JP2012123152A - Optical system using diffraction optical device - Google Patents

Optical system using diffraction optical device Download PDF

Info

Publication number
JP2012123152A
JP2012123152A JP2010273278A JP2010273278A JP2012123152A JP 2012123152 A JP2012123152 A JP 2012123152A JP 2010273278 A JP2010273278 A JP 2010273278A JP 2010273278 A JP2010273278 A JP 2010273278A JP 2012123152 A JP2012123152 A JP 2012123152A
Authority
JP
Japan
Prior art keywords
line
optical system
optical element
diffractive optical
front group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010273278A
Other languages
Japanese (ja)
Inventor
Shigenobu Sugita
茂宣 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010273278A priority Critical patent/JP2012123152A/en
Publication of JP2012123152A publication Critical patent/JP2012123152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photographic optical system with a compact size and high performances in which fog (flare or ghost) derived from unwanted light such as sunlight out of a screen entering a diffraction optical device may be reduced to the utmost and chromatic aberration may be excellently corrected.SOLUTION: An optical system including a diffraction optical device comprises, successively from a side close to an object: a front group having positive refractive power; the diffraction optical device; and a rear group having positive and negative refractive power, and the following conditional expressions are satisfied: 0.20<H/f<0.60; and 0.28<f/f<0.8, wherein His a distance between a rear principal point of the front group and a vertex on the side close to the object of the diffraction optical device, and fis a focal length of the front group.

Description

従来、長焦点距離の撮影光学系として、物体側から像側へ順に、正の屈折力の前群と、負の屈折力の後群より成る、所謂望遠レンズが知られている。   2. Description of the Related Art Conventionally, a so-called telephoto lens including a front group having a positive refractive power and a rear group having a negative refractive power in order from the object side to the image side is known as a long focal length photographing optical system.

一般的に望遠レンズは、焦点距離が長くなるに従い軸上色収差、及び倍率色収差が発生し、それらを補正するべく、全長を長く、また前群の外径を大きくする必要がある。   In general, a telephoto lens generates axial chromatic aberration and lateral chromatic aberration as the focal length increases, and it is necessary to lengthen the entire length and to increase the outer diameter of the front group in order to correct them.

そのため望遠レンズは、高い光学性能と、撮影時の利便性や携帯性の両立が課題となっている。   For this reason, the telephoto lens is required to satisfy both high optical performance and convenience and portability during photographing.

そこで特許文献1および特許文献2では、蛍石等の異常部分分散を持った低分散材料より成る正レンズと高分散材料を用いた負レンズを組み合わせることで、光学系を大型化せずに、これらの収差を良好に補正している。   Therefore, Patent Document 1 and Patent Document 2 combine a positive lens made of a low-dispersion material with anomalous partial dispersion such as fluorite and a negative lens using a high-dispersion material without increasing the size of the optical system. These aberrations are corrected well.

ところが、蛍石等の異常部分分散ガラスは、色収差の補正に関して効果がある反面、材料の比重が異常部分分散を有さない他の低分散ガラスよりも大きく、それを用いることでレンズ系全体の重量に関しては問題を残している。   However, anomalous partial dispersion glass such as fluorite is effective in correcting chromatic aberration, but the specific gravity of the material is larger than that of other low dispersion glasses that do not have anomalous partial dispersion. There remains a problem with respect to weight.

例えば、蛍石は比重3.18、商品名FK01は比重3.63である。   For example, fluorite has a specific gravity of 3.18, and the trade name FK01 has a specific gravity of 3.63.

これらに対し、異常部分分散性の小さい商品名FK5は比重2.46、商品名BK7は比重2.52である。   On the other hand, the product name FK5 having a small anomalous partial dispersibility has a specific gravity of 2.46, and the product name BK7 has a specific gravity of 2.52.

また、異常部分分散ガラスは、表面が比較的傷つき易く、更に商品名FK01等は大口径とすると、急激な温度変化に対して割れ易いという問題もある。   Further, the abnormal partially dispersed glass has a problem that the surface thereof is relatively easily damaged, and that the product name FK01 and the like has a large diameter and is easily broken by a rapid temperature change.

