JP2012122532A - Pulley structure - Google Patents

Pulley structure Download PDF

Info

Publication number
JP2012122532A
JP2012122532A JP2010272932A JP2010272932A JP2012122532A JP 2012122532 A JP2012122532 A JP 2012122532A JP 2010272932 A JP2010272932 A JP 2010272932A JP 2010272932 A JP2010272932 A JP 2010272932A JP 2012122532 A JP2012122532 A JP 2012122532A
Authority
JP
Japan
Prior art keywords
magnetic
rotating bodies
electromagnet
bodies
rotators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010272932A
Other languages
Japanese (ja)
Inventor
Shigehiko Hayashi
茂彦 林
Motohiro Takiguchi
元博 滝口
Katsuhiro Hirata
勝弘 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2010272932A priority Critical patent/JP2012122532A/en
Publication of JP2012122532A publication Critical patent/JP2012122532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a simple means to change absorbing characteristics of rotation variation, in a pulley structure for transmitting rotation torque while rotators are in no contact mutually.SOLUTION: Two rotators 1, 2 are provided with opposed regions which are radially opposed each other and approach circumferentially and intermittently, the opposed regions are formed by magnetic bodies 1a, 2a, and a fixed body 3 for fixing rotation coaxially with the two rotators 1, 2, is provided with an electromagnet 7 which axially approaches to face the magnetic bodies 1a, 2a of the two rotators 1, 2. A magnetic circuit is formed between the electromagnet 7 and respective magnetic bodies 1a, 2a, and rotation torque is transmitted between the rotators 1, 2 by magnetic flux flowing in the magnetic circuit, so that the intensity of magnetic flux flowing in the magnetic circuit is changed by changing an excitation current to the electromagnet 7 provided to the fixed body 3, and torque produced correspondingly to rotation phase difference of the two rotators 1, 2 is changed.

Description

本発明は、2つの回転体間の回転変動を吸収して、回転体間の回転トルクの伝達を可能としたプーリ構造体に関する。   The present invention relates to a pulley structure that absorbs rotational fluctuation between two rotating bodies and enables transmission of rotational torque between the rotating bodies.

自動車のエンジンによって回転駆動されるクランクシャフトから回転トルクを伝達される発電用のオルタネータ等の回転伝達部には、2つの回転体を同軸上で相対回転可能に配置し、これらの回転体間の回転変動を吸収して回転体間の回転トルクの伝達を可能とし、一方の回転体に回転トルクを入力または出力するプーリを設けたプーリ構造体が採用されている。   In a rotation transmission part such as an alternator for power generation to which rotation torque is transmitted from a crankshaft that is driven to rotate by an automobile engine, two rotation bodies are coaxially arranged so as to be relatively rotatable, and between these rotation bodies. A pulley structure in which a rotation torque is absorbed and rotation torque can be transmitted between the rotating bodies and a pulley that inputs or outputs the rotating torque is provided on one rotating body is employed.

この種のプーリ構造体には、2つの回転体をゴム等の弾性体で連結し、弾性体の捩じれ変形を利用して回転体間の相対回転を許容し、回転体間の回転変動を吸収して回転体間の回転トルクの伝達を可能としたもの(例えば、特許文献1参照)と、一方の回転体に他方の回転体と近接対向する磁石を設け、他方の回転体を導電性金属で形成して、回転体間の相対回転によって両者を横切る磁界が変化し、導電性金属に渦電流が生じることを利用して、この渦電流による磁界との間での磁力によって、非接触で回転体間の回転変動を吸収して回転体間の回転トルクの伝達を可能としたもの(例えば、特許文献2参照)とがある。   In this kind of pulley structure, two rotating bodies are connected by an elastic body such as rubber, and the relative rotation between the rotating bodies is allowed by using the torsional deformation of the elastic body to absorb the rotational fluctuation between the rotating bodies. A rotating torque between the rotating bodies (see, for example, Patent Document 1), and one rotating body provided with a magnet in close proximity to the other rotating body, the other rotating body being a conductive metal By using the fact that the magnetic field crossing both of the rotating bodies changes due to the relative rotation between the rotating bodies and eddy currents are generated in the conductive metal, There is one that absorbs rotational fluctuations between rotating bodies and enables transmission of rotational torque between rotating bodies (for example, see Patent Document 2).

特許文献1に記載されたものは、2つの回転体を連結する弾性体が、繰り返しの捩じれ変形によって疲労し、寿命が短くなる問題がある。これに対して、特許文献2に記載されたものは、2つの回転体を弾性体で連結することなく、回転体間を非接触として回転トルクを伝達するので、このような問題はなく、長期に亘って安定してトルクを伝達することができる。   The one described in Patent Document 1 has a problem that an elastic body connecting two rotating bodies is fatigued due to repeated torsional deformation and the life is shortened. On the other hand, what is described in Patent Document 2 transmits the rotational torque without connecting the two rotating bodies with an elastic body and without contact between the rotating bodies. Torque can be transmitted stably over the range.

