JP2012121999A - Resin film, and solar cell module - Google Patents

Resin film, and solar cell module Download PDF

Info

Publication number
JP2012121999A
JP2012121999A JP2010274102A JP2010274102A JP2012121999A JP 2012121999 A JP2012121999 A JP 2012121999A JP 2010274102 A JP2010274102 A JP 2010274102A JP 2010274102 A JP2010274102 A JP 2010274102A JP 2012121999 A JP2012121999 A JP 2012121999A
Authority
JP
Japan
Prior art keywords
group
polymer
layer
resin film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274102A
Other languages
Japanese (ja)
Inventor
Akira Hatakeyama
晶 畠山
Kazumichi Amagasaki
一路 尼崎
Yukie Watanabe
ゆきえ 渡邊
Kazufumi Furukawa
和史 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010274102A priority Critical patent/JP2012121999A/en
Priority to PCT/JP2011/076320 priority patent/WO2012077470A1/en
Publication of JP2012121999A publication Critical patent/JP2012121999A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin film having an ultraviolet light-blocking effect in a wide range including long wave ultraviolet light (UV-A) at around 400 nm, and maintaining excellent light stability performance for a long period of time.SOLUTION: This resin film includes a support and a polymer layer installed at least on the one side of the support, and containing a compound expressed by general formula (1) [wherein, R, R, R, Rand Rare each a monovalent substituent other than OH (wherein, at least one of the Rthrough Ris a substituent of which σp value of the Hammett rule is positive) or H; and R, R, R, R, R, R, Rand Rare each H or a monovalent substituent], and a polymer.

Description

本発明は、樹脂フィルム及び太陽電池モジュールに関する。   The present invention relates to a resin film and a solar cell module.

樹脂フィルムは、従来から種々の分野で用いられており、近年では太陽電池の分野にも用いられるようになっている。
太陽電池は、発電時に二酸化炭素の排出がなく環境負荷が小さい発電方式であり、近年急速に普及が進んでいる。太陽電池モジュールは、通常、太陽光が入射する側に配置される透明性のガラス基板と、太陽光が入射する側とは反対側(裏面側)に配置される裏面保護用のいわゆるバックシートとの間に、太陽電池セルが挟まれた構造を有している。ガラスと太陽電池セルとの間、及び太陽電池セルとバックシートとの間は、一般にEVA(エチレン−ビニルアセテート)樹脂などの封止剤を用いて封止されている。
Resin films have been conventionally used in various fields, and in recent years, they have also been used in the field of solar cells.
Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and have been rapidly spreading in recent years. The solar cell module is usually a transparent glass substrate disposed on the side on which sunlight is incident, and a so-called back sheet for back surface protection disposed on the side opposite to the side on which sunlight is incident (back side) A solar battery cell is sandwiched between them. Between glass and a photovoltaic cell and between a photovoltaic cell and a back sheet are generally sealed using a sealing agent such as EVA (ethylene-vinyl acetate) resin.

バックシートは、太陽電池モジュールの裏面からの水分の浸入を防止する働きを有するものであり、コスト等の観点からポリエステルが用いられるようになってきている。ポリエステルを用いたバックシートとしては、例えばポリエステル支持体の太陽光が入射する側に、反射性能を持たせた着色層や封止材に対する易接着性の層を付与したものが知られている(例えば、特許文献1参照)。   The back sheet has a function of preventing moisture from entering from the back surface of the solar cell module, and polyester has been used from the viewpoint of cost and the like. As a back sheet using polyester, for example, a polyester support that is provided with a colored layer having reflective performance or an easily adhesive layer for a sealing material on the side of sunlight incident on a polyester support is known ( For example, see Patent Document 1).

ポリエステルを用いたバックシートは、機械強度が大きく安価である点で好適なものと考えられている。ところが、屋外などで長期に亘り紫外線(UV)等の光に曝される環境下では、紫外線等によりポリエステルが劣化してひび割れを生じたりポリエステル上に塗布形成された塗布層が剥離する等の問題が生じる場合がある。   A back sheet using polyester is considered to be suitable in that it has high mechanical strength and is inexpensive. However, under the environment where it is exposed to light such as ultraviolet rays (UV) for a long time, such as outdoors, the polyester deteriorates due to ultraviolet rays and cracks occur, and the coating layer formed on the polyester peels off. May occur.

このような問題に関連して、ポリエステル支持体に紫外線吸収剤を含有させる技術が開示されている(例えば、特許文献2参照)。   In relation to such a problem, a technique for incorporating a UV absorber into a polyester support has been disclosed (see, for example, Patent Document 2).

紫外線吸収剤としては、無機系及び有機系の紫外線吸収剤が知られている。このうち、有機系の紫外線吸収剤は、無機系の紫外線吸収剤に比べて、化合物構造の設計自由度が高いことから、分子構造を工夫することにより様々な吸収波長のものが得られる。そのため、従来から種々の有機系紫外線吸収剤が提案されており、その一例として、トリアゾール系の紫外線吸収剤が開示されている(例えば、特許文献3参照)。また、特定の位置にアルコキシ基及びヒドロキシ基を有するトリスアリール−s−トリアジンに関する開示がある(例えば、特許文献4参照)。ところが、極大吸収波長が長波紫外線領域にあるものは、耐光性が悪い傾向があり、紫外線遮蔽効果は時間とともに減少する。そのため、紫外線曝光下に長期間置かれる使用形態では、遮蔽効果が維持できないために長期耐久性を大きく向上できない状況にあった。   As the ultraviolet absorber, inorganic and organic ultraviolet absorbers are known. Among these, organic ultraviolet absorbers have a higher degree of design freedom in compound structure than inorganic ultraviolet absorbers, and therefore, various absorption wavelengths can be obtained by devising the molecular structure. For this reason, various organic ultraviolet absorbers have been proposed, and triazole ultraviolet absorbers have been disclosed as an example (for example, see Patent Document 3). In addition, there is disclosure relating to trisaryl-s-triazine having an alkoxy group and a hydroxy group at a specific position (see, for example, Patent Document 4). However, those having a maximum absorption wavelength in the long wave ultraviolet region tend to have poor light resistance, and the ultraviolet shielding effect decreases with time. For this reason, in a usage form that is left for a long time under ultraviolet light exposure, the shielding effect cannot be maintained, so that the long-term durability cannot be greatly improved.

特に近年注目されている太陽電池等は、屋外で長時間太陽光の下に曝される使用形態が通常であり、長期経時で次第に劣化が進行すると、発電性能の低下を来たす。したがって、UV−A領域(400〜315nm)に至る広い紫外域で長期に亘って安定したUV遮蔽効果を示すような化合物が求められる。   In particular, solar cells and the like that have attracted attention in recent years are usually used in the form of being exposed to sunlight outdoors for a long time, and when the deterioration gradually progresses over a long period of time, the power generation performance decreases. Accordingly, there is a demand for a compound that exhibits a stable UV shielding effect over a long period of time in a wide ultraviolet region extending to the UV-A region (400 to 315 nm).

一方、従来から用いられているベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤は、比較的耐光性がよく、濃度や膜厚を大きくすれば、長波長領域まで比較的クリアに紫外線をカットすることができる(例えば、特許文献5〜6参照)。   On the other hand, conventional benzophenone and benzotriazole UV absorbers have relatively good light resistance, and if the concentration and film thickness are increased, UV rays can be cut relatively clearly up to the long wavelength region. (For example, refer to Patent Documents 5 to 6).

特開2007−118267号公報JP 2007-118267 A 特開2009−188105号公報JP 2009-188105 A 特表2002−524452号公報Special Table 2002-524442 特許第3965631号Japanese Patent No. 3965631 特開平6−145387号公報JP-A-6-145387 特開2003−177235号公報JP 2003-177235 A

上記のように、従来、太陽電池等のように紫外線等に長時間連続的に曝されるような使用形態では、400nm付近の長波紫外線(UV−A)領域まで吸収が行なえず、紫外線吸収剤を用いても長期使用に耐える耐久性能を確保できるに至っていないのが現状である。太陽光は、その受光面のみならず、側部や裏面にも反射等により回り込むため、路面に配されるバックシートの耐久性にも大きな影響を与える。そのため、UV−A領域を含む広い紫外域で長期に亘って安定したUV遮蔽効果を保てる技術の確立に対する要求は高い。   As described above, conventionally, in a use form such as a solar cell that is continuously exposed to ultraviolet rays or the like for a long time, absorption cannot be performed up to a long-wave ultraviolet (UV-A) region near 400 nm, and an ultraviolet absorber. Even if it is used, it has not yet been able to secure the durability performance that can withstand long-term use. Since sunlight circulates not only on the light receiving surface but also on the side and the back surface due to reflection or the like, it greatly affects the durability of the back sheet disposed on the road surface. Therefore, there is a high demand for establishment of a technique capable of maintaining a stable UV shielding effect over a long period in a wide ultraviolet region including the UV-A region.

一方、紫外線吸収剤は一般に樹脂等と混合して用いられるが、上記のように紫外線吸収剤の濃度やそれを含む膜の厚みを増す方法では、膜厚は数十μm程度が限界であり、この範囲で長波長領域までカットするには通常以上に高濃度に紫外線吸収剤を添加しなければならない。しかしながら、単に高濃度に添加するのみでは、紫外線吸収剤の析出や長期使用によるブリードアウトを招くほか、臭気性が悪化する課題もある。
また、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤は、溶解性が低いものが多く、高濃度で樹脂等に混ぜて塗布することは難しいといった課題もある。
On the other hand, the ultraviolet absorber is generally used by mixing with a resin or the like. However, in the method of increasing the concentration of the ultraviolet absorber and the thickness of the film including the ultraviolet absorber as described above, the film thickness is limited to about several tens of μm. In order to cut to a long wavelength region in this range, it is necessary to add an ultraviolet absorber at a concentration higher than usual. However, simply adding to a high concentration causes precipitation of the UV absorber and bleed-out due to long-term use, and also has a problem of deteriorating odor.
Further, many benzophenone-based and benzotriazole-based UV absorbers have low solubility, and there is a problem that it is difficult to mix and apply the resin in a high concentration.

本発明は、上記に鑑みなされたものであり、400nm付近の長波紫外線(UV−A)領域を含む広い範囲で紫外線遮蔽効果を有し、長期に亘り優れた耐光性能を維持する樹脂フィルム、及び設置環境に関わらず、長期に亘り安定的な発電性能が得られる太陽電池モジュールを提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, a resin film having an ultraviolet shielding effect in a wide range including a long-wave ultraviolet (UV-A) region near 400 nm, and maintaining excellent light resistance over a long period of time, and An object is to provide a solar cell module capable of obtaining stable power generation performance over a long period of time regardless of the installation environment, and to achieve the object.

前記課題を達成するための具体的手段は以下の通りである。
<1> 支持体と、該支持体の少なくとも一方(好ましくは、支持体の太陽電池素子が配置される側と反対側の裏面)に設けられ、下記一般式(1)で表される化合物及びポリマーを含有するポリマー層と、を有する樹脂フィルムである。
Specific means for achieving the above object are as follows.
<1> A support and a compound represented by the following general formula (1), which is provided on at least one of the support (preferably, the back of the support opposite to the side on which the solar cell element is disposed) And a polymer layer containing a polymer.

前記一般式(1)において、R1a、R1b、R1c、R1d、及びR1eは、各々独立に、水素原子、又はOHを除く1価の置換基を表し、R1a〜R1eの少なくとも1つはハメット則のσp値が正である基であり、該置換基は互いに結合して環を形成してもよい。R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pは、各々独立に、水素原子、又は1価の置換基を表し、該置換基は互いに結合して環を形成してもよい。 In the general formula (1), R 1a , R 1b , R 1c , R 1d , and R 1e each independently represent a monovalent substituent other than a hydrogen atom or OH, and each of R 1a to R 1e At least one is a group having a positive Hammett's σp value, and the substituents may be bonded to each other to form a ring. R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p each independently represent a hydrogen atom or a monovalent substituent, and the substituents are bonded to each other A ring may be formed.

<2> 前記一般式(1)で表される化合物の前記ポリマー層中における含有量が0.2g/m以上5.0g/m以下である前記<1>に記載の樹脂フィルムである。
<3> 前記R1a、R1b、R1c、R1d、R1e、R1g、R1h、R1i、R1j、R1k、R1m、R1n、R1pで表される1価の置換基は、ハロゲン原子、炭素数1〜20のアルキル基、シアノ基、カルボキシル基、アルキル部位の炭素数が1〜20のアルコキシカルボニル基、カルバモイル基、アルキル部位の炭素数が1〜20のアルキルカルボニル基、ニトロ基、アミノ基、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eを除く)、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、スルファモイル基、チオシアネート基、又はアルキル部位の炭素数が1〜20のアルキルスルホニル基である前記<1>又は前記<2>に記載の樹脂フィルムである。
<4> 前記R1b、R1c及びR1dの少なくとも一つは、ハメット則のσp値が正である置換基である前記<1>〜前記<3>のいずれか1つに記載の樹脂フィルムである。
<5>
前記一般式(1)中のR1b、R1c、及びR1dの少なくとも1つは、ハメット則のσp値が0.3〜1.2の範囲である前記<1>〜前記<4>のいずれか1つに記載の樹脂フィルムである。
<6> 前記ハメット則のσp値が正である基は、COOR、CONR 、CN、CF、ハロゲン原子、NO、及びSOMより選択される基〔R及びRは、各々独立に、水素原子、又は1価の置換基を表し、Mは水素原子又はアルカリ金属を表す。〕である前記<1>〜前記<5>のいずれか1つに記載の樹脂フィルムである。
<7> 前記一般式(1)中におけるR1a、R1b、R1d、R1e、R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pが水素原子であり、R1cがCOOR〔Rは1価の置換基を表す。〕である前記<1>〜前記<6>のいずれか1つに記載の樹脂フィルムである。
<2> The resin film according to <1>, wherein a content of the compound represented by the general formula (1) in the polymer layer is 0.2 g / m 2 or more and 5.0 g / m 2 or less. .
<3> Monovalent substitution represented by R 1a , R 1b , R 1c , R 1d , R 1e , R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , R 1p The group includes a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cyano group, a carboxyl group, an alkoxycarbonyl group having 1 to 20 carbon atoms in the alkyl moiety, a carbamoyl group, and an alkylcarbonyl having 1 to 20 carbon atoms in the alkyl moiety. Group, nitro group, amino group, hydroxy group (excluding R 1a , R 1b , R 1c , R 1d , R 1e ), C 1-20 alkoxy group, C 6-20 aryloxy group, sulfamoyl group , A thiocyanate group, or an alkylsulfonyl group having 1 to 20 carbon atoms in the alkyl moiety, <1> or <2>.
<4> The resin film according to any one of <1> to <3>, wherein at least one of R 1b , R 1c, and R 1d is a substituent having a positive Hammett's σp value. It is.
<5>
In the general formula (1), at least one of R 1b , R 1c , and R 1d is the range of <1> to <4>, wherein the Hammett's rule σp value is in the range of 0.3 to 1.2. It is a resin film as described in any one.
<6> A group having a positive σp value according to the Hammett rule is a group selected from COOR r , CONR s 2 , CN, CF 3 , a halogen atom, NO 2 , and SO 3 M [R r and R s are , Each independently represents a hydrogen atom or a monovalent substituent, and M represents a hydrogen atom or an alkali metal. The resin film according to any one of <1> to <5>.
<7> In the general formula (1), R 1a , R 1b , R 1d , R 1e , R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p are hydrogen atoms. R 1c is COOR r [R r represents a monovalent substituent. The resin film according to any one of <1> to <6>.

<8> 前記支持体が、ポリエステル基材である前記<1>〜前記<7>のいずれか1つに記載の樹脂フィルムである。
<9> 前記支持体上の前記ポリマー層の上に更に、ポリマーを含み、前記一般式(1)で表される化合物の含有量がバインダーの総量に対して1.0質量%以下である保護ポリマー層を有する前記<1>〜前記<8>のいずれか1つに記載の樹脂フィルムである。
<10> 120℃、100%RHの条件で50時間保存した後の破断伸びが、保存する前の破断伸びに対して50%以上である前記<1>〜前記<9>のいずれか1つに記載の樹脂フィルムである。
<11> 前記ポリマー層及び前記保護ポリマー層の少なくとも一方は、前記ポリマーの少なくとも一種として、フッ素系ポリマー及びシリコーン系ポリマーから選ばれるポリマーを含有する前記<1>〜前記<10>のいずれか1つに記載の樹脂フィルムである。
<12> 太陽光が入射する透明性の基材と、太陽電池素子と、前記太陽電池素子の前記基材が配された側と反対側に設けられた前記<1>〜前記<11>のいずれか1つに記載の樹脂フィルムとを備えた太陽電池モジュールである。
<8> The resin film according to any one of <1> to <7>, wherein the support is a polyester base material.
<9> A protection further comprising a polymer on the polymer layer on the support, wherein the content of the compound represented by the general formula (1) is 1.0% by mass or less based on the total amount of the binder. It is a resin film as described in any one of said <1>-<8> which has a polymer layer.
<10> Any one of the above <1> to <9>, wherein the elongation at break after storage for 50 hours at 120 ° C. and 100% RH is 50% or more with respect to the elongation at break before storage It is a resin film as described in above.
<11> Any one of the above <1> to <10>, wherein at least one of the polymer layer and the protective polymer layer contains a polymer selected from a fluorine-based polymer and a silicone-based polymer as at least one of the polymers. It is a resin film as described in one.
<12> The above-described <1> to <11>, which are provided on the side opposite to the side on which the base material is disposed of the transparent base material on which sunlight is incident, the solar cell element, and the solar cell element. It is a solar cell module provided with the resin film as described in any one.

本発明によれば、400nm付近の長波紫外線(UV−A)領域を含む広い範囲で紫外線遮蔽効果を有し、長期に亘り優れた耐光性能を維持する樹脂フィルムを提供することができる。また、
本発明によれば、設置環境に関わらず、長期に亘り安定的な発電性能が得られる太陽電池モジュールを提供することができる。
According to the present invention, it is possible to provide a resin film that has an ultraviolet shielding effect in a wide range including a long wave ultraviolet (UV-A) region near 400 nm and maintains excellent light resistance over a long period of time. Also,
According to the present invention, it is possible to provide a solar cell module capable of obtaining stable power generation performance over a long period of time regardless of the installation environment.

太陽電池モジュールの構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of a solar cell module.

以下、本発明の樹脂フィルム及び太陽電池モジュールについて、詳細に説明する。
本発明の樹脂フィルムは、例えば、支持体の一方にポリマー層が設けられた太陽電池用バックシートに構成することができる。その場合、必要に応じて、例えば支持体のポリマー層が設けられた側と反対側に着色層等の他の層を有してもよい。
Hereinafter, the resin film and solar cell module of the present invention will be described in detail.
The resin film of this invention can be comprised in the solar cell backsheet by which the polymer layer was provided in one side of the support body, for example. In that case, you may have other layers, such as a colored layer, for example in the opposite side to the side in which the polymer layer of the support body was provided as needed.