そこで、特許文献3〜5では、望遠レンズ系の最前面に回折格子を有する、所謂回折光学素子を用いることで、小型軽量かつ色収差が良好な光学系を提案している。   Therefore, Patent Documents 3 to 5 propose an optical system that is small and light and has good chromatic aberration by using a so-called diffractive optical element having a diffraction grating in the forefront of the telephoto lens system.

しかしながら、画面外にある不要光(太陽光等)が回折光学素子に入射することで、画面全体がぼんやりと被った状態(フレア・ゴースト)になる場合がある。   However, when unnecessary light (sunlight or the like) outside the screen is incident on the diffractive optical element, the entire screen may be blurred (flare / ghost).

これを回避するための対策として、画面外にある不要光が直接入射し難い箇所に、回折光学面を配置する方法が考えられる。   As a countermeasure for avoiding this, a method of arranging a diffractive optical surface at a place where unnecessary light outside the screen is difficult to directly enter can be considered.

特許文献6では、回折光学素子よりも物体側に、正の屈折力を有するレンズ群を配置し、不要光の直接的な入射は避けているが、前記正レンズ群の後側主点位置と回折光学素子の距離が近く、効率的に不要光を回避しているとは言い難い。   In Patent Document 6, a lens group having a positive refractive power is arranged on the object side of the diffractive optical element, and direct incidence of unnecessary light is avoided, but the rear principal point position of the positive lens group and It is difficult to say that unnecessary light is efficiently avoided because the distance of the diffractive optical elements is short.

特許文献7では、正レンズ群の後側主点位置と回折光学素子の距離が遠く、十分に不要光を回避しているが、正レンズ群の屈折力が強く、回折光学素子での軸上光線光hが小さくなり、回折光学素子本来の色収差補正効果を逸している。   In Patent Document 7, the distance between the rear principal point position of the positive lens group and the diffractive optical element is long, and the unnecessary light is sufficiently avoided, but the refractive power of the positive lens group is strong, and the diffractive optical element is on the axis. The light beam h becomes smaller and the original chromatic aberration correction effect of the diffractive optical element is lost.

特開2008-145584号公報JP 2008-145584 特開平11-326754号公報Japanese Patent Laid-Open No. 11-326754 特開平6-324262号公報JP-A-6-324262 特開平6-331887号公報JP-A-6-331887 特開2000-258685号公報JP 2000-258685 特開2004-126391号公報JP 2004-126391 A 特開2007-121440号公報JP 2007-121440 JP

本発明は以上の問題点を鑑みて、画面外にある不要光が回折光学素子に入射することで生じる被り(フレア・ゴースト)を極力低減しつつ、色収差の補正を良好に行い、かつ小型軽量の撮影光学系を提供することを目的としている。   In view of the above-mentioned problems, the present invention satisfactorily corrects chromatic aberration while minimizing the covering (flare and ghost) caused by unnecessary light outside the screen entering the diffractive optical element, and is compact and lightweight. The objective is to provide a photographing optical system.

本発明の請求項1の光学系は、回折光学素子を含み、物体側から順に、正の屈折力を有する前群、回折光学素子、正及び負の屈折力を有する後群から成り、かつ
0.20 < HF-do/fF < 0.60
0.28 < fF/f < 0.80
なる条件を満足することを特徴としている。
ここで、fF は前群の焦点距離、HF-doは前群の後側主点と回折光学素子の物体側頂点の距離、fは全系の焦点距離を表す。
また、本発明の請求項2の光学系は、前記正レンズ群において、
Σ{(θgFi − 0.6438 + 0.001682×νdi)/fi}/Σ(1/fi) > 0.05
なる条件を満足することを特徴としている。
The optical system of claim 1 of the present invention includes a diffractive optical element, and in order from the object side, includes a front group having positive refractive power, a diffractive optical element, a rear group having positive and negative refractive power, and
0.20 <H F-do / f F <0.60
0.28 <f F / f <0.80
It is characterized by satisfying the following conditions.
Here, f F represents the focal length of the front group, H F-do represents the distance between the rear principal point of the front group and the object side vertex of the diffractive optical element, and f represents the focal length of the entire system.
The optical system according to claim 2 of the present invention is the positive lens group,
Σ {(θgFi−0.6438 + 0.001682 × νdi) / fi} / Σ (1 / fi)> 0.05
It is characterized by satisfying the following conditions.