特開昭63−68540号公報JP-A-63-68540 特開2003−247600号公報JP 2003-247600 A

特許文献2に記載された回転体間を非接触として回転トルクを伝達するプーリ構造体は、長期に亘って安定してトルクを伝達することができるが、一方の回転体に設ける磁石を永久磁石とすると、回転体間の相対回転による回転位相差と磁力による発生トルクとの関係が固定されるので、回転変動の吸収特性を任意に変化させることができず、適用可能範囲が限定される問題がある。回転変動の吸収特性を可変とするためには、磁石を電磁石として、回転位相差によって発生するトルクを変化させるようにすればよいが、一方の回転体と一緒に回転する電磁石に電力を供給するためには、回転体にスリップリングを取り付けて、スリップリングに電力を供給するブラシを接触させるか、電磁誘導や磁界共鳴等を用いた非接触で電力を供給する必要があり、電磁石への電力供給手段が複雑なものとなる問題がある。   The pulley structure described in Patent Document 2 that transmits rotational torque with no contact between the rotating bodies can stably transmit torque over a long period of time, but the magnet provided on one rotating body is a permanent magnet. Then, since the relationship between the rotational phase difference due to the relative rotation between the rotating bodies and the torque generated by the magnetic force is fixed, the absorption characteristic of the rotational fluctuation cannot be arbitrarily changed, and the applicable range is limited. There is. In order to make the absorption characteristics of rotational fluctuation variable, the magnet may be an electromagnet and the torque generated by the rotational phase difference may be changed, but power is supplied to the electromagnet that rotates with one of the rotating bodies. In order to achieve this, it is necessary to attach a slip ring to the rotating body and contact a brush that supplies power to the slip ring, or to supply power without contact using electromagnetic induction, magnetic resonance, etc. There is a problem that the supply means becomes complicated.

そこで、本発明の課題は、回転体間を非接触として回転トルクを伝達するプーリ構造体で、簡単な手段で回転変動の吸収特性を変えることができるようにすることである。   SUMMARY OF THE INVENTION An object of the present invention is to make it possible to change the absorption characteristics of rotational fluctuations with a simple means by using a pulley structure that transmits rotational torque without contact between the rotating bodies.

上記の課題を解決するために、本発明は、2つの回転体を同軸上で相対回転可能に配置し、一方の回転体にプーリを設けて、回転体間を非接触として回転体間で回転トルクを伝達するプーリ構造体において、前記2つの回転体に、半径方向または軸方向で互いに対向して、周方向で間歇的に近接する対向部位を設けて、少なくともこれらの対向部位を磁性体で形成し、前記2つの回転体と同軸上で回転を固定した固定体に、前記2つの回転体の各対向部位を形成する磁性体と半径方向または軸方向で近接して対向するように電磁石を設けて、この電磁石と前記2つの回転体の各磁性体との間で磁気回路を形成し、この磁気回路を流れる磁束によって、前記回転体間で回転トルクを伝達する構成を採用した。   In order to solve the above problems, the present invention arranges two rotating bodies so as to be relatively rotatable on the same axis, and provides a pulley on one rotating body so that the rotating bodies are not in contact with each other and rotate between the rotating bodies. In the pulley structure for transmitting torque, the two rotating bodies are provided with opposing portions that are opposed to each other in the radial direction or the axial direction and intermittently close in the circumferential direction, and at least these facing portions are made of magnetic material. An electromagnet is formed so as to oppose the magnetic body forming the opposing portions of the two rotating bodies in close proximity to each other in the radial direction or the axial direction. A configuration is adopted in which a magnetic circuit is formed between the electromagnet and the magnetic bodies of the two rotating bodies, and a rotational torque is transmitted between the rotating bodies by a magnetic flux flowing through the magnetic circuit.

すなわち、2つの回転体に、半径方向または軸方向で互いに対向して、周方向で間歇的に近接する対向部位を設けて、少なくともこれらの対向部位を磁性体で形成し、2つの回転体と同軸上で回転を固定した固定体に、2つの回転体の各対向部位を形成する磁性体と半径方向または軸方向で近接して対向するように電磁石を設けて、この電磁石と2つの回転体の各磁性体との間で磁気回路を形成し、この磁気回路を流れる磁束によって、回転体間で回転トルクを伝達することにより、回転しない固定体に設けた電磁石への励磁電流を変化させて、磁気回路を流れる磁束の強さを変え、2つの回転体の回転位相差に対応して発生するトルクを変化させて、簡単な手段で回転変動の吸収特性を変えることができるようにした。   That is, two rotating bodies are provided with opposing portions that are opposed to each other in the radial direction or the axial direction and are intermittently close to each other in the circumferential direction, and at least these facing portions are formed of a magnetic body. An electromagnet is provided on a fixed body whose rotation is fixed on the same axis so as to be opposed to each other in the radial direction or the axial direction so as to oppose a magnetic body forming each opposed portion of the two rotating bodies, and the electromagnet and the two rotating bodies. A magnetic circuit is formed with each of the magnetic bodies, and a rotating torque is transmitted between the rotating bodies by the magnetic flux flowing through the magnetic circuit, thereby changing the excitation current to the electromagnet provided on the stationary body that does not rotate. By changing the strength of the magnetic flux flowing through the magnetic circuit and changing the torque generated corresponding to the rotational phase difference between the two rotating bodies, the absorption characteristics of rotational fluctuation can be changed with simple means.

前記磁性体を構成する磁性材料としては、軟鋼やNi−Zn系フェライト、Mn−Zn系フェライト等のフェライトを用いることができる。他に、パーマロイ、センダスト、パーメンジュール、ケイ素鋼等も用いることができる。   As the magnetic material that constitutes the magnetic body, ferrite such as mild steel, Ni—Zn ferrite, and Mn—Zn ferrite can be used. In addition, permalloy, sendust, permendur, silicon steel, etc. can be used.

前記周方向で間歇的に近接する2つの回転体の各対向部位を、周方向で互いに等しいピッチで設けることにより、2つの回転体に回転位相差が生じたときに、各対向部位で両者の磁性体を横切る磁束の向きを周方向で揃え、効率よく回転変動を吸収することができる。   By providing the opposing portions of the two rotating bodies that are intermittently close in the circumferential direction at equal pitches in the circumferential direction, when a rotational phase difference occurs between the two rotating bodies, By aligning the direction of the magnetic flux across the magnetic body in the circumferential direction, it is possible to efficiently absorb rotational fluctuations.

