向上させることができるため、より好ましい。フェニル基、トルイル基、クメニル基、メシル基、キシリル基等の芳香族炭化水素基が特に好ましく、一般的に入手が容易なフェニル基がさらに好ましい。   In addition, as the aromatic hydrocarbon group, a substituent having a benzene ring and a hydrocarbon group, such as a phenyl group, a benzyl group, a phenethyl group, a phenylpropyl group, a diphenylmethyl group, a cinnamyl group, a styryl group, and a trityl group, An aromatic hydrocarbon group having a substituent bonded to a benzene ring such as a toluyl group, a cumenyl group, a mesyl group, or a xylyl group is also preferable. A substituent may be bonded to the benzene ring such as a 4-methylphenylethyl group, a 4-methylphenylpropyl group, or a 2,4-dimethylphenylethyl group. An aromatic hydrocarbon group is more preferable because it can improve the heat resistance of the resin. Aromatic hydrocarbon groups such as a phenyl group, toluyl group, cumenyl group, mesyl group, and xylyl group are particularly preferred, and a phenyl group that is generally readily available is more preferred.

下記一般式   The following general formula

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
と下記一般式
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
And the following general formula

Figure 2012126892
Figure 2012126892

(式中、RとX’は炭化水素基を示す)
のケイ素化合物のみで加水分解、縮重合した場合、下記一般式
(In the formula, R and X ′ represent a hydrocarbon group)
In the case of hydrolysis and polycondensation with only the silicon compound of

Figure 2012126892
Figure 2012126892

(式中、Aは一価の炭化水素基、Bは二価の炭化水素基を示す。Rは炭化水素基を示し、nは1または2を示す。aとbは原料の仕込みモル組成比を示し、1≦a、b≦99、a+b=100を示す)
で表されるシリコーン共重合体が製造できる。ここでaは耐熱性を示すユニットを示し、aは50モル%以上が好ましく、70モル%以上がさらに好ましい。
(In the formula, A represents a monovalent hydrocarbon group, B represents a divalent hydrocarbon group, R represents a hydrocarbon group, n represents 1 or 2, and a and b are raw material charge molar composition ratios. 1 ≦ a, b ≦ 99, a + b = 100)
Can be produced. Here, a represents a unit exhibiting heat resistance, and a is preferably 50 mol% or more, and more preferably 70 mol% or more.

本発明は、   The present invention

Figure 2012126892
Figure 2012126892

(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
で示されるケイ素化合物を塩基性触媒存在下、加水分解する。塩基性触媒を使用すると、硬化膜の末端シラノール基が少ない。
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
Is hydrolyzed in the presence of a basic catalyst. When a basic catalyst is used, there are few terminal silanol groups of a cured film.

クロロシランモノマーを原料に使用して水と加水分解反応した場合や、アルコキシシランも用いた場合でも、塩酸や硫酸、硝酸などの無機酸やシュウ酸、クエン酸などのカルボン酸を触媒に用いた酸性条件では、得られたシリコーン重合体には末端シラノール基が多く、500℃以上で製膜したとき、末端シラノールが縮合して膜に亀裂が生じ硬化膜として使用できない。   Even when chlorosilane monomer is used as a raw material and hydrolyzed with water, or when alkoxysilane is also used, it is acidic using inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or carboxylic acid such as oxalic acid or citric acid as a catalyst. Under the conditions, the obtained silicone polymer has many terminal silanol groups, and when the film is formed at 500 ° C. or higher, the terminal silanol is condensed to cause cracks in the film and cannot be used as a cured film.

塩基性触媒は、無機塩基性触媒、第四級アンモニウム塩、アミン類が好ましい。無機塩基性触媒としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。第4級アンモニウム塩としては、テトラブチルアンモニウムフルオライド、ベンジルトリブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、テトラn−ブチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、ベンジルトリn−ブチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド、n−オクチルトリメチルアンモニウムブロマイド、ヘキシルトリメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラデシルトリメチルアンモニウムブロマイド、テトラメチルアンモニウムブロマイド、テトラn−プロピルアンモニウムブロマイド、テトラブチルアンモニウムアイオダイド、テトラエチルアンモニウムアイオダイド、テトラメチルアンモニウムアイオダイド、テトラn−プロピルアンモニウムアイオダイド、トリメチルフェニルアンモニウムアイオダイド、ベンジルトリメチルアンモニウムヒドロキシト゛、フェニルトリメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロゲンスルフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムチオシアネート、テトラメチルアンモニウムp−トルエンスルフォネートなどが挙げられる。アミン類としては、トリメチルアミン、トリエチルアミン、ピリジン、N,N−ジメチルアミノピリジンなどが挙げられる。   The basic catalyst is preferably an inorganic basic catalyst, a quaternary ammonium salt, or an amine. Examples of the inorganic basic catalyst include sodium hydroxide and potassium hydroxide. The quaternary ammonium salts include tetrabutylammonium fluoride, benzyltributylammonium chloride, benzyltriethylammonium chloride, benzyltrimethylammonium chloride, tetra n-butylammonium chloride, tetraethylammonium chloride, tetramethylammonium chloride, benzyltrin-butylammonium. Bromide, benzyltriethylammonium bromide, benzyltrimethylammonium bromide, n-octyltrimethylammonium bromide, hexyltrimethylammonium bromide, tetrabutylammonium bromide, tetraethylammonium bromide, tetradecyltrimethylammonium bromide, tetramethylammonium Romide, tetra-n-propylammonium bromide, tetrabutylammonium iodide, tetraethylammonium iodide, tetramethylammonium iodide, tetra-n-propylammonium iodide, trimethylphenylammonium iodide, benzyltrimethylammonium hydroxide, phenyltrimethylammonium hydroxy Tetrabutylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydrogen sulfate, tetrabutylammonium tetrafluoroborate, tetramethylammonium thiocyanate, tetramethylammonium p- G Such as Enns Gandolfo sulfonate, and the like. Examples of amines include trimethylamine, triethylamine, pyridine, N, N-dimethylaminopyridine and the like.