ここで、fi、νdi、θgFiは、それぞれ前群中i番目のレンズにおける焦点距離、d線のアッベ数、g線とF線の部分分散比を表している。   Here, fi, νdi, and θgFi represent the focal length, the Abbe number of the d-line, and the partial dispersion ratio of the g-line and the F-line in the i-th lens in the front group, respectively.

また、本発明の請求項3の光学機器は、請求項1及び請求項2の光学系を有することを特徴としている。   An optical apparatus according to claim 3 of the present invention is characterized by having the optical system according to claims 1 and 2.

本発明によれば、画面外にある不要光が回折光学素子に入射することで生じる被り(フレア・ゴースト)を極力低減しつつ、色収差の補正を良好に行い、かつ小型軽量の撮影光学系を得ることができる。   According to the present invention, it is possible to satisfactorily correct chromatic aberration while minimizing the covering (flare ghost) caused by unnecessary light outside the screen entering the diffractive optical element, and to achieve a compact and lightweight photographing optical system. Obtainable.

本発明の数値実施例1のレンズ断面図Lens sectional view of Numerical Example 1 of the present invention 本発明の数値実施例1における物体無限遠のときの収差図Aberration diagram at object infinity in Numerical example 1 of the present invention 本発明の数値実施例2におけるレンズ断面図Lens sectional view in Numerical Example 2 of the present invention 本発明の数値実施例2における物体無限遠のときの収差図Aberration diagram at object infinity in Numerical Example 2 of the present invention 本発明の数値実施例3におけるレンズ断面図Lens sectional view in Numerical Example 3 of the present invention 本発明の数値実施例3における物体無限遠のときの収差図Aberration diagram at object infinity in Numerical Example 3 of the present invention 本発明に係る回折光学素子の説明図Explanatory drawing of the diffractive optical element according to the present invention 本発明に係る回折光学素子の波長依存特性の説明図Explanatory drawing of the wavelength dependence characteristic of the diffractive optical element according to the present invention 本発明に係る回折光学素子の説明図Explanatory drawing of the diffractive optical element according to the present invention 本発明に係る回折光学素子の波長依存特性の説明図Explanatory drawing of the wavelength dependence characteristic of the diffractive optical element according to the present invention 本発明に係る回折光学素子の説明図Explanatory drawing of the diffractive optical element according to the present invention 本発明に係る回折光学素子の波長依存特性の説明図Explanatory drawing of the wavelength dependence characteristic of the diffractive optical element according to the present invention 本発明の撮影装置の要部概略図Schematic diagram of essential parts of the photographing apparatus of the present invention

本発明の撮影光学系の各実施例について説明する。   Examples of the photographing optical system of the present invention will be described.

図1は本発明の実施例1における、撮影光学系のレンズ断面図、図2は本発明の実施例1の物体距離無限遠における収差図である。   FIG. 1 is a lens cross-sectional view of a photographic optical system in Example 1 of the present invention, and FIG. 2 is an aberration diagram at an object distance of infinity in Example 1 of the present invention.

図3は本発明の実施例2における、撮影光学系のレンズ断面図、図4は本発明の実施例2の物体距離無限遠における収差図である。   FIG. 3 is a lens cross-sectional view of the photographing optical system in Example 2 of the present invention, and FIG. 4 is an aberration diagram at an object distance of infinity in Example 2 of the present invention.

図5は本発明の実施例3における、撮影光学系のレンズ断面図、図6は本発明の実施例3の物体距離無限遠における収差図である。   FIG. 5 is a lens cross-sectional view of the photographing optical system in Example 3 of the present invention. FIG. 6 is an aberration diagram in Example 3 of the present invention at an object distance of infinity.

図1,図3,図5のレンズ断面図において、LFは正の屈折力を有する前群、DOは回折光学素子、LRは正または負の屈折力を有する後群、Sは開放絞りである。   1, 3 and 5, LF is a front group having positive refractive power, DO is a diffractive optical element, LR is a rear group having positive or negative refractive power, and S is an open aperture. .

またGは光学フィルタやフェースプレート等のガラスブロックである。   G is a glass block such as an optical filter or a face plate.

IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面、銀塩フィルム用のカメラのときはフィルム面等の感光面に相当する。   IP is an image plane. When used as an imaging optical system for a video camera or a digital still camera, an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, or a camera for a silver salt film Corresponds to a photosensitive surface such as a film surface.

