JP2012125829A - Laser jointing method and jointing part - Google Patents

Laser jointing method and jointing part Download PDF

Info

Publication number
JP2012125829A
JP2012125829A JP2010281585A JP2010281585A JP2012125829A JP 2012125829 A JP2012125829 A JP 2012125829A JP 2010281585 A JP2010281585 A JP 2010281585A JP 2010281585 A JP2010281585 A JP 2010281585A JP 2012125829 A JP2012125829 A JP 2012125829A
Authority
JP
Japan
Prior art keywords
laser
welding
bead
weld
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010281585A
Other languages
Japanese (ja)
Inventor
Tomomi Tanaka
知実 田中
Yukio Nishikawa
幸男 西川
Hidetoshi Utsuro
英俊 宇津呂
Yoshitama Furubayashi
義玲 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010281585A priority Critical patent/JP2012125829A/en
Publication of JP2012125829A publication Critical patent/JP2012125829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser jointing method that joints two materials while imparting a sufficient strength thereto and minimizing heat influence.SOLUTION: The method overlaps first and second materials (V1, V2) on each other and irradiates the surface of the first material (V1) with a laser light (103) from the side of the first material (V1). When jointing both materials (V1, V2), the method intermittently irradiating an overlapped part of the first and second materials (V1, V2) with the laser light while moving the laser light (103) to form a welding bead (1) on the surface of the first material (V1), wherein the length of the welding bead (1) is formed gradually shorter.

Description

本発明は、2つの素材をレーザ光により強固に接合するレーザ溶接方法ならびにそれによって形成された接合部品に関するものである。とりわけ、二次電池のような溶接時の熱影響を抑える必要のある製品に用いる技術に関する。   The present invention relates to a laser welding method for firmly joining two materials with laser light, and a joining component formed thereby. In particular, the present invention relates to a technique used for a product such as a secondary battery that needs to suppress the thermal effect during welding.

従来の熱影響を抑えたレーザ溶接方法としては、被溶接素材のそれぞれの厚みや材料を調整しながら被溶接素材を貫通しないようにレーザの出力を調整するが、その一例として、接合材の融点の違いを利用してレーザ接合している技術が知られている(例えば、特許文献1参照)。   As a conventional laser welding method that suppresses the influence of heat, the laser output is adjusted so as not to penetrate the material to be welded while adjusting the thickness and material of the material to be welded. There is known a technique in which laser bonding is performed using the difference between the two (see, for example, Patent Document 1).

図3と図4は、上記特許文献1に記載された、従来のレーザ溶接方法を示すものである。 以下、上記従来のレーザ接合方法を説明する。   3 and 4 show a conventional laser welding method described in Patent Document 1 described above. Hereinafter, the conventional laser bonding method will be described.

まず、融点の異なる2種類の材質からなる被溶接素材(W1、W2)に対して、レーザ光の光軸を融点の高い素材(W1)側に照射して、この素材の溶融物が持つ熱により融点の低い素材(W2)を融解させ、両被溶接素材を溶融接合することで異材の溶接が実施される。図3において、溶接ヘッド101は多関節ロボット( 図示せず)のアーム先端部又は直交移動する三次元直交移動体( 図示せず)の先端に取り付けられている。そして、溶接ヘッド101は先端のレーザ照射部102からレーザ光103が放射される。レーザ光103の光軸は、2枚の被溶接素材(W1、W2)となる融点の高い素材(W1)と、融点の低い素材(W2)の重ね合せ部(W1が上側であり、W1にレーザ光103が照射される)の溶接線105 に沿って移動するように照射され、溶接部(溶接ビード)104が形成される。   First, with respect to the material to be welded (W1, W2) made of two kinds of materials having different melting points, the optical axis of the laser beam is irradiated to the material (W1) side having a high melting point, and the heat of the melt of this material By melting the material (W2) having a low melting point and melting and joining the two materials to be welded, welding of the different materials is performed. In FIG. 3, a welding head 101 is attached to an arm tip of an articulated robot (not shown) or a tip of a three-dimensional orthogonal moving body (not shown) that moves orthogonally. And the laser beam 103 is radiated | emitted from the laser irradiation part 102 of the front-end | tip at the welding head 101. FIG. The optical axis of the laser beam 103 is an overlapping portion (W1 is on the upper side, W1 is the upper portion of the material (W1) having a high melting point and the material (W2) having a low melting point, which are the two materials to be welded (W1, W2). Irradiation is performed so as to move along a welding line 105 (irradiated with laser light 103), and a welded portion (weld bead) 104 is formed.

そしてレーザ光103 の光軸は、図3を背面側から見た図4のように、融点の高い素材(W1)の端部位置Oから中央側へ適宜、離れた溶接位置O1に合わせられ、溶接部に照射される。その結果、溶接部104Aの溶接形状が得られる。レーザ光103の出力値は、融点の高い素材(W1)側の溶融液が金属間化合物や酸化膜を破って融点の低い側の素材(W2)内部まで適宜深さの楔状に溶け込んで両素材(W1、W2)の原子が融合して混ざり合う半練状態になるとされている。   The optical axis of the laser beam 103 is adjusted to a welding position O1 that is appropriately separated from the end position O of the material (W1) having a high melting point toward the center as shown in FIG. 4 when FIG. 3 is viewed from the back side. Irradiated to the weld. As a result, a welded shape of the welded portion 104A is obtained. The output value of the laser beam 103 is such that the melt on the material (W1) side with a high melting point breaks the intermetallic compound and the oxide film and melts into a wedge shape with an appropriate depth to the inside of the material (W2) with a low melting point. It is said that the atoms of (W1, W2) are fused and mixed.

このように、異種金属材料間の接合にレーザを使用した結果、上記従来の技術は、レーザ光による熱が局所的に存在することで必要な部分以外に熱影響を与えにくく、かつ、薄板の溶接が効率的に行える技術であるとされている。   As described above, as a result of using a laser for bonding between different kinds of metal materials, the above-described conventional technique is less likely to be affected by heat except for a necessary part due to the presence of heat by laser light, and a thin plate It is said that this is a technology that enables efficient welding.