この中で、分子量制御などを考慮すると、第4級アンモニウム塩が好ましく、その中でもベンジルトリブチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、テトラn−ブチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、ベンジルトリn−ブチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド、ヘキシルトリメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、テトラデシルトリメチルアンモニウムブロマイド、テトラメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムヒドロキシト゛、フェニルトリメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロゲンスルフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムチオシアネート、テトラメチルアンモニウムp−トルエンスルフォネートが特に好ましい。さらに、強い塩基でモノマーの加水分解速度を制御可能なテトラメチルアンモニウムヒドロキシドが一番好ましい。   Among these, considering molecular weight control, quaternary ammonium salts are preferable, among which benzyltributylammonium chloride, benzyltrimethylammonium chloride, tetra n-butylammonium chloride, tetramethylammonium chloride, benzyltrin-butylammonium bromide, Benzyltrimethylammonium bromide, hexyltrimethylammonium bromide, tetrabutylammonium bromide, tetradecyltrimethylammonium bromide, tetramethylammonium bromide, benzyltrimethylammonium hydroxide, phenyltrimethylammonium hydroxide, tetrabutylammonium hydroxide, tetraethylammonium hydroxide, tetra Methyl Nmo onium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydrogensulfate sulfate, tetrabutylammonium tetrafluoroborate, tetramethylammonium thiocyanate, tetramethylammonium p- toluenesulfonate is particularly preferred. Furthermore, tetramethylammonium hydroxide capable of controlling the hydrolysis rate of the monomer with a strong base is most preferable.

塩基性触媒の使用量は原料モノマーのモル数に対して0.001〜1.0当量が好ましく、0.01〜0.5当量がさらに好ましい。   The amount of the basic catalyst used is preferably 0.001 to 1.0 equivalent, more preferably 0.01 to 0.5 equivalent, relative to the number of moles of the raw material monomer.

加水分解反応、重縮合反応の反応温度は、0〜100℃が好ましく、触媒を使用することにより反応が容易に進行することから、20〜50℃がより好ましい。   The reaction temperature of the hydrolysis reaction and polycondensation reaction is preferably 0 to 100 ° C., and more preferably 20 to 50 ° C. because the reaction easily proceeds by using a catalyst.

加水分解反応、重縮合反応では、有機溶媒を使用することが好ましく、有機溶媒としては、トルエン、キシレン等の非プロトン性溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、2−プロパノール等のアルコール溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒、等の溶媒を使用することができる。溶媒コストや得られた共重合体の精製方法を考慮すると、トルエン、メチルイソブチルケトン、2−プロパノールが特に好ましい。   In the hydrolysis reaction and polycondensation reaction, an organic solvent is preferably used. Examples of the organic solvent include aprotic solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, methanol, ethanol, 2- Alcohol solvents such as propanol, ether solvents such as diethyl ether and tetrahydrofuran, and the like can be used. Considering the solvent cost and the purification method of the obtained copolymer, toluene, methyl isobutyl ketone, and 2-propanol are particularly preferable.

また、得られたシロキサン樹脂は、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、乳酸エチルなどの高沸点溶媒に溶解させて、シリコンウェハーやガラス基板に塗布することができる。プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、乳酸エチルなどの高沸点溶媒は、加水分解反応、重縮合反応の反応溶媒として使用することができる。   The obtained siloxane resin can be dissolved in a high-boiling solvent such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, ethyl lactate, and applied to a silicon wafer or a glass substrate. High boiling solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, and ethyl lactate can be used as reaction solvents for hydrolysis and polycondensation reactions.

また、非プロトン性溶媒を加水分解反応、重縮合反応の反応溶媒として使用する場合は、加水分解反応を促進させる目的で、水に可溶なアルコール溶媒を加えて加水分解反応させることが望ましい。   When an aprotic solvent is used as a reaction solvent for hydrolysis and polycondensation reactions, it is desirable to add a water-soluble alcohol solvent for the hydrolysis reaction for the purpose of promoting the hydrolysis reaction.