以下、g線,d線,F線,C線に対する材料の屈折率をそれぞれNg,Nd,NF,NCとし、アッベ数νdと部分分散比θgFを
νd=(Nd−1)/(NF−NC)
θgF=(Ng−NF)/(NF−NC)
とおく。
Hereinafter, the refractive indexes of the materials for g-line, d-line, F-line, and C-line are Ng, Nd, NF, and NC, respectively, and Abbe number νd and partial dispersion ratio θgF are νd = (Nd−1) / (NF-NC )
θgF = (Ng−NF) / (NF−NC)
far.

このとき
θgF − 0.6438 + 0.001682×νd > 0.03
なる条件を満足する材料を異常部分分散材料と称している。
ΘgF − 0.6438 + 0.001682 × νd> 0.03
A material that satisfies the above condition is called an abnormal partial dispersion material.

図2において、球面収差の図中に示すd、g、C、Fは、それぞれd線,g線,C線,F線における収差を表している。   In FIG. 2, d, g, C, and F shown in the spherical aberration diagram represent aberrations in the d-line, g-line, C-line, and F-line, respectively.

また、非点収差の図中に示すdS,gSはd線とg線のサジタル像面、dM,gMはd線とg線のメリディオナル像面を表し、倍率色収差の図中に示すg,F,Cは、それぞれg線、F線の収差を表している。   Further, dS and gS shown in the astigmatism diagram represent sagittal image planes of d-line and g-line, dM and gM represent meridional image surfaces of d-line and g-line, and g, F shown in the diagram of lateral chromatic aberration. , C represent the aberrations of g-line and F-line, respectively.

本発明では、近軸軸上光線hが比較的高い位置に回折光学素子を用いて、軸上色収差の補正を行っている。   In the present invention, axial chromatic aberration is corrected by using a diffractive optical element at a position where the paraxial axial ray h is relatively high.

具体的には、条件式(1)及び条件式(2)を満足することで、画面外にある不要光が、回折光学素子に入射し難くし、フレアを抑制することができ、かつ回折光学素子本来の良好な色収差補正効果を得ることができる。
0.20 < HF-do/fF < 0.60 ・・・(1)
0.28 < fF/f < 0.80 ・・・(2)
条件式(1)において、HF-doは前群の後側主点位置から回折光学素子の物体側頂点までの距離をあらわしており、fFは前群の焦点距離を表している。
Specifically, by satisfying conditional expressions (1) and (2), unnecessary light outside the screen is less likely to enter the diffractive optical element, flare can be suppressed, and diffractive optics The original good chromatic aberration correction effect can be obtained.
0.20 <H F-do / f F <0.60 (1)
0.28 <f F / f <0.80 ··· (2)
In conditional expression (1), H F-do represents the distance from the rear principal point position of the front group to the object-side vertex of the diffractive optical element, and f F represents the focal length of the front group.

HF-doを大きくする程、またfFを小さくする程、物体側から見た回折光学素子の像が小さくなり、言い換えれば、不要光が回折光学素子に入射し難くすることができる。 H as the F-do increase, also the smaller the f F, the image of the diffractive optical element becomes small when viewed from the object side, in other words, it is possible to unnecessary light is hardly incident on the diffractive optical element.

即ち、条件式(1)の下限値は、回折光学素子に入射する不要光を抑制するための条件である。   That is, the lower limit value of conditional expression (1) is a condition for suppressing unnecessary light incident on the diffractive optical element.

一方で、条件式(1)の上限値を逸すると、光学系の全長が長くなる上、前群の外径が大きくなり、撮影時の利便性や携帯性を逸する。   On the other hand, if the upper limit of conditional expression (1) is missed, the total length of the optical system becomes long, and the outer diameter of the front group becomes large, detracting from convenience and portability during shooting.

条件式(1)の条件式は、以下の範囲を満たすことで、より良好な不要光抑制効果を得ることができる。
0.28 < HF-do/fF < 0.50 ・・・(3)
条件式(2)では、全系における前群の屈折力を規定しており、下限値を逸すると、回折光学素子に入射する不要光は少なくなるが、回折光学素子での軸上光線高hが小さくなり、本来の軸上色収差補正効果を良好に得ることができない。
When the conditional expression (1) satisfies the following range, a better unnecessary light suppression effect can be obtained.
0.28 <H F-do / f F <0.50 (3)
Conditional expression (2) defines the refractive power of the front group in the entire system. If the lower limit is deviated, unnecessary light incident on the diffractive optical element decreases, but the axial ray height h in the diffractive optical element decreases. And the original axial chromatic aberration correction effect cannot be obtained satisfactorily.