<樹脂フィルム>
本発明の樹脂フィルムは、支持体と、該支持体の少なくとも一方に設けられ、以下に示す一般式(1)で表される化合物とポリマーとを含有するポリマー層とを設けて構成されたものである。本発明の樹脂フィルムは、支持体及びポリマー層のみで構成されてもよいし、支持体の面上又はポリマー層の面上に、必要に応じて、ポリマー層とは別の、例えば着色層、易接着性層、下塗り層等の他の層を更に有していてもよい。他の層は1層であってもよいし、2層以上であってもよい。
<Resin film>
The resin film of the present invention comprises a support and a polymer layer provided on at least one of the supports and containing a compound represented by the following general formula (1) and a polymer. It is. The resin film of the present invention may be composed only of a support and a polymer layer, or on the surface of the support or the surface of the polymer layer, if necessary, for example, a colored layer, You may further have other layers, such as an easily bonding layer and undercoat. The other layer may be a single layer or two or more layers.

本発明においては、支持体の少なくとも一方の面(例えば太陽電池用バックシートに構成する場合は、好ましくは支持体の太陽電池素子が配置される側と反対側の裏面)に設けられるポリマー層の紫外線吸収剤として特定構造を有する有機紫外線吸収剤を含有することで、400nm付近の長波紫外線(UV−A)領域を含む広い範囲で紫外線遮蔽効果が得られ、長期に亘って耐光性能が保持されるので、特に太陽光の下に長期に亘り継続的に置かれる使用形態において長期耐久性が飛躍的に向上する。本発明の樹脂フィルムは、例えば、太陽電池の用途に適用され、太陽電池用バックシートとして用いられた場合には、太陽電池用バックシートの長期耐久性が飛躍的に向上する。これにより、太陽電池モジュールを構成して屋外などの紫外線に長時間曝される使用態様に置かれた場合でも、長期に亘って安定的に発電性能を確保することができる。   In the present invention, the polymer layer provided on at least one surface of the support (for example, in the case of constituting a back sheet for a solar cell, preferably the back surface of the support opposite to the side where the solar cell element is disposed). By containing an organic ultraviolet absorber having a specific structure as an ultraviolet absorber, an ultraviolet shielding effect is obtained in a wide range including a long-wave ultraviolet (UV-A) region near 400 nm, and light resistance is maintained over a long period of time. Therefore, long-term durability is drastically improved especially in a usage pattern that is continuously placed under sunlight for a long period of time. For example, when the resin film of the present invention is applied to a solar cell application and used as a solar cell backsheet, the long-term durability of the solar cell backsheet is dramatically improved. Thus, even when the solar cell module is configured and placed in a usage mode where it is exposed to ultraviolet rays such as outdoors for a long time, the power generation performance can be stably ensured over a long period of time.

本発明の樹脂フィルムは、120℃、100%RHの条件で50時間保存した後の破断伸びの、保存前の破断伸びに対する比が50%以上であることが好ましい(以下、当該条件により湿熱処理した樹脂フィルムの処理前後における破断伸びの保持率を、単に「破断伸び保持率」ともいう。)。破断伸び保持率が50%以上であることで、加水分解に伴う変化が抑えられ、長期使用の際に被着物との密着界面での密着状態が安定的に保持されることにより、経時での剥離等が防止される。これにより、例えば屋外等の高温、高湿環境や曝光下に長期に亘り置かれる場合でも、高い耐久性能を示す。
本発明における破断伸び保持率は、ポリマー支持体とポリマー層と(必要に応じて保護ポリマー層、着色層等の他の層と)が設けられた形態での保持率である。
本発明の樹脂フィルムの破断伸び保持率は、上記同様の理由から、60%以上であることがより好ましく、70%以上であることが更に好ましい。
In the resin film of the present invention, the ratio of the elongation at break after storage for 50 hours at 120 ° C. and 100% RH to the elongation at break before storage is preferably 50% or more (hereinafter referred to as wet heat treatment depending on the conditions). The retention of elongation at break before and after the treatment of the resin film is also simply referred to as “break elongation retention”.) By maintaining the elongation at break at 50% or more, changes due to hydrolysis are suppressed, and the adhesion state at the adhesion interface with the adherend is stably maintained during long-term use. Separation is prevented. Thereby, even when it is left for a long time under high temperature, high humidity environment, and exposure, for example, outdoors, high durability performance is exhibited.
The breaking elongation retention in the present invention is a retention in a form in which a polymer support and a polymer layer (and other layers such as a protective polymer layer and a colored layer as necessary) are provided.
For the same reason as described above, the breaking elongation retention of the resin film of the present invention is more preferably 60% or more, and even more preferably 70% or more.

前記破断伸度保持率[%]は、下記の測定方法で測定される破断伸びの測定値L及びLから下記式により求められる値である。
破断伸び保持率[%]=(L/L)×100
具体的には、樹脂フィルムを幅10mm×長さ200mmに裁断して、測定用のサンプル片A及びBを用意する。このうち、サンプル片Aに対して、25℃、60%RHの雰囲気で24時間調湿を施し、テンシロン(ORIENTEC製、RTC−1210A)により、サンプル片の延伸長さ:10cm、引っ張り速度:20mm/分の条件にて引っ張り試験を行ない、得られたサンプル片Aの破断伸びをLとする。また別途、サンプル片Bに対して、120℃、100%RHの雰囲気で50時間湿熱処理を施し、サンプル片Aと同様に引っ張り試験を行ない、得られたサンプル片Bの破断伸びをLとする。
破断伸び保持率の調整は、支持体の厚み、例えば支持体がポリエステルの場合はそのカルボキシル基含量、熱固定温度、延伸倍率などにより行なえる。
The breaking elongation retention [%] is a value obtained by the following formula from the measured values L 0 and L 1 of breaking elongation measured by the following measuring method.
Elongation at break [%] = (L 1 / L 0 ) × 100
Specifically, the resin film is cut into a width of 10 mm and a length of 200 mm to prepare sample pieces A and B for measurement. Among these, the sample piece A was subjected to humidity control in an atmosphere of 25 ° C. and 60% RH for 24 hours, and with Tensilon (ORIENTEC, RTC-1210A), the stretch length of the sample piece: 10 cm, the pulling speed: 20 mm / subjected to tensile test under partial conditions, the elongation at break of the resultant sample piece a to L 0. Separately, the sample piece B was subjected to a wet heat treatment in an atmosphere of 120 ° C. and 100% RH for 50 hours, a tensile test was performed in the same manner as the sample piece A, and the elongation at break of the obtained sample piece B was designated as L 1 . To do.
The elongation at break can be adjusted by adjusting the thickness of the support, for example, when the support is polyester, the carboxyl group content, the heat setting temperature, the draw ratio, and the like.

−支持体−
本発明の樹脂フィルムは、支持体を設けて構成されている。
支持体としては、従来から知られている支持基材を適宜選択することができるが、ポリマー層に特定の紫外線吸収剤を用いることによる耐光性能の向上効果をより一層高める観点からポリマー基材が好ましい。該ポリマー基材としては、例えば、ポリエステル、ポリプロピレンやポリエチレンなどのポリオレフィン、又はポリフッ化ビニルなどのフッ素系ポリマー等を用いた基材が挙げられる。これらの中では、コストや機械強度などの点から、ポリエステル基材が好ましい。
-Support-
The resin film of the present invention is configured by providing a support.
As the support, a conventionally known support substrate can be appropriately selected. From the viewpoint of further improving the light resistance improvement effect by using a specific ultraviolet absorber in the polymer layer, the polymer substrate is preferable. Examples of the polymer base material include base materials using polyester, polyolefins such as polypropylene and polyethylene, or fluorine-based polymers such as polyvinyl fluoride. Among these, a polyester base material is preferable from the viewpoint of cost and mechanical strength.

本発明における支持体として用いられるポリエステルとしては、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレートなどを挙げることができる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン−2,6−ナフタレートが特に好ましい。   The polyester used as the support in the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Among these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.

前記ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、前記ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。   The polyester may be a homopolymer or a copolymer. Further, the polyester may be blended with a small amount of another type of resin such as polyimide.

本発明におけるポリエステルを重合する際には、カルボキシル基含量を所定の範囲以下に抑える観点から、Sb系、Ge系、Ti系の化合物を触媒として用いることが好ましく、中でも特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物をTi元素換算値が1ppm以上30ppm以下、より好ましくは3ppm以上15ppm以下の範囲となるように触媒として用いることにより重合する態様が好ましい。Ti系化合物の使用量がTi元素換算で前記範囲内であると、末端カルボキシル基を下記範囲に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。   When the polyester in the present invention is polymerized, it is preferable to use an Sb-based, Ge-based, or Ti-based compound as a catalyst from the viewpoint of keeping the carboxyl group content within a predetermined range, and among these, a Ti-based compound is particularly preferable. In the case of using a Ti-based compound, an embodiment is preferred in which the Ti-based compound is polymerized by using it as a catalyst so that the Ti element conversion value is in the range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm. When the amount of Ti compound used is within the above range in terms of Ti element, the terminal carboxyl group can be adjusted to the following range, and the hydrolysis resistance of the polymer substrate can be kept low.

Ti系化合物を用いたポリエステルの合成には、例えば、特公平8−301198号公報、特許第2543624号、特許第3335683号、特許第3717380号、特許第3897756号、特許第3962226号、特許第3979866号、特許第3996871号、特許第4000867号、特許第4053837号、特許第4127119号、特許第4134710号、特許第4159154号、特許第4269704号、特許第4313538号等に記載の方法を適用できる。   For the synthesis of polyester using a Ti-based compound, for example, Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 397756, Japanese Patent No. 39622626, Japanese Patent No. 39786666 No. 3, Patent No. 3,996,871, Patent No. 4000086, Patent No. 4053837, Patent No. 4,127,119, Patent No. 4,134,710, Patent No. 4,159,154, Patent No. 4,269,704, Patent No. 4,313,538 and the like can be applied.

ポリエステル中のカルボキシル基含量は50当量/t以下が好ましく、より好ましくは35当量/t以下である。カルボキシル基含量が50当量/t以下であると、耐加水分解性を保持し、湿熱経時したときの強度低下を小さく抑制することができる。カルボキシル基含量の下限は、ポリエステルに形成される層(例えば着色層)との間の接着性を保持する点で、2当量/tが望ましい。
ポリエステル中のカルボキシル基含量は、重合触媒種、製膜条件(製膜温度や時間)により調整することが可能である。
The carboxyl group content in the polyester is preferably 50 equivalents / t or less, more preferably 35 equivalents / t or less. When the carboxyl group content is 50 equivalents / t or less, hydrolysis resistance can be maintained, and a decrease in strength when subjected to wet heat aging can be suppressed to be small. The lower limit of the carboxyl group content is preferably 2 equivalents / t in terms of maintaining adhesion between the layer formed on the polyester (for example, a colored layer).
The carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time).

本発明におけるポリエステルは、重合後に固相重合されていることが好ましい。これにより、好ましいカルボキシル基含量を達成することができる。固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合には、特許第2621563号、特許第3121876号、特許第3136774号、特許第3603585号、特許第3616522号、特許第3617340号、特許第3680523号、特許第3717392号、特許第4167159号等に記載の方法を適用することができる。   The polyester in the present invention is preferably solid-phase polymerized after polymerization. Thereby, a preferable carboxyl group content can be achieved. Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time). Specifically, for solid phase polymerization, Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed. The method described in Japanese Patent No. 4167159 can be applied.

固相重合の温度は、170℃以上240℃以下が好ましく、より好ましくは180℃以上230℃以下であり、さらに好ましくは190℃以上220℃以下である。また、固相重合時間は、5時間以上100時間以下が好ましく、より好ましくは10時間以上75時間以下であり、さらに好ましくは15時間以上50時間以下である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。   The temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower. The solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours. The solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.

本発明におけるポリエステル基材は、例えば、上記のポリエステルをフィルム状に溶融押出を行なった後、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムを「ガラス転移温度(Tg)〜(Tg+60)℃」で長手方向に1回もしくは2回以上合計の倍率が3倍〜6倍になるよう延伸し、その後Tg〜(Tg+60)℃で幅方向に倍率が3〜5倍になるように延伸した2軸延伸フィルムであることが好ましい。
さらに、必要に応じて180〜230℃で1〜60秒間の熱処理を行なったものでもよい。
The polyester base material in the present invention is obtained by, for example, melt-extruding the above polyester into a film and cooling and solidifying it with a casting drum to form an unstretched film. This unstretched film is referred to as “glass transition temperature (Tg) to ( Tg + 60) ° C. ”is stretched once or twice or more in the longitudinal direction so that the total magnification is 3-6 times, and then the width is 3-5 times in the width direction at Tg− (Tg + 60) ° C. A stretched biaxially stretched film is preferred.
Furthermore, what was heat-processed for 1 to 60 second at 180-230 degreeC as needed may be used.

ポリマー基材(特にポリエステル基材)の厚みは、25〜300μm程度が好ましい。厚みは、25μm以上であると力学強度が良好であり、300μm以下であるとコスト的に有利である。
特にポリエステル基材は、厚みが増すに伴なって耐加水分解性が悪化し、長期使用に耐えない傾向にあり、本発明においては、厚みが120μm以上300μm以下であって、かつポリエステル中のカルボキシル基含量が2〜50当量/tである場合に、より湿熱耐久性の向上効果が奏される。
As for the thickness of a polymer base material (especially polyester base material), about 25-300 micrometers is preferable. If the thickness is 25 μm or more, the mechanical strength is good, and if it is 300 μm or less, it is advantageous in terms of cost.
In particular, the polyester base material has a tendency that the hydrolysis resistance deteriorates with increasing thickness and cannot endure long-term use. In the present invention, the thickness is 120 μm or more and 300 μm or less, and the carboxyl in the polyester When the group content is 2 to 50 equivalents / t, the effect of improving wet heat durability is further exhibited.

−ポリマー層−
本発明の樹脂フィルムは、前記支持体の一方又は両方の側に、(好ましくは塗布方法により)少なくとも一層のポリマー層を設けて構成されている。このポリマー層は、下記一般式(1)で表される化合物(紫外線吸収剤)とポリマーとを少なくとも含み、必要に応じて、さらに架橋剤や顔料、前記一般式(1)で表される化合物以外の紫外線吸収剤等の各種添加剤などの他の成分を用いて構成することができる。ポリマー層は、単層で設けられてもよいし、二層以上が設けられた態様でもよい。
-Polymer layer-
The resin film of the present invention is constituted by providing at least one polymer layer (preferably by a coating method) on one or both sides of the support. This polymer layer contains at least a compound represented by the following general formula (1) (ultraviolet absorber) and a polymer, and if necessary, a crosslinking agent, a pigment, and a compound represented by the general formula (1). It can comprise using other components, such as various additives, such as ultraviolet absorbers other than. The polymer layer may be provided as a single layer or may be provided with two or more layers.

(紫外線吸収剤)
本発明におけるポリマー層は、紫外線吸収剤として、下記一般式(1)で表される化合物の少なくとも一種を含有する。この紫外線吸収剤は、従来の紫外線吸収剤に比べてより長波の紫外線に吸収を持ち、400nm付近の長波紫外線(UV−A)領域を含む広い範囲で紫外線遮蔽効果が得られる。これにより、長期使用時において、従来に比べてより優れた耐光性能が保てる。
(UV absorber)
The polymer layer in this invention contains at least 1 type of the compound represented by following General formula (1) as a ultraviolet absorber. This ultraviolet absorber absorbs longer-wave ultraviolet rays than conventional ultraviolet absorbers, and provides an ultraviolet shielding effect in a wide range including a long-wave ultraviolet (UV-A) region around 400 nm. Thereby, in the long-term use, superior light resistance performance can be maintained as compared with the conventional case.

前記一般式(1)において、R1a、R1b、R1c、R1d、及びR1eは、各々独立に、水素原子、又はヒドロキシ基(OH基)を除く1価の置換基を表す。R1a〜R1eの少なくとも1つは、前記置換基のうち、ハメット則のσp値が正である置換基であり、該置換基は互いに結合して環を形成してもよい。 In the general formula (1), R 1a , R 1b , R 1c , R 1d , and R 1e each independently represent a hydrogen atom or a monovalent substituent other than a hydroxy group (OH group). At least one of R 1a to R 1e is a substituent having a positive Hammett's σp value among the substituents, and the substituents may be bonded to each other to form a ring.

1a、R1b、R1c、R1d、R1eで表される置換基のうち、1〜3個がハメット則のσp値が正である置換基を表すことが好ましく、1〜2個がハメット則のσp値が正である置換基を表すことがより好ましい。 Among the substituents represented by R 1a , R 1b , R 1c , R 1d , and R 1e , it is preferable that 1 to 3 represent a substituent having a positive Hammett's σp value, and 1 to 2 It is more preferable to represent a substituent having a positive Hammett's σp value.

前記一般式(1)における1価の置換基(以下、「置換基A」とする。)としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜20のアルキル基(例えばメチル、エチル)、炭素数6〜20のアリール基(例えばフェニル、ナフチル)、シアノ基、カルボキシル基、アルコキシカルボニル基(例えばメトキシカルボニル)、アリールオキシカルボニル基(例えばフェノキシカルボニル)、カルバモイル基(例えばカルバモイル、N−フェニルカルバモイル、N,N−ジメチルカルバモイル)、アルキルカルボニル基(例えばアセチル)、アリールカルボニル基(例えばベンゾイル)、ニトロ基、アミノ基(例えばアミノ、ジメチルアミノ、アニリノ、置換スルホアミノ基)、アシルアミノ基(例えばアセトアミド、エトキシカルボニルアミノ)、スルホンアミド基(例えばメタンスルホンアミド)、イミド基(例えばスクシンイミド、フタルイミド)、イミノ基(例えばベンジリデンアミノ)、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eで表される1価の置換基には含まれない。)、炭素数1〜20のアルコキシ基(例えばメトキシ)、アリールオキシ基(例えばフェノキシ)、アシルオキシ基(例えばアセトキシ)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ)、スルホ基、スルファモイル基(例えばスルファモイル、N−フェニルスルファモイル)、アルキルチオ基(例えばメチルチオ)、アリールチオ基(例えばフェニルチオ)、チオシアネート基、アルキルスルホニル基(例えばメタンスルホニル)、アリールスルホニル基(例えばベンゼンスルホニル)、炭素数6〜20のヘテロ環基(例えばピリジル、モルホリノ)などを挙げることができる。
前記1価の置換基は、無置換でもよいし、更に置換基で置換されていてもよく、置換基を複数有する場合は該複数の置換基は同じでも異なってもよい。置換基で置換されている場合の置換基の例としては、前記「1価の置換基A」の例として挙げられた各基を挙げることができる。また、置換基同士が結合して環が形成されてもよい。
Examples of the monovalent substituent in the general formula (1) (hereinafter referred to as “substituent A”) include, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a carbon number of 1 to 20 alkyl groups (for example, methyl, ethyl), aryl groups having 6 to 20 carbon atoms (for example, phenyl, naphthyl), cyano groups, carboxyl groups, alkoxycarbonyl groups (for example, methoxycarbonyl), aryloxycarbonyl groups (for example, phenoxycarbonyl) , Carbamoyl group (eg carbamoyl, N-phenylcarbamoyl, N, N-dimethylcarbamoyl), alkylcarbonyl group (eg acetyl), arylcarbonyl group (eg benzoyl), nitro group, amino group (eg amino, dimethylamino, anilino, Substituted sulfoamino group), acylamino group For example acetamide, ethoxycarbonylamino), a sulfonamido group (e.g., methanesulfonamido), an imido group (e.g. succinimido, phthalimido), an imino group (e.g., benzylideneamino), a hydroxy group (R 1a, R 1b, R 1c, R 1d, Not included in the monovalent substituent represented by R 1e ), an alkoxy group having 1 to 20 carbon atoms (for example, methoxy), an aryloxy group (for example, phenoxy), an acyloxy group (for example, acetoxy), an alkylsulfonyloxy Groups (eg methanesulfonyloxy), arylsulfonyloxy groups (eg benzenesulfonyloxy), sulfo groups, sulfamoyl groups (eg sulfamoyl, N-phenylsulfamoyl), alkylthio groups (eg methylthio), arylthio groups (eg Eniruchio), a thiocyanate group, an alkylsulfonyl group (e.g. methanesulfonyl), an arylsulfonyl group (e.g., benzenesulfonyl), and the like Hajime Tamaki having 6 to 20 carbon atoms (e.g. pyridyl, morpholino).
The monovalent substituent may be unsubstituted, may be further substituted with a substituent, and when having a plurality of substituents, the plurality of substituents may be the same or different. Examples of the substituent in the case of being substituted with a substituent include the groups listed as examples of the “monovalent substituent A”. Moreover, substituents may couple | bond together and a ring may be formed.