特開2007−136489号公報(図1,図4)Japanese Unexamined Patent Publication No. 2007-136489 (FIGS. 1 and 4)

しかしながら、上記従来技術の構成では、重ね合わせた2つの薄板のうち、レーザ光が照射される面とは反対の面への熱影響が生じることになる。すなわち、上記反対の面への熱影響を抑えようとすると、被溶接素材の材質や、各々の厚みについての制約条件が多くなるという問題が生じることになる。特に近年では、省エネの観点から、利用が増加している二次電池(蓄電池)等の電極における接合では、電気抵抗が小さいが熱伝導率が高い銅やアルミニウムなどが使用されることが多く、このような熱伝導率の高い材料の使用により熱影響を与えたくない場所に伝熱してしまうことになる。例えば、レーザ光が照射側の薄板(素材)を厚くし、熱容量が大きくなったりするような接合では、熱影響を局所的に留めることが難しいという課題を有していた。   However, in the configuration of the above prior art, a thermal effect is generated on the surface of the two laminated thin plates opposite to the surface irradiated with the laser light. That is, if it is going to suppress the heat influence to the said opposite surface, the problem that the constraint condition about the material of a to-be-welded raw material and each thickness will increase will arise. Especially in recent years, from the viewpoint of energy saving, copper and aluminum, which have low electrical resistance but high thermal conductivity, are often used for joining in electrodes such as secondary batteries (storage batteries) that are increasingly used. By using such a material having high thermal conductivity, heat is transferred to a place where heat influence is not desired. For example, in the joining in which the laser beam is thickened on the irradiation side thin plate (material) and the heat capacity is increased, there is a problem that it is difficult to locally suppress the thermal effect.

ここで熱影響とは、例えば電池の場合であれば絶縁用の樹脂部品が溶接時の熱によって劣化してしまったり最悪の場合熔解してしまう、あるいは電解液が溶接時の熱によって化学変化が起こって劣化してしまったり最悪の場合気化してしまったりすることである。   In this case, for example, in the case of a battery, the resin component for insulation deteriorates due to heat during welding or melts in the worst case, or the electrolytic solution undergoes a chemical change due to heat during welding. It happens and deteriorates or in the worst case it vaporizes.

本発明は、上記従来の課題を解決するもので、熱伝導率の高い材料や照射側の板が厚く熱容量が大きくなったりするような接合でも、熱影響を抑えたレーザ溶接方法および接合部品を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a laser welding method and a joining component that suppresses the thermal effect even in joining in which a material having high thermal conductivity or a plate on the irradiation side is thick and heat capacity is increased. The purpose is to provide.

上記目的を達成するために、本発明のレーザ接合方法は、第1および第2の素材を重ね合わせ、第1の素材側から前記第1の素材の表面にレーザ光を照射させることで、前記両素材を接合するレーザ接合方法において、第1および第2の素材との重ね合せ部に対して、前記レーザ光を移動させながら間欠的に照射させることで前記第1の素材の表面に溶接ビードを形成し、かつ、前記溶接ビードの長さは、徐々に短く形成されることで、熱影響を抑える形状となっている。   In order to achieve the above object, the laser joining method according to the present invention is configured such that the first and second materials are overlapped, and the surface of the first material is irradiated with laser light from the first material side. In the laser joining method for joining both materials, a weld bead is applied to the surface of the first material by intermittently irradiating the overlapping portion with the first and second materials while moving the laser beam. In addition, the length of the weld bead is gradually shortened so that the heat effect is suppressed.

本構成によって、溶接ビードの形成による温度が所定になったところで一端溶接ビードの形成を中断することになり、徐々に被溶接素材に蓄積されていくエネルギーを、レーザの出力調整によってではなく、形状によって制御することが可能となり、重ね合わせた薄板の照射面反対側への熱影響を抑えた接合を行うことができる。   With this configuration, once the temperature due to the formation of the weld bead becomes predetermined, the formation of the weld bead is interrupted, and the energy that is gradually accumulated in the material to be welded is not shaped by the laser output adjustment. Therefore, it is possible to perform bonding while suppressing the thermal influence on the opposite side of the irradiated surface of the stacked thin plates.

以上のように、本発明のレーザ接合方法によれば、従来は難しかった電気抵抗は小さいが熱伝導率が高い銅やアルミニウムなどを使用した接合において、重ね合わせた薄板の照射面反対側への熱影響を抑えながら、十分な接合強度を有する接合を得ることができる。   As described above, according to the laser bonding method of the present invention, in the bonding using copper, aluminum or the like that has low electrical resistance but high heat conductivity, which has been difficult in the past, the laminated thin plate is irradiated to the opposite side of the irradiation surface. A bond having a sufficient bonding strength can be obtained while suppressing the influence of heat.

本発明の実施の形態1に係るレーザ接合の様子を示す模式斜視図The model perspective view which shows the mode of the laser joining which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る表面温度の変化を説明するための図The figure for demonstrating the change of the surface temperature which concerns on Embodiment 1 of this invention 従来のレーザ接合の様子を示す模式斜視図Schematic perspective view showing the state of conventional laser bonding 従来のレーザ接合部を示す断面図Sectional view showing a conventional laser junction 本発明の実施の形態2に係るレーザ接合の様子を示す模式斜視図The model perspective view which shows the mode of the laser joining which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る簡易断面図Simplified sectional view according to Embodiment 3 of the present invention 本発明の実施の形態3に係るレーザ接合の様子を示す模式斜視図The model perspective view which shows the mode of the laser joining which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る同心円状の溶接ビードの模式図Schematic diagram of concentric weld beads according to Embodiment 3 of the present invention 本発明の実施の形態3に係る渦巻き状の溶接ビードの模式図Schematic diagram of a spiral weld bead according to Embodiment 3 of the present invention

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る丸型蓄電池に金属板を接合する際のレーザ接合方法の様子を示す模式斜視図である。なお、図1において、前述の図3および図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 1)
FIG. 1 is a schematic perspective view showing a state of a laser joining method when joining a metal plate to the round battery according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in FIGS. 3 and 4 described above are denoted by the same reference numerals, and the description thereof is omitted.