また、上限値を逸すると、前群の屈折力が弱くなり、不要光の抑制効果を良好に得ることができない。   On the other hand, if the upper limit is deviated, the refractive power of the front group becomes weak, and the effect of suppressing unnecessary light cannot be obtained satisfactorily.

条件式(2)の条件式は、以下の範囲を満たすことで、より良好に、軸上色収差補正効果及びフレア抑制効果を得ることができる。
0.32 < fF/f < 0.60 ・・・(4)
また、本実施例では、比較的瞳近軸光線h-の高い、正の屈折力を有する前群での異常部分分散比を大きくすることで、倍率色収差の補正を行っている。
When the conditional expression (2) satisfies the following range, the axial chromatic aberration correction effect and the flare suppression effect can be obtained better.
0.32 <f F / f <0.60 ··· (4)
In this embodiment, the lateral chromatic aberration is corrected by increasing the abnormal partial dispersion ratio in the front group having a relatively high pupil paraxial ray h− and having a positive refractive power.

具体的には、前記正レンズ群において、条件式(5)を満たすことで、倍率色収差を良好に補正することができる。
Σ{(θgFi − 0.6438 + 0.001682×νdi)/fi}/Σ(1/fi) > 0.05・・・(5)
ここで、fi、νdi、θgFiは、それぞれ前群中i番目のレンズにおける焦点距離、d線のアッベ数、g線とF線の部分分散比を表している。
Specifically, the chromatic aberration of magnification can be favorably corrected by satisfying conditional expression (5) in the positive lens group.
Σ {(θgFi−0.6438 + 0.001682 × νdi) / fi} / Σ (1 / fi)> 0.05 (5)
Here, fi, νdi, and θgFi represent the focal length, the Abbe number of the d-line, and the partial dispersion ratio of the g-line and the F-line in the i-th lens in the front group, respectively.

条件式(5)の下限を逸脱すると、前群でのg線の倍率色収差補正効果が弱くなり、良好な光学特性を得ることができない。   If the lower limit of conditional expression (5) is deviated, the effect of correcting the chromatic aberration of magnification of the g-line in the front group becomes weak, and good optical characteristics cannot be obtained.

条件式(5)の条件式は、以下の範囲を満たすことで、より良好に、倍率色収差補正効果を得ることができる。
Σ{(θgFi − 0.6438 + 0.001682×νdi)/fi}/Σ(1/fi) > 0.06・・・(6)
以上のように各実施例では、回折光学素子の配置条件と前群の材料を適切に設定している。
When the conditional expression (5) satisfies the following range, the lateral chromatic aberration correction effect can be obtained better.
Σ {(θgFi−0.6438 + 0.001682 × νdi) / fi} / Σ (1 / fi)> 0.06 (6)
As described above, in each embodiment, the arrangement conditions of the diffractive optical element and the material of the front group are appropriately set.

これにより、画面外にある不要光が回折光学素子に入射することによって生じるフレアを極力低減でき、かつ色収差を良好に補正した、小型軽量の撮影光学系を得ている。   As a result, a small and light imaging optical system in which flare generated by unnecessary light outside the screen entering the diffractive optical element can be reduced as much as possible and chromatic aberration is corrected favorably is obtained.

次に各実施例で用いている回折光学素子の特性について説明する。   Next, the characteristics of the diffractive optical element used in each example will be described.

回折光学素子は従来のガラスによる屈折とは異なる光学的特性を備えており、負の分散と異常分散性の特徴を持っている。   The diffractive optical element has optical characteristics different from those of conventional glass refraction, and has characteristics of negative dispersion and anomalous dispersion.

具体的には、アッベ数νd=−3.45、部分分散比θgF=0.296となっている。   Specifically, the Abbe number νd = −3.45 and the partial dispersion ratio θgF = 0.296.

この性質を利用し、屈折光学系中に適切に用いることによって、色収差を良好に補正している。   By utilizing this property and using it appropriately in a refractive optical system, chromatic aberration is corrected well.