置換基同士が結合して形成される前記環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。   Examples of the ring formed by bonding substituents include benzene ring, pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring, oxazole ring, oxadi Examples thereof include an azole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, and a phosphole ring.

前記一般式(1)における1価の置換基Aとしては、ハロゲン原子、置換又は無置換の炭素数1〜20のアルキル基、シアノ基、カルボキシル基、置換又は無置換のアルキル部位の炭素数が1〜20のアルコキシカルボニル基、置換又は無置換のカルバモイル基、置換又は無置換のアルキル部位の炭素数が1〜20のアルキルカルボニル基、ニトロ基、置換又は無置換のアミノ基、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eで表される1価の置換基には含まれない。)、置換又は無置換の炭素数1〜20のアルコキシ基、置換又は無置換の炭素数6〜20のアリールオキシ基、置換又は無置換のスルファモイル基、チオシアネート基、又は置換又は無置換のアルキル部位の炭素数が1〜20のアルキルスルホニル基が好ましい。これらの中でも、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eで表される1価の置換基には含まれない。)、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、炭素数1〜20のアルキル基、アミド基がより好ましく、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eで表される1価の置換基には含まれない。)、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、炭素数1〜20のアルキル基が更に好ましい。
アルコキシ基のアルキル部位は、炭素数1〜20の直鎖又は分岐鎖のアルキル基が好ましく、炭素数1〜6の直鎖又は分岐鎖のアルキル基が更に好ましい。炭素数1〜6の直鎖又は分岐鎖のアルキル基としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、i−ペンチル、t−ペンチル、n−ヘキシル、i−ヘキシル、t−ヘキシル、n−オクチル、t−オクチル、i−オクチルを挙げることができ、メチル又はエチルが好ましく、メチルが特に好ましい。
The monovalent substituent A in the general formula (1) includes a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a cyano group, a carboxyl group, and a substituted or unsubstituted alkyl moiety having a carbon number. 1-20 alkoxycarbonyl group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted alkyl moiety having 1 to 20 carbon atoms, nitro group, substituted or unsubstituted amino group, hydroxy group (R 1a , R 1b , R 1c , R 1d , and R 1e are not included in the monovalent substituent.), Substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted carbon An aryloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted sulfamoyl group, a thiocyanate group, or an alkylsulfonyl group having 1 to 20 carbon atoms in the substituted or unsubstituted alkyl moiety is preferable. Arbitrariness. Among these, a hydroxy group (not included in the monovalent substituent represented by R 1a , R 1b , R 1c , R 1d , and R 1e ), an alkoxy group having 1 to 20 carbon atoms, and 6 carbon atoms. To 20 aryloxy groups, alkyl groups having 1 to 20 carbon atoms, and amide groups are more preferable, and monovalent substituents represented by hydroxy groups (R 1a , R 1b , R 1c , R 1d , R 1e are Not included.), An alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an alkyl group having 1 to 20 carbon atoms are more preferable.
The alkyl moiety of the alkoxy group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms. Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i -Pentyl, t-pentyl, n-hexyl, i-hexyl, t-hexyl, n-octyl, t-octyl, i-octyl can be mentioned, methyl or ethyl is preferable, and methyl is particularly preferable.

前記R1a、R1b、R1c、R1d、R1eのうち、本発明における好ましい第一の態様として、R1a、R1c、R1eのうち少なくとも1つ、又はR1b、R1c、R1dのうち少なくとも1つが1価の置換基を表し、該置換基の少なくとも1つがハメット則のσp値が正である置換基を表す態様が挙げられる。中でも、R1cがハメット則のσp値が正である置換基を表す態様がより好ましい。また、R1cがハメット則のσp値が正である置換基であり、R1a、R1b、R1d、R1eが水素原子を表す態様が更に好ましい。R1cがハメット則のσp値が正である置換基を表す場合、電子求引性基によりLUMOが安定化されるため、励起寿命が短くなり、耐光性が向上するため好ましい。 Of the R 1a , R 1b , R 1c , R 1d and R 1e , as a preferred first aspect of the present invention, at least one of R 1a , R 1c and R 1e , or R 1b , R 1c and R 1e There is an embodiment in which at least one of 1d represents a monovalent substituent, and at least one of the substituents represents a substituent having a positive Hammett's σp value. Among these, an embodiment in which R 1c represents a substituent having a positive Hammett's σp value is more preferable. Further, it is more preferable that R 1c is a substituent having a positive Hammett's σp value, and R 1a , R 1b , R 1d , and R 1e represent a hydrogen atom. When R 1c represents a substituent having a positive Hammett's σp value, LUMO is stabilized by the electron-attracting group, which is preferable because the excitation lifetime is shortened and the light resistance is improved.

第一の態様においては、一般式(1)中のR1a、R1c、R1eにおける「ハメット則のσp値が正である置換基」としては、好ましくはσp値が0.1〜1.2の電子求引性基である。σp値は、0.3〜1.2の範囲が好ましい。
σp値が0.1以上の電子求引性基の具体例としては、COOR(Rは、水素原子又は1価の置換基を表し、好ましくは水素原子、アルキル基であり、より好ましくは水素原子である。)、CONR (Rは、水素原子又は1価の置換基を表す。)、CN、ハロゲン原子、NO、SOM(Mは、水素原子又はアルカリ金属を表す。)、アシル基、ホルミル基、アシルオキシ基、アシルチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ジアルキルホスホノ基、ジアリールホスホノ基、ジアルキルホスフィニル基、ジアリールホスフィニル基、ホスホリル基、アルキルスルフィニル基、アリールスルフィニル基、アシルチオ基、スルファモイル基、チオシアネート基、チオカルボニル基、イミノ基、N原子で置換されたイミノ基、カルボキシ基(又はその塩)、少なくとも2つ以上のハロゲン原子で置換されたアルキル基(例えばCF)、少なくとも2つ以上のハロゲン原子で置換されたアルコキシ基、少なくとも2つ以上のハロゲン原子で置換されたアリールオキシ基、アシルアミノ基、少なくとも2つ以上のハロゲン原子で置換されたアルキルアミノ基、少なくとも2つ以上のハロゲン原子で置換されたアルキルチオ基、σ値が0.2以上の他の電子求引性基で置換されたアリール基、ヘテロ環基、ハロゲン原子、アゾ基、セレノシアネート基などが挙げられる。
ハメットのσp値については、Hansch, C.; Leo, A.; Taft, R. W . Chem. Rev. 1991, 91, 165-195に詳しく記載されている。
In the first embodiment, the “substituent in which the Hammett's σp value is positive” in R 1a , R 1c , and R 1e in the general formula (1) preferably has a σp value of 0.1 to 1. 2 electron withdrawing groups. The σp value is preferably in the range of 0.3 to 1.2.
As specific examples of the electron withdrawing group having a σp value of 0.1 or more, COOR r (R r represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or an alkyl group, more preferably CONR s 2 (R s represents a hydrogen atom or a monovalent substituent), CN, halogen atom, NO 2 , SO 3 M (M represents a hydrogen atom or an alkali metal). .), Acyl group, formyl group, acyloxy group, acylthio group, alkyloxycarbonyl group, aryloxycarbonyl group, dialkylphosphono group, diarylphosphono group, dialkylphosphinyl group, diarylphosphinyl group, phosphoryl group, Alkylsulfinyl group, arylsulfinyl group, acylthio group, sulfamoyl group, thiocyanate group, thiocarbonyl group, imino group, N atom An imino group substituted with a child, a carboxy group (or a salt thereof), an alkyl group substituted with at least two or more halogen atoms (for example, CF 3 ), an alkoxy group substituted with at least two or more halogen atoms, at least An aryloxy group substituted with two or more halogen atoms, an acylamino group, an alkylamino group substituted with at least two halogen atoms, an alkylthio group substituted with at least two halogen atoms, a σ p value of Examples include aryl groups, heterocyclic groups, halogen atoms, azo groups, and selenocyanate groups substituted with 0.2 or more other electron-withdrawing groups.
Hammett σp values are described in detail in Hansch, C .; Leo, A .; Taft, R. W. Chem. Rev. 1991, 91, 165-195.

前記「ハメット則のσp値が正である置換基」としては、優れた耐光性と溶解性を有する観点から、ハメット則のσp値が0.3〜1.2の範囲である置換基が好ましく、より好ましくはCOOR、CONR 、CN、CF、ハロゲン原子、NO、及びSOMから選択される。ここで、R及びRは、各々独立に、水素原子、又は1価の置換基を表す。Mは、水素原子又はアルカリ金属を表す(Mに関して以下同様である)。この中でも、「ハメット則のσp値が正である置換基」は、上記同様の理由から、COOR又はCNが更に好ましく、COORが特に好ましい。 The “substituent having a positive Hammett's σp value” is preferably a substituent having a Hammett's σp value in the range of 0.3 to 1.2 from the viewpoint of excellent light resistance and solubility. More preferably selected from COOR r , CONR s 2 , CN, CF 3 , halogen atoms, NO 2 , and SO 3 M. Here, R r and R s each independently represent a hydrogen atom or a monovalent substituent. M represents a hydrogen atom or an alkali metal (the same applies to M hereinafter). Among them, the “substituent having a positive Hammett's σp value” is more preferably COOR r or CN, and particularly preferably COOR r for the same reason as above.

前記R、Rは、水素原子又は1価の置換基を表し、ここでの1価の置換基としては前記置換基Aを挙げることができる。中でも、炭素数1〜20の直鎖又は分岐鎖のアルキル基が好ましく、炭素数1〜6の直鎖又は分岐鎖のアルキル基がより好ましい。炭素数1〜6の直鎖又は分岐鎖のアルキル基としては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、i−ペンチル、t−ペンチル、n−ヘキシル、i−ヘキシル、t−ヘキシル、n−オクチル、t−オクチル、i−オクチルを挙げることができ、メチル又はエチルが好ましく、メチルが特に好ましい。
また、前記Mで表されるアルカリ金属としては、リチウム、ナトリウム、又はカリウムが挙げられ、特にナトリウム、カリウムが好ましい(以下、Mについて同様である)。
R r and R s each represent a hydrogen atom or a monovalent substituent, and examples of the monovalent substituent herein include the substituent A. Especially, a C1-C20 linear or branched alkyl group is preferable, and a C1-C6 linear or branched alkyl group is more preferable. Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, and n-pentyl. , I-pentyl, t-pentyl, n-hexyl, i-hexyl, t-hexyl, n-octyl, t-octyl, i-octyl, methyl or ethyl is preferable, and methyl is particularly preferable.
Examples of the alkali metal represented by M include lithium, sodium, and potassium, and sodium and potassium are particularly preferable (hereinafter the same applies to M).

前記一般式(1)で表される化合物においては、R1a、R1b、R1c、R1d、及びR1eの少なくとも1つは、ハメット則のσp値が0.3〜1.2の範囲である置換基が好ましい。 In the compound represented by the general formula (1), at least one of R 1a , R 1b , R 1c , R 1d , and R 1e has a Hammett's rule σp value in the range of 0.3 to 1.2. The substituent which is is preferable.

中でも、R1cが、COOR、CONR 、CN、CF、ハロゲン原子、NO、SOMのいずれかである態様が好ましく、更には、COOR又はCNである態様がより好ましく、CNである態様が更に好ましい。 Among these, an embodiment in which R 1c is any one of COOR r , CONR s 2 , CN, CF 3 , a halogen atom, NO 2 , SO 3 M is preferable, and an embodiment in which CO OR r or CN is more preferable. An embodiment that is CN is further preferred.

前記一般式(1)において、R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pは、各々独立に、水素原子、又は1価の置換基を表し、該置換基は互いに結合して環を形成してもよい。 In the general formula (1), R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p each independently represent a hydrogen atom or a monovalent substituent, The substituents may be bonded to each other to form a ring.

1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが1価の置換基を表す場合、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pの少なくとも1つが、前記「ハメット則のσp値が正である置換基」を表すことが好ましく、R1g、R1h、R1i及びR1jの少なくとも1つが、前記「ハメット則のσp値が正(好ましくは0.1〜1.2)である置換基」を表すことがより好ましく、更には、R1hが前記「ハメット則のσp値が正である置換基」を表すことが更に好ましい。 When R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p represent a monovalent substituent, R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p preferably represent the “substituent having a positive Hammett σp value”, and at least one of R 1g , R 1h , R 1i and R 1j It is more preferable that the σp value of the rule is positive (preferably 0.1 to 1.2) ”, and R 1h represents the“ substituent whose hamp rule σp value is positive ”. More preferably, it represents.

本発明においては、優れた耐光性を示す点で、R1n及びR1hが前記「ハメット則のσp値が正(好ましくは0.1〜1.2)である置換基」を表す場合が特に好ましい。 In the present invention, particularly when R 1n and R 1h represent the above-mentioned “substituent in which the Hammett's σp value is positive (preferably 0.1 to 1.2)” in view of excellent light resistance. preferable.

また、本発明において、優れた耐光性を示す点で、R1h又はR1nが、それぞれ独立に、水素原子、COOR、CONR 、CN、CF、ハロゲン原子、NO、SOMのいずれかであることが好ましく、R1h又はR1nが水素原子であることがより好ましく、R1h及びR1nが水素原子であることが更に好ましく、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子を表すことが特に好ましい。 In the present invention, R 1h or R 1n is independently a hydrogen atom, COOR r , CONR s 2 , CN, CF 3 , halogen atom, NO 2 , SO 3 M, or the like, in that it exhibits excellent light resistance. R 1h or R 1n is preferably a hydrogen atom, R 1h and R 1n are more preferably a hydrogen atom, and R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p particularly preferably represent a hydrogen atom.

前記一般式(1)で表される化合物において、優れた耐光性を示す点で、R1cが「ハメット則のσp値が正(好ましくは0.1〜1.2)である置換基」であって、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子である場合が好ましく、R1cがCOOR、CONR 、CN、CF、ハロゲン原子、NO、又はSOMのいずれかであって、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子である場合がより好ましい。 In the compound represented by the general formula (1), R 1c is “a substituent having a positive Hammett's σp value (preferably 0.1 to 1.2)” in that it exhibits excellent light resistance. R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p are preferably hydrogen atoms, and R 1c is COOR r , CONR s 2 , CN, CF 3 , More preferably, it is any one of a halogen atom, NO 2 , and SO 3 M, and R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n, and R 1p are hydrogen atoms.

前記一般式(1)で表される化合物は、pKaが−5.0〜−7.0の範囲であることが好ましく、−5.2〜−6.5の範囲であることがより好ましく、−5.4〜−6.0の範囲であることが更に好ましい。   The compound represented by the general formula (1) preferably has a pKa in the range of -5.0 to -7.0, more preferably in the range of -5.2 to -6.5, More preferably, it is in the range of -5.4 to -6.0.

本発明における好ましい第二の態様として、R1b、R1c及びR1dの少なくとも一つは、ハメット則のσp値が正である置換基であるのが好ましく、更にはσp値が0.3〜1.2の範囲が好ましい。
また、R1b及びR1dが、各々独立に1価の置換基を表し、R1a、R1c及びR1eが水素原子を表し、R1b及びR1dの少なくとも1つはハメット則のσp値が正である置換基である態様を挙げることができる。これにより、一般式(1)で表される化合物は、特に溶剤溶解性が優れる。ポリマーとの相溶性(特にポリエステルとの相溶性に優れることから、該化合物を含むポリエステル樹脂組成物としたときには、一般式(1)で表される化合物の析出又はブリードアウトが発生し難くいものとする効果を有する。
ここで、溶剤溶解性とは、酢酸エチル、メチルエチルケトン、トルエンなどの有機溶剤への溶解性を意味する。ポリマーとの相溶性(特にポリエステルとの相溶性)の点で、使用する溶剤に対して10質量%以上溶解することが好ましく、30質量%以上溶解することがより好ましい。
In a preferred second embodiment of the present invention, at least one of R 1b , R 1c and R 1d is preferably a substituent having a positive Hammett's σp value, and more preferably a σp value of 0.3 to A range of 1.2 is preferred.
R 1b and R 1d each independently represent a monovalent substituent, R 1a , R 1c and R 1e each represent a hydrogen atom, and at least one of R 1b and R 1d has a Hammett's σp value The aspect which is a substituent which is positive can be mentioned. Thereby, especially the compound represented by General formula (1) is excellent in solvent solubility. Compatibility with polymer (especially because of excellent compatibility with polyester, when a polyester resin composition containing the compound is used, precipitation or bleeding out of the compound represented by the general formula (1) is difficult to occur. It has the effect.
Here, the solvent solubility means solubility in an organic solvent such as ethyl acetate, methyl ethyl ketone, and toluene. In terms of compatibility with the polymer (particularly compatibility with the polyester), it is preferably 10% by mass or more, more preferably 30% by mass or more, based on the solvent used.

第二の態様においては、前記一般式(1)中のR1b及びR1dにおける「ハメット則のσp値が正である置換基」としては、好ましくはCOOR、CONR 、CN、CF、ハロゲン原子、NO、及びSOMから選択される。ここで、R及びRは、各々独立に、水素原子、又は1価の置換基を表す。Mは、水素原子又はアルカリ金属を表す。R、Rで表される1価の置換基としては、既述の置換基Aを挙げることができる。 In the second aspect, the “substituent having a positive Hammett's σp value” in R 1b and R 1d in the general formula (1) is preferably COOR r , CONR s 2 , CN, CF 3. , A halogen atom, NO 2 , and SO 3 M. Here, R r and R s each independently represent a hydrogen atom or a monovalent substituent. M represents a hydrogen atom or an alkali metal. Examples of the monovalent substituent represented by R r and R s include the substituent A described above.

前記「ハメット則のσp値が正である置換基」としては、優れた耐光性と溶解性を示す点で、より好ましくはCOOR又はシアノ基であり、更にはCOORであることが好ましい。「ハメット則のσp値が正である置換基」がシアノ基である場合は、より優れた耐光性を示し、また「ハメット則のσp値が正である置換基」がCOORである場合は、より優れた溶剤溶解性を示す。 As the "substituent σp value of Hammett's rule is positive" is a point showing the solubility and excellent light resistance, more preferably COOR r or a cyano group, it is preferably further is COOR r. When the “substituent having a positive Hammett's σp value” is a cyano group, it exhibits better light resistance, and when the “substituent having a positive Hammett's σp value” is COOR r , Better solvent solubility.