加水分解反応、重縮合反応の反応終了後は、非極性溶媒を添加して反応生成物と水とを分離して、有機溶媒に溶解した反応生成物を回収し、水で洗浄後に溶媒を留去することにより目的の生成物を得ることができる。   After completion of the hydrolysis reaction and polycondensation reaction, a nonpolar solvent is added to separate the reaction product and water, and the reaction product dissolved in the organic solvent is recovered. After washing with water, the solvent is retained. The desired product can be obtained by leaving.

このようにして本発明のシリコーン共重合体を合成することができる。   In this way, the silicone copolymer of the present invention can be synthesized.

以下、実施例を示して本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

以下の実施例において、測定には下記装置を使用し、原料は試薬メーカー(東京化成品、和光純薬品、ナカライテスク品、アズマックス品、信越化学品)から購入した一般的な試薬を用いた。   In the following examples, the following apparatus was used for the measurement, and general reagents purchased from reagent manufacturers (Tokyo Chemicals, Wako Pure Chemicals, Nacalai Tesque, Azmax, Shin-Etsu Chemical) were used as raw materials.

測定装置
NMR測定・・・日本電子製400MHz NMR測定器で測定した。
Measuring device NMR measurement: Measured with a 400 MHz NMR measuring instrument manufactured by JEOL.

IR測定・・・島津製IR Prestige-21。溶液の場合はKBr板に合成品を少量塗布し、別のKBr板に挟んで赤外を透過させて測定した。   IR measurement: IR Prestige-21 manufactured by Shimadzu. In the case of a solution, a small amount of a synthetic product was applied to a KBr plate, and the measurement was performed by passing infrared light through another KBr plate.

GPC測定・・・東ソー製HLC-8220。東ソー製TSK-gel Super3000、TSK-gel Super2000、TSK-gel Super1000を使用し、リファレンスにTSK-gel SuperH-RCを2本使用した。溶媒はTHFを使用し、カラム流量を0.35mL/min、カラム温度は40℃、測定はRIで実施した。分子量分布の基準にはポリスチレン(東ソー製基準サンプル)を使用して分子量分布を算出した。   GPC measurement: HLC-8220 manufactured by Tosoh Corporation. Tosoh TSK-gel Super3000, TSK-gel Super2000, and TSK-gel Super1000 were used, and two TSK-gel SuperH-RCs were used as references. The solvent was THF, the column flow rate was 0.35 mL / min, the column temperature was 40 ° C., and the measurement was performed by RI. The molecular weight distribution was calculated using polystyrene (a standard sample manufactured by Tosoh Corp.) as the standard for the molecular weight distribution.

GC測定・・・J&W社製キャピラリーカラムDB−5を用いて、島津製GC-2010シリーズで測定した。   GC measurement: Measured with a GC-2010 series manufactured by Shimadzu using a capillary column DB-5 manufactured by J & W.

合成例1
4−メトキシベンジルトリメトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、マグネシウム19.0g(0.784モル)とテトラヒドロフラン300mLを加えヨウ素辺を加えた。そこに少量の4−メトキシベンジルクロライドを滴下し反応を開始させた後、4−メトキシベンジルクロライド合計116.9g(0.746モル)を5〜10℃で滴下してグリニャール試薬を調整した。
Synthesis example 1
Synthesis example of 4-methoxybenzyltrimethoxysilane To a 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 19.0 g (0.784 mol) of magnesium and 300 mL of tetrahydrofuran were added, and the iodine side was adjusted. added. A small amount of 4-methoxybenzyl chloride was added dropwise thereto to start the reaction, and then a total of 116.9 g (0.746 mol) of 4-methoxybenzyl chloride was added dropwise at 5 to 10 ° C. to prepare a Grignard reagent.

次に撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1000mL4つ口フラスコに正珪酸メチル568g(3.73モル)仕込み、70〜80℃の温度で先に調整したグリニャール試薬を2時間かけて滴下した。その後冷却し析出したマグネシウム塩をろ過した後、溶媒を留去し、さらに減圧度5mmHgで128〜135℃の留分を122g(0.495モル)回収した。得られた留分のGC分析結果、GC純度98.8%、NMRとIR分析の結果、4−メトキシベンジルトリメトキシシランであった。   Next, 568 g (3.73 mol) of normal methyl silicate was charged into a 1000 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer, and 2 Grignard reagents previously adjusted at a temperature of 70 to 80 ° C. It was added dropwise over time. After cooling and filtering the precipitated magnesium salt, the solvent was distilled off, and 122 g (0.495 mol) of a 128-135 ° C. fraction was recovered at a reduced pressure of 5 mmHg. As a result of GC analysis of the obtained fraction, GC purity was 98.8%, and NMR and IR analysis revealed that it was 4-methoxybenzyltrimethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2839,2941cm-1 (-CH3,Ar)、1080cm-1(Si-O)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:CDCl3
2.15ppm(s、2H、-CH2-)、3.52ppm(s、9H、-OCH3)、3.76ppm(s、3H、CH3-O-)、6.78-6.80ppm(d、J=8.5Hz、2H、Ar-H)、7.07-7.09ppm(d、J=8.5Hz、2H、Ar-H)。
Infrared absorption spectrum (IR) data
2839,2941cm -1 (-CH3, Ar), 1080cm -1 (Si-O)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: CDCl 3 )
2.15ppm (s, 2H, -CH2-), 3.52ppm (s, 9H, -OCH3), 3.76ppm (s, 3H, CH3-O-), 6.78-6.80ppm (d, J = 8.5Hz, 2H, Ar-H), 7.07-7.09 ppm (d, J = 8.5 Hz, 2H, Ar-H).