図1において、101は溶接ヘッドであり、溶接ヘッド101の先端にレーザ光103を照射するレーザ照射部102を備える。レーザ照射部102から照射されるレーザ光103 の光軸は、2枚の被溶接素材(V1:金属板、V2:丸型蓄電池)のうち、板状の溶接素材V1の表面に向けられている。このとき、溶接素材V1と溶接素材V2とは重ね合わせて配置されており、レーザ光103は、溶接素材V1と缶状の溶接素材V2(内部に熱影響を避けたい溶液を密閉した素材)との重ね合せ部(V1が上側)上を移動するように照射される。レーザ光103は、連続的に照射されるものではなく、間欠的に照射し、途切れ途切れの溶接部(間欠溶接ビード)1が形成される。   In FIG. 1, reference numeral 101 denotes a welding head, which includes a laser irradiation unit 102 that irradiates a laser beam 103 to the tip of the welding head 101. The optical axis of the laser beam 103 irradiated from the laser irradiation unit 102 is directed to the surface of the plate-shaped welding material V1 out of the two materials to be welded (V1: metal plate, V2: round battery). . At this time, the welding material V1 and the welding material V2 are arranged so as to overlap each other, and the laser beam 103 is generated by welding the welding material V1 and the can-like welding material V2 (a material in which a solution in which a thermal effect is to be avoided is sealed). Irradiated so as to move on the overlapping portion (V1 is on the upper side). The laser beam 103 is not continuously irradiated, but is intermittently irradiated to form a discontinuous welded portion (intermittent weld bead) 1.

レーザ光103を板状の溶接素材V1に照射することで、局所的に温度が上昇し、溶接素材V1の融点を超えると、溶接素材V2の素材内部まで適宜、深さの楔状に溶け込んで両金属の原子が融合して混ざり合う半練状態になる。図4に示す、溶接部104A の溶接形状の通りである。レーザ光103の照射時間が長くなると、必然的に溶接部1が長くなり、溶接素材V1と溶接素材V2ともに蓄熱による温度上昇が起こることになる。このように、溶接部104Aの楔形状の深さが大きくなって行くと、溶接素材V2のうち溶接素材V1と接する面とは反対側の面の温度が上昇して行くことになる。   By irradiating the plate-shaped welding material V1 with the laser beam 103, the temperature rises locally, and when the melting point of the welding material V1 is exceeded, the inside of the material of the welding material V2 is appropriately melted into a wedge shape. The metal atoms are fused and mixed. It is as the welding shape of 104 A of welding parts shown in FIG. When the irradiation time of the laser beam 103 becomes longer, the welded portion 1 inevitably becomes longer, and both the welding material V1 and the welding material V2 increase in temperature due to heat storage. As described above, as the wedge-shaped depth of the welded portion 104A increases, the temperature of the surface of the welding material V2 opposite to the surface in contact with the welding material V1 increases.

そこで、溶接素材V2のうち、溶接素材V1と接する面とは反対側の面の温度が所定になったところで、レーザ光103の照射を止めれば、蓄積した熱は放散されて、溶接素材V1と溶接素材V2に生じる温度は共に低下する。すなわち、レーザ光103を照射する時間を所定時間おいて、本実施の形態では、溶接ヘッド101を所定速度で移動させる。その際、所定距離を空けて、再びレーザ光103の照射を始めて、溶接素材V2のうち溶接素材V1と接する面とは反対側の面の温度が所定になったところで、レーザ光103を止めることを繰り返すことで溶接部1を形成する。よって、溶接素材V1の表面に、連続ではなく途切れ途切れの溶接部(間欠溶接ビード)1が形成されることになる。   Therefore, when the temperature of the surface of the welding material V2 opposite to the surface in contact with the welding material V1 becomes predetermined, if the irradiation of the laser beam 103 is stopped, the accumulated heat is dissipated and the welding material V1 and Both temperatures generated in the welding material V2 are lowered. That is, the laser beam 103 is irradiated for a predetermined time, and in this embodiment, the welding head 101 is moved at a predetermined speed. At that time, the irradiation of the laser beam 103 is started again after a predetermined distance, and the laser beam 103 is stopped when the temperature of the surface of the welding material V2 opposite to the surface in contact with the welding material V1 becomes predetermined. Is repeated to form the weld 1. Therefore, the welded portion (intermittent weld bead) 1 that is not continuous but discontinuous is formed on the surface of the welding material V1.

図2は、上述のように動作させた場合の溶接素材V2のうち溶接素材V1と接する面とは反対側の面の表面温度の変化を説明するための図である。   FIG. 2 is a diagram for explaining changes in the surface temperature of the surface of the welding material V2 opposite to the surface in contact with the welding material V1 in the case where the welding material V2 is operated as described above.

なお、図2において、縦軸の温度は、最低測定温度400℃の放射温度計の読み値をプロットしたものであり、特に400℃未満の温度が測定されていないこともあり、この温度が意味を持つものではない。つまり、図2の縦軸の温度は、あくまで温度変化の様子を説明するために記載するものであり、表面温度も、図2の上で読み取れる温度以下になるように制御した訳ではない。   In FIG. 2, the temperature on the vertical axis is a plot of the reading value of a radiation thermometer with a minimum measurement temperature of 400 ° C., and in particular, a temperature below 400 ° C. may not be measured. It does not have. That is, the temperature on the vertical axis in FIG. 2 is described only for explaining the state of temperature change, and the surface temperature is not controlled to be equal to or lower than the temperature that can be read on FIG.