は、水素原子又はアルキル基を表すことが好ましく、炭素数1〜20の直鎖又は分岐鎖のアルキル基がより好ましく、炭素数1〜15の直鎖又は分岐鎖のアルキル基が更に好ましい。また、Rは、溶媒に対する溶解性の観点からは、炭素数5〜15の分岐鎖のアルキル基がより好ましい。
分岐鎖のアルキル基は、2級炭素原子又は3級炭素原子を有し、2級炭素原子又は3級炭素原子を1〜5個含むことが好ましく、1〜3個含むことが好ましく、1又は2個含むことが好ましく、2級炭素原子及び3級炭素原子を1又は2個含むことがより好ましい。また、不斉炭素を1〜3個含むことが好ましい。
は、溶媒に対する溶解性の観点からは、2級炭素原子及び3級炭素原子を1又は2個含み、不斉炭素を1又は2個含む炭素数5〜15の分岐鎖のアルキル基であることが特に好ましい。
これは、化合物構造の対称性が崩れ、溶解性が向上するためである。
R r preferably represents a hydrogen atom or an alkyl group, more preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and still more preferably a linear or branched alkyl group having 1 to 15 carbon atoms. . R r is more preferably a branched alkyl group having 5 to 15 carbon atoms from the viewpoint of solubility in a solvent.
The branched alkyl group has a secondary carbon atom or a tertiary carbon atom, preferably contains 1 to 5 secondary carbon atoms or tertiary carbon atoms, preferably contains 1 to 3, preferably 1 or It is preferable to include two, and it is more preferable to include one or two secondary carbon atoms and tertiary carbon atoms. Moreover, it is preferable that 1-3 asymmetric carbons are included.
From the viewpoint of solubility in a solvent, R r is a branched alkyl group having 5 to 15 carbon atoms containing 1 or 2 secondary carbon atoms and tertiary carbon atoms and 1 or 2 asymmetric carbon atoms. It is particularly preferred.
This is because the symmetry of the compound structure is lost and the solubility is improved.

一方、紫外線吸収能の観点からは、炭素数1〜6の直鎖又は分岐鎖のアルキル基がより好ましい。炭素数1〜6の直鎖又は分岐鎖のアルキル基としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、i−ペンチル、t−ペンチル、n−ヘキシル、i−ヘキシル、t−ヘキシル、n−オクチル、t−オクチル、i−オクチルを挙げることができ、メチル又はエチルが好ましく、メチルが特に好ましい。   On the other hand, from the viewpoint of ultraviolet absorbing ability, a linear or branched alkyl group having 1 to 6 carbon atoms is more preferable. Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i -Pentyl, t-pentyl, n-hexyl, i-hexyl, t-hexyl, n-octyl, t-octyl, i-octyl can be mentioned, methyl or ethyl is preferable, and methyl is particularly preferable.

また、本発明において、優れた耐光性を示す点で、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが1価の置換基を表す場合は、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pの少なくとも1つが前記「ハメット則のσp値が正である置換基」を表すことがより好ましく、R1g、R1h、R1i及びR1jの少なくとも1つが前記「ハメット則のσp値が正(好ましくは0.1〜1.2)である置換基」を表すことがより好ましく、R1hが前記「ハメット則のσp値が正である置換基」を表すことが更に好ましい。R1b又はR1d、及びR1hが前記「ハメット則のσp値が正(好ましくは0.1〜1.2)である置換基」を表すことが特に好ましい。
本発明において、優れた耐光性を示す点で、R1h又はR1nがそれぞれ独立に水素原子、COOR、CONR 、シアノ基、CF、ハロゲン原子、ニトロ基、SOMのいずれかであることが好ましく、R1h又はR1nが水素原子であることがより好ましく、R1h及びR1nが水素原子であることが更に好ましく、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子を表すことが特に好ましい。
In the present invention, when R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p represent a monovalent substituent in terms of exhibiting excellent light resistance, More preferably, at least one of 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p represents the above-mentioned “substituent with a positive Hammett σp value”, R 1g , More preferably, at least one of R 1h , R 1i and R 1j represents the above-mentioned “substituent in which the Hammett's σp value is positive (preferably 0.1 to 1.2)”, and R 1h represents the “Hammett More preferably, it represents a “substituent whose σp value of the rule is positive”. It is particularly preferable that R 1b or R 1d and R 1h represent the above-mentioned “substituent in which the Hammett's rule σp value is positive (preferably 0.1 to 1.2)”.
In the present invention, R 1h or R 1n is independently any one of a hydrogen atom, COOR r , CONR s 2 , a cyano group, CF 3 , a halogen atom, a nitro group, and SO 3 M in that excellent light resistance is exhibited. R 1h or R 1n is preferably a hydrogen atom, R 1h and R 1n are more preferably a hydrogen atom, and R 1g , R 1h , R 1i , R 1j , R 1k R 1m , R 1n and R 1p particularly preferably represent a hydrogen atom.

前記一般式(1)で表される化合物においては、優れた耐光性を示す点で、R1b、R1c又はR1dが「ハメット則のσp値が正(好ましくは0.1〜1.2、更に好ましくは0.3〜1.2)である置換基」であって、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子である場合が好ましく、R1b、R1c又はR1dがCOOR、CONR 、シアノ基、CF、ハロゲン原子、ニトロ基、又はSOMのいずれかであって、R1g、R1h、R1i、R1j、R1k、R1m、R1n及びR1pが水素原子である場合がより好ましい。
特に好ましくは、R1a、R1b、R1d、R1e、R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pが水素原子であり、R1cがCOOR〔Rは1価の置換基を表す。〕である。
In the compound represented by the general formula (1), R 1b , R 1c, or R 1d is “a Hammett's σp value is positive (preferably 0.1 to 1.2). And more preferably 0.3 to 1.2) ", wherein R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p are hydrogen atoms R 1b , R 1c or R 1d is any one of COOR r , CONR s 2 , a cyano group, CF 3 , a halogen atom, a nitro group, or SO 3 M, and R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n and R 1p are more preferably a hydrogen atom.
Particularly preferably, R 1a , R 1b , R 1d , R 1e , R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p are hydrogen atoms, and R 1c is COOR r [R r represents a monovalent substituent. ].

前記一般式(1)で表される化合物の具体例を以下に示す。但し、本発明はこれらに限定されるものではない。なお、下記の具体例において、Meはメチル基を、Phはフェニル基を、−C13はn−ヘキシルをそれぞれ表す。 Specific examples of the compound represented by the general formula (1) are shown below. However, the present invention is not limited to these. In the following specific examples, Me represents a methyl group, Ph represents a phenyl group, and -C 6 H 13 represents n-hexyl.

前記一般式(1)で表される化合物は、構造とその置かれた環境によって互変異性体を取り得るが、一般式(1)で表される化合物には、互変異性体も含まれる。   The compound represented by the general formula (1) can take a tautomer depending on the structure and the environment in which the compound is placed, but the compound represented by the general formula (1) includes a tautomer. .

前記一般式(1)で表される化合物は、同位元素(例えば、H、H、13C、15N、17O、18Oなど)を含有していてもよい。 The compound represented by the general formula (1) may contain an isotope (for example, 2 H, 3 H, 13 C, 15 N, 17 O, 18 O, etc.).

前記一般式(1)で表される化合物は、任意の方法で合成することができる。
例えば、公知の特許文献や非特許文献(例えば、特開平7−188190号公報、特開平11−315072号公報、特開2001−220385号公報や、「染料と薬品」第40巻12号(1995)の325〜339ページなど)を参照して合成することができる。具体的には、前記例示化合物(16)は、サリチルアミドと3,5−ビス(トリフルオロメチル)ベンゾイルクロリドと2−ヒドロキシベンズアミジン塩酸塩とを反応させることにより合成できる。また、サリチルアミドとサリチル酸と3,5−ビス(トリフルオロメチル)ベンズアミジン塩酸塩とを反応させることによっても合成できる。
The compound represented by the general formula (1) can be synthesized by any method.
For example, known patent documents and non-patent documents (for example, JP-A-7-188190, JP-A-11-315072, JP-A-2001-220385, “Dye and Drug”, Vol. 40, No. 12 (1995) ), Pages 325-339, etc.). Specifically, the exemplary compound (16) can be synthesized by reacting salicylamide, 3,5-bis (trifluoromethyl) benzoyl chloride and 2-hydroxybenzamidine hydrochloride. It can also be synthesized by reacting salicylamide, salicylic acid and 3,5-bis (trifluoromethyl) benzamidine hydrochloride.

前記一般式(1)で表される化合物は、有機溶媒に対する溶解性に優れるという特徴を有すると共に、構造式中の特定位置に「ハメット則のσp値が正である置換基」を有するため、電子求引性基によりLUMOが安定化されるため、励起寿命が短くなり、優れた耐光性を有している。したがって、紫外線吸収剤として用いた場合に、トリアジン系化合物等の従来より用いられている紫外線吸収剤では高濃度で含有すると析出や長期使用によるブリードアウトが生じたり或いは分解で黄変する等の悪影響を生じ易いが、本発明における既述の一般式(1)で表される化合物は優れた溶解性と耐光性を有するため、高濃度で含有する場合でも析出やブリードアウトが生じず、長時間使用した場合でも分解せず黄変を防ぐことができる。   The compound represented by the general formula (1) has a feature of excellent solubility in an organic solvent, and has a “substituent having a positive Hammett's σp value” at a specific position in the structural formula. Since LUMO is stabilized by the electron withdrawing group, the excitation life is shortened and the light resistance is excellent. Therefore, when used as a UV absorber, conventional UV absorbers such as triazine compounds, when used at a high concentration, have adverse effects such as precipitation, bleeding out due to long-term use, or yellowing due to decomposition. However, since the compound represented by the general formula (1) in the present invention has excellent solubility and light resistance, precipitation and bleed-out do not occur even when it is contained at a high concentration, and it takes a long time. Even when used, yellowing can be prevented without decomposition.

前記一般式(1)で表される化合物は、一種のみ用いてもよく、異なる構造を有する二種以上を併用することもできる。   The compound represented by the general formula (1) may be used alone or in combination of two or more having different structures.

前記一般式(1)で表される化合物の極大吸収波長は、特に限定されないが、好ましくは250〜400nmであり、より好ましくは280〜380nmである。半値幅は、好ましくは20〜100nmであり、より好ましくは40〜80nmである。
前記極大吸収波長及び半値幅は、従来公知の方法により容易に測定される値である。測定方法に関しては、例えば日本化学会編「第4版実験化学講座7分光II」(丸善,1992年)180〜186ページなどに記載されている。具体的には、適当な溶媒に試料を溶解し、石英製又はガラス製のセルを用いて試料用と対照用の2つのセルを使用し、分光光度計によって測定される。溶媒としては、試料の溶解性に合わせて、測定波長領域に吸収を持たないこと、溶質分子との相互作用が小さいこと、揮発性があまり著しくないこと等が求められる。本発明における極大吸収波長及び半値幅は、酢酸エチルを用いて濃度約5×10−5mol・dm−3の溶液を調製し、光路長10mmの石英セルで測定される値である。
Although the maximum absorption wavelength of the compound represented by the general formula (1) is not particularly limited, it is preferably 250 to 400 nm, more preferably 280 to 380 nm. The full width at half maximum is preferably 20 to 100 nm, more preferably 40 to 80 nm.
The maximum absorption wavelength and the full width at half maximum are values easily measured by a conventionally known method. The measurement method is described in, for example, “The Fourth Edition Experimental Chemistry Course 7 Spectroscopy II” (Maruzen, 1992), pages 180-186, edited by the Chemical Society of Japan. Specifically, the sample is dissolved in an appropriate solvent, and measurement is performed by a spectrophotometer using two cells for sample and control using a cell made of quartz or glass. The solvent is required to have no absorption in the measurement wavelength region, have a small interaction with the solute molecule, and have a very low volatility in accordance with the solubility of the sample. The maximum absorption wavelength and half width in the present invention are values measured by preparing a solution having a concentration of about 5 × 10 −5 mol · dm −3 using ethyl acetate and using a quartz cell having an optical path length of 10 mm.

スペクトルの半値幅に関しては、例えば日本化学会編「第4版実験化学講座3 基本操作III」(丸善、1991年)154ページなどに記載がある。なお、成書では波数目盛りで横軸を取った例で半値幅の説明がなされる場合があるが、本発明における半値幅は波長目盛りで軸を取った場合の値を用いる。半値幅の単位は[nm]である。具体的には、極大吸収波長における吸光度の1/2の吸収帯の幅を表し、吸収スペクトルの形を表す値として用いられる。半値幅が小さいスペクトルはシャープなスペクトルを示し、半値幅が大きいスペクトルはブロードなスペクトルを示す。ブロードなスペクトルを与える紫外線吸収化合物は、極大吸収波長から長波側の幅広い領域にも吸収を有するので、黄色味着色がなく、長波紫外線領域を効果的に遮蔽するためには、半値幅が小さいスペクトルを有する紫外線吸収化合物の方が好ましい。   The half width of the spectrum is described in, for example, “The Fourth Edition Experimental Chemistry Course 3 Basic Operation III” (Maruzen, 1991), page 154, edited by the Chemical Society of Japan. In the written book, the half width may be explained with an example in which the horizontal axis is taken on the wave number scale, but the half width in the present invention uses a value obtained on the axis on the wavelength scale. The unit of the half width is [nm]. Specifically, it represents the width of the absorption band that is half the absorbance at the maximum absorption wavelength, and is used as a value that represents the shape of the absorption spectrum. A spectrum with a small half-value width shows a sharp spectrum, and a spectrum with a large half-value width shows a broad spectrum. UV-absorbing compounds that give a broad spectrum also have absorption in a wide range from the maximum absorption wavelength to the long wave side, so there is no yellowish coloration, and a spectrum with a small half-value width is effective for shielding the long wave ultraviolet region. A UV-absorbing compound having is preferred.

光の吸収の強さ、すなわち振動子強度は、時田澄男著「化学セミナー9 カラーケミストリー」(丸善、1982年)154〜155ページに記載されるように、モル吸光係数の積分に比例し、吸収スペクトルの対称性がよいときは、振動子強度は極大吸収波長における吸光度と半値幅の積に比例する(但し、この場合の半値幅は波長目盛りで軸を取った値である)。このことは遷移モーメントの値が同じとした場合、半値幅が小さいスペクトルを有する化合物は極大吸収波長における吸光度が大きくなることを意味している。このような紫外線吸収化合物は少量使用するだけで極大吸収波長周辺の領域を効果的に遮蔽できるメリットがあるが、波長が極大吸収波長から少し離れると急激に吸光度が減少するために、幅広い領域を遮蔽することができない。   The intensity of light absorption, that is, the oscillator strength, is proportional to the integral of the molar extinction coefficient, as described in Sumio Tokita, “Chemical Seminar 9 Color Chemistry” (Maruzen, 1982), pages 154-155. When the symmetry of the spectrum is good, the oscillator strength is proportional to the product of the absorbance at the maximum absorption wavelength and the full width at half maximum (however, the full width at half maximum is a value centered on the wavelength scale). This means that when the transition moment values are the same, a compound having a spectrum with a small half width has a large absorbance at the maximum absorption wavelength. Such UV-absorbing compounds have the advantage of being able to effectively shield the area around the maximum absorption wavelength with a small amount of use, but since the absorbance decreases sharply when the wavelength is slightly away from the maximum absorption wavelength, a wide range of areas can be used. It cannot be shielded.

前記一般式(1)で表される化合物は、極大吸収波長におけるモル吸光係数が20000以上であることが好ましく、30000以上であることがより好ましく、50000以上であることが特に好ましい。モル吸光係数が20000以上であると、前記一般式(1)で表される化合物の質量当たりの吸収効率が高いため、紫外線領域を完全に吸収するのに要する「一般式(1)で表される化合物」の量を低減できる。これは、皮膚刺激性や生体内への蓄積を防ぐ観点、及びブリードアウトが生じにくい点から好ましい。
なお、モル吸光係数については、例えば日本化学会編「新版実験化学講座9 分析化学[II]」(丸善、1977年)244ページなどに記載されており、極大吸収波長及び半値幅を求める際に合わせて求めることができる。
The compound represented by the general formula (1) preferably has a molar extinction coefficient at the maximum absorption wavelength of 20000 or more, more preferably 30000 or more, and particularly preferably 50000 or more. When the molar extinction coefficient is 20000 or more, the absorption efficiency per mass of the compound represented by the general formula (1) is high, and therefore, it is represented by the “general formula (1) required to completely absorb the ultraviolet region. The amount of “compound” can be reduced. This is preferable from the viewpoint of preventing skin irritation and accumulation in a living body and from the point that bleeding out hardly occurs.
The molar extinction coefficient is described in, for example, “New Edition Experimental Chemistry Course 9 Analytical Chemistry [II]” (Maruzen, 1977), page 244, edited by the Chemical Society of Japan. It can be obtained together.

前記一般式(1)で表される紫外線吸収剤のポリマー層中における塗布量は、0.1〜7.5g/mが好ましく、0.15〜6.0g/mが更に好ましい。塗布量が0.1g/m以上であることで、400nm付近の長波紫外線(UV−A)領域を含む広い範囲で紫外線遮蔽効果に優れる。また、塗布量が7.5g/m以下であることで、ブリードアウトの発生を防ぐことができる。 The coating amount of the polymer layer of the ultraviolet absorbent represented by formula (1) is preferably 0.1~7.5g / m 2, more preferably 0.15~6.0g / m 2. When the coating amount is 0.1 g / m 2 or more, the ultraviolet shielding effect is excellent in a wide range including a long wave ultraviolet (UV-A) region near 400 nm. Moreover, generation | occurrence | production of bleed-out can be prevented because a coating amount is 7.5 g / m < 2 > or less.

本発明におけるポリマー層は、紫外線吸収剤として異なる構造を有する2種以上の前記一般式(1)で表される化合物を含有してもよい。また、前記一般式(1)で表される化合物とそれ以外の1種以上の他の紫外線吸収剤とを併用してもよい。基本骨格構造の異なる2種(好ましくは3種)の紫外線吸収剤を併用すると、紫外線吸収剤の分散状態が安定化すると共に、広い波長領域の紫外線を吸収することができる。
一般式(1)以外の他の紫外線吸収剤としては、例えば、トリアジン系、ベンゾトリアゾール系、ベンゾフェノン系、メロシアニン系、シアニン系、ジベンゾイルメタン系、桂皮酸系、シアノアクリレート系、安息香酸エステル系などの化合物が挙げられる。具体的には、ファインケミカル(2004年5月号、28〜38ページ)、「高分子用機能性添加剤の新展開」(東レリサーチセンター調査研究部門発行、96〜140ページ、1999年)、「高分子添加剤の開発と環境対策」(大勝靖一監修、シーエムシー出版、54〜64ページ、2003年)などに記載の紫外線吸収剤が挙げられる。
The polymer layer in the present invention may contain two or more compounds represented by the general formula (1) having different structures as an ultraviolet absorber. Moreover, you may use together the compound represented by the said General formula (1), and 1 or more types of other ultraviolet absorbers other than that. When two types (preferably three types) of ultraviolet absorbers having different basic skeleton structures are used in combination, the dispersion state of the ultraviolet absorber is stabilized and ultraviolet rays in a wide wavelength region can be absorbed.
Examples of other ultraviolet absorbers other than the general formula (1) include triazine, benzotriazole, benzophenone, merocyanine, cyanine, dibenzoylmethane, cinnamic acid, cyanoacrylate, and benzoate. And the like. Specifically, fine chemicals (May 2004 issue, pages 28-38), “New development of functional additives for polymers” (published by Toray Research Center, Research Division, pages 96-140, 1999), “ Examples include ultraviolet absorbers described in “Development of Polymer Additives and Environmental Countermeasures” (supervised by Junichi Daikatsu, CMC Publishing, pages 54 to 64, 2003).