実施例1
4−メトキシベンジルシルセスキオキサンの合成
Example 1
Synthesis of 4-methoxybenzylsilsesquioxane

Figure 2012126892
Figure 2012126892

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、25%テトラメチルアンモニウムヒドロキシド水溶液2.6gと水9.4gを仕込み、2−プロパノール60mLとトルエン30mLを加えた。そこに4−メトキシベンジルトリメトキシシラン59.2g(0.244モル)のトルエン30mL溶液を滴下ロートに入れ撹拌しながら35〜45℃の温度で滴下した。滴下終了後2時間熟成し、室温に冷却後トルエン90mLと水90mLを加え抽出した。分液ロートに入れ水層を排出後、次に希酢酸水溶液で洗浄し、水層を排出後続けて水で4回洗浄を行った。その後油層を0.5μmのPTFEフィルターでろ過後トルエンを留去して4−メトキシベンジルシルセスキオキサン46.8g得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 2.6 g of 25% tetramethylammonium hydroxide aqueous solution and 9.4 g of water, and 60 mL of 2-propanol and 30 mL of toluene were added. It was. Thereto, a 30 mL solution of 4-methoxybenzyltrimethoxysilane in 59.2 g (0.244 mol) in toluene was placed in a dropping funnel and added dropwise at a temperature of 35 to 45 ° C. with stirring. After completion of the dropwise addition, the mixture was aged for 2 hours, cooled to room temperature, and extracted by adding 90 mL of toluene and 90 mL of water. After putting into the separatory funnel and discharging the aqueous layer, it was washed with dilute acetic acid aqueous solution, and after discharging the aqueous layer, it was washed with water four times. Thereafter, the oil layer was filtered with a 0.5 μm PTFE filter, and then toluene was distilled off to obtain 46.8 g of 4-methoxybenzylsilsesquioxane.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1038-1296cm-1(Si-O)、2833-3030 cm-1(C-H)、3410 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
1.78(bs、2H、-CH2-)、3.68(bs、3H、CH3-O-)、6.72 (bs、4H、Ar-H)
GPC分析データ:Mw=2,320、Mn=2,050、Mw/Mn=1.13(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1038-1296cm -1 (Si-O), 2833-3030 cm -1 (CH), 3410 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.78 (bs, 2H, -CH2-), 3.68 (bs, 3H, CH3-O-), 6.72 (bs, 4H, Ar-H)
GPC analysis data: Mw = 2,320, Mn = 2,050, Mw / Mn = 1.13 (polystyrene conversion).

実施例2
4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合物の合成
Example 2
Synthesis of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(70:30は原料の仕込みモル組成比を示す)。 (70:30 indicates the charged molar composition ratio of the raw material).

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、25%テトラメチルアンモニウムヒドロキシド水溶液2.1gと水7.5gを仕込み、2−プロパノール60mLとトルエン30mLを加えた。そこに4−メトキシベンジルトリメトキシシラン47.4g(0.195モル)とフェニルトリメトキシシラン16.6g(0.084モル)のトルエン30mL溶液を滴下ロートに入れ撹拌しながら35〜45℃の温度で滴下した。滴下終了後2時間熟成し実施例1に記載の抽出方法で精製して、4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体45.0g得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 2.1 g of 25% tetramethylammonium hydroxide aqueous solution and 7.5 g of water, and 60 mL of 2-propanol and 30 mL of toluene were added. It was. A solution of 47.4 g (0.195 mol) of 4-methoxybenzyltrimethoxysilane and 16.6 g (0.084 mol) of phenyltrimethoxysilane in 30 mL of toluene was placed in a dropping funnel and stirred at a temperature of 35 to 45 ° C. It was dripped at. After completion of the dropwise addition, the mixture was aged for 2 hours and purified by the extraction method described in Example 1 to obtain 45.0 g of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026-1132cm-1(Si-O)、2970-3071 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
1.87(bs、1.4H、-CH2-)、3.69(bs、2.1H、CH3-O-)、6.10-7.50(m、5H、Ar-H)
GPC分析データ:Mw=2,800、Mn=2,210、Mw/Mn=1.27(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1026-1132cm -1 (Si-O), 2970-3071 cm -1 (CH), 3080-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.87 (bs, 1.4H, -CH2-), 3.69 (bs, 2.1H, CH3-O-), 6.10-7.50 (m, 5H, Ar-H)
GPC analysis data: Mw = 2,800, Mn = 2,210, Mw / Mn = 1.27 (polystyrene conversion).