図2において、第一照射開始点S1で温度が上昇し、第一照射終了点S2で温度が下降している。そして、所定間隔を空けて第2照射開始点S3で再び温度が上昇しているが、放熱が十分では無いため第一照射開始点S1での温度上昇よりも急峻に温度上昇している。そのため、所定温度に達するまでの時間が短縮されて、第一照射開始点S1と第一照射終了点S2の間隔よりも、第2照射開始点S3と第2照射終了点S4との間隔の方が短くなっている。つまり、照射開始時の溶接ビードの長さに比べて、2つ目、3つ目の溶接ビードの長さは短く構成されることとなる。また、それぞれの溶接ビードは、照射開始時は細く、段々太くなるように照射条件を調整する。これは、短時間で材料内へ十分な蓄熱をさせて、後になるほど接合強度と接合面積を稼ぐためである。   In FIG. 2, the temperature increases at the first irradiation start point S1, and the temperature decreases at the first irradiation end point S2. The temperature rises again at the second irradiation start point S3 with a predetermined interval, but since the heat release is not sufficient, the temperature rises more rapidly than the temperature rise at the first irradiation start point S1. Therefore, the time to reach the predetermined temperature is shortened, and the interval between the second irradiation start point S3 and the second irradiation end point S4 is more than the interval between the first irradiation start point S1 and the first irradiation end point S2. Is shorter. That is, the length of the second and third weld beads is configured to be shorter than the length of the weld bead at the start of irradiation. Also, the irradiation conditions are adjusted so that each weld bead is thin at the start of irradiation and gradually thickens. This is because sufficient heat is stored in the material in a short time, and the strength and area of the joint are increased later.

かかる構成によれば、上記の動作を繰り返すことにより、熱影響を最小限にしながら十分な接合強度を持つ、具体的には所定の強度を得るために十分な長さの溶接ビードを持つレーザ接合が可能となる。また、従来のレーザ接合方法では、熱影響を避けるために投入熱量を減少させることが必要になり、溶接素材V2に比較して照射側の溶接素材V1の熱容量が小さい、具体的には材料厚みが十分に小さいか材料の熱容量が小さいことが重要であったが、本実施の形態では溶接素材V2よりも照射側の溶接素材V1の材料厚みが大きかったにも拘らず、缶内部の温度上昇を最小限に抑えた接合が実現できている。   According to such a configuration, by repeating the above-described operation, the laser bonding has a sufficient bonding strength while minimizing the thermal influence, specifically, a welding bead having a sufficient length to obtain a predetermined strength. Is possible. Further, in the conventional laser joining method, it is necessary to reduce the amount of input heat in order to avoid a thermal effect, and the heat capacity of the irradiation side welding material V1 is smaller than the welding material V2, specifically, the material thickness. It is important that the heat capacity of the material is small or the heat capacity of the material is small in this embodiment, although the material thickness of the welding material V1 on the irradiation side is larger than the welding material V2, the temperature inside the can increases. It is possible to achieve bonding that minimizes this.

なお、本実施の形態において、溶接部(間欠溶接ビード)1のそれぞれのビードを徐々に短くして行くことで、溶接素材V2のうち、溶接素材V1と接する面と反対の面の温度を所定以下に保つようにしたが、溶接部(間欠溶接ビード)1の非照射部を徐々に長くして、放熱時間を確保することで溶接部(間欠溶接ビード)1のそれぞれのビードを徐々に短くしていく割合を減らすようにしても良い。また、この実施例では溶接部(間欠溶接ビード)1は直線で構成されているが、曲線で構成されていても同じ効果を有する。   In the present embodiment, by gradually shortening each bead of the welded portion (intermittent weld bead) 1, the temperature of the surface opposite to the surface in contact with the welding material V1 in the welding material V2 is predetermined. Although it was made to keep below, each bead of the welding part (intermittent welding bead) 1 is gradually shortened by gradually lengthening the non-irradiation part of the welding part (intermittent welding bead) 1 and ensuring heat dissipation time. You may make it reduce the ratio to do. Further, in this embodiment, the welded portion (intermittent weld bead) 1 is constituted by a straight line, but the same effect is obtained even if constituted by a curve.

(実施の形態2)
図5は、本発明の実施の形態2である通電する2枚の薄板を接合するときの模式斜視図である。図5において、図1および図3と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 5 is a schematic perspective view when joining two thin plates to be energized according to the second embodiment of the present invention. 5, the same components as those in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted.

図5において、溶接ヘッド101は先端のレーザ照射部102から発射されるレーザ光103の光軸が、2枚の被溶接素材となる板状の溶接素材U1と裏側に熱影響を避けたい板状の溶接素材U2の重ね合せ部(U1が上側)上を移動するように照射される。このとき、レーザ光103は、連続ではなく途切れ途切れの溶接部(間欠溶接ビード)2A,2B,2Cが形成される。   In FIG. 5, the welding head 101 has a plate-shaped welding material U1 that is an optical axis of the laser beam 103 emitted from the laser irradiation unit 102 at the front end and a plate-shaped welding material U1 that is to be welded to avoid thermal influences on the back side. The welding material U2 is irradiated so as to move on the overlapping portion (U1 is on the upper side). At this time, the laser beam 103 is not continuous but is formed with intermittent welds (intermittent weld beads) 2A, 2B, 2C.

また、間欠溶接ビード2A,2B,2Cは、熱影響を避けたい部分(この実施の形態の場合には溶接素材U2の裏面)の温度を所定以下に保つ目的により、実施の形態1の溶接ビード1と同様に、連続ではなく途切れ途切れの溶接ビードを形成しており、照射開始時の溶接ビードの長さに比べて、2つ目、3つ目の溶接ビードの長さは同等もしくは短く構成されている。   In addition, the intermittent bead 2A, 2B, 2C is the weld bead of the first embodiment for the purpose of keeping the temperature of the portion (the back surface of the welding material U2 in the case of this embodiment) that is desired to avoid the thermal influence below a predetermined value. Similar to 1, the weld bead is not continuous but is discontinuous, and the length of the second and third weld beads is the same or shorter than the length of the weld bead at the start of irradiation. Has been.