前記他の紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、サリチル酸系化合物、ベンゾオキサジノン系化合物、シアノアクリレート系化合物、ベンゾオキサゾール系化合物、メロシアニン系化合物、トリアジン系化合物である。より好ましくはベンゾオキサジノン系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物等が挙げられる。特に好ましくは、ベンゾオキサジノン系化合物である。他の紫外線吸収剤は、特願2008−273950号公報の段落番号〔0117〕〜〔0121〕に詳細な記載があり、同公報に記載の材料を適用できる。
他の紫外線吸収剤を併用する場合、他の紫外線吸収剤の含有比率は、本発明の効果を損なわないように保つ観点から、一般式(1)で表される紫外線吸収剤の量に対して30質量%以下が好ましい。
Examples of the other ultraviolet absorbers include benzotriazole compounds, benzophenone compounds, salicylic acid compounds, benzoxazinone compounds, cyanoacrylate compounds, benzoxazole compounds, merocyanine compounds, and triazine compounds. More preferred are benzoxazinone compounds, benzotriazole compounds, benzophenone compounds, triazine compounds and the like. Particularly preferred are benzoxazinone compounds. Other ultraviolet absorbers are described in detail in paragraphs [0117] to [0121] of Japanese Patent Application No. 2008-273950, and the materials described in the publication can be applied.
When other ultraviolet absorbers are used in combination, the content ratio of the other ultraviolet absorbers is based on the amount of the ultraviolet absorber represented by the general formula (1) from the viewpoint of maintaining the effects of the present invention. 30 mass% or less is preferable.

前記一般式(1)で表される化合物は、ベンゾオキサジノン系化合物と組み合わせて含有することが好ましい。一般式(1)で表される化合物は、長波長領域において優れた耐光性を有するため、より長波長領域まで遮蔽可能なベンゾオキサジノンの劣化を防ぐという効果を奏し、ベンゾオキサジノン系化合物と共に用いることで、より長波長領域まで長時間において遮蔽効果が持続できるため好ましい。   The compound represented by the general formula (1) is preferably contained in combination with a benzoxazinone compound. Since the compound represented by the general formula (1) has excellent light resistance in the long wavelength region, it has the effect of preventing the deterioration of benzoxazinone that can be shielded to a longer wavelength region, together with the benzoxazinone-based compound. Use is preferable because the shielding effect can be sustained for a long time up to a longer wavelength region.

前記一般式(1)で表される化合物を紫外線吸収剤として含有することで高い紫外線遮蔽効果が得られるが、更には、隠蔽力の強い白色顔料、例えば酸化チタンなどを併用してもよい。
また、外観、色調の観点あるいは好みにより、微量(0.05質量%以下)の着色剤を併用してもよい。また、透明あるいは白色であることが重要である用途では、蛍光増白剤を併用してもよい。蛍光増白剤としては市販のものや特開2002−53824号公報に記載の一般式[1]や具体的化合物例1〜35などが挙げられる。
By containing the compound represented by the general formula (1) as an ultraviolet absorber, a high ultraviolet shielding effect can be obtained, and furthermore, a white pigment having a strong hiding power, such as titanium oxide, may be used in combination.
Further, a slight amount (0.05% by mass or less) of a colorant may be used in combination depending on the viewpoint of appearance, color tone or preference. In applications where it is important to be transparent or white, a fluorescent brightener may be used in combination. Examples of the fluorescent brightening agent include commercially available products, general formula [1] described in JP-A-2002-53824, and specific compound examples 1 to 35.

(ポリマー)
本発明におけるポリマー層は、バインダーとして、ポリマーの少なくとも一種を含有する。
ポリマーとしては、例えば、シリコーン系ポリマー(例えば、シリコーンとアクリルの複合ポリマー、シリコーンとポリエステルの複合ポリマー等)、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレート(PEN)等をのポリエステル)、ポリウレタン系ポリマー(例えば、ヘキサメチレンジイソシアネート又はトルエンジイソシアネートとエチレングリコール又はプロピレングリコールからなるポリマー等)、アクリル系ポリマー(例えば、ホリメチルメタクリレート、ポリエチルアクリレート等を含有するポリマー)、ポリオレフィン系ポリマー(例えば、ポリエチレンとアクリル酸またはメタクリル酸からなるポリマー等)等の公知のポリマーの中から適宜選択して用いることができる。
(polymer)
The polymer layer in the present invention contains at least one polymer as a binder.
Examples of the polymer include silicone polymers (for example, silicone-acrylic composite polymers, silicone-polyester composite polymers, etc.), polyester-based polymers (for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN)). Polyester), polyurethane-based polymers (eg, polymers comprising hexamethylene diisocyanate or toluene diisocyanate and ethylene glycol or propylene glycol), acrylic polymers (eg, polymers containing polymethyl methacrylate, polyethyl acrylate, etc.), Used by appropriately selecting from known polymers such as polyolefin polymers (eg, polymers comprising polyethylene and acrylic acid or methacrylic acid) It is possible.

これらの中でも、支持体との間又は着色層や下塗り層等の他の層との間の接着性、及び耐侯性(特に温湿度変化や熱や水分(湿度)を有する高い湿熱環境下での耐性)を確保する観点から、ポリエステル系ポリマー、ポリウレタン系ポリマー、フッ素系ポリマー、及びシリコーン系ポリマーからなる群より選ばれる少なくとも1種を含むことが好ましい。更には、耐侯性(特に温湿度変化や熱や水分(湿度)を有する高い湿熱環境下での耐性)の点で、フッ素系ポリマー、シリコーン系ポリマーが特に好ましい。   Among these, adhesion between the support or other layers such as a colored layer and an undercoat layer, and weather resistance (particularly in a high humidity environment with temperature and humidity changes and heat and moisture (humidity)) From the viewpoint of ensuring (resistance), it is preferable to include at least one selected from the group consisting of polyester polymers, polyurethane polymers, fluorine polymers, and silicone polymers. Furthermore, a fluorine-based polymer and a silicone-based polymer are particularly preferable in terms of weather resistance (particularly resistance to changes in temperature and humidity and high humidity environment having heat and moisture (humidity)).

前記フッ素系ポリマーとしては、−(CFX−CX)−で表される繰り返し単位を有するポリマーが好ましい。なお、前記繰り返し単位において、X、X、及びXは、各々独立に、水素原子、フッ素原子、塩素原子、又は炭素数1〜3のパーフルオロアルキル基を表す。 The fluorine-based polymer is preferably a polymer having a repeating unit represented by-(CFX 1 -CX 2 X 3 )-. In the repeating unit, X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a C 1 to C 3 perfluoroalkyl group.

フッ素系ポリマーの例としては、ポリテトラフルオロエチレン(以下、PTFEと表すことがある。)、ポリフッ化ビニル(以下、PVFと表すことがある。)、ポリフッ化ビニリデン(以下、PVDFと表すことがある。)、ポリ塩化3フッ化エチレン(以下、PCTFEと表すことがある。)、ポリテトラフルオロプロピレン(以下、HFPと表すことがある。)などが挙げられる。   Examples of the fluorine-based polymer include polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinyl fluoride (hereinafter sometimes referred to as PVF), and polyvinylidene fluoride (hereinafter referred to as PVDF). ), Polychlorinated ethylene trifluoride (hereinafter sometimes referred to as PCTFE), polytetrafluoropropylene (hereinafter sometimes referred to as HFP), and the like.

フッ素系ポリマーは、一種のモノマーを単独重合したホモポリマーでもよいし、2種以上のモノマーを共重合したものでもよい。共重合したポリマーの例として、テトラフルオロエチレンとテトラフルオロプロピレンとを共重合したコポリマー(P(TFE/HFP)と略記する。)、テトラフルオロエチレンとフッ化ビニリデンとを共重合したコポリマー(P(TFE/VDF)と略記する。)等を挙げることができる。   The fluorine-based polymer may be a homopolymer obtained by homopolymerizing one kind of monomer, or may be obtained by copolymerizing two or more kinds of monomers. As examples of the copolymerized copolymer, a copolymer obtained by copolymerizing tetrafluoroethylene and tetrafluoropropylene (abbreviated as P (TFE / HFP)), a copolymer obtained by copolymerizing tetrafluoroethylene and vinylidene fluoride (P ( Abbreviated as TFE / VDF)).

さらに、−(CFX−CX)−の構造部分を有するフッ素系モノマーとそれ以外のモノマーとを共重合したポリマーでもよい。その例として、テトラフルオロエチレンとエチレンとの共重合体(P(TFE/E)と略記する。)、テトラフルオロエチレンとプロピレンとの共重合体(P(TFE/P)と略記する。)、テトラフルオロエチレンとビニルエーテルとの共重合体(P(TFE/VE)と略記する。)、テトラフルオロエチレンとパーフロロビニルエーテルとの共重合体(P(TFE/FVE)と略記する。)、クロロトリフルオロエチレンとビニルエーテルとの共重合体(P(CTFE/VE)と略記する。)、クロロトリフルオロエチレンとパーフロロビニルエーテルとの共重合体(P(CTFE/FVE)と略記する。)等を挙げることができる。 Furthermore, - (CFX 1 -CX 2 X 3) - and a fluorine-based monomer and other monomers may be copolymerized polymer having a structural part of. For example, a copolymer of tetrafluoroethylene and ethylene (abbreviated as P (TFE / E)), a copolymer of tetrafluoroethylene and propylene (abbreviated as P (TFE / P)), Copolymer of tetrafluoroethylene and vinyl ether (abbreviated as P (TFE / VE)), copolymer of tetrafluoroethylene and perfluorovinyl ether (abbreviated as P (TFE / FVE)), chlorotri Copolymers of fluoroethylene and vinyl ether (abbreviated as P (CTFE / VE)), copolymers of chlorotrifluoroethylene and perfluorovinyl ether (abbreviated as P (CTFE / FVE)), and the like. be able to.

フッ素系ポリマーは、有機溶剤に溶解して用いられるものでもよいし、ポリマー粒子として水に分散させて用いられるものでもよい。環境負荷が少ない点で後者が好ましい。フッ素系ポリマーの水分散物については、例えば特開2003−231722号公報、特開2002−20409号公報、特開平9−194538号公報等に記載されている。   The fluorine-based polymer may be used by being dissolved in an organic solvent, or may be used by being dispersed in water as polymer particles. The latter is preferable in that the environmental load is small. For example, JP-A 2003-231722, JP-A 2002-20409, JP-A 9-194538 and the like are described in regard to an aqueous dispersion of a fluoropolymer.

前記フッ素系ポリマーは、上市されている市販品を用いてもよく、該市販品の例として、AGCコーテック(株)製のオブリガートSW0011Fなどを挙げることができる。   As the fluorine-based polymer, a commercially available product may be used, and examples of the commercially available product include Obligato SW0011F manufactured by AGC Co-Tech Co., Ltd.

前記シリコーン系ポリマーとしては、例えば、シリコーンとアクリルの複合ポリマー、シリコーンとポリエステルの複合ポリマー等が挙げられる。シリコーン系ポリマーとして、上市されている市販品を用いてもよく、例えば、シリコーンとアクリルとの複合ポリマーの具体例として、DIC(株)製のセラネートWSA1060、同WSA1070等、旭化成ケミカルズ(株)製のH7620、H7630、H7650等、などを挙げることができる。   Examples of the silicone-based polymer include a composite polymer of silicone and acrylic, a composite polymer of silicone and polyester, and the like. Commercially available products that are marketed may be used as the silicone polymer. For example, as a specific example of a composite polymer of silicone and acrylic, Seranate WSA1060 and WSA1070 manufactured by DIC Corporation, Asahi Kasei Chemicals Corporation H7620, H7630, H7650, and the like.

本発明におけるポリマー層は、フッ素系ポリマー及び/又はシリコーン系ポリマーとこれらポリマー以外の他のポリマーとを併用してもよい。他のポリマーを併用する場合、フッ素系ポリマー及びシリコーン系ポリマー以外の前記ポリマーを、バインダー全質量の50質量%以下の範囲で併用することが好ましい。他のポリマーの量が50質量%以下であることで、樹脂フィルム(好ましくは例えばバックシート)として良好な耐候性を発揮することができる。   The polymer layer in the present invention may use a fluorine-based polymer and / or a silicone-based polymer in combination with another polymer other than these polymers. When other polymers are used in combination, it is preferable to use the polymers other than the fluorine-based polymer and the silicone-based polymer in the range of 50% by mass or less of the total mass of the binder. When the amount of the other polymer is 50% by mass or less, good weather resistance can be exhibited as a resin film (preferably, for example, a back sheet).

ポリマーのポリマー層中における含有量は、ポリマー層の全質量に対して、30質量%以上95質量%以下が好ましく、より好ましくは60質量%以上90質量%以下である。ポリマーの含有量は、30質量%以上であると、強度の良好な層が得られ、95質量%以下であると、紫外線吸収剤の量が相対的に少なくなり過ぎることがなく耐光性能を高く保持するうえで好ましい。   The content of the polymer in the polymer layer is preferably 30% by mass to 95% by mass and more preferably 60% by mass to 90% by mass with respect to the total mass of the polymer layer. When the content of the polymer is 30% by mass or more, a layer having a good strength can be obtained, and when it is 95% by mass or less, the amount of the UV absorber is not excessively decreased and the light resistance is improved. It is preferable for holding.

(架橋剤)
ポリマー層は、層中のポリマーを架橋するための架橋剤を含有してもよい。
架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらのうち、湿熱経時後の接着性を確保する観点から、カルボジイミド系架橋剤、オキサゾリン系架橋剤が好ましい。
(Crosslinking agent)
The polymer layer may contain a crosslinking agent for crosslinking the polymer in the layer.
Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, a carbodiimide-based crosslinking agent and an oxazoline-based crosslinking agent are preferable from the viewpoint of securing adhesiveness after wet heat aging.

前記カルボジイミド系架橋剤の具体例としては、N,N’−ジシクロヘキシルカルボジイミド、N,N’−ジイソプロピルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N−[3−(ジメチルアミノ)プロピル]−N’−エチルカルボジイミド、N−[3−(ジメチルアミノ)プロピル]−N’−プロピルカルボジイミド、N−tert−ブチル−N’−エチルカルボジイミド等が挙げられる。
また、上市されている市販品として、カルボジライトV−02−L2(日清紡績(株)製)などが挙げられる。
Specific examples of the carbodiimide-based crosslinking agent include N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N- [3- ( Dimethylamino) propyl] -N′-ethylcarbodiimide, N- [3- (dimethylamino) propyl] -N′-propylcarbodiimide, N-tert-butyl-N′-ethylcarbodiimide and the like.
Moreover, as a commercial item marketed, Carbodilite V-02-L2 (Nisshinbo Co., Ltd. product) etc. are mentioned.

前記オキサゾリン系架橋剤の具体例としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン、2,2’−ビス−(2−オキサゾリン)、2,2’−メチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(2−オキサゾリン)、2,2’−トリメチレン−ビス−(2−オキサゾリン)、2,2’−テトラメチレン−ビス−(2−オキサゾリン)、2、2’−ヘキサメチレン−ビス−(2−オキサゾリン)、2,2’−オクタメチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、2,2’−p−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、ビス−(2−オキサゾリニルシクロヘキサン)スルフィド、ビス−(2−オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく利用することができる。
また、上市されている市販品として、エポクロスWS−700、エポクロスK−2020E(いずれも日本触媒(株)製)などを用いることができる。
Specific examples of the oxazoline-based crosslinking agent include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2'-bis- (2-oxazoline), 2,2'-methylene-bis- (2-oxazoline), 2,2′-ethylene-bis- (2-oxazoline), 2,2′-trimethylene-bis- (2-oxazoline), 2,2′-tetramethylene-bis- (2-oxazoline) ), 2,2′-hexamethylene-bis- (2-oxazoline), 2,2′-octamethylene-bis- (2-oxazoline), 2,2′-ethylene-bis- (4,4 ′) Dimethyl-2-oxazoline), 2,2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene- Bis- (4,4′-dimethyl-2-oxazoline), bis- (2-oxazolinylcyclohexane) sulfide, bis- (2-oxazolinylnorbornane) sulfide and the like can be mentioned. Furthermore, (co) polymers of these compounds can also be preferably used.
As commercially available products, Epocross WS-700, Epocross K-2020E (both manufactured by Nippon Shokubai Co., Ltd.) and the like can be used.

架橋剤のポリマー層中における含有量としては、バインダーに対して、0.5質量%以上100質量%以下が好ましく、0.5質量%以上50質量%以下がより好ましく、さらに好ましくは5.0質量%以上30質量%以下である。架橋剤の含有量は、0.5質量%以上であると、ポリマー層の強度及び接着性を保持しながら充分な架橋効果が得られ、100質量%以下、特に50質量%以下であると、ポリマー層を形成するための塗布液を調整したときの液のポットライフをより長く保つことができる。   The content of the crosslinking agent in the polymer layer is preferably 0.5% by mass or more and 100% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and still more preferably 5.0% by mass with respect to the binder. The mass is 30% by mass or more. When the content of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect can be obtained while maintaining the strength and adhesiveness of the polymer layer, and when it is 100% by mass or less, particularly 50% by mass or less, The pot life of the liquid when the coating liquid for forming the polymer layer is adjusted can be kept longer.

(顔料)
本発明におけるポリマー層は、顔料を含有して着色層として形成されてもよい。この場合、後述する着色層における場合と同様の顔料を用いることができ、好ましい態様も同様である。例えば、所望の色相の顔料を含ませて意匠性を持たせてもよいし、また白色顔料を含ませることによりポリマー層に反射層としての機能を付与してもよい。
(Pigment)
The polymer layer in the present invention may contain a pigment and be formed as a colored layer. In this case, the same pigment as in the colored layer described later can be used, and the preferred embodiment is also the same. For example, a pigment having a desired hue may be included to give design properties, or a white pigment may be included to give the polymer layer a function as a reflective layer.

(他の添加剤)
本発明におけるポリマー層は、必要に応じて、界面活性剤、フィラー等の他の添加剤を含んでいてもよい。
(Other additives)
The polymer layer in this invention may contain other additives, such as surfactant and a filler, as needed.

前記界面活性剤としては、アニオン系、ノニオン系等の公知の界面活性剤を用いることができる。界面活性剤を含有する場合、その含有量は0.1〜10mg/mが好ましく、より好ましくは0.5〜3mg/mである。界面活性剤の含有量は、0.1mg/m以上であると、層形成する場合にハジキの発生を抑えて良好な層が得られ、10mg/m以下であると、ポリマー支持体及びポリマー層との間の接着を良好に保つことができる。 As the surfactant, known surfactants such as anionic and nonionic surfactants can be used. When the surfactant is contained, the content is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 . When the content of the surfactant is 0.1 mg / m 2 or more, a good layer can be obtained by suppressing generation of cissing when forming a layer, and when it is 10 mg / m 2 or less, the polymer support and Adhesion between the polymer layers can be kept good.