尚、各実施例に用いる回折光学素子において、格子部のピッチを変更することにより非球面の効果を持たせても良い。   In the diffractive optical element used in each embodiment, an aspherical effect may be provided by changing the pitch of the grating portion.

次に各実施例で用いる回折光学素子の構成について説明する。   Next, the configuration of the diffractive optical element used in each example will be described.

回折光学素子の構成としては、図7に示すようなエアギャップ101をはさんだ回折格子106,107より成る2積層構成のものが適用できる。   As a configuration of the diffractive optical element, a two-layered configuration including diffraction gratings 106 and 107 with an air gap 101 sandwiched as shown in FIG. 7 can be applied.

この他、図9に示すようなエアギャップ101をはさんだ回折格子106〜108より成る3積層構成のものが適用できる。   In addition, a three-layered structure composed of diffraction gratings 106 to 108 sandwiching an air gap 101 as shown in FIG. 9 can be applied.

この他図11に示すような格子厚の異なる(または、同一の)回折格子104,105より成る2つの層を積層した2層構成のものが適用できる。   In addition, a two-layer structure in which two layers of diffraction gratings 104 and 105 having different grating thicknesses (or the same) as shown in FIG.

図7では基材102’上に紫外線硬化樹脂からなる第1の回折格子106を形成し、基材102上に紫外線硬化樹脂からなる第2の回折格子107を形成している。   In FIG. 7, a first diffraction grating 106 made of an ultraviolet curable resin is formed on a base material 102 ′, and a second diffraction grating 107 made of an ultraviolet curable resin is formed on the base material 102.

図8は、図7に示す2積層構成の回折光学素子における1次回折光の回折効率の波長依存特性説明図である。   FIG. 8 is an explanatory diagram of the wavelength dependence of the diffraction efficiency of the first-order diffracted light in the diffractive optical element having the two-layer structure shown in FIG.

図8からわかるように設計次数(1次)の回折効率は、使用波長全域で95%以上の高い回折効率を有している。   As can be seen from FIG. 8, the diffraction efficiency of the designed order (first order) has a high diffraction efficiency of 95% or more over the entire operating wavelength range.

図9では基材102’上に紫外線硬化樹脂からなる第1の回折格子106を形成し、基材102上に紫外線硬化樹脂からなる第2の回折格子107とその格子を埋めた層108で形成している。   In FIG. 9, a first diffraction grating 106 made of an ultraviolet curable resin is formed on a base material 102 ′, and a second diffraction grating 107 made of an ultraviolet curable resin and a layer 108 in which the grating is buried are formed on the base material 102. is doing.

図10は図9に示す3積層構成の回折光学素子における1次回折光の回折効率の波長依存特性説明図である。図10からわかるように設計次数(1次)の回折効率は、使用波長全域で95%以上の高い回折効率を有している。   FIG. 10 is an explanatory view of the wavelength dependence of the diffraction efficiency of the first-order diffracted light in the three-layered diffractive optical element shown in FIG. As can be seen from FIG. 10, the diffraction efficiency of the designed order (first order) has a high diffraction efficiency of 95% or more over the entire wavelength range used.

図11では基材102上に紫外線硬化樹脂からなる第1の回折格子104を形成し、その上に別の紫外線硬化樹脂からなる第2の回折格子105を形成している。   In FIG. 11, a first diffraction grating 104 made of an ultraviolet curable resin is formed on a base material 102, and a second diffraction grating 105 made of another ultraviolet curable resin is formed thereon.

図12は図11に示す2層構造の回折光学素子における、1次回折光の回折効率の波長依存特性説明図である。   FIG. 12 is an explanatory view of the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light in the diffractive optical element having the two-layer structure shown in FIG.

図12から分かるように設計次数(1次)の回折効率は、使用波長全域で95%以上の高い回折効率を有している。   As can be seen from FIG. 12, the diffraction efficiency of the designed order (first order) has a high diffraction efficiency of 95% or more over the entire operating wavelength range.

次に本発明の数値実施例について説明する。   Next, numerical examples of the present invention will be described.