実施例3
4−メトキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合物の合成
Example 3
Synthesis of 4-methoxybenzylsilsesquioxane / methylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(70:30は原料の仕込みモル組成比を示す)
フェニルトリメトキシシランをメチルトリメトキシシラン11.4g(0.084モル)に代えて、実施例3と同様の操作で合成を行い、4−メトキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体38.7g得た。
(70:30 indicates the charged molar composition ratio of raw materials)
Synthesis was carried out in the same manner as in Example 3 except that phenyltrimethoxysilane was replaced with 11.4 g (0.084 mol) of methyltrimethoxysilane, and 4-methoxybenzylsilsesquioxane / methylsilsesquioxane co-polymerized. 38.7g of union was obtained.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026-1132cm-1(Si-O)、2970-3071 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
-0.10(bs、1.8H、CH3-Si)、1.94(bs、1.4H、Ar-CH2-Si)、3.71(bs、2.1H、CH3-O-Ar)、6.72(bs、2.9H、Ar-H)
GPC分析データ:Mw=3,830、Mn=2,250、Mw/Mn=1.70(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1026-1132cm -1 (Si-O), 2970-3071 cm -1 (CH), 3080-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
-0.10 (bs, 1.8H, CH3-Si), 1.94 (bs, 1.4H, Ar-CH2-Si), 3.71 (bs, 2.1H, CH3-O-Ar), 6.72 (bs, 2.9H, Ar- H)
GPC analysis data: Mw = 3,830, Mn = 2,250, Mw / Mn = 1.70 (polystyrene conversion).

実施例4
4−メトキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体の合成
Example 4
Synthesis of 4-methoxybenzylsilsesquioxane / methylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(70:30は原料の仕込みモル組成比を示す)
フェニルトリメトキシシランをn−プロピルトリメトキシシラン13.8g(0.084モル)に代えて、実施例3と同様の操作で合成を行い、4−メトキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体40.2g得た。
(70:30 indicates the charged molar composition ratio of raw materials)
Synthesis was carried out in the same manner as in Example 3 except that 13.8 g (0.084 mol) of n-propyltrimethoxysilane was substituted for phenyltrimethoxysilane, and 4-methoxybenzylsilsesquioxane / methylsilsesquioxane was obtained. 40.2 g of copolymer was obtained.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026-1132cm-1(Si-O)、2970-3071 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.43(bs、0.6H、-CH2-Si)、0.87(bs、0.9H、CH3-)、1.24(bs、0.6H、-CH2-)、1.86(bs、1.4H、Ar-CH2-Si)、3.75(bs、2.1H、CH3-O-)、6.71(bs、2.9H、Ar-H)
GPC分析データ:Mw=2,770、Mn=1,990、Mw/Mn=1.39(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1026-1132cm -1 (Si-O), 2970-3071 cm -1 (CH), 3080-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.43 (bs, 0.6H, -CH2-Si), 0.87 (bs, 0.9H, CH3-), 1.24 (bs, 0.6H, -CH2-), 1.86 (bs, 1.4H, Ar-CH2-Si), 3.75 (bs, 2.1H, CH3-O-), 6.71 (bs, 2.9H, Ar-H)
GPC analysis data: Mw = 2,770, Mn = 1,990, Mw / Mn = 1.39 (polystyrene conversion).

実施例5
4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合物の合成
Example 5
Synthesis of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(50:50は原料の仕込みモル組成比を示す)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、25%テトラメチルアンモニウムヒドロキシド水溶液2.1gと水7.5gを仕込み、2−プロパノール60mLとトルエン30mLを加えた。そこに4−メトキシベンジルトリメトキシシラン33.9g(0.140モル)とフェニルトリメトキシシラン27.8g(0.140モル)のトルエン30mL溶液を滴下ロートに入れ撹拌しながら35〜45℃の温度で滴下した。滴下終了後2時間熟成し実施例1に記載の抽出方法で精製して、4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体43.2g得た。
(50:50 indicates the charged molar composition ratio of raw materials)
A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 2.1 g of 25% tetramethylammonium hydroxide aqueous solution and 7.5 g of water, and 60 mL of 2-propanol and 30 mL of toluene were added. It was. A toluene solution of 33.9 g (0.140 mol) of 4-methoxybenzyltrimethoxysilane and 27.8 g (0.140 mol) of phenyltrimethoxysilane was placed in a dropping funnel and stirred at a temperature of 35 to 45 ° C. It was dripped at. After completion of the dropping, the mixture was aged for 2 hours and purified by the extraction method described in Example 1 to obtain 43.2 g of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026-1132cm-1(Si-O)、2970-3071 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
1.87(bs、1.4H、-CH2-)、3.69(bs、2.1H、CH3-O-)、6.10-7.50(m、5H、Ar-H)
GPC分析データ:Mw=2,800、Mn=2,210、Mw/Mn=1.27(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1026-1132cm -1 (Si-O), 2970-3071 cm -1 (CH), 3080-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.87 (bs, 1.4H, -CH2-), 3.69 (bs, 2.1H, CH3-O-), 6.10-7.50 (m, 5H, Ar-H)
GPC analysis data: Mw = 2,800, Mn = 2,210, Mw / Mn = 1.27 (polystyrene conversion).

実施例6
4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合物の合成
Example 6
Synthesis of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(70:30は原料の仕込みモル組成比を示す)。 (70:30 indicates the charged molar composition ratio of the raw material).