フィラーとしては、二酸化チタン等の公知のフィラー(無機微粒子)を用いることができる。フィラーを含有する場合、フィラーのポリマー層中における含有量は、ポリマー層中のバインダー量に対し、20質量%以下であるのが好ましく、より好ましくは15質量%以下である。フィラーの含有量が20質量%以下であると、塗布膜の膜面状がより良好に保てる。フィラーの含有量の下限は、0.5質量%であることが好ましい。フィラーの含有量が20質量%以下であると、良好な面状が得られる点で有利である。また、フィラーの含有量が0.5質量%以上であると、湿熱経時後の接着性が良好である。また、無機微粒子の含有量は、1質量%以上15質量%以下の範囲がより好ましい。   A known filler (inorganic fine particles) such as titanium dioxide can be used as the filler. When the filler is contained, the content of the filler in the polymer layer is preferably 20% by mass or less, more preferably 15% by mass or less, based on the amount of the binder in the polymer layer. When the filler content is 20% by mass or less, the film surface shape of the coating film can be kept better. The lower limit of the filler content is preferably 0.5% by mass. When the filler content is 20% by mass or less, it is advantageous in that a good surface shape can be obtained. Moreover, the adhesiveness after wet heat aging is favorable in content of a filler being 0.5 mass% or more. The content of the inorganic fine particles is more preferably in the range of 1% by mass to 15% by mass.

本発明におけるポリマー層の厚みとしては、0.5〜10.0μmが好ましい。ポリマー層の厚みが0.5μm以上であると、より高い耐久性能が得られるほか、ポリマー支持体との間の接着力が良好になる。また、ポリマー層の厚みが10.0μm以下であると、面状がより良好なり、隣接層やポリマー基材との間の接着力に優れる。すなわち、ポリマー層の厚みが0.5〜10.0μmの範囲内であることにより、ポリマー層の耐久性と面状とが両立し、ポリマー基材とポリマー層との間の接着性により優れる。
ポリマー層の厚みは、特に1.0〜5.0μmの範囲がより好ましい。
The thickness of the polymer layer in the present invention is preferably 0.5 to 10.0 μm. When the thickness of the polymer layer is 0.5 μm or more, higher durability can be obtained and adhesion between the polymer layer and the polymer support can be improved. In addition, when the thickness of the polymer layer is 10.0 μm or less, the surface shape becomes better, and the adhesive strength between the adjacent layer and the polymer substrate is excellent. That is, when the thickness of the polymer layer is in the range of 0.5 to 10.0 μm, the durability and planarity of the polymer layer are compatible, and the adhesiveness between the polymer substrate and the polymer layer is excellent.
In particular, the thickness of the polymer layer is more preferably in the range of 1.0 to 5.0 μm.

−保護ポリマー層−
本発明の樹脂フィルムは、支持体上の前記ポリマー層の上に更に、バインダーとして一種又は二種以上のポリマーを含み、前記一般式(1)で表される化合物の含有量がバインダーの総量に対して1.0質量%以下である保護ポリマー層を有する態様が好ましい。保護ポリマー層は、更に、一般式(1)で表される化合物を含む紫外線吸収剤の合計の含有量がバインダーの総量に対して1.0質量%以下である場合がより好ましい。
-Protective polymer layer-
The resin film of the present invention further includes one or more polymers as a binder on the polymer layer on the support, and the content of the compound represented by the general formula (1) is the total amount of the binder. An embodiment having a protective polymer layer of 1.0% by mass or less is preferable. The protective polymer layer further preferably has a total content of the ultraviolet absorber containing the compound represented by the general formula (1) of 1.0% by mass or less based on the total amount of the binder.

紫外線吸収剤(一般式(1)で表される化合物を含む。)が主に含まれる前記ポリマー層が保護ポリマー層により保護された積層構造を有することにより、紫外線吸収剤を多く含有するポリマー層を表層に有する場合に比べて、紫外線の吸収がより安定し、長期経時での支持体のひび割れや、剥離等として現れる劣化を抑制することができる。   A polymer layer containing a large amount of an ultraviolet absorber by having a laminated structure in which the polymer layer mainly containing an ultraviolet absorber (including a compound represented by the general formula (1)) is protected by a protective polymer layer. As compared with the case where the surface layer is included, the absorption of ultraviolet rays is more stable, and it is possible to suppress deterioration that appears as cracks or peeling of the support over a long period of time.

保護ポリマー層は、本発明の効果を損なわない程度に紫外線吸収剤(一般式(1)で表される化合物を含む。)を含んでいてもよいが、一般式(1)で表される化合物の含有量、ひいては紫外線吸収剤の含有量を、全バインダー質量の1.0質量%以下とし、保護ポリマー層が紫外線吸収剤を実質的に含まないことが好ましく、紫外線吸収剤を含まない(0質量%)ことがより好ましい。紫外線吸収剤の含有量が全バインダー質量の1質量%以下とは、紫外線吸収剤の含有を全く除外しないものの、紫外線吸収剤を積極的に含有しないことを意味する。   The protective polymer layer may contain an ultraviolet absorber (including the compound represented by the general formula (1)) to the extent that the effects of the present invention are not impaired, but the compound represented by the general formula (1). It is preferable that the content of the UV absorber, and hence the content of the UV absorber, is 1.0% by mass or less of the total binder mass, and the protective polymer layer does not substantially contain the UV absorber and does not contain the UV absorber (0 (Mass%) is more preferable. The content of the ultraviolet absorber of 1% by mass or less of the total binder mass means that the ultraviolet absorber is not actively contained, although the inclusion of the ultraviolet absorber is not excluded at all.

保護ポリマー層に含有されるポリマーとしては、例えば、フッ素系ポリマー、シリコーン系ポリマー、ポリエステル系ポリマー、ポリウレタン系ポリマー、アクリル系ポリマー、ポリオレフィン系ポリマー等の公知のポリマーが挙げられ、適宜選択して用いることができる。前記ポリマーの具体例等の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。
これらの中でも、温湿度変化や高い湿熱環境に曝されたときの耐久性能をより向上させる観点から、フッ素系ポリマー、及びシリコーン系ポリマーからなる群より選ばれる1種又は2種以上を含むことが好ましい。
Examples of the polymer contained in the protective polymer layer include known polymers such as a fluorine polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, an acrylic polymer, and a polyolefin polymer. be able to. Details and preferred embodiments of specific examples and the like of the polymer are as described in the polymer layer.
Among these, from the viewpoint of further improving the durability performance when exposed to changes in temperature and humidity and high humidity and heat environment, it may contain one or more selected from the group consisting of fluorine-based polymers and silicone-based polymers. preferable.

ポリマーの保護ポリマー層中における含有量は、保護ポリマー層の全質量に対して、50質量%以上95質量%以下が好ましく、より好ましくは60質量%以上90質量%以下である。ポリマーの含有量は、50質量%以上であると良好な耐久性が得られ、95質量%以下であると、架橋剤や界面活性剤の量を確保できるので、膜強度や塗布面状の点で有利である。   The content of the polymer in the protective polymer layer is preferably 50% by mass to 95% by mass, and more preferably 60% by mass to 90% by mass with respect to the total mass of the protective polymer layer. When the content of the polymer is 50% by mass or more, good durability is obtained, and when it is 95% by mass or less, the amount of the crosslinking agent and the surfactant can be secured. Is advantageous.

保護ポリマー層は、前記ポリマーを架橋するための架橋剤の少なくとも一種をさらに含有することが好ましい。架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらのうち、湿熱経時後の接着性を確保する観点から、カルボジイミド系架橋剤、オキサゾリン系架橋剤が好ましく、カルボジイミド系架橋剤がより好ましい。
なお、架橋剤の詳細、特にカルボジイミド系架橋剤、オキサゾリン系架橋剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。
It is preferable that the protective polymer layer further contains at least one crosslinking agent for crosslinking the polymer. Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, a carbodiimide-based crosslinking agent and an oxazoline-based crosslinking agent are preferable, and a carbodiimide-based crosslinking agent is more preferable from the viewpoint of securing adhesiveness after wet heat aging.
The details of the crosslinking agent, particularly the details and preferred embodiments of the carbodiimide-based crosslinking agent and the oxazoline-based crosslinking agent are as described in the polymer layer.

架橋剤の保護ポリマー層中における含有量としては、層を構成するポリマーに対して、0.5質量%以上40質量%以下が好ましく、0.5質量%以上35質量%以下がより好ましく、さらにより好ましくは5.0質量%以上30質量%以下である。架橋剤の含有量は、0.5質量%以上であると、ポリマー層の強度及び接着性を保持しながら充分な架橋効果が得られ、40質量%以下、特に35質量%以下であると、ポリマー層を形成するための塗布液を調整したときの液のポットライフをより長く保つことができる。   The content of the crosslinking agent in the protective polymer layer is preferably 0.5% by mass or more and 40% by mass or less, more preferably 0.5% by mass or more and 35% by mass or less with respect to the polymer constituting the layer. More preferably, it is 5.0 mass% or more and 30 mass% or less. When the content of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the polymer layer, and when it is 40% by mass or less, particularly 35% by mass or less, The pot life of the liquid when the coating liquid for forming the polymer layer is adjusted can be kept longer.

また、保護ポリマー層は、必要に応じて、更に界面活性剤、フィラー(無機微粒子)等の他の添加剤を含んでいてもよい。これらの詳細については、既述の通りである。   The protective polymer layer may further contain other additives such as a surfactant and a filler (inorganic fine particles) as necessary. These details are as described above.

保護ポリマー層の厚みとしては、0.5〜12μmが好ましい。保護ポリマー層の厚みは、0.5μm以上であるとより高い耐久性能が得られ、また12μm以下であると面状が良好で隣接層との接着性に優れる。保護ポリマー層の厚みは、1.0〜10μmがより好ましい。   The thickness of the protective polymer layer is preferably 0.5 to 12 μm. When the thickness of the protective polymer layer is 0.5 μm or more, higher durability can be obtained, and when it is 12 μm or less, the surface shape is good and the adhesiveness to the adjacent layer is excellent. The thickness of the protective polymer layer is more preferably 1.0 to 10 μm.

保護ポリマー層は、ポリマー等を含む塗布液を調製し、この塗布液を前記ポリマー層上に塗布し乾燥させることにより形成することができる。乾燥後、加熱する等して硬化させてもよい。塗布方法や用いる塗布液の溶媒には、特に制限はない。塗布方法は、例えばグラビアコーターやバーコーターを利用することができる。塗布液の調製に用いる溶媒は、水、及びトルエン、メチルエチルケトン等の有機溶媒の中から1種又は2種以上を選択して用いることができる。保護ポリマー層の形成は、ポリマーを水分散した水系塗布液を調製しこれを塗布する方法によるのが好ましい。この場合、溶媒中の水の割合は60質量%以上が好ましく、80質量%以上がより好ましい。   The protective polymer layer can be formed by preparing a coating solution containing a polymer or the like, applying the coating solution on the polymer layer, and drying the coating solution. After drying, it may be cured by heating. There is no restriction | limiting in particular in the coating method and the solvent of the coating liquid to be used. As a coating method, for example, a gravure coater or a bar coater can be used. The solvent used for the preparation of the coating solution can be selected from one or more of water and organic solvents such as toluene and methyl ethyl ketone. The protective polymer layer is preferably formed by a method in which an aqueous coating solution in which a polymer is dispersed in water is prepared and applied. In this case, the proportion of water in the solvent is preferably 60% by mass or more, and more preferably 80% by mass or more.

本発明の樹脂フィルムは、上記のほか、必要に応じて、着色層等の他の層を有してもよい。この場合、例えば、支持体の一方にポリマー層が設けられ、他方に着色層(特に光反射層)が設けられた太陽電池用バックシートに構成することができる。   In addition to the above, the resin film of the present invention may have other layers such as a colored layer as necessary. In this case, for example, it can be configured as a solar cell backsheet in which a polymer layer is provided on one of the supports and a colored layer (particularly a light reflecting layer) is provided on the other.

−着色層−
本発明の樹脂フィルムは、ポリマー基材の受光側に着色層を有していることが好ましい。この場合、本発明の樹脂フィルムの一例として、太陽電池用バックシートとして適用することができる。太陽電池用バックシートの具体例として、ポリマー基材の受光側(太陽電池素子が設けられた電池側基板と向き合う側)に着色層が設けられ、着色層が設けられた側と反対側に裏面保護層として既述の本発明におけるポリマー層が設けられた態様が好ましい。
-Colored layer-
The resin film of the present invention preferably has a colored layer on the light receiving side of the polymer substrate. In this case, it can apply as a back sheet for solar cells as an example of the resin film of this invention. As a specific example of the solar cell backsheet, a colored layer is provided on the light receiving side of the polymer base (the side facing the battery side substrate on which the solar cell element is provided), and the back side is opposite to the side on which the colored layer is provided. An embodiment in which the above-described polymer layer in the present invention is provided as the protective layer is preferable.

本発明における着色層は、少なくとも顔料とバインダーとを含有し、必要に応じて、更に各種添加剤などの他の成分を含んで構成されてもよい。   The colored layer in the present invention contains at least a pigment and a binder, and may further include other components such as various additives as necessary.

本発明の樹脂フィルムを太陽電池用バックシートとする場合、着色層の機能としては、第1に、入射光のうち太陽電池セルを通過して発電に使用されずにバックシートに到達した光を反射させて太陽電池セルに戻すことにより、太陽電池モジュールの発電効率を上げること、第2に、太陽電池モジュールを太陽光が入射する側(オモテ面側)から見た場合の外観の装飾性を向上すること、等が挙げられる。一般に太陽電池モジュールをオモテ面側(ガラス基板側)から見ると、太陽電池セルの周囲にバックシートが見えており、バックシートに着色層を設けることにより、バックシート自体の装飾性を向上させて見栄えを改善することができる。   When the resin film of the present invention is used as a back sheet for solar cells, as a function of the colored layer, first, the light that has passed through the solar cells and reaches the back sheet without being used for power generation among the incident light. Increasing the power generation efficiency of the solar cell module by reflecting it back to the solar cell, and secondly, the decorativeness of the appearance when the solar cell module is viewed from the side where sunlight enters (front side) And so on. In general, when the solar cell module is viewed from the front side (glass substrate side), the back sheet is visible around the solar cell, and by providing a colored layer on the back sheet, the decorativeness of the back sheet itself is improved. The appearance can be improved.

(顔料)
着色層は、顔料の少なくとも一種を含有することができる。
顔料としては、例えば、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料を、適宜選択して含有することができる。
(Pigment)
The colored layer can contain at least one pigment.
Examples of the pigment include inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained.

着色層を、太陽電池に入射して太陽電池セルを通過した光を反射して太陽電池セルに戻す反射層として構成する場合、白色無機粒子を含むことが好ましい。白色無機粒子としては、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク等の白色顔料が好ましい。中でも、二酸化チタンが好ましい。   When the colored layer is configured as a reflective layer that reflects light that has entered the solar battery and passed through the solar battery cell and returns it to the solar battery cell, it preferably includes white inorganic particles. As the white inorganic particles, white pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin and talc are preferable. Of these, titanium dioxide is preferable.

反射層を形成する場合、反射層中の白色無機粒子の含有量としては、バインダーポリマー及び白色無機粒子の合計質量に対して、30質量%〜90質量%の範囲が好ましく、より好ましい白色無機粒子の含有量の範囲は50〜85質量%である。白色無機粒子の反射層中の含有量は、30質量%以上であると良好な反射率が得られ、90質量%以下であることで太陽電池用バックシートの軽量化を図ることができる。   When the reflective layer is formed, the content of the white inorganic particles in the reflective layer is preferably in the range of 30% by mass to 90% by mass with respect to the total mass of the binder polymer and the white inorganic particles, and more preferably white inorganic particles. The range of the content of is 50 to 85% by mass. When the content of the white inorganic particles in the reflective layer is 30% by mass or more, a good reflectance is obtained, and when the content is 90% by mass or less, the back sheet for solar cells can be reduced in weight.

顔料の着色層中における含有量は、2.5〜12g/mの範囲が好ましく、2.5〜8.5g/mの範囲がより好ましい。顔料の含有量が2.5g/m以上であると、必要な着色が得られ、反射率や装飾性を効果的に与えることができる。また、着色層中における顔料の含有量が12g/m以下であると、着色層の面状を良好に維持しやすく、膜強度により優れる。 The content in the colored layer of the pigment is preferably in the range of 2.5~12g / m 2, the range of 2.5~8.5g / m 2 is more preferable. When the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided. In addition, when the content of the pigment in the colored layer is 12 g / m 2 or less, the planar shape of the colored layer is easily maintained and the film strength is excellent.

着色層を反射層として設ける場合、反射層中には、白色無機粒子を4〜12g/mの範囲で含有することが好ましい。白色無機粒子の含有量が4g/m以上であると、必要な反射率が得られ易く、含有量が12g/m以下であることで、樹脂フィルム(特にバックシート)の軽量化が図れる。中でも、反射層中の白色無機粒子のより好ましい含量は、5〜11g/mの範囲である。
なお、反射層が2種類以上の白色無機粒子を含有する場合は、反射層中の全白色無機粒子の含有量の合計を4〜12g/mの範囲とすることが好ましい。
When providing a colored layer as a reflective layer, it is preferable to contain white inorganic particles in the range of 4-12 g / m < 2 > in a reflective layer. When the content of the white inorganic particles is 4 g / m 2 or more, the necessary reflectance is easily obtained, and when the content is 12 g / m 2 or less, the weight of the resin film (particularly the back sheet) can be reduced. . Especially, the more preferable content of the white inorganic particles in the reflective layer is in the range of 5 to 11 g / m 2 .
In addition, when a reflective layer contains 2 or more types of white inorganic particles, it is preferable to make the sum total of content of all the white inorganic particles in a reflective layer into the range of 4-12 g / m < 2 >.

顔料の平均粒径としては、体積平均粒径で0.03〜0.8μmが好ましく、より好ましくは0.15〜0.5μm程度である。平均粒径が前記範囲内であると、光の反射効率が高い。体積平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。   As an average particle diameter of a pigment, 0.03-0.8 micrometer is preferable by volume average particle diameter, More preferably, it is about 0.15-0.5 micrometer. When the average particle size is within the above range, the light reflection efficiency is high. The volume average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).

着色層を構成するバインダーとしては、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂、シリコーン樹脂等を用いることができる。これらの中でも、高い接着性を確保する観点から、アクリル樹脂、ポリオレフィン樹脂が好ましい。また。複合樹脂を用いてもよく、例えばアクリル/シリコーン複合樹脂も好ましいバインダーである。
バインダー成分の含有量は、顔料に対して、15〜200質量%の範囲が好ましく、17〜100質量%の範囲がより好ましい。バインダーの含有量は、15質量%以上であると、着色層の強度が充分に得られ、また200質量%以下であると、反射率や装飾性を良好に保つことができる。
As the binder constituting the colored layer, a polyester resin, a polyurethane resin, an acrylic resin, a polyolefin resin, a silicone resin, or the like can be used. Among these, acrylic resin and polyolefin resin are preferable from the viewpoint of ensuring high adhesiveness. Also. Composite resins may be used, for example acrylic / silicone composite resins are also preferred binders.
The content of the binder component is preferably in the range of 15 to 200% by mass and more preferably in the range of 17 to 100% by mass with respect to the pigment. When the content of the binder is 15% by mass or more, the strength of the colored layer is sufficiently obtained, and when it is 200% by mass or less, the reflectance and the decorativeness can be kept good.