前記周方向で互いに等しいピッチで設けた2つの回転体の各対向部位の周方向間隔Sと周方向長さLとの比S/Lは0.8〜1.2、好ましくは0.9〜1.1の範囲とするとよい。比S/Lが0.8未満では、2つの回転体に回転位相差が生じたときに、各対向部位の磁性体の両端部同士が周方向で重なりやすく、重なった磁性体の両端部間を通る磁束が互いに打ち消し合って、電磁石の励磁電流を変化させても、発生するトルクの変化量が少なくなり、比S/Lが1.2を越えると、各対向部位の磁性体間に周方向で隙間が生じやすく、磁気抵抗が大きくなって、発生するトルクが小さくなるからである。   The ratio S / L between the circumferential interval S and the circumferential length L of the opposing portions of the two rotating bodies provided at equal pitches in the circumferential direction is 0.8 to 1.2, preferably 0.9 to The range is preferably 1.1. When the ratio S / L is less than 0.8, when a rotational phase difference occurs between the two rotating bodies, both end portions of the magnetic bodies at the opposing portions tend to overlap in the circumferential direction, and between the end portions of the overlapping magnetic bodies Even if the magnetic fluxes passing through each other cancel each other and the excitation current of the electromagnet is changed, the amount of change in the torque generated decreases, and when the ratio S / L exceeds 1.2, the magnetic material between the opposing parts is This is because a gap is likely to be generated in the direction, the magnetic resistance is increased, and the generated torque is reduced.

前記各対向部位の周方向間隔Sと周方向長さLとの比S/Lは1.0とするのがさらに好ましい。比S/Lを1.0、すなわち、各対向部位の周方向間隔Sと周方向長さLを等しくすると、2つの回転体の回転位相差が各対向部位の半ピッチ分と等しくなり、各対向部位の磁性体が周方向で互い違いに位置する状態になっても、各対向部位の磁性体の端部同士が周方向で重ならず、かつ、磁性体間に周方向で隙間が生じない最適な状態とすることができる。   It is more preferable that the ratio S / L between the circumferential interval S and the circumferential length L of each facing portion is 1.0. When the ratio S / L is 1.0, that is, when the circumferential distance S and the circumferential length L of each facing portion are equal, the rotational phase difference between the two rotating bodies becomes equal to the half pitch of each facing portion, Even when the opposing magnetic bodies are alternately staggered in the circumferential direction, the ends of the magnetic bodies of the opposing parts do not overlap in the circumferential direction, and no gap is generated between the magnetic bodies in the circumferential direction. An optimum state can be obtained.

前記2つの回転体の対向部位間の間隔dは1mm以下、好ましくは0.5mm前後とするとよい。間隔dが1mmを越えると、磁気抵抗が大きくなって、効率のよい磁気回路が形成されにくいからである。また、間隔dが0.5mmよりも小さくなると、間隔を確保するための加工コストが増加する。   The distance d between the facing parts of the two rotating bodies is 1 mm or less, preferably around 0.5 mm. This is because if the distance d exceeds 1 mm, the magnetic resistance increases and it is difficult to form an efficient magnetic circuit. Further, when the distance d is smaller than 0.5 mm, the processing cost for securing the distance increases.

前記2つの回転体の各対向部位と、これらと対向する前記電磁石との間隔eは1mm以下、好ましくは0.5mm前後とするとよい。間隔eが1mmを越えると、磁気抵抗が大きくなって、効率のよい磁気回路が形成されにくいからである。また、間隔eが0.5mmよりも小さくなると、間隔を確保するための加工コストが増加する。   An interval e between the facing portions of the two rotating bodies and the electromagnet facing the two rotating bodies is 1 mm or less, preferably around 0.5 mm. This is because if the distance e exceeds 1 mm, the magnetic resistance increases and it is difficult to form an efficient magnetic circuit. Further, when the interval e is smaller than 0.5 mm, the processing cost for securing the interval increases.

前記2つの回転体の各対向部位と前記電磁石とを軸方向で対向させることにより、2つの回転体の各対向部位と電磁石との間隔eを容易に設定することができる。電磁石を設ける固定体も容易に同軸上に配置することができ、設計もコンパクトにすることができる。   By making the opposing portions of the two rotating bodies and the electromagnet face each other in the axial direction, the distance e between the opposing portions of the two rotating bodies and the electromagnet can be easily set. The fixed body provided with the electromagnet can be easily arranged on the same axis, and the design can be made compact.

本発明に係るプーリ構造体は、2つの回転体に、半径方向または軸方向で互いに対向して、周方向で間歇的に近接する対向部位を設けて、少なくともこれらの対向部位を磁性体で形成し、2つの回転体と同軸上で回転を固定した固定体に、2つの回転体の各対向部位を形成する磁性体と半径方向または軸方向で近接して対向するように電磁石を設けて、この電磁石と2つの回転体の各磁性体との間で磁気回路を形成し、この磁気回路を流れる磁束によって、回転体間で回転トルクを伝達するようにしたので、簡単な手段で回転変動の吸収特性を変えることができる。   In the pulley structure according to the present invention, two rotating bodies are provided with opposing portions that face each other in the radial direction or the axial direction and intermittently approach each other in the circumferential direction, and at least these facing portions are formed of a magnetic material. An electromagnet is provided on a fixed body that is coaxially fixed to the two rotating bodies and is opposed to the magnetic body forming the opposing portions of the two rotating bodies in close proximity to each other in the radial direction or the axial direction. A magnetic circuit is formed between the electromagnet and each of the two rotating bodies, and the rotational torque is transmitted between the rotating bodies by the magnetic flux flowing through the magnetic circuit. Absorption characteristics can be changed.