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、25%テトラメチルアンモニウムヒドロキシド水溶液2.1gと水7.5gを仕込み、2−プロパノール60mLとメチルイソブチルケトン30mLを加えた。そこに4−メトキシベンジルトリメトキシシラン47.4g(0.195モル)とフェニルトリメトキシシラン16.6g(0.084モル)のトルエン30mL溶液を滴下ロートに入れ撹拌しながら35〜45℃の温度で滴下した。滴下終了後2時間熟成し実施例2に記載の抽出方法で精製して、4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体44.7g得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 2.1 g of 25% tetramethylammonium hydroxide aqueous solution and 7.5 g of water, and 60 mL of 2-propanol and 30 mL of methyl isobutyl ketone. Was added. A solution of 47.4 g (0.195 mol) of 4-methoxybenzyltrimethoxysilane and 16.6 g (0.084 mol) of phenyltrimethoxysilane in 30 mL of toluene was placed in a dropping funnel and stirred at a temperature of 35 to 45 ° C. It was dripped at. After completion of the dropping, the mixture was aged for 2 hours and purified by the extraction method described in Example 2 to obtain 44.7 g of 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026-1132cm-1(Si-O)、2970-3071 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
1.87(bs、1.4H、-CH2-)、3.69(bs、2.1H、CH3-O-)、6.10-7.50(m、5H、Ar-H)
GPC分析データ:Mw=2,850、Mn=2,200、Mw/Mn=1.30(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1026-1132cm -1 (Si-O), 2970-3071 cm -1 (CH), 3080-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.87 (bs, 1.4H, -CH2-), 3.69 (bs, 2.1H, CH3-O-), 6.10-7.50 (m, 5H, Ar-H)
GPC analysis data: Mw = 2,850, Mn = 2,200, Mw / Mn = 1.30 (polystyrene conversion).

比較例1
4−メトキシベンジルシルセスキオキサン重合物の合成
Comparative Example 1
Synthesis of 4-methoxybenzylsilsesquioxane polymer

Figure 2012126892
Figure 2012126892

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、35%塩酸水溶液3.3gと水120gを仕込み撹拌を開始した。また、4−メトキシベンジルトリメトキシシラン78.5g(0.324モル)のトルエン120mL溶液を15〜20℃で滴下した。その後15〜20℃の温度でそのまま2時間熟成し、トルエンを加えて抽出し、水層を除去後、炭酸水素ナトリウム水溶液、希酢酸水溶液、水で4回洗浄後、油層を濃縮して4−メトキシベンジルシルセスキオキサン縮重合物57.5gを得た。   A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 3.3 g of 35% aqueous hydrochloric acid and 120 g of water, and stirring was started. Moreover, the toluene 120mL solution of 4-methoxybenzyltrimethoxysilane 78.5g (0.324 mol) was dripped at 15-20 degreeC. Thereafter, the mixture was aged for 2 hours at a temperature of 15 to 20 ° C., extracted by adding toluene, removed the aqueous layer, washed 4 times with an aqueous sodium hydrogen carbonate solution, dilute acetic acid aqueous solution and water, concentrated the oil layer to 4- 57.5 g of a methoxybenzylsilsesquioxane condensation polymer was obtained.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1036-1246cm-1(Si-O)、2951-3071 cm-1(C-H)、3165-3603 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
1.83(bs、2H、-CH2-)、3.68(bs、3H、CH3-O-)、6.69(bs、4H、Ar-H)
GPC分析データ:Mw=2,530、Mn=1,610、Mw/Mn=1.57(ポリスチレン換算)。 比較例2
フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体の合成
Infrared absorption spectrum (IR) data
1036-1246cm -1 (Si-O), 2951-3071 cm -1 (CH), 3165-3603 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.83 (bs, 2H, -CH2-), 3.68 (bs, 3H, CH3-O-), 6.69 (bs, 4H, Ar-H)
GPC analysis data: Mw = 2,530, Mn = 1,610, Mw / Mn = 1.57 (polystyrene conversion). Comparative Example 2
Synthesis of phenylsilsesquioxane / methylsilsesquioxane copolymer

Figure 2012126892
Figure 2012126892

(70:30の仕込みモル組成比を示す)
(構造式中の50:50は使用原料のモル比)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン50.6gと水33.4gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次にフェニルトリメトキシシラン41.9g(0.211モル)、メチルトリメトキシシラン12.5g(0.091モル)のトルエン25.3gの溶液を15〜20℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物27.2gを得た。
(Indicates a charged molar composition ratio of 70:30)
(50:50 in the structural formula is the molar ratio of the raw materials used)
A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer was charged with 50.6 g of toluene and 33.4 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 45.3 g (0.211 mol) of phenyltrimethoxysilane and 25.3 g of toluene of 12.5 g (0.091 mol) of methyltrimethoxysilane was added dropwise at 15 to 20 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 27.2 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1028-1132cm-1(Si-O)、2970-3070 cm-1(C-H)、3070-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.16(bs)、7.00-7.57(m)、7.57-7.90(m)
GPC分析データ:Mw=960、Mw/Mn=1.25(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1028-1132cm -1 (Si-O), 2970-3070 cm -1 (CH), 3070-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.16 (bs), 7.00-7.57 (m), 7.57-7.90 (m)
GPC analysis data: Mw = 960, Mw / Mn = 1.25 (polystyrene conversion).