各数値実施例において、iは物体側からの順番を示す。   In each numerical example, i indicates the order from the object side.

riは物体側より第i番目のレンズ面の曲率半径、diは物体側より第i番目のレンズ厚及び基準状態の軸上面間隔、ndiとνdiは第i番目の光学部材のd線における屈折率とアッべ数を各々表している。   ri is the radius of curvature of the i-th lens surface from the object side, di is the i-th lens thickness from the object side and the axial top surface spacing in the reference state, and ndi and νdi are the refractive indices at the d-line of the i-th optical member. And Abbe number.

fは焦点距離、FnoはFナンバー、ωは半画角である。AIRは空気であることを示す。   f is a focal length, Fno is an F number, and ω is a half angle of view. AIR indicates air.

また各実施例の回折格子の格子部位相形状ψは、回折光の回折次数をm、設計波長をλ0、光軸に対して垂直方向の高さをh、位相係数をCi(i=1,2,3…)としたとき、次式によって表される。   Further, the grating portion phase shape ψ of the diffraction grating of each embodiment has a diffraction order m of the diffracted light, a design wavelength λ0, a height perpendicular to the optical axis h, and a phase coefficient Ci (i = 1, 1). 2, 3 ...), it is expressed by the following equation.

ψ(h,m)=(2π/mλ0)*(C1・h2+C2・h4+C3・h6+…)
また前述の各条件式と数値実施例における諸数値との関係を(表−1)に示す。
ψ (h, m) = (2π / mλ0) * (C1 · h2 + C2 · h4 + C3 · h6 + ...)
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.

次に各実施例に示した撮影光学系を撮像装置に適用した実施例を、図13を用いて説明する。   Next, an embodiment in which the photographing optical system shown in each embodiment is applied to an imaging apparatus will be described with reference to FIG.

図13は一眼レフカメラの要部概略図である。   FIG. 13 is a schematic view of the main part of a single-lens reflex camera.

図13において、10は各実施例の撮影光学系1を有する撮影レンズである。   In FIG. 13, reference numeral 10 denotes a taking lens having the taking optical system 1 of each embodiment.

撮影光学系1は保持部材である鏡筒2に保持されている。   The photographing optical system 1 is held by a lens barrel 2 that is a holding member.

20はカメラ本体である。カメラ本体20は、クイックリターンミラー3、焦点板4、ペンタダハプリズム5、接眼レンズ6等によって構成されている。   Reference numeral 20 denotes a camera body. The camera body 20 includes a quick return mirror 3, a focusing screen 4, a penta roof prism 5, an eyepiece lens 6, and the like.

クイックリターンミラーは、撮影レンズ10からの光束を上方に反射する。焦点板4は、撮影レンズ10の像形成位置に配置されている。   The quick return mirror reflects the light beam from the taking lens 10 upward. The focusing screen 4 is disposed at the image forming position of the taking lens 10.

ペンタダハプリズム5は、焦点板4に形成された逆像を正立像に変換する。接眼レンズ6は、その正立像を観察者が観察するためのものである。   The penta roof prism 5 converts the reverse image formed on the focusing screen 4 into an erect image. The eyepiece 6 is for an observer to observe the upright image.

7は感光面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)や銀塩フィルムが配置される。   Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, or a silver salt film is disposed.

撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。   At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10.

以上、本発明の好ましい光学系の実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although the Example of the preferable optical system of this invention was described, it cannot be overemphasized that this invention is not limited to these Examples, A various deformation | transformation and change are possible within the range of the summary.


LF 正の屈折力を有する前群
DO 回折光学素子
LR 正または負の屈折力を有する後群
S 開口絞り
G ガラスブロック
IP 像面
d d線
g g線
C C線
F F線
dM d線のメリディオナル像面
dS d線のサジタル像面
gM g線のメリディオナル像面
gS g線のサジタル像面
LF Front group DO diffractive optical element LR having positive refractive power LR Rear group S having positive or negative refractive power Aperture stop G Glass block IP Image plane d d line g g line C C line F F line dM d line meridional Sagittal image surface gS of image line dS d line meridional image surface of g line gS sagittal image surface of g line

Claims (3)