第1の実施形態のプーリ構造体を示す縦断面図The longitudinal cross-sectional view which shows the pulley structure of 1st Embodiment (a)は図1のII−II線に沿った断面図、(b)は(a)の回転体間に回転位相差が生じた状態を示す断面図(A) is sectional drawing along the II-II line of FIG. 1, (b) is sectional drawing which shows the state which the rotation phase difference produced between the rotary bodies of (a). (a)は図2の回転位相差が各対向部位の半ピッチ分と等しくなった状態を示す一部省略断面図、(b)、(c)は、(a)の各対向部位の周方向間隔Sと周方向長さLとの比S/Lを、それぞれS/L<1、S/L>1としたときの一部省略断面図(A) is a partially omitted cross-sectional view showing a state in which the rotational phase difference of FIG. 2 is equal to the half pitch of each facing portion, and (b) and (c) are circumferential directions of each facing portion in (a). Partially omitted sectional view when the ratio S / L between the distance S and the circumferential length L is S / L <1, S / L> 1, respectively. 実施例で測定した各励磁電流での回転位相差と発生トルクの関係を示すグラフThe graph which shows the relationship between the rotation phase difference in each exciting current measured in the Example, and generated torque 図4の発生トルクの最大値と励磁電流の関係を示すグラフFIG. 4 is a graph showing the relationship between the maximum value of generated torque and the excitation current. 第2の実施形態のプーリ構造体を示す縦断面図The longitudinal cross-sectional view which shows the pulley structure of 2nd Embodiment (a)、(b)は、それぞれ図6のVIIa−VIIa線とVIIb−VIIbに沿った断面図(A), (b) is sectional drawing which followed the VIIa-VIIa line | wire and VIIb-VIIb of FIG. 6, respectively.

以下、図面に基づき、本発明の実施形態を説明する。図1乃至図4は、第1の実施形態を示す。このプーリ構造体は、図1に示すように、筒状の第1回転体1の内径側に第2回転体2が同軸上で嵌挿され、これらの各回転体1、2と同軸上に、回転を固定された環状の固定体3が、第2回転体2に外嵌されるようにコンパクトに配置されている。第1回転体1は、外径面に回転トルクが入力されるプーリ4が設けられ、転がり軸受5とすべり軸受6によって第2回転体2と固定体3に支持されており、第2回転体2と相対回転可能とされている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a first embodiment. As shown in FIG. 1, in this pulley structure, a second rotating body 2 is coaxially inserted into an inner diameter side of a cylindrical first rotating body 1, and coaxial with each of these rotating bodies 1 and 2. The annular fixed body 3 whose rotation is fixed is compactly arranged so as to be fitted on the second rotary body 2. The first rotating body 1 is provided with a pulley 4 to which rotational torque is input on the outer diameter surface, and is supported by the second rotating body 2 and the fixed body 3 by a rolling bearing 5 and a sliding bearing 6. 2 and relative rotation is possible.

前記第1回転体1の内径面と第2回転体2の外径面には、半径方向で互いに近接して対向する磁性体1a、2aが取り付けられている。これらの磁性体1a、2a間の半径方向の間隔dは1mm以下に設定されている。各磁性体1a、2aは、軟鋼、フェライト、パーマロイ、センダスト、パーメンジュール、ケイ素鋼等の磁性材料で形成され、ねじ等で各回転体1、2に取り付けられる。   Magnetic bodies 1 a and 2 a that are opposed to each other in the radial direction are attached to the inner diameter surface of the first rotating body 1 and the outer diameter surface of the second rotating body 2. The radial distance d between these magnetic bodies 1a and 2a is set to 1 mm or less. Each of the magnetic bodies 1a and 2a is formed of a magnetic material such as mild steel, ferrite, permalloy, sendust, permendur, and silicon steel, and is attached to each of the rotating bodies 1 and 2 with screws or the like.

また、前記環状の固定体3は、磁性材料で形成されたコ字断面の枠体7aの内側に導線7bを巻いた電磁石7とされ、この電磁石7が各磁性体1a、2aと軸方向で近接して対向するように配置されている。この電磁石7と各磁性体1a、2a間の軸方向の間隔eも1mm以下に設定されている。   The annular fixed body 3 is an electromagnet 7 in which a conducting wire 7b is wound inside a frame body 7a having a U-shaped cross section made of a magnetic material. The electromagnet 7 is axially connected to each of the magnetic bodies 1a and 2a. It arrange | positions so that it may adjoin and oppose. An axial distance e between the electromagnet 7 and the magnetic bodies 1a and 2a is also set to 1 mm or less.

したがって、前記電磁石7の導線7bに励磁電流を流すと、図1中に矢印で示すように、コ字断面の枠体7aと各磁性体1a、2aを周回するように、励磁電流の大きさに応じた磁束の強さで磁気回路が形成される。電磁石7は回転を固定された固定体3に設けられているので、スリップリング等を用いることなく、導線7bを電源(図示省略)と結線するのみで励磁電流を流すことができる。   Therefore, when an exciting current is passed through the conductive wire 7b of the electromagnet 7, the magnitude of the exciting current so as to go around the U-shaped frame 7a and the magnetic bodies 1a and 2a as shown by arrows in FIG. A magnetic circuit is formed with the strength of the magnetic flux according to. Since the electromagnet 7 is provided on the fixed body 3 whose rotation is fixed, an exciting current can be passed only by connecting the conductor 7b to a power source (not shown) without using a slip ring or the like.