但し、実施の形態1の溶接ビード1とは違って、一直線上ではなく、複数列に構成されている。電気接点3は、溶接素材U2上の通電時の電気接点を示している。例えば電池の場合には、蓄積されたあるいは発電された電流がここを通って溶接素材U2、照射側の溶接素材U1の順に流れていき、電池外部に流れていくこととなる。   However, unlike the weld bead 1 of Embodiment 1, it is comprised not in a straight line but in multiple rows. An electrical contact 3 indicates an electrical contact during energization on the welding material U2. For example, in the case of a battery, accumulated or generated current flows through the welding material U2 and the irradiation-side welding material U1 in this order, and then flows to the outside of the battery.

図5においては、溶接部(間欠溶接ビード)2Aを形成した後、同等かより短い溶接ビードで構成された溶接部(間欠溶接ビード)2Bを形成し、更に、間欠溶接ビード2A、2Bと同等かより短い溶接ビードで構成された溶接部(間欠溶接ビード)2Cを形成している。構成する順序は間欠溶接ビード2A、間欠溶接ビード2B、間欠溶接ビード2Cの順であるが、構成する場所は、間欠溶接ビード2A、間欠溶接ビード2C、間欠溶接ビード2Bの順のように時系列に合わせる必要は無い。   In FIG. 5, after forming the welded portion (intermittent weld bead) 2A, a welded portion (intermittent weld bead) 2B composed of an equivalent or shorter weld bead is formed, and is further equivalent to the intermittent weld beads 2A, 2B. A welded portion (intermittent weld bead) 2C composed of a shorter weld bead is formed. The order of construction is the order of intermittent welding bead 2A, intermittent welding bead 2B, and intermittent welding bead 2C, but the place of construction is time series like the order of intermittent welding bead 2A, intermittent welding bead 2C, and intermittent welding bead 2B. There is no need to match.

但し、一つ一つの構成溶接ビードがより長い間欠溶接ビード2Aは、電気接点3により近い側に配置される。抵抗値をR、材料の電気抵抗率をρ、電気の流れる長さをl、断面積をAとすると、
R = ρ×l/A
であり、今後、特に蓄電池などでは軽量化、低コスト化のために外殻を薄くしていく可能性が高く、Aは減っていく傾向にある。
However, the intermittent weld bead 2 </ b> A having a longer one-by-one configuration weld bead is disposed closer to the electrical contact 3. If the resistance value is R, the electrical resistivity of the material is ρ, the length of electricity flow is l, and the cross-sectional area is A,
R = ρ × l / A
In the future, especially in storage batteries and the like, there is a high possibility that the outer shell will be made thin in order to reduce weight and cost, and A tends to decrease.

逆に、流れる電流が大きくなる傾向にあるため、抵抗値Rは小さくしたいので、必然的にlを短くする必要がある。電気接点3の近くに長いビードを配置することは、距離lを短くすることと同時に、電気の流路の断面積Aを増やすことになり、抵抗値Rを減らす効果がある。これにより、複数の蓄電池の電極を接合する時には、電気接点に近い場所に長い溶接ビードを配置することで、蓄電池の放電時や充電時に大電流が流れたときの発熱を抑えることができる。   On the other hand, since the flowing current tends to increase, the resistance value R is desired to be reduced. Therefore, it is necessary to shorten l. Arranging a long bead near the electrical contact 3 has the effect of reducing the resistance value R by simultaneously reducing the distance l and increasing the cross-sectional area A of the electrical flow path. Thereby, when joining the electrodes of a plurality of storage batteries, it is possible to suppress heat generation when a large current flows during discharging or charging of the storage battery by disposing a long weld bead near the electrical contact.

かかる構成によれば、上記の動作を繰り返すことにより、熱影響を最小限にしながら十分な接合強度を持つレーザ接合が可能となり、複数列に分割されていることで、実施の形態1に比較して、幅の狭い板の接合など適用できる範囲が広くなる。また、構成溶接ビードの長い列を電気接点側に配置することで、電気抵抗的にも有利になる。   According to such a configuration, by repeating the above-described operation, it becomes possible to perform laser bonding with sufficient bonding strength while minimizing the influence of heat, and since it is divided into a plurality of columns, compared to the first embodiment. Therefore, the applicable range such as joining of narrow plates is widened. Moreover, it becomes advantageous also in terms of electric resistance by arranging a long row of constituent weld beads on the electric contact side.

なお、それぞれの列は同じ長さである必要は無く、また一列に複数のビードを並べることが必要なわけでも無いので、1列に1つずつのビードとしても良いし、1列の中に存在するビード数を規定することは無い。また、この実施例では3列で構成されているが、2列でも、4列以上でも構わない。   Each row does not have to be the same length, and it is not necessary to arrange a plurality of beads in one row. Therefore, one bead per row may be used. There is no limit to the number of beads that exist. In this embodiment, the number of rows is three. However, the number of rows may be two or four or more.

(実施の形態3)
図6は、本発明の実施の形態3である、丸型リチウムイオン蓄電池の正極端子に極板を接合するときの断面図である。また、図7はそのレーザ接合の様子を示す模式斜視図である。図6、図7において、図1および図3、図5と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 6 is a cross-sectional view when joining the electrode plate to the positive electrode terminal of the round lithium ion storage battery according to the third embodiment of the present invention. FIG. 7 is a schematic perspective view showing the state of the laser bonding. 6 and 7, the same components as those in FIGS. 1, 3, and 5 are denoted by the same reference numerals, and description thereof is omitted.

近年、充電容量の大きさと充放電繰返し回数の多さから着実に生産量が増加している丸型リチウムイオン蓄電池であるが、より大容量、大電圧が必要な分野では、この丸型リチウムイオン蓄電池を複数個まとめて電池パックとして利用することが多い。このとき丸型リチウムイオン蓄電池の正負の各電極に極板を接合して電気的に一体化させるのであるが、リチウムイオン蓄電池の内容液は熱影響を非常に嫌うため、接合時にも缶内の温度上昇を最小限に抑える必要があり、本発明のレーザ接合が効果的である。   In recent years, round lithium ion storage batteries have been steadily increasing in production capacity due to their large charge capacity and frequent charge / discharge cycles. In many cases, a plurality of storage batteries are used together as a battery pack. At this time, the electrode plates are joined to the positive and negative electrodes of the round lithium ion battery to be electrically integrated. However, since the liquid of the lithium ion battery is very disliked by the heat, The temperature rise needs to be minimized, and the laser bonding of the present invention is effective.