回折光学素子を含む光学系であって、
物体側より順に、正の屈折力を有する前群、回折光学素子、正または負の屈折力を有する後群から成り、かつ以下の条件式を満たす光学系。
0.20 < HF-do/fF < 0.60
0.28 < fF/f < 0.80
ここで、HF-do: 前群の後側主点と回折光学素子物体側頂点の距離
fF : 前群の焦点距離
An optical system including a diffractive optical element,
An optical system including, in order from the object side, a front group having positive refractive power, a diffractive optical element, and a rear group having positive or negative refractive power, and satisfying the following conditional expressions.
0.20 <H F-do / f F <0.60
0.28 <f F / f <0.80
Where H F-do : Distance between the rear principal point of the front group and the vertex on the object side of the diffractive optical element
f F : Focal length of the front group
前記正群において下記の条件式を満足することを特徴とする請求項1に記載の光学系。
Σ{(θgFi − 0.6438 + 0.001682×νdi)/fi}/Σ(1/fi) > 0.05
ここで、fi,νdi,θgFi : それぞれ前群中i番目のレンズにおける焦点距離、d線のアッベ数、g線とF線の部分分散比
νd=(Nd−1)/(NF−NC)
θgF=(Ng−NF)/(NF−NC)
Nd、 NF、NC、Ng: d線、F線、C線、g線における屈折率
2. The optical system according to claim 1, wherein the following conditional expression is satisfied in the positive group.
Σ {(θgFi−0.6438 + 0.001682 × νdi) / fi} / Σ (1 / fi)> 0.05
Here, fi, νdi, θgFi: the focal length of the i-th lens in the front group, the Abbe number of the d-line, the partial dispersion ratio νd = (Nd−1) / (NF-NC) of the g-line and the F-line, respectively.
θgF = (Ng−NF) / (NF−NC)
Nd, NF, NC, Ng: Refractive index for d-line, F-line, C-line, and g-line
請求項1又は請求項2に記載の光学系を有することを特徴とする光学機器。
An optical apparatus comprising the optical system according to claim 1.
JP2010273278A 2010-12-08 2010-12-08 Optical system using diffraction optical device Pending JP2012123152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273278A JP2012123152A (en) 2010-12-08 2010-12-08 Optical system using diffraction optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273278A JP2012123152A (en) 2010-12-08 2010-12-08 Optical system using diffraction optical device

Publications (1)

Publication Number Publication Date
JP2012123152A true JP2012123152A (en) 2012-06-28

Family

ID=46504670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273278A Pending JP2012123152A (en) 2010-12-08 2010-12-08 Optical system using diffraction optical device

Country Status (1)

Country Link
JP (1) JP2012123152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011171A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Optical system having diffractive optical element, and optical devices
JP2020134536A (en) * 2019-02-12 2020-08-31 富士フイルム株式会社 Imaging lens and imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011171A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Optical system having diffractive optical element, and optical devices
JP2020134536A (en) * 2019-02-12 2020-08-31 富士フイルム株式会社 Imaging lens and imaging device
JP7043439B2 (en) 2019-02-12 2022-03-29 富士フイルム株式会社 Imaging lens and imaging device
US11500220B2 (en) 2019-02-12 2022-11-15 Fujifilm Corporation Imaging lens and imaging apparatus

Similar Documents

Publication Publication Date Title
JP4829590B2 (en) Imaging optical system and imaging apparatus having the same
JP6646262B2 (en) Optical system and imaging apparatus having the same
US20180074300A1 (en) Optical system and image pickup apparatus including the same
JP5366673B2 (en) Optical system and optical apparatus having the same
JP5350202B2 (en) Rear attachment lens and photographing optical system having the same
JP6366347B2 (en) Imaging optical system and imaging apparatus having the same
JP2016200743A (en) Optical system and imaging apparatus including the same
JP5213514B2 (en) Imaging optical system and imaging apparatus having the same
US10746977B2 (en) Optical system and image pickup apparatus including the same
WO2014129149A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP5202014B2 (en) Optical system and optical instrument using the same
JP5601586B2 (en) Optical system and optical equipment
JP5639625B2 (en) Imaging optical system and imaging apparatus having the same
JP5900057B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6012349B2 (en) Imaging optical system and imaging apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP2012078397A (en) Optical system including diffraction grating, and optical instrument
JP2014160106A (en) Optical system, optical device, and method for manufacturing optical system
JP6921617B2 (en) Imaging optical system and imaging equipment having it
JP5423299B2 (en) Wide-angle lens and optical equipment
JP6236794B2 (en) Optical system and optical equipment
JP6273797B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6961366B2 (en) Optical system and imaging device with it
JP6579843B2 (en) Optical system and imaging apparatus
JP2012123152A (en) Optical system using diffraction optical device