図2(a)、(b)に示すように、前記各回転体1、2の磁性体1a、2aは、周方向で互いに等しいピッチで取り付けられ、各磁性体1a、2aの周方向間隔Sと周方向長さLとの比S/Lは1.0とされている。この実施形態では、半径方向で互いに近接する各磁性体1a、2aが、周方向で5箇所ずつに取り付けられている。   As shown in FIGS. 2A and 2B, the magnetic bodies 1a and 2a of the rotating bodies 1 and 2 are attached at equal pitches in the circumferential direction, and the circumferential interval S between the magnetic bodies 1a and 2a. The ratio S / L between the length L and the circumferential length L is 1.0. In this embodiment, the magnetic bodies 1a and 2a that are close to each other in the radial direction are attached at five locations in the circumferential direction.

図2(a)は、前記2つの回転体1、2が、各磁性体1a、2a同士が完全に対向し、位相差のない状態を示す。この状態では、図中に矢印で示すように、磁気回路の磁束が各磁性体1a、2aを半径方向へ直角に横切り、第1回転体1のプーリ4に入力される回転トルクが第2回転体2に伝達される。   FIG. 2A shows a state in which the two rotating bodies 1 and 2 are completely opposed to each other, and there is no phase difference. In this state, as indicated by arrows in the figure, the magnetic flux of the magnetic circuit crosses the magnetic bodies 1a and 2a perpendicularly in the radial direction, and the rotational torque input to the pulley 4 of the first rotating body 1 is the second rotation. Transmitted to the body 2.

図2(b)は、前記第1回転体1の加減速や入力トルクの振動等によって、2つの回転体1、2間に回転位相差が生じた状態を示す。この状態では、各図中に矢印で示すように、磁気回路の磁束が各磁性体1a、2aを半径方向へ斜めに横切り、回転位相差を解消するようにトルクTが発生する。図2(b)は、第2回転体2の回転が進んで回転位相差が生じた状態を示すが、第2回転体2の回転が遅れて回転位相差が生じた状態でも、この回転遅れがなくなるように回転位相差を解消するトルク(回転ブレーキ)が発生する。   FIG. 2B shows a state in which a rotational phase difference is generated between the two rotating bodies 1 and 2 due to acceleration / deceleration of the first rotating body 1 and vibration of the input torque. In this state, as indicated by arrows in each figure, the magnetic flux of the magnetic circuit crosses the magnetic bodies 1a and 2a obliquely in the radial direction, and torque T is generated so as to eliminate the rotational phase difference. FIG. 2B shows a state in which the rotation of the second rotating body 2 has advanced and a rotational phase difference has occurred, but this rotational delay is also present in a state in which the rotation of the second rotating body 2 has been delayed and a rotational phase difference has occurred. Torque (rotational brake) that eliminates the rotational phase difference is generated so as to eliminate this.

図3(a)は、前記2つの回転体1、2間に回転位相差が、各磁性体1a、2aの取り付けピッチの半ピッチ分と等しくなった状態を示す。図3(b)は、周方向間隔Sと周方向長さLとの比S/LをS/L<1とした場合、図3(c)は、S/L>1とした場合を参考として示す。この実施形態では、各磁性体1a、2aの周方向間隔Sと周方向長さLとの比S/Lは1.0、すなわち周方向間隔Sと周方向長さLが等しくなるように設定されているので、このような半ピッチ分の回転位相差が生じても、図3(b)に示すように、各磁性体1a、2aの両端部同士が周方向で重ならず、かつ、図3(c)に示すように、各磁性体1a、2a間に周方向で隙間が生じることもない。したがって、各磁性体1a、2aの両端部間を通る磁束が互いに打ち消し合って、電磁石7の励磁電流を変化させたときに発生するトルクの変化量が少なくなることはなく、かつ、各磁性体1a、2aの両端部間の磁気抵抗が大きくなって、発生トルクが小さくなることもない。   FIG. 3A shows a state in which the rotational phase difference between the two rotating bodies 1 and 2 is equal to the half pitch of the mounting pitch of the magnetic bodies 1a and 2a. 3B shows the case where the ratio S / L between the circumferential interval S and the circumferential length L is S / L <1, and FIG. 3C shows the case where S / L> 1. As shown. In this embodiment, the ratio S / L between the circumferential interval S and the circumferential length L of each magnetic body 1a, 2a is set to 1.0, that is, the circumferential interval S and the circumferential length L are equal. Therefore, even if such a half-pitch rotational phase difference occurs, as shown in FIG. 3B, both end portions of each magnetic body 1a, 2a do not overlap in the circumferential direction, and As shown in FIG. 3C, there is no gap in the circumferential direction between the magnetic bodies 1a and 2a. Therefore, the magnetic flux passing between both ends of the magnetic bodies 1a and 2a cancels each other, and the amount of change in torque generated when the excitation current of the electromagnet 7 is changed does not decrease. The magnetic resistance between both ends of 1a and 2a is increased, and the generated torque is not reduced.

実施例として、軟鋼S25Cで形成したリングの内周に、軟鋼S25Cで形成した磁性体1aのセグメントを、中心角72°の等ピッチで5箇所に取り付けた第1回転体1と、同じくS25Cで形成したリングの外周に、S25Cで形成した磁性体2aのセグメントを、中心角72°の等ピッチで5箇所に取り付けた第2回転体2と、S25Cで形成したコ字断面の枠体7aの内側に導線7bを巻いた電磁石7とした環状の固定体3とを、図1に示したように配置して構成したプーリ構造体を用意した。   As an example, the first rotating body 1 in which the segments of the magnetic body 1a formed of the mild steel S25C are attached to the inner periphery of the ring formed of the mild steel S25C at five locations at an equal pitch of the central angle of 72 °, also in the S25C The second rotating body 2 in which the segments of the magnetic body 2a formed in S25C are attached to the outer periphery of the formed ring at five locations at an equal pitch of a central angle of 72 °, and the frame body 7a having a U-shaped cross section formed in S25C. A pulley structure was prepared in which an annular fixed body 3 formed as an electromagnet 7 with a conducting wire 7b wound inside was arranged as shown in FIG.