図6において、蓄電部10は正負極板とセパレータが巻き取ってある構造で電解液12に浸っており、充電されると蓄電部10にリチウムイオンが蓄えられ、放電時にはこの蓄えられたリチウムイオンを用いて発電して電気が流れることになる。充放電時の電気はプラス側タブ11を通って溶接素材(正極側端子)U2に電気接点3を介して流れて行く。本発明の実施の形態3では、板状の溶接素材U1をこの溶接素材(正極側端子)U2に接合する場合について、図7を用いて説明する。   In FIG. 6, the electricity storage unit 10 has a structure in which a positive and negative electrode plate and a separator are wound, and is immersed in the electrolytic solution 12. When charged, the electricity storage unit 10 stores lithium ions, and during discharge, the stored lithium ions are stored. Electricity is generated by using this to generate electricity. Electricity at the time of charging / discharging flows through the plus side tab 11 to the welding material (positive side terminal) U2 via the electrical contact 3. In Embodiment 3 of the present invention, a case where a plate-like welding material U1 is joined to this welding material (positive electrode side terminal) U2 will be described with reference to FIG.

図7において、レーザ照射部102から照射されるレーザ光103は、ガルバノミラー40で反射して、対物レンズ41で焦点を絞られて、板状の溶接素材U1と裏側に熱影響を避けたい溶接素材U2の重ね合せ部(U1が上側)上を移動するように照射され、連続ではなく途切れ途切れの溶接部(間欠溶接ビード)20A、20B、20Cが形成される。時系列的には溶接ビードは20A、20B、20Cの順に形成されるが、配置は時系列の順序と同じでなくても良い。   In FIG. 7, the laser beam 103 emitted from the laser irradiation unit 102 is reflected by the galvanometer mirror 40, focused by the objective lens 41, and welded to avoid thermal effects on the plate-like welding material U1 and the back side. Irradiation is performed so as to move on the overlapping portion (U1 is on the upper side) of the material U2, and discontinuous but discontinuous weld portions (intermittent weld beads) 20A, 20B, and 20C are formed. Although the weld beads are formed in the order of 20A, 20B, and 20C in time series, the arrangement may not be the same as the order of time series.

また、間欠溶接ビード20A、20B、20Cは、熱影響を避けたい部分(この実施の形態の場合には溶接素材U2の裏面)の温度を所定以下に保つ目的により、実施の形態1の溶接ビード1と同様に連続ではなく途切れ途切れの溶接ビードを形成している。照射開始時の溶接ビードの長さに比べて、2つ目、3つ目の溶接ビードの長さは同等もしくは短く構成されている。但し、実施の形態1の溶接ビード1とは違って、一直線上ではなく、円周上に構成されている。なお、循環する形状として円周上に構成された場合を例として挙げているが、これは多角形であっても構わない。   Further, the intermittent bead 20A, 20B, 20C is the weld bead of the first embodiment for the purpose of keeping the temperature of the portion (the back surface of the welding material U2 in the case of this embodiment) that is desired to avoid the influence of heat at a predetermined level or lower. As in the case of No. 1, a weld bead that is not continuous but is interrupted is formed. Compared to the length of the weld bead at the start of irradiation, the lengths of the second and third weld beads are equal or shorter. However, unlike the weld bead 1 of the first embodiment, it is configured not on a straight line but on the circumference. In addition, although the case where it was comprised on the circumference as a shape to circulate was mentioned as an example, this may be a polygon.

また、最初の長い溶接ビード20Aは、電気接点3に近い側に配置されている。これは、実施の形態2と同様に、構成溶接ビードの長い列を電気接点側に配置することで、電気抵抗的にも有利になることからこのような配置となっている。   The first long weld bead 20 </ b> A is disposed on the side close to the electrical contact 3. As in the second embodiment, this is because such a long row of constituent weld beads is arranged on the electric contact side, which is advantageous in terms of electrical resistance.

このとき、十分な接合強度を得るためにトータルの溶接ビード長さを長くしようとすると、円周上への配置では溶接素材U1と溶接素材U2の重ね合せ部の大きさが制約条件となってしまうが、溶接ビードを図8のように同心円上に配置したり、図9のように渦巻き状に配置したりすることで、長い溶接ビードを形成することができるようになる。   At this time, if an attempt is made to increase the total weld bead length in order to obtain sufficient joint strength, the size of the overlapping portion of the welding material U1 and the welding material U2 becomes a constraint condition in the arrangement on the circumference. However, a long weld bead can be formed by arranging the weld beads concentrically as shown in FIG. 8 or spirally as shown in FIG.

かかる構成によれば、リチウムイオン蓄電池のような熱条件の厳しい製品においても、熱影響を最小限にしながら十分な接合強度を持つ、具体的には所定の強度を得るために十分な長さの溶接ビードを持つレーザ接合が可能となり、また、構成溶接ビードの長い列を電気接点側に配置することで、電気抵抗的にも有利になる。   According to such a configuration, even in a product with severe thermal conditions such as a lithium ion storage battery, it has a sufficient bonding strength while minimizing the thermal influence, specifically, a length sufficient to obtain a predetermined strength. Laser joining with weld beads is possible, and it is advantageous in terms of electrical resistance by arranging long rows of constituent weld beads on the electrical contact side.

なお、実施の形態3では、溶接ビードの形状が自由形状に近くなるので、そのようなレーザ照射に有利なガルバノミラーを使用した照射方式を用いて説明しているが、実施の形態1、2のように照射ヘッドを機械的に動作させて照射しても差し支えない。   In the third embodiment, since the shape of the weld bead is close to a free shape, an explanation is given using an irradiation method using a galvanometer mirror that is advantageous for such laser irradiation. Irradiation may be performed by mechanically operating the irradiation head as described above.