<合成材料の評価>
実施例1〜6、及び、比較例1、2のIR測定を実施した。また製造されたシリコーン重合体を、それぞれをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分濃度が40重量%になるように調整した溶液を得た。その後、当該溶液をPTFE(ポリテトラフルオロエチレン)製のフィルタで濾過し、シリコンウエハまたはガラス基板上に、溶媒除去した後の膜厚が2.0μmになるような回転数で30秒間回転塗布した。その後100℃/30秒かけて溶媒除去し、電気炉で750℃/1時間かけて被膜を最終焼成し絶縁被膜とした。
<Evaluation of synthetic materials>
IR measurement of Examples 1-6 and Comparative Examples 1 and 2 was performed. In addition, each of the produced silicone polymers was dissolved in propylene glycol monomethyl ether acetate to obtain a solution in which the solid content concentration was adjusted to 40% by weight. Thereafter, the solution is filtered through a PTFE (polytetrafluoroethylene) filter, and spin-coated for 30 seconds on a silicon wafer or glass substrate at a rotational speed such that the film thickness after removal of the solvent is 2.0 μm. . Thereafter, the solvent was removed over 100 ° C./30 seconds, and the film was finally baked in an electric furnace over 750 ° C./1 hour to obtain an insulating film.

[シラノール基の大小判断]
それぞれのIR測定の結果、3500cm-1付近の吸収が大きいものをシラノール多いものとし、吸収が小さいものをシラノール少ないものとした。
[Judgment of silanol group size]
As a result of each IR measurement, a large absorption near 3500 cm −1 was regarded as having a large amount of silanol, and a small absorption was regarded as having a small amount of silanol.

[加熱硬化膜特性]
上記成膜方法により成膜された被膜に対して、シリコンウェハー上の膜厚を測定し、クラックの有無を確認しクラックが発生したものが×、クラック発生無しのものが○と判定した。
[Heat-cured film properties]
The film thickness on the silicon wafer was measured with respect to the film formed by the above film forming method, and the presence or absence of cracks was confirmed.

<評価結果>
硬化膜の評価結果およびそれに基づく総合評価を下記の表1に示す。
<Evaluation results>
The evaluation results of the cured film and the overall evaluation based thereon are shown in Table 1 below.

Figure 2012126892
Figure 2012126892

このように、塩基性条件で合成したシリコーン重合体は、IR測定によるシラノールの量は少なく、500℃以上の加熱で形成した硬化膜でクラックの発生がなく、優れた加熱膜を形成することができる。よって、本発明のシリコーン共重合体は、電子材料分野に限らず、塗料や接着剤等、幅広い分野で応用できる。   As described above, the silicone polymer synthesized under basic conditions has a small amount of silanol by IR measurement, and a cured film formed by heating at 500 ° C. or higher is free from cracks and can form an excellent heating film. it can. Therefore, the silicone copolymer of the present invention can be applied not only in the field of electronic materials but also in a wide range of fields such as paints and adhesives.

Claims (5)

下記一般式
Figure 2012126892
(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
で示されるケイ素化合物を塩基性触媒存在下、加水分解し、さらに縮重合反応して下記一般式
Figure 2012126892
(式中、Aは一価の炭化水素基、Bは二価の炭化水素基を示し、nは1または2を示す)
で示される構成単位を有するシリコーン重合体を製造するシリコーン重合体の製造方法。
The following general formula
Figure 2012126892
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
In the presence of a basic catalyst, the silicon compound represented by
Figure 2012126892
(In the formula, A represents a monovalent hydrocarbon group, B represents a divalent hydrocarbon group, and n represents 1 or 2)
The manufacturing method of the silicone polymer which manufactures the silicone polymer which has a structural unit shown by these.
下記一般式
Figure 2012126892
(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
と下記一般式
Figure 2012126892
(式中、R、X’は炭化水素基を示す)
のケイ素化合物の混合物を加水分解し、さらに縮重合反応を行う請求項1記載のシリコーン重合体の製造方法。
The following general formula
Figure 2012126892
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
And the following general formula
Figure 2012126892
(Wherein R and X ′ represent a hydrocarbon group)
The method for producing a silicone polymer according to claim 1, wherein the mixture of the silicon compound is hydrolyzed and further subjected to a condensation polymerization reaction.
下記一般式
Figure 2012126892
(式中、A、Xは一価の炭化水素基、Bは二価の炭化水素基を示す。nは1または2を示す)
が、
Figure 2012126892
(式中、Xは一価の炭化水素基を示す)
である請求項1または2に記載のシリコーン重合体の製造方法。
The following general formula
Figure 2012126892
(In the formula, A and X are monovalent hydrocarbon groups, B is a divalent hydrocarbon group, and n is 1 or 2.)
But,
Figure 2012126892
(Wherein X represents a monovalent hydrocarbon group)
The method for producing a silicone polymer according to claim 1 or 2.
塩基性触媒が4級アンモニウム塩である請求項1から3に記載のシリコーン重合体の製造方法。   4. The method for producing a silicone polymer according to claim 1, wherein the basic catalyst is a quaternary ammonium salt. 4級アンモニウム塩がテトラメチルアンモニウムヒドロキシドである請求項4に記載のシリコーン重合体の製造方法。   The method for producing a silicone polymer according to claim 4, wherein the quaternary ammonium salt is tetramethylammonium hydroxide.
JP2011245308A 2010-11-24 2011-11-09 Method for producing silicone polymer Active JP5854266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245308A JP5854266B2 (en) 2010-11-24 2011-11-09 Method for producing silicone polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010261052 2010-11-24
JP2010261052 2010-11-24
JP2011245308A JP5854266B2 (en) 2010-11-24 2011-11-09 Method for producing silicone polymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015102505A Division JP5915878B2 (en) 2010-11-24 2015-05-20 Method for producing silicone polymer