前記第1回転体1のリングは外径62mm、内径55mm、第2回転体2は外径30mm、内径20mmとし、その軸方向幅はいずれも12mmとした。第1回転体1の磁性体1aの内径は43mm、第2回転体2の磁性体2aの外径は42mmとし、これらの半径方向の間隔dを0.5mmに設定した。また、各磁性体1a、2aの中心角は36°とし、これらの周方向長さLと周方向間隔Sが等しくなるようにした。   The ring of the first rotating body 1 had an outer diameter of 62 mm and an inner diameter of 55 mm, the second rotating body 2 had an outer diameter of 30 mm and an inner diameter of 20 mm, and the axial width thereof was 12 mm. The inner diameter of the magnetic body 1a of the first rotating body 1 was 43 mm, the outer diameter of the magnetic body 2a of the second rotating body 2 was 42 mm, and the radial distance d was set to 0.5 mm. The central angle of each magnetic body 1a, 2a was 36 °, and the circumferential length L and the circumferential interval S were made equal.

前記固定体3の電磁石7の枠体7aは、外径62mm、内径22mm、軸方向幅17mmとし、コ字断面の3方向の厚みはいずれも4mmとして、各磁性体1a、2aとの軸方向の間隔eを0.5mmに設定した。また、導線7bは直径0.5mmのホルマル線とし、枠体7aのコ字断面の内側に528巻した。   The frame 7a of the electromagnet 7 of the fixed body 3 has an outer diameter of 62 mm, an inner diameter of 22 mm, an axial width of 17 mm, and the thickness in the three directions of the U-shaped cross section is 4 mm. Was set to 0.5 mm. The conducting wire 7b was a formal wire having a diameter of 0.5 mm, and was wound 528 inside the U-shaped cross section of the frame 7a.

上述したプーリ構造体の電磁石7の励磁電流Iを、1A、3A、5Aと3段階に変え、第1回転体1と第2回転体2との回転位相差Δθを0〜72°(磁性体の1ピッチ分)まで変化させて、各回転位相差で発生するトルクTを測定した。   The excitation current I of the electromagnet 7 of the pulley structure described above is changed in three stages, 1A, 3A, 5A, and the rotational phase difference Δθ between the first rotating body 1 and the second rotating body 2 is 0 to 72 ° (magnetic material The torque T generated at each rotational phase difference was measured.

図4は、前記発生トルクTの測定結果を示す。この測定結果によれば、2つの回転体1、2の磁性体1a、2aが完全に重なる回転位相差Δθが0°、72°のときと、磁性体1aと磁性体2aのない部位が完全に重なる回転位相差Δθが36°のときに、発生トルクTは零となり、Δθ=0〜36°の範囲では、発生トルクTの方向が正、すなわち、回転位相差Δθを0°とする方向に作用する。Δθ=36〜72°の範囲では、発生トルクTの方向が負、すなわち、回転位相差Δθを72°として、1ピッチ分ずれた位置で回転位相差をなくすように作用する。また、これらの発生トルクTの絶対値は、励磁電流Iが大きくなるほど増大している。   FIG. 4 shows the measurement result of the generated torque T. According to this measurement result, when the rotational phase difference Δθ in which the magnetic bodies 1a and 2a of the two rotating bodies 1 and 2 are completely overlapped is 0 ° and 72 °, the portion without the magnetic body 1a and the magnetic body 2a is completely The generated torque T becomes zero when the rotational phase difference Δθ overlapping with the angle 36 is 36 °, and in the range Δθ = 0 to 36 °, the direction of the generated torque T is positive, that is, the direction in which the rotational phase difference Δθ is 0 °. Act on. In the range of Δθ = 36 to 72 °, the direction of the generated torque T is negative, that is, the rotational phase difference Δθ is 72 °, and the rotational phase difference is eliminated at a position shifted by one pitch. Further, the absolute value of the generated torque T increases as the excitation current I increases.

図5は、図4における正の発生トルクTの最大値を励磁電流Iに対してプロットしたものである。発生トルクTの最大値は、励磁電流Iにほぼ比例して増大している。したがって、励磁電流Iを変化させることにより、2つの回転体1、2間の回転位相差Δθ、すなわち回転変動の吸収特性を簡単に変えることができる。なお、発生トルクTは、導線7bの巻数を変えることによっても可変とすることができる。   FIG. 5 is a plot of the maximum value of the positive generated torque T in FIG. The maximum value of the generated torque T increases in proportion to the excitation current I. Therefore, by changing the exciting current I, the rotational phase difference Δθ between the two rotating bodies 1 and 2, that is, the absorption characteristic of the rotational fluctuation can be easily changed. The generated torque T can be made variable by changing the number of turns of the conducting wire 7b.

図6および図7は、第2の実施形態を示す。このプーリ構造体も、図6に示すように、筒状の第1回転体1の内径側に第2回転体2が同軸上で嵌挿され、これらの各回転体1、2と同軸上に、回転を固定された環状の固定体3が、第2回転体2に外嵌されるように配置されている。第1回転体1は、外径面に回転トルクが入力されるプーリ4が設けられ、転がり軸受5とすべり軸受6によって第2回転体2と固定体3に支持されており、第2回転体2と相対回転可能とされている。   6 and 7 show a second embodiment. As shown in FIG. 6, this pulley structure also has a second rotating body 2 coaxially fitted on the inner diameter side of the cylindrical first rotating body 1, and is coaxial with these rotating bodies 1 and 2. The annular fixed body 3 whose rotation is fixed is arranged so as to be fitted onto the second rotary body 2. The first rotating body 1 is provided with a pulley 4 to which rotational torque is input on the outer diameter surface, and is supported by the second rotating body 2 and the fixed body 3 by a rolling bearing 5 and a sliding bearing 6. 2 and relative rotation is possible.