本発明のレーザ接合方法は、熱影響を抑えながら十分な接合強度を持った接合できる効果を有する。特に、電気抵抗が小さいが熱伝導率が高い銅やアルミニウムなどが使用されることが多い蓄電池の正負極端子と、金属板の接合や複数の蓄電池を接続して使用する場合の蓄電池間の接合の用途、また熱影響により外観が悪化するためにこれまで溶接ができなかったような薄い金属製の外装カバーの接合等の用途にも適用できる。   The laser bonding method of the present invention has the effect of being able to bond with sufficient bonding strength while suppressing the influence of heat. In particular, copper and aluminum with low electrical resistance but high thermal conductivity are often used. The positive and negative terminals of the storage battery and the connection between the storage batteries when using a metal plate or multiple storage batteries connected It can also be applied to applications such as joining thin metal exterior covers that could not be welded so far due to the deterioration of the appearance due to the effects of heat.

1 溶接ビード
101 溶接ヘッド
102 照射部
103 レーザ光
V1 溶接素材
V2 溶接素材
DESCRIPTION OF SYMBOLS 1 Weld bead 101 Welding head 102 Irradiation part 103 Laser beam V1 Welding material V2 Welding material

Claims (8)

第1および第2の素材を重ね合わせ、第1の素材側から前記第1の素材の表面にレーザ光を照射させることで、前記両素材を接合するレーザ接合方法において、
第1および第2の素材との重ね合せ部に対して、前記レーザ光を移動させながら間欠的に照射させることで前記第1の素材の表面に溶接ビードを形成し、かつ、前記溶接ビードの長さは、徐々に短く形成されること、
を特徴とするレーザ接合方法。
In the laser joining method of joining the two materials by overlapping the first and second materials and irradiating the surface of the first material with laser light from the first material side,
A welding bead is formed on the surface of the first material by intermittently irradiating the laser beam while moving the overlapping portion with the first and second materials, and the welding bead The length should be gradually shortened,
A laser bonding method.
隣り合う溶接ビード間の間隔は所定である、請求項1記載のレーザ接合方法。 The laser joining method according to claim 1, wherein an interval between adjacent weld beads is predetermined. 前記第1の素材の表面上に、一方向に延びる溶接ビードが並列に複数本形成される、請求項1又は2に記載のレーザ接合方法。 The laser joining method according to claim 1, wherein a plurality of weld beads extending in one direction are formed in parallel on the surface of the first material. 前記第1の素材には電気接点が形成されており、前記第1の素材の表面に複数本形成される溶接ビードのうち、前記電気接点に近い溶接ビードを最も長く形成した、請求項3に記載のレーザ接合方法。 The electrical contact is formed in the first material, and among the weld beads formed on the surface of the first material, the weld bead closest to the electrical contact is formed the longest. The laser joining method described. 前記溶接ビードは、渦巻き状又は同心円状に複数並べて配置されるものである、請求項1又は2に記載のレーザ接合方法。 The laser welding method according to claim 1 or 2, wherein a plurality of the weld beads are arranged in a spiral shape or a concentric shape. 渦巻きあるいは同心円の中に電気接点を配置し、前記第1の素材表面のうち、前記電気接点に近い側の溶接ビードを最も長く形成した、請求項5に記載のレーザ接合方法。 6. The laser joining method according to claim 5, wherein an electrical contact is disposed in a spiral or concentric circle, and a weld bead on the side of the first material that is closest to the electrical contact is formed to be the longest. 溶接ビードは、レーザ光の照射開始点から徐々に太くなる形状である、請求項1〜6の何れか一項に記載のレーザ接合方法。 The laser welding method according to any one of claims 1 to 6, wherein the weld bead has a shape that gradually increases from a laser beam irradiation start point. 第1の素材および第2の素材とが接合されてなる接合部品において、
前記第1の素材および前記第2の素材とが重ね合う領域のうち、前記第1の素材表面に溶接ビードが間欠に複数形成され、かつ、前記溶接ビードの長さは徐々に短く形成されてなること、
を特徴とする接合部品。
In the joined part formed by joining the first material and the second material,
In the region where the first material and the second material overlap, a plurality of weld beads are intermittently formed on the surface of the first material, and the length of the weld beads is gradually shortened. thing,
Joined parts characterized by
JP2010281585A 2010-12-17 2010-12-17 Laser jointing method and jointing part Pending JP2012125829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281585A JP2012125829A (en) 2010-12-17 2010-12-17 Laser jointing method and jointing part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281585A JP2012125829A (en) 2010-12-17 2010-12-17 Laser jointing method and jointing part

Publications (1)

Publication Number Publication Date
JP2012125829A true JP2012125829A (en) 2012-07-05

Family

ID=46643484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281585A Pending JP2012125829A (en) 2010-12-17 2010-12-17 Laser jointing method and jointing part

Country Status (1)

Country Link
JP (1) JP2012125829A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207790A1 (en) * 2013-06-24 2014-12-31 株式会社 日立製作所 Laser-processed component manufacturing method and laser processing method
WO2015186168A1 (en) * 2014-06-02 2015-12-10 日産自動車株式会社 Laser welding method and battery pack
CN106937501A (en) * 2017-03-30 2017-07-07 东莞劲胜精密组件股份有限公司 A kind of use for electronic products combined housing and preparation method thereof
US9761855B2 (en) 2013-06-25 2017-09-12 Gs Yuasa International Ltd. Welding structure between electric storage device and bus bar and method for welding electric storage device and bus bar together
JP2017164757A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Laser welding method
JP2018012125A (en) * 2016-07-21 2018-01-25 パナソニックIpマネジメント株式会社 Weld metal member and battery having weld metal member
CN108941912A (en) * 2017-05-22 2018-12-07 日本梅克特隆株式会社 The joint construction and sheet metal of sheet metal and substrate and the welding method of substrate
WO2019013591A1 (en) * 2017-07-14 2019-01-17 주식회사 엘지화학 Battery module
CN110829136A (en) * 2018-08-14 2020-02-21 泰连德国有限公司 Method, pin header and connection assembly for attaching a contact element to a conductive path of a conductor plate
JP2020515004A (en) * 2017-07-14 2020-05-21 エルジー・ケム・リミテッド Battery module
JP2020203315A (en) * 2015-02-09 2020-12-24 エスピーアイ レーザーズ ユーケー リミテッド Weld
CN113573838A (en) * 2019-03-28 2021-10-29 杰富意钢铁株式会社 Lap laser welded joint, method for manufacturing same, and structural member for automobile body