(添加剤)
着色層には、必要に応じて、架橋剤、界面活性剤、フィラー等を添加してもよい。
前記架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。架橋剤の詳細、特にカルボジイミド系架橋剤、オキサゾリン系架橋剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。架橋剤の添加量は、層中のバインダー当たり5〜50質量%が好ましく、より好ましくは10〜40質量%である。
(Additive)
You may add a crosslinking agent, surfactant, a filler, etc. to a colored layer as needed.
Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Details of the crosslinking agent, in particular, details and preferred embodiments of the carbodiimide crosslinking agent and oxazoline crosslinking agent are as described in the polymer layer. The addition amount of the crosslinking agent is preferably 5 to 50% by mass, more preferably 10 to 40% by mass per binder in the layer.

前記界面活性剤としては、アニオン系、ノニオン系等の公知の界面活性剤を用いることができる。界面活性剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。界面活性剤を含有する場合の含有量は、0.1〜15mg/mが好ましく、より好ましくは0.5〜5mg/mである。 As the surfactant, known surfactants such as anionic and nonionic surfactants can be used. Details and preferred embodiments of the surfactant are as described in the polymer layer. As for content in the case of containing surfactant, 0.1-15 mg / m < 2 > is preferable, More preferably, it is 0.5-5 mg / m < 2 >.

フィラーとしては、コロイダルシリカ、二酸化チタン等の公知のフィラーを用いることができる。フィラーの含有量は、着色層のバインダー当たり20質量%以下が好ましく、より好ましくは15質量%以下である。   As the filler, known fillers such as colloidal silica and titanium dioxide can be used. The content of the filler is preferably 20% by mass or less, more preferably 15% by mass or less per binder of the colored layer.

着色層の形成は、顔料を含有するポリマーシートをポリマー支持体に貼合する方法、基材形成時に着色層を共押出しする方法、塗布による方法等により行なえる。具体的には、ポリマー支持体の表面に直にあるいは厚み2μm以下の下塗り層を介して、貼合、共押出し、塗布等することにより着色層を形成することができる。形成された着色層は、ポリマー支持体の表面に直に接した状態であっても、あるいは下塗り層を介して積層した状態であってもよい。
上記のうち、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。
The colored layer can be formed by a method in which a polymer sheet containing a pigment is bonded to a polymer support, a method in which a colored layer is coextruded during substrate formation, a method by coating, or the like. Specifically, the colored layer can be formed by bonding, coextrusion, coating, or the like directly on the surface of the polymer support or through an undercoat layer having a thickness of 2 μm or less. The formed colored layer may be in a state of being in direct contact with the surface of the polymer support or may be in a state of being laminated via an undercoat layer.
Among the methods described above, the method by coating is preferable because it is simple and can be formed in a thin film with uniformity.

塗布による場合、塗布方法としては、例えば、グラビアコーター、バーコーターなどの公知の塗布方法を利用することができる。塗布液は、塗布溶媒として水を用いた水系でもよいし、トルエンやメチルエチルケトン等の有機溶媒を用いた溶剤系でもよい。中でも、環境負荷の観点から、水を溶媒とすることが好ましい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。具体的には、例えば反射層を形成する場合、ポリマー支持体の前記ポリマー層及び前記保護ポリマー層が形成されていない側の面に、白色無機粒子、バインダー、及びその他必要に応じて含まれる成分を含有する反射層形成用塗布液を塗布することにより形成することができる。   In the case of coating, as a coating method, for example, a known coating method such as a gravure coater or a bar coater can be used. The coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types. Specifically, for example, when forming a reflective layer, white inorganic particles, a binder, and other components included as necessary on the surface of the polymer support on which the polymer layer and the protective polymer layer are not formed It can form by apply | coating the coating liquid for reflection layer formation containing.

−易接着性層−
本発明の樹脂フィルムは、支持体の一方の側に、有機成分に対して易接着性の易接着性層が設けられていてもよい。本発明の樹脂フィルムは、例えば、易接着性層が(特に前記着色層の上に)設けられた太陽電池用バックシートであってもよい。この場合、易接着性層は、太陽電池素子を備えた電池側基板(電池本体)の太陽電池素子を封止する封止材との間で強固に接着し易くするための層である。
-Easy adhesive layer-
In the resin film of the present invention, an easy-adhesive layer that is easily adhesive to the organic component may be provided on one side of the support. The resin film of the present invention may be, for example, a solar cell backsheet in which an easy-adhesion layer is provided (particularly on the colored layer). In this case, the easy-adhesion layer is a layer for easily adhering firmly to the sealing material that seals the solar cell element of the battery side substrate (battery body) provided with the solar cell element.

易接着性層は、バインダー、無機微粒子を用いて構成することができ、必要に応じて、さらに添加剤などの他の成分を含んで構成されてもよい。易接着性層は、電池側基板の発電素子を封止するエチレン−ビニルアセテート(EVA;エチレン−酢酸ビニル共重合体)系封止材に対して、10N/cm以上(好ましくは20N/cm以上)の接着力を有するように構成されていることが好ましい。接着力が10N/cm以上であると、接着性を維持し得る湿熱耐性が得られやすい。
なお、接着力は、易接着性層中のバインダー及び無機微粒子の量を調節する方法、バックシートの封止材と接着する面にコロナ処理を施す方法などにより調整が可能である。
The easy-adhesion layer can be formed using a binder and inorganic fine particles, and may further include other components such as additives as necessary. The easy-adhesion layer is 10 N / cm or more (preferably 20 N / cm or more) with respect to an ethylene-vinyl acetate (EVA: ethylene-vinyl acetate copolymer) -based sealing material that seals the power generation element of the battery side substrate. It is preferable that it is comprised so that it may have the adhesive force of (). When the adhesive force is 10 N / cm or more, it is easy to obtain wet heat resistance capable of maintaining adhesiveness.
The adhesive strength can be adjusted by a method of adjusting the amount of the binder and inorganic fine particles in the easy-adhesive layer, a method of applying a corona treatment to the surface of the back sheet that adheres to the sealing material, and the like.

(バインダー)
易接着性層は、バインダーの少なくとも一種を含有することができる。
易接着性層に好適なバインダーとしては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等が挙げられ、中でも耐久性の観点から、アクリル樹脂、ポリオレフィンが好ましい。また、アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。
(binder)
The easy-adhesion layer can contain at least one binder.
Examples of the binder suitable for the easy-adhesive layer include polyester, polyurethane, acrylic resin, polyolefin, and the like. Among these, acrylic resin and polyolefin are preferable from the viewpoint of durability. As the acrylic resin, a composite resin of acrylic and silicone is also preferable.

好ましいバインダーの例としては、ポリオレフィンの具体例としてケミパールS−120、S−75N(ともに三井化学(株)製)、アクリル樹脂の具体例としてジュリマーET−410、SEK−301(ともに日本純薬(株)製)、アクリルとシリコーンとの複合樹脂の具体例としてセラネートWSA1060、WSA1070(ともにDIC(株)製)とH7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)などを挙げることができる。   Examples of preferred binders include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals) as specific examples of polyolefins, and Jurimer ET-410 and SEK-301 (both Nippon Pure Chemical ( As a specific example of the composite resin of acrylic and silicone, Ceranate WSA1060, WSA1070 (both manufactured by DIC Corporation) and H7620, H7630, H7650 (both manufactured by Asahi Kasei Chemicals Corporation) and the like can be given.

バインダーの易接着性層中における含有量は、0.05〜5g/mの範囲とすることが好ましい。中でも、0.08〜3g/mの範囲がより好ましい。バインダーの含有量は、0.05g/m以上であると所望とする接着力が得られやすく、5g/m以下であるとより良好な面状が得られる。 The content of the binder in the easy-adhesive layer is preferably in the range of 0.05 to 5 g / m 2 . Especially, the range of 0.08-3 g / m < 2 > is more preferable. The content of the binder, 0.05 g / m 2 or more is desired as easy adhesion obtained to that, better surface state is obtained when the is 5 g / m 2 or less.

(無機微粒子)
易接着性層は、無機微粒子の少なくとも一種を含有することができる。
無機微粒子としては、例えば、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化錫等が挙げられる。中でも、湿熱雰囲気に曝されたときの接着性の低下が小さい点で、酸化錫、シリカの微粒子が好ましい。
(Inorganic fine particles)
The easily adhesive layer can contain at least one kind of inorganic fine particles.
Examples of the inorganic fine particles include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide. Among these, fine particles of tin oxide and silica are preferable in that the decrease in adhesiveness when exposed to a humid heat atmosphere is small.

無機微粒子の粒径は、体積平均粒径で10〜700nm程度が好ましく、より好ましくは20〜300nm程度である。粒径がこの範囲内であると、より良好な易接着性を得ることができる。粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。   The particle size of the inorganic fine particles is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained. The particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).

無機微粒子の形状には、特に制限はなく、球形、不定形、針状形等のいずれのものを用いることができる。   There is no restriction | limiting in particular in the shape of an inorganic fine particle, Any things, such as a spherical form, an indeterminate form, and a needle shape, can be used.

無機微粒子の含有量は、易接着性層中のバインダーに対して、5〜400質量%の範囲が好ましい。無機微粒子の含有量は、5質量%以上であると、湿熱雰囲気に曝されたときに良好な接着性が保持でき、400質量%以下であると、易接着性層の面状が良好である。中でも、無機微粒子の含有量は、50〜300質量%の範囲が好ましい。   The content of the inorganic fine particles is preferably in the range of 5 to 400% by mass with respect to the binder in the easy-adhesive layer. When the content of the inorganic fine particles is 5% by mass or more, good adhesiveness can be maintained when exposed to a moist heat atmosphere, and when it is 400% by mass or less, the surface state of the easily adhesive layer is good. . Among these, the content of the inorganic fine particles is preferably in the range of 50 to 300% by mass.

(架橋剤)
易接着性層には、架橋剤の少なくとも一種を含有することができる。
易接着性層に好適な架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。中でも、湿熱経時後の接着性を確保する観点から、オキサゾリン系架橋剤が特に好ましい。
架橋剤の詳細、特にカルボジイミド系架橋剤、オキサゾリン系架橋剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。また、オキサゾリン基を有する化合物として、上市されている市販品としては、エポクロスK2010E、同K2020E、同K2030E、同WS−500、同WS−700(いずれも(株)日本触媒製)等も使用可能である。
(Crosslinking agent)
The easily adhesive layer can contain at least one crosslinking agent.
Examples of the crosslinking agent suitable for the easily adhesive layer include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, an oxazoline-based cross-linking agent is particularly preferable from the viewpoint of ensuring adhesiveness after wet heat aging.
Details of the crosslinking agent, in particular, details and preferred embodiments of the carbodiimide crosslinking agent and oxazoline crosslinking agent are as described in the polymer layer. Moreover, as a commercially available product having an oxazoline group, Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Co., Ltd.), etc. can be used. It is.

架橋剤の易接着性層中における含有量としては、易接着性層中のバインダーに対して、5〜50質量%が好ましく、中でもより好ましくは20〜40質量%である。架橋剤の含有量は、5質量%以上であると、良好な架橋効果が得られ、着色層の強度や接着性を保持することができ、50質量%以下であると、塗布液のポットライフを長く保つことができる。   As content in the easily bonding layer of a crosslinking agent, 5-50 mass% is preferable with respect to the binder in an easily bonding layer, Most preferably, it is 20-40 mass%. When the content of the crosslinking agent is 5% by mass or more, a good crosslinking effect can be obtained, and the strength and adhesiveness of the colored layer can be maintained. When the content is 50% by mass or less, the pot life of the coating liquid Can be kept long.

(添加剤)
易接着性層には、必要に応じて、更に、ポリスチレン、ポリメチルメタクリレート、シリカ等の公知のマット剤、アニオン系やノニオン系などの公知の界面活性剤などを添加してもよい。
(Additive)
If necessary, the easily adhesive layer may further contain a known matting agent such as polystyrene, polymethylmethacrylate, or silica, or a known surfactant such as anionic or nonionic.

易接着性層の形成は、易接着性を有するポリマーシートを支持体に貼合する方法や、塗布による方法が挙げられる。中でも、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどの公知の塗布法を利用することができる。塗布液の調製に用いる塗布溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。   Examples of the method for forming the easy-adhesion layer include a method of bonding a polymer sheet having easy adhesion to a support, and a method by coating. Especially, the method by application | coating is preferable at the point which is easy and can form in a thin film with uniformity. As a coating method, for example, a known coating method such as a gravure coater or a bar coater can be used. The coating solvent used for preparing the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types.

易接着性層の厚みには、特に制限はないが、通常は0.05〜8μmが好ましく、より好ましくは0.1〜5μmの範囲である。易接着性層の厚みは、0.05μm以上であると必要な易接着性を好適に得ることができ、8μm以下であると面状がより良好になる。
また、本発明の易接着性層は、着色層の効果を低減させないために、透明であることが必要である。
Although there is no restriction | limiting in particular in the thickness of an easily-adhesive layer, Usually, 0.05-8 micrometers is preferable, More preferably, it is the range of 0.1-5 micrometers. When the thickness of the easy-adhesion layer is 0.05 μm or more, necessary easy adhesion can be suitably obtained, and when it is 8 μm or less, the surface shape becomes better.
In addition, the easily adhesive layer of the present invention needs to be transparent so as not to reduce the effect of the colored layer.

〜樹脂フィルムの製造〜
本発明の樹脂フィルムは、その製造法に特に制限はなく、例えば、下記工程により好適に製造することができる。すなわち、本発明の樹脂フィルムの好ましい製造方法は、(1)ポリマー基材の少なくとも片面に、フッ素系ポリマー及び/又はシリコーン系ポリマーとコロイダルシリカとを含有し、好ましくは溶媒の60質量%以上が水である塗布液を、ポリマー基材の表面に直接あるいは他の層を介して塗布する工程と、(2)ポリマー基材上に塗布形成された塗布膜を乾燥させてポリマー層とする工程と、を設けて構成することができる。ここで、ポリマー層を形成した後に該ポリマー層を硬化させることによって、湿熱経時後の接着性を高めることができる。
既述のように、易接着性層等の他の層を有している場合、上記の工程に加えて、他の層を形成するための工程がさらに設けられてもよい。他の層の形成態様の例としては、例えば、他の層を構成する成分を含有する塗布液を、ポリマー基材の上(例えばポリマー基材のポリマー層が形成されている側とは反対側)に塗布する方法が挙げられ、その例としては、易接着性層、及び着色層の形成方法として既述した方法が挙げられる。
-Manufacture of resin films-
There is no restriction | limiting in particular in the manufacturing method of the resin film of this invention, For example, it can manufacture suitably by the following process. That is, a preferable production method of the resin film of the present invention is (1) containing at least one surface of a polymer substrate containing a fluorine-based polymer and / or a silicone-based polymer and colloidal silica, and preferably 60% by mass or more of the solvent. A step of applying a coating solution, which is water, directly on the surface of the polymer substrate or via another layer; and (2) a step of drying the coating film formed on the polymer substrate to form a polymer layer. Can be provided. Here, the adhesiveness after wet heat aging can be improved by curing the polymer layer after forming the polymer layer.
As described above, when another layer such as an easy-adhesive layer is provided, a step for forming another layer may be further provided in addition to the above step. As an example of the formation mode of the other layer, for example, a coating liquid containing the components constituting the other layer is applied on the polymer substrate (for example, the side opposite to the side on which the polymer layer of the polymer substrate is formed). The method mentioned above as a formation method of an easily-adhesive layer and a colored layer is mentioned as the example.

本発明の樹脂フィルムは、太陽電池用バックシートの用途に好適に用いられる。
本発明の太陽電池用バックシートの具体例として、ポリマー基材のポリマー層が形成されている面とは反対の面に白色顔料を含有する反射層を塗設したもの、ポリマー基材のポリマー層が形成されている面とは反対の面に着色顔料を含有する着色層を塗設したもの、ポリマー基材のポリマー層が形成されている面とは反対の面に、ポリマー基材側から順に白色顔料を含有する反射層と易接着層を塗設したものなどを挙げることができる。
また、他の層の形成態様の他の例として、他の層として所望される機能を発揮する層を1層又は2層以上有するシートやフィルムを被形成面に貼合する方法が挙げられる。この場合のシートやフィルムは、他の層を1層又は2層以上有するシートやフィルムである。
本発明の太陽電池用バックシートの具体例としては、ポリマー基材の一方の側にポリマー層が塗布形成されており、該ポリマー層が形成された側とは反対側の他方の側に、白色顔料(又は白色以外の着色顔料)を含有する白色フィルム(又は着色フィルム)を貼合したもの、太陽電池用バックシートのポリマー層が形成された側とは反対側にアルミニウム薄膜と白色顔料を含有する白色フィルムを貼合したもの、太陽電池用バックシートのポリマー層が形成された側とは反対側に無機バリア層を有するポリマーフィルムと白色顔料を含有する白色フィルムを貼合したもの、等が挙げられる。
The resin film of this invention is used suitably for the use of the solar cell backsheet.
As a specific example of the solar cell backsheet of the present invention, a reflective layer containing a white pigment is coated on the surface opposite to the surface on which the polymer layer of the polymer substrate is formed, the polymer layer of the polymer substrate A colored layer containing a color pigment is coated on the surface opposite to the surface where the polymer layer is formed, on the surface opposite to the surface on which the polymer layer of the polymer substrate is formed, in order from the polymer substrate side Examples thereof include those in which a reflective layer containing a white pigment and an easy adhesion layer are provided.
Moreover, the method of bonding the sheet | seat and film which have the layer which exhibits the function desired as another layer as an other example of the formation aspect of another layer, or a 2 layer or more to a to-be-formed surface is mentioned. The sheet or film in this case is a sheet or film having one or more other layers.
As a specific example of the solar cell backsheet of the present invention, a polymer layer is applied and formed on one side of a polymer substrate, and a white color is formed on the other side opposite to the side on which the polymer layer is formed. A white film (or colored film) containing a pigment (or a colored pigment other than white) is bonded, and an aluminum thin film and a white pigment are contained on the side opposite to the side on which the polymer layer of the solar cell backsheet is formed. A white film to be bonded, a polymer film having an inorganic barrier layer on the side opposite to the side on which the polymer layer of the solar cell backsheet is formed, and a white film containing a white pigment are bonded. Can be mentioned.

本発明の太陽電池用バックシートを作製する場合、ポリマー基材の上に本発明におけるポリマー層を塗布形成することができる方法であれば、いずれの態様であってもよい。例えば、本発明におけるポリマー層は、バインダーとしてフッ素系ポリマー及び/又はシリコーン系ポリマーとコロイダルシリカとを少なくとも含有する塗布液を調製した後、この塗布液をポリマー基材上に塗布し、乾燥させることにより好適に形成される。乾燥後、加熱する等して硬化させてもよい。塗布方法や用いる塗布液の溶媒には、特に制限はない。   When producing the solar cell backsheet of this invention, any aspect may be sufficient if it is the method of apply | coating and forming the polymer layer in this invention on a polymer base material. For example, the polymer layer in the present invention is prepared by preparing a coating solution containing at least a fluorine-based polymer and / or a silicone-based polymer and colloidal silica as a binder, and then applying the coating solution on a polymer substrate and drying it. Is more suitably formed. After drying, it may be cured by heating. There is no restriction | limiting in particular in the coating method and the solvent of the coating liquid to be used.