この実施形態では、前記第1回転体1の内径面に筒状の磁性体1aが取り付けられ、第2回転体2の外径面には、磁性体1aと軸方向で対向する外向きのフランジ2cを設けた筒状の磁性体2aが取り付けられており、軸方向で対向する磁性体1aの片側端面と磁性体2aのフランジ2cには、軸方向で互いに近接して対向する対向部1b、2bが形成されている。これらの対向部1b、2b間の軸方向の間隔dは1mm以下に設定されている。   In this embodiment, a cylindrical magnetic body 1a is attached to the inner diameter surface of the first rotating body 1, and an outer flange facing the magnetic body 1a in the axial direction is provided on the outer diameter surface of the second rotating body 2. A cylindrical magnetic body 2a provided with 2c is attached, and an opposing portion 1b opposed to each other in the axial direction close to one end face of the magnetic body 1a facing in the axial direction and the flange 2c of the magnetic body 2a, 2b is formed. The axial distance d between the facing portions 1b and 2b is set to 1 mm or less.

また、前記環状の固定体3は、第1の実施形態のものと同様に、磁性材料で形成されたコ字断面の枠体7aの内側に導線7bを巻いた電磁石7とされ、この電磁石7が各磁性体1a、2aの対向部1b、2bと反対側の端面と軸方向で近接して対向するように配置されている。この電磁石7と各磁性体1a、2a間の軸方向の間隔eも1mm以下に設定されている。したがって、電磁石7の導線7bに励磁電流を流すと、図6中に矢印で示すように、コ字断面の枠体7aと各磁性体1a、2aを周回するように、励磁電流の大きさに応じた磁束の強さで磁気回路が形成される。   Similarly to the first embodiment, the annular fixed body 3 is an electromagnet 7 in which a conducting wire 7b is wound inside a frame body 7a having a U-shaped cross section formed of a magnetic material. Are arranged so as to face each other close to the end surface of each magnetic body 1a, 2a opposite to the facing portions 1b, 2b in the axial direction. An axial distance e between the electromagnet 7 and the magnetic bodies 1a and 2a is also set to 1 mm or less. Therefore, when an exciting current is passed through the conducting wire 7b of the electromagnet 7, the magnitude of the exciting current is increased so as to go around the U-shaped frame 7a and the magnetic bodies 1a and 2a as shown by arrows in FIG. A magnetic circuit is formed with the corresponding magnetic flux intensity.

図7(a)、(b)に示すように、前記各磁性体1a、2aの対向部1b、2bは、周方向で互いに等しいピッチで突出するように、周方向で5箇所ずつに形成され、各対向部1b、2bの周方向間隔Sと周方向長さLとの各比S/Lは1.0とされている。図示は省略するが、磁気回路の磁束は、各対向部1b、2bを軸方向へ回転方向と直角に横切り、第1回転体1のプーリ4に入力される回転トルクが第2回転体2に伝達される。また、2つの回転体1,2に回転位相差が生じると、この各対向部1b、2bを横切る磁束が回転方向と傾き、回転位相差を解消するようにトルクが発生する。   As shown in FIGS. 7A and 7B, the opposing portions 1b and 2b of the magnetic bodies 1a and 2a are formed at five locations in the circumferential direction so as to protrude at the same pitch in the circumferential direction. The ratio S / L between the circumferential interval S and the circumferential length L of the facing portions 1b and 2b is set to 1.0. Although illustration is omitted, the magnetic flux of the magnetic circuit crosses each facing portion 1b, 2b in the axial direction at right angles to the rotation direction, and the rotational torque input to the pulley 4 of the first rotating body 1 is applied to the second rotating body 2. Communicated. Further, when a rotational phase difference is generated between the two rotating bodies 1 and 2, the magnetic flux crossing the opposing portions 1b and 2b is inclined with respect to the rotational direction, and torque is generated so as to eliminate the rotational phase difference.

上述した各実施形態では、回転トルクが入力されるプーリを第1回転体側に設けたが、プーリは第2回転体側に設けることもでき、回転トルクを出力するプーリとすることもできる。   In each of the above-described embodiments, the pulley to which rotational torque is input is provided on the first rotating body side. However, the pulley can also be provided on the second rotating body side, and can be a pulley that outputs rotational torque.

上述した各実施形態では、固定体の電磁石を各回転体の互いに対向する磁性体と軸方向で近接させて対向させたが、電磁石はこれらの対向する磁性体と半径方向で近接させて対向させることもできる。また、各回転体の磁性体で形成した対向部位を周方向で5箇所ずつに設けたが、これらの対向部位は5箇所に限定されることはなく、任意に設定することができる。   In each of the embodiments described above, the electromagnet of the fixed body is opposed to the opposing magnetic body of each rotating body in the axial direction, but the electromagnet is opposed to the opposing magnetic body in the radial direction. You can also. Moreover, although the opposing site | part formed with the magnetic body of each rotary body was provided in every 5 places in the circumferential direction, these opposing site | parts are not limited to 5 places, It can set arbitrarily.