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207790A1 (en) * 2013-06-24 2014-12-31 株式会社 日立製作所 Laser-processed component manufacturing method and laser processing method
CN105189019A (en) * 2013-06-24 2015-12-23 株式会社日立制作所 Laser-processed component manufacturing method and laser processing method
TWI556896B (en) * 2013-06-24 2016-11-11 Hitachi Ltd Manufacturing method of laser processing member and laser processing method
JP6038313B2 (en) * 2013-06-24 2016-12-07 株式会社日立製作所 Manufacturing method of laser processed component and laser processing method
US9761855B2 (en) 2013-06-25 2017-09-12 Gs Yuasa International Ltd. Welding structure between electric storage device and bus bar and method for welding electric storage device and bus bar together
WO2015186168A1 (en) * 2014-06-02 2015-12-10 日産自動車株式会社 Laser welding method and battery pack
JP7095039B2 (en) 2015-02-09 2022-07-04 トルンプ レーザー ユーケー リミティド welded part
JP2020203315A (en) * 2015-02-09 2020-12-24 エスピーアイ レーザーズ ユーケー リミテッド Weld
JP2017164757A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Laser welding method
US10439191B2 (en) 2016-07-21 2019-10-08 Panasonic Intellectual Property Management Co., Ltd. Welded metal component and battery including the same
JP2018012125A (en) * 2016-07-21 2018-01-25 パナソニックIpマネジメント株式会社 Weld metal member and battery having weld metal member
CN107639343A (en) * 2016-07-21 2018-01-30 松下知识产权经营株式会社 Welding metal part and the battery with the welding metal part
CN107639343B (en) * 2016-07-21 2021-06-11 松下知识产权经营株式会社 Welded metal member and battery having the same
CN106937501A (en) * 2017-03-30 2017-07-07 东莞劲胜精密组件股份有限公司 A kind of use for electronic products combined housing and preparation method thereof
CN108941912B (en) * 2017-05-22 2022-05-03 日本梅克特隆株式会社 Printed circuit board joining structure and printed circuit board soldering method
US11225990B2 (en) 2017-05-22 2022-01-18 Nippon Mektron, Ltd. Joining structure of thin metal plate and base material, and welding method of thin metal plate and base material
CN108941912A (en) * 2017-05-22 2018-12-07 日本梅克特隆株式会社 The joint construction and sheet metal of sheet metal and substrate and the welding method of substrate
EP3654411A4 (en) * 2017-07-14 2020-07-22 LG Chem, Ltd. Battery module
JP2020515004A (en) * 2017-07-14 2020-05-21 エルジー・ケム・リミテッド Battery module
US11011804B2 (en) 2017-07-14 2021-05-18 Lg Chem, Ltd. Battery module
JP7027634B2 (en) 2017-07-14 2022-03-02 エルジー エナジー ソリューション リミテッド Battery module
WO2019013591A1 (en) * 2017-07-14 2019-01-17 주식회사 엘지화학 Battery module
CN110829136A (en) * 2018-08-14 2020-02-21 泰连德国有限公司 Method, pin header and connection assembly for attaching a contact element to a conductive path of a conductor plate
US11888279B2 (en) 2018-08-14 2024-01-30 Te Connectivity Germany Gmbh Method of attaching a contact element to a conductive path a conductor plate
JP7458721B2 (en) 2018-08-14 2024-04-01 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンク Method for attaching at least one in particular pin-shaped contact element to a conductive path of a conductor plate, pin header for attachment to a conductor plate, connection assembly
CN113573838A (en) * 2019-03-28 2021-10-29 杰富意钢铁株式会社 Lap laser welded joint, method for manufacturing same, and structural member for automobile body
CN113573838B (en) * 2019-03-28 2023-06-02 杰富意钢铁株式会社 Overlap laser welded joint, method for producing same, and structural member for automobile body

Similar Documents

Publication Publication Date Title
JP2012125829A (en) Laser jointing method and jointing part
US20180138565A1 (en) Battery module
US8586230B2 (en) Battery module and method of manufacturing the same
KR101799224B1 (en) Battery pack tab welding method
JP2014004619A (en) Laser joining method and joining component
JP4728758B2 (en) Electric device module manufacturing method and electric device module
JP5231235B2 (en) Secondary battery for medium and large battery modules
JP6382441B2 (en) Battery system
JP5528571B2 (en) Battery module and battery module welding method
KR101161965B1 (en) Current collector terminal plate for secondary battery, secondary battery, and method for producing secondary battery
CN110421268A (en) For manufacturing the method and system of lithium metal negative electrode
CN107534106B (en) Lithium secondary battery having improved safety by using bimetal
EP2859986A1 (en) Welding device, welding method, and method for producing cell
JP6725351B2 (en) Electric storage element and method for manufacturing electric storage element
US9979009B2 (en) Energy storage device having a laser weld
KR102271383B1 (en) Cell module and its manufacturing method
JPWO2013065523A1 (en) Battery pack and prismatic secondary battery for use in the battery pack
US20210167455A1 (en) Battery module and method for manufacturing same
KR20130049984A (en) Bus bar for battery and battery module
JP6853762B2 (en) Secondary battery
JP2015015237A (en) Battery pack
KR101124964B1 (en) Method for connecting between cathod lead or anode lead of secondary battery and external element
CN113488745A (en) Laser welding process for positive pole lug of soft package lithium ion power battery
KR20110093163A (en) Laser welding device of electrode terminals and welding process using the same
US20230246315A1 (en) Device for impact welding of battery terminals