Publications (2)

Publication Number Publication Date
JP2012126892A true JP2012126892A (en) 2012-07-05
JP5854266B2 JP5854266B2 (en) 2016-02-09

Family

ID=46644279

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011245308A Active JP5854266B2 (en) 2010-11-24 2011-11-09 Method for producing silicone polymer
JP2015102505A Expired - Fee Related JP5915878B2 (en) 2010-11-24 2015-05-20 Method for producing silicone polymer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015102505A Expired - Fee Related JP5915878B2 (en) 2010-11-24 2015-05-20 Method for producing silicone polymer

Country Status (1)

Country Link
JP (2) JP5854266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002132A1 (en) * 2013-07-04 2015-01-08 東レ株式会社 Impurity-diffusing composition and method for producing semiconductor element
WO2016111112A1 (en) * 2015-01-05 2016-07-14 東レ・ファインケミカル株式会社 Silicone copolymer and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107029A1 (en) * 2005-04-04 2006-10-12 Tokyo Ohka Kogyo Co., Ltd. Silicone copolymer having condensed polycyclic hydrocarbon group
JP2009120781A (en) * 2007-11-19 2009-06-04 Toray Fine Chemicals Co Ltd Silicone copolymer
JP2013100490A (en) * 2011-10-19 2013-05-23 Toray Fine Chemicals Co Ltd Silicone polymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946209B (en) * 2008-02-18 2014-01-22 日产化学工业株式会社 Silicon-containing resist underlayer film-forming composition containing cyclic amino group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107029A1 (en) * 2005-04-04 2006-10-12 Tokyo Ohka Kogyo Co., Ltd. Silicone copolymer having condensed polycyclic hydrocarbon group
JP2009120781A (en) * 2007-11-19 2009-06-04 Toray Fine Chemicals Co Ltd Silicone copolymer
JP2013100490A (en) * 2011-10-19 2013-05-23 Toray Fine Chemicals Co Ltd Silicone polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002132A1 (en) * 2013-07-04 2015-01-08 東レ株式会社 Impurity-diffusing composition and method for producing semiconductor element
KR20160030513A (en) * 2013-07-04 2016-03-18 도레이 카부시키가이샤 Impurity-diffusing composition and method for producing semiconductor element
JPWO2015002132A1 (en) * 2013-07-04 2017-02-23 東レ株式会社 Impurity diffusion composition and method for manufacturing semiconductor device
US9691935B2 (en) 2013-07-04 2017-06-27 Toray Industries, Inc. Impurity-diffusing composition and method for producing semiconductor element
KR102097378B1 (en) 2013-07-04 2020-04-06 도레이 카부시키가이샤 Impurity-diffusing composition and method for producing semiconductor element
WO2016111112A1 (en) * 2015-01-05 2016-07-14 東レ・ファインケミカル株式会社 Silicone copolymer and method for producing same

Also Published As

Publication number Publication date
JP5915878B2 (en) 2016-05-11
JP2015180739A (en) 2015-10-15
JP5854266B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP6323225B2 (en) Positive photosensitive resin composition, film production method using the same, and electronic component
TWI460184B (en) Siloxanes and their hardened products and their use
CN101617010B (en) Silicone coating composition
JP6281288B2 (en) Silicon compound containing hexafluoroisopropanol group, method for producing the same, and polymer compound obtained by polymerization thereof
JP5158594B2 (en) Silicone polymer having naphthalene ring and composition thereof
JP7510060B2 (en) Resin composition, photosensitive resin composition, cured film, method for producing cured film, patterned cured film, and method for producing patterned cured film
TWI709595B (en) Manufacturing method of polysiloxane polymer
JP7269503B2 (en) Silicon-containing layer-forming composition and method for producing patterned substrate using same
JP6256775B2 (en) Method for producing silicone polymer
JP5854385B2 (en) Silicone polymer
JP5915878B2 (en) Method for producing silicone polymer
JP5115099B2 (en) Silicone copolymer having acyloxy group and method for producing the same
JP5376210B2 (en) Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
WO2016111112A1 (en) Silicone copolymer and method for producing same
JP5158589B2 (en) Silicone copolymer
KR101290260B1 (en) Alkali soluble silicone resin, silicone resin composition comprising the same and preparation method thereof
TW202140630A (en) Method for producing silicone polymer
JP2014237614A (en) Silicone compound and residue inhibitor
JP2008001670A (en) Low dielectric material consisting of cyclic aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5854266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350