1 第1回転体
2 第2回転体
1a、2a 磁性体
1b、2b 対向部
2c フランジ
3 固定体
4 プーリ
5 転がり軸受
6 すべり軸受
7 電磁石
7a 枠体
7b 導線
DESCRIPTION OF SYMBOLS 1 1st rotary body 2 2nd rotary body 1a, 2a Magnetic body 1b, 2b Opposing part 2c Flange 3 Fixed body 4 Pulley 5 Rolling bearing 6 Slide bearing 7 Electromagnet 7a Frame body 7b Conductor

Claims (7)

2つの回転体を同軸上で相対回転可能に配置し、一方の回転体にプーリを設けて、回転体間を非接触として回転体間でトルクを伝達するプーリ構造体において、前記2つの回転体に、半径方向または軸方向で互いに対向して、周方向で間歇的に近接する対向部位を設けて、少なくともこれらの対向部位を磁性体で形成し、前記2つの回転体と同軸上で回転を固定した固定体に、前記2つの回転体の各対向部位を形成する磁性体と半径方向または軸方向で近接して対向するように電磁石を設けて、この電磁石と前記2つの回転体の各磁性体との間で磁気回路を形成し、この磁気回路を流れる磁束によって、前記回転体間でトルクを伝達することを特徴とするプーリ構造体。   In a pulley structure in which two rotators are arranged coaxially and are relatively rotatable, a pulley is provided on one of the rotators, and torque is transmitted between the rotators without contact between the rotators, the two rotators Are provided with opposing portions that are opposed to each other in the radial direction or the axial direction and that are intermittently close to each other in the circumferential direction, and at least these opposing portions are formed of a magnetic material, and rotate coaxially with the two rotating bodies. An electromagnet is provided on the fixed fixed body so as to face the magnetic body forming the opposing portions of the two rotating bodies in the radial direction or in the axial direction, and each magnet of the electromagnet and the two rotating bodies is provided. A pulley structure characterized in that a magnetic circuit is formed with a body, and torque is transmitted between the rotating bodies by a magnetic flux flowing through the magnetic circuit. 前記周方向で間歇的に近接する2つの回転体の各対向部位を、周方向で互いに等しいピッチで設けた請求項1に記載のプーリ構造体。   The pulley structure according to claim 1, wherein the opposing portions of the two rotating bodies that are intermittently close in the circumferential direction are provided at equal pitches in the circumferential direction. 前記周方向で互いに等しいピッチで設けた2つの回転体の各対向部位の周方向間隔Sと周方向長さLとの比S/Lを0.8〜1.2の範囲とした請求項2に記載のプーリ構造体。   The ratio S / L between the circumferential interval S and the circumferential length L of each facing portion of two rotating bodies provided at equal pitches in the circumferential direction is set in a range of 0.8 to 1.2. The pulley structure described in 1. 前記各対向部位の周方向間隔Sと周方向長さLとの比S/Lを1.0とした請求項3に記載のプーリ構造体。   The pulley structure according to claim 3, wherein a ratio S / L between a circumferential interval S and a circumferential length L of each of the opposing portions is 1.0. 前記2つの回転体の対向部位間の間隔dを1mm以下とした請求項1乃至4のいずれかに記載のプーリ構造体。   The pulley structure according to any one of claims 1 to 4, wherein a distance d between opposing portions of the two rotating bodies is 1 mm or less. 前記2つの回転体の各対向部位と、これらと対向する前記電磁石との間隔eを1mm以下とした請求項1乃至5のいずれかに記載のプーリ構造体。   The pulley structure according to any one of claims 1 to 5, wherein a distance e between each facing portion of the two rotating bodies and the electromagnet facing the two rotating bodies is 1 mm or less. 前記2つの回転体の各対向部位と前記電磁石とを軸方向で対向させた請求項1乃至6のいずれかに記載のプーリ構造体。   The pulley structure according to any one of claims 1 to 6, wherein the opposing portions of the two rotating bodies and the electromagnet are opposed in the axial direction.
JP2010272932A 2010-12-07 2010-12-07 Pulley structure Pending JP2012122532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272932A JP2012122532A (en) 2010-12-07 2010-12-07 Pulley structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272932A JP2012122532A (en) 2010-12-07 2010-12-07 Pulley structure

Publications (1)

Publication Number Publication Date
JP2012122532A true JP2012122532A (en) 2012-06-28

Family

ID=46504188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272932A Pending JP2012122532A (en) 2010-12-07 2010-12-07 Pulley structure

Country Status (1)

Country Link
JP (1) JP2012122532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019236A (en) * 2012-07-16 2014-02-03 Denso Corp Blower unit for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019236A (en) * 2012-07-16 2014-02-03 Denso Corp Blower unit for air conditioner

Similar Documents

Publication Publication Date Title
JP7147270B2 (en) transmission and actuator
JP6265569B2 (en) Annular magnetic pole member and magnetic wave gear device
JP2006292423A (en) Rotation angle sensor and torque sensor using it, steering angle sensor, steering device and power steering device
JP2010243407A (en) Torque sensor
JP2014029328A (en) Rotary transmission device attached with torque measurement device
US8247942B2 (en) Multi-winding homopolar electric machine
JP2014033588A (en) Resolver, motor and stator
EP3783778A1 (en) Dynamo-electric machine, and drive device for vehicle comprising dynamo-electric machine
JP2007228735A (en) Torque transmission device
JP2012122532A (en) Pulley structure
KR20150030040A (en) Stator core and motor including stator core
JP6427470B2 (en) Variable gap motor
JP2018201314A (en) Power generation device for bicycle
JP5175232B2 (en) Pulley structure
JP2010243399A (en) Torque sensor
JP2013090437A (en) Electric motor
JP5609514B2 (en) Ring coil motor
WO2012086613A1 (en) Rotating electrical machine
CN107628185B (en) Torque force detector
JP5643710B2 (en) Pulley structure
JP2015090313A (en) Rotary transmission device attached with torque measurement device
JP6654025B2 (en) Sensor for torque measurement and bearing with sensor
WO2017208626A1 (en) Valve timing control device
WO2023276488A1 (en) Rotation detector
JP2005308443A (en) Noncontact type torque sensor