塗布方法としては、例えば、グラビアコーターやバーコーターを利用した塗布法を適用することができる。
塗布液に用いる溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。本発明においては、バインダーとして用いるフッ素系ポリマー及び/又はシリコーン系ポリマーを水分散した水系塗布液を調製し、これを塗布する方法が好ましい。この場合、溶媒中の水の割合は60質量%以上が好ましく、80質量%以上がより好ましい。
As a coating method, for example, a coating method using a gravure coater or a bar coater can be applied.
The solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types. In the present invention, it is preferable to prepare a water-based coating solution in which a fluorine-based polymer and / or a silicone-based polymer used as a binder is dispersed in water, and apply this. In this case, the proportion of water in the solvent is preferably 60% by mass or more, and more preferably 80% by mass or more.

また、ポリマー支持体が2軸延伸フィルムである場合は、2軸延伸した後のポリマー基材にポリマー層を形成するための塗布液を塗布した後、塗膜を乾燥させてもよい。また、1軸延伸後のポリマー基材に塗布液を塗布して塗膜を乾燥させた後に、1軸延伸の方向と異なる方向に延伸するようにしてもよい。更に、延伸前のポリマー支持体に塗布液を塗布して塗膜を乾燥させた後、2方向に延伸してもよい。   Moreover, when a polymer support body is a biaxially stretched film, after apply | coating the coating liquid for forming a polymer layer to the polymer base material after biaxially stretching, you may dry a coating film. Moreover, after apply | coating a coating liquid to the polymer base material after uniaxial stretching and drying a coating film, you may make it extend | stretch in the direction different from the direction of uniaxial stretching. Furthermore, after applying a coating liquid to the polymer support body before extending | stretching and drying a coating film, you may extend | stretch in 2 directions.

<太陽電池モジュール>
本発明の太陽電池モジュールは、太陽光が入射する透明性の基板と、太陽電池素子と、前記太陽電池素子の前記基板が配された側と反対側に設けられ、既述の本発明の太陽電池用バックシートとを設けて構成されている。本発明の太陽電池モジュールは、既述の本発明の太陽電池用バックシートを備えるので、耐候性、特に温湿度変化や高い湿熱環境下に曝された場合でも長期に亘り安定的な発電性能が得られる。
<Solar cell module>
The solar cell module of the present invention is provided on the side opposite to the side of the solar cell element on which the substrate is disposed, the transparent substrate on which sunlight is incident, the solar cell element, and the solar cell of the present invention described above. A battery back sheet is provided. Since the solar cell module of the present invention includes the above-described solar cell backsheet of the present invention, it has stable power generation performance over a long period of time even when exposed to weather resistance, in particular, changes in temperature and humidity or a high humidity environment. can get.

図1は、本発明の太陽電池モジュールの一実施形態を概略的に示したものである。太陽電池モジュール10は、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子20を、太陽光が入射する透明性の基板24とバックシート(既述の本発明の太陽電池用バックシート)5との間に配置し、基板24とバックシート5との間をエチレン−ビニルアセテート系封止材22で封止した構成となっている。本実施形態のバックシート5は、ポリマー基材16の一方の面側に該基材側から順に、紫外線吸収剤として既述の一般式(1)で表される化合物とポリマーとを含有する第1のポリマー層14と、ポリマー層14に接して設けられ、紫外線吸収剤(一般式(1)で表される化合物を含む)の総含有量がバインダー量に対し1.0質量%以下の(好ましくは紫外線吸収剤を含有しない)第2のポリマー層12とが設けられており、ポリマー基材16の他方の面側(太陽光が入射する側)には、着色層として白色の反射層18が設けられている。   FIG. 1 schematically shows an embodiment of the solar cell module of the present invention. The solar cell module 10 includes a solar cell element 20 that converts light energy of sunlight into electric energy, a transparent substrate 24 on which sunlight is incident, and a back sheet (the solar cell back sheet of the present invention described above) 5. Between the substrate 24 and the back sheet 5 with an ethylene-vinyl acetate sealing material 22. The backsheet 5 of the present embodiment contains, on the one surface side of the polymer base material 16, the compound represented by the general formula (1) described above and the polymer as an ultraviolet absorber in order from the base material side. 1 polymer layer 14 is provided in contact with the polymer layer 14, and the total content of the ultraviolet absorber (including the compound represented by the general formula (1)) is 1.0% by mass or less with respect to the binder amount ( The second polymer layer 12 (which preferably does not contain an ultraviolet absorber) is provided, and on the other surface side (the side on which sunlight is incident) of the polymer substrate 16, a white reflective layer 18 is provided as a colored layer. Is provided.

太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。   The members other than the solar cell module, the solar cell, and the back sheet are described in detail in, for example, “Photovoltaic power generation system constituent material” (supervised by Eiichi Sugimoto, Kogyo Kenkyukai, published in 2008).

透明性の基板24は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。   The transparent board | substrate 24 should just have the light transmittance which sunlight can permeate | transmit, and can be suitably selected from the base material which permeate | transmits light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better. For such a substrate, for example, a glass substrate, a transparent resin such as an acrylic resin, or the like can be suitably used.

太陽電池素子20としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅−インジウム−ガリウム−セレン、銅−インジウム−セレン、カドミウム−テルル、ガリウム−砒素などのIII−V族やII−VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。   Examples of the solar cell element 20 include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenic. Various known solar cell elements such as II-VI group compound semiconductor systems can be applied.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.

(実施例1)
−支持体の作製−
(1)ポリエステルの合成
高純度テレフタル酸(三井化学(株)製)100kgとエチレングリコール(日本触媒(株)製)45kgのスラリーを、予めビス(ヒドロキシエチル)テレフタレート約123kgが仕込まれ、温度250℃、圧力1.2×10Paに保持されたエステル化反応槽に、4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行なった。その後、得られたエステル化反応生成物123kgを重縮合反応槽に移送した。
Example 1
-Production of support-
(1) Synthesis of polyester A slurry of 100 kg of high-purity terephthalic acid (manufactured by Mitsui Chemicals) and 45 kg of ethylene glycol (manufactured by Nippon Shokubai Co., Ltd.) was charged with about 123 kg of bis (hydroxyethyl) terephthalate in advance and the temperature was The esterification reaction tank maintained at a temperature of 1.2 ° C. and a pressure of 1.2 × 10 5 Pa was sequentially supplied over 4 hours, and the esterification reaction was carried out over an additional hour after the completion of the supply. Thereafter, 123 kg of the obtained esterification reaction product was transferred to a polycondensation reaction tank.

引き続いて、エステル化反応生成物が移送された重縮合反応槽に、エチレングリコールを、得られるポリマーに対して0.3質量%添加した。5分間撹拌した後、酢酸コバルト及び酢酸マンガンのエチレングリコール溶液を、得られるポリマーに対してコバルト元素換算値が30ppm、マンガン元素換算が15ppmとなるように加えた。更に5分間撹拌した後、チタンアルコキシド化合物の2質量%エチレングリコール溶液を、得られるポリマーに対してチタン元素換算値が5ppmとなるように添加した。前記チタンアルコキシド化合物には、特開2005−340616号公報の段落番号[0083]の実施例1で合成しているチタンアルコキシド化合物(Ti含有量=4.44質量%)を用いた。その5分後、ジエチルホスホノ酢酸エチルの10質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。   Subsequently, 0.3% by mass of ethylene glycol was added to the polycondensation reaction tank to which the esterification reaction product had been transferred, based on the resulting polymer. After stirring for 5 minutes, an ethylene glycol solution of cobalt acetate and manganese acetate was added to the obtained polymer so that the cobalt element conversion value was 30 ppm and the manganese element conversion value was 15 ppm. After further stirring for 5 minutes, a 2% by mass ethylene glycol solution of a titanium alkoxide compound was added to the obtained polymer so that the titanium element equivalent value was 5 ppm. As the titanium alkoxide compound, the titanium alkoxide compound (Ti content = 4.44 mass%) synthesized in Example 1 of paragraph No. [0083] of JP-A-2005-340616 was used. Five minutes later, a 10% by mass ethylene glycol solution of ethyl diethylphosphonoacetate was added so as to be 5 ppm with respect to the resulting polymer.

その後、低重合体を30rpmで攪拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力に到達するまでの時間はともに60分とした。そのまま3時間反応を続け、その後反応系を窒素パージし、常圧に戻して重縮合反応を停止した。そして、得られたポリマー溶融物を冷水にストランド状に吐出し、直ちにカッティングしてポリマーのペレット(直径約3mm、長さ約7mm)を作製した。   Thereafter, while stirring the low polymer at 30 rpm, the reaction system was gradually heated from 250 ° C. to 285 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes. The reaction was continued for 3 hours, and then the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction. Then, the obtained polymer melt was discharged into cold water in a strand form and immediately cut to produce polymer pellets (diameter: about 3 mm, length: about 7 mm).

(2)固相重合
上記で得られたペレットを、40Paに保たれた真空容器中、220℃の温度で30時間保持して、固相重合を行なった。
(2) Solid phase polymerization The pellets obtained above were held in a vacuum vessel maintained at 40 Pa at a temperature of 220 ° C for 30 hours to perform solid phase polymerization.

(3)ベース形成
以上のように固相重合を経た後のペレットを、280℃で溶融押出して金属ドラムの上にキャストし、厚さ約2.5mmの未延伸ベースを作製した。その後、90℃で縦方向に3倍に延伸し、更に120℃で横方向に3.3倍に延伸した。さらに215℃で1分間、熱固定を行なって、厚み250μmの2軸延伸ポリエチレンテレフタレート支持体(以下、単に「PET支持体」と称する。)を得た。
(3) Base formation The pellets after undergoing solid-phase polymerization as described above were melt-extruded at 280 ° C. and cast on a metal drum to produce an unstretched base having a thickness of about 2.5 mm. Thereafter, the film was stretched 3 times in the longitudinal direction at 90 ° C., and further stretched 3.3 times in the transverse direction at 120 ° C. Furthermore, heat setting was performed at 215 ° C. for 1 minute to obtain a biaxially stretched polyethylene terephthalate support (hereinafter simply referred to as “PET support”) having a thickness of 250 μm.

−下塗り層−
(1)下塗り層形成用塗布液の調製
下記組成中の各成分を混合し、下塗り層形成用塗布液を調製した。
<塗布液の組成>
・ポリエステル系バインダー ・・・48.0部
(バイロナールDM1245、東洋紡(株)製、固形分:30質量%)
・カルボジイミド化合物(架橋剤) ・・・10.0部
(カルボジライトV−02−L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤) ・・・3.0部
(エポクロスWS700、(株)日本触媒製、固形分:25質量%)
・界面活性剤 ・・・15.0部
(ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水 ・・・924.0部
-Undercoat layer-
(1) Preparation of coating solution for forming undercoat layer Each component in the following composition was mixed to prepare a coating solution for forming an undercoat layer.
<Composition of coating solution>
・ Polyester binder: 48.0 parts
(Byronal DM1245, manufactured by Toyobo Co., Ltd., solid content: 30% by mass)
Carbodiimide compound (crosslinking agent) 10.0 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 3.0 parts (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25% by mass)
Surfactant: 15.0 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water ... 924.0 parts

(2)下塗り層の形成
得られた下塗り層形成用塗布液をPET支持体の一方の面に、バインダー量が塗布量で0.1g/mになるように塗布し、180℃で1分間乾燥させて、乾燥厚みが約0.1μmの下塗り層を形成した。
(2) Formation of undercoat layer The obtained undercoat layer-forming coating solution was applied to one surface of a PET support so that the amount of the binder was 0.1 g / m 2 and applied at 180 ° C for 1 minute. An undercoat layer having a dry thickness of about 0.1 μm was formed by drying.

−着色層−
(1)二酸化チタン分散物の調製
下記組成中の成分を混合し、その混合物をダイノミル型分散機により1時間、分散処理を施した。
<二酸化チタン分散物の組成>
・二酸化チタン(体積平均粒子径=0.42μm)・・・39.9質量%
(タイペークR−780−2、石原産業(株)製、固形分100質量%)
・ポリビニルアルコール ・・・49.9質量%
(PVA−105、(株)クラレ製、固形分:10質量%)
・界面活性剤 ・・・0.5質量%
(デモールEP、花王(株)製、固形分:10質量%)
・蒸留水 ・・・9.7質量%
-Colored layer-
(1) Preparation of Titanium Dioxide Dispersion Components in the following composition were mixed, and the mixture was subjected to dispersion treatment for 1 hour using a Dinomill type disperser.
<Composition of titanium dioxide dispersion>
・ Titanium dioxide (volume average particle size = 0.42 μm) 39.9% by mass
(Taipeke R-780-2, manufactured by Ishihara Sangyo Co., Ltd., solid content 100% by mass)
・ Polyvinyl alcohol: 49.9% by mass
(PVA-105, manufactured by Kuraray Co., Ltd., solid content: 10% by mass)
・ Surfactant ... 0.5% by mass
(Demol EP, manufactured by Kao Corporation, solid content: 10% by mass)
・ Distilled water: 9.7% by mass

(2)着色層用塗布液の調製
下記組成中の成分を混合し、着色層用塗布液を調製した。
<塗布液の組成>
・前記二酸化チタン分散物 ・・・800.0部
・ポリオレフィンバインダー ・・・108.0部
(アローベースSE1010、ユニチカ(株)製、固形分:20質量%)
・ポリオキシアルキレンアルキルエーテル ・・・30.0部
(ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・オキサゾリン化合物 ・・・20.0部
(エポクロスWS−700、日本触媒(株)製、固形分:25%;架橋剤)
・蒸留水 ・・・42.0部
(2) Preparation of colored layer coating solution Components in the following composition were mixed to prepare a colored layer coating solution.
<Composition of coating solution>
・ Titanium dioxide dispersion: 800.0 parts ・ Polyolefin binder: 108.0 parts (Arrow Base SE1010, manufactured by Unitika Ltd., solid content: 20% by mass)
Polyoxyalkylene alkyl ether 30.0 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Oxazoline compound: 20.0 parts (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent)
・ Distilled water ... 42.0 parts

(3)着色層の形成
得られた塗布液を、前記PET支持体上に形成された下塗り層の上に塗布し、180℃で1分間乾燥させて、着色層として、二酸化チタン量が8.0g/m、バインダー量が1.5g/mの反射層を形成した。
(3) Formation of colored layer The obtained coating solution is applied on the undercoat layer formed on the PET support and dried at 180 ° C. for 1 minute, and the amount of titanium dioxide is 8. A reflective layer having 0 g / m 2 and a binder amount of 1.5 g / m 2 was formed.

−裏面層1−
(1)化合物(A)の分散物の調製
酢酸エチル35.4gとテトラヒドロフラン8.8gとを混合した混合溶媒に、下記化合物(A−1)(既述の一般式(1)で表される化合物)18.94gを添加し、50℃に加熱して10分間攪拌し、化合物(A−1)が溶解した油相液を調製した。
-Back layer 1-
(1) Preparation of Dispersion of Compound (A) A mixed solvent obtained by mixing 35.4 g of ethyl acetate and 8.8 g of tetrahydrofuran was mixed with the following compound (A-1) (represented by the general formula (1) described above. Compound) 18.94 g was added, heated to 50 ° C. and stirred for 10 minutes to prepare an oil phase solution in which compound (A-1) was dissolved.

続いて、400ccのステンレス容器に蒸留水116.5gを添加し、90℃に加熱した後、クラレポバールPVA−205(ポリビニルアルコール、(株)クラレ製)20.5gを添加し、90℃で3時間攪拌し溶解させ、水相液を調製した。   Subsequently, 116.5 g of distilled water was added to a 400 cc stainless steel container and heated to 90 ° C., and then 20.5 g of Kuraray Poval PVA-205 (polyvinyl alcohol, manufactured by Kuraray Co., Ltd.) was added. The mixture was stirred for hours and dissolved to prepare an aqueous phase solution.

続いて、得られた水相液をディゾルバーを用いて500rpmで攪拌しながら、上記の油相液を添加した。添加後、更に5分間攪拌を続けて均一状な液とした。ここで得られた液を、さらにディゾルバーを用いて20,000rpmで10分間攪拌し、乳化物1を得た。得られた乳化物1の平均粒子径を、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定したところ、メジアン径で120nmであった。   Then, said oil phase liquid was added, stirring the obtained aqueous phase liquid at 500 rpm using a dissolver. After the addition, stirring was continued for another 5 minutes to obtain a uniform liquid. The liquid obtained here was further stirred for 10 minutes at 20,000 rpm using a dissolver to obtain Emulsion 1. The average particle size of the obtained emulsion 1 was measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.), and the median size was 120 nm.

乳化物1からエバポレーターを用いて有機溶剤を留去し、分散物1を得た。残留した有機溶剤の量をガスクロマトグラフィによって測定したところ、0.7質量%以下であった。また、化合物A−1の分散物1中における濃度は、13質量%であった。分散物1の平均粒子径を上記と同様の方法で測定したところ、メジアン径で121nmであった。   The organic solvent was distilled off from the emulsion 1 using an evaporator to obtain a dispersion 1. The amount of the remaining organic solvent was measured by gas chromatography and found to be 0.7% by mass or less. Moreover, the density | concentration in the dispersion 1 of the compound A-1 was 13 mass%. When the average particle diameter of Dispersion 1 was measured by the same method as described above, the median diameter was 121 nm.

(2)裏面層1形成用塗布液の調製
下記組成中の各成分を混合し、裏面層1形成用塗布液を調製した。
<塗布液の組成>
・アクリル/シリコーン系バインダー(バインダーB−1)・・・362.3部
(セラネートWSA−1070、DIC(株)製、固形分:40質量%)
・カルボジイミド化合物(架橋剤) ・・・48.3部
(カルボジライトV−02−L2、日清紡績(株)製、固形分:40質量%)
・界面活性剤 ・・・9.7部
(ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・前記化合物A−1の分散物 ・・・296.9部
・蒸留水 ・・・282.8部
(2) Preparation of coating solution for forming back layer 1 Each component in the following composition was mixed to prepare a coating solution for forming back layer 1.
<Composition of coating solution>
-Acrylic / silicone binder (Binder B-1) ... 362.3 parts (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass)
Carbodiimide compound (crosslinking agent) 48.3 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 40% by mass)
Surfactant: 9.7 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Dispersion of the compound A-1 ... 296.9 parts-Distilled water ... 282.8 parts

(3)裏面層1の形成
得られた裏面層1形成用塗布液を、PET支持体の反射層が形成された側と反対側の支持体表面に、バインダー塗布量が3.0g/m、化合物A−1の塗布量が0.8g/mとなるように塗布し、180℃で1分間乾燥させて、乾燥厚みが約3μmの裏面層1(ポリマー層)を形成した。
(3) Formation of Back Layer 1 The obtained coating solution for forming the back layer 1 is coated with a binder coating amount of 3.0 g / m 2 on the support surface opposite to the side on which the reflective layer of the PET support is formed. The back surface layer 1 (polymer layer) having a dry thickness of about 3 μm was formed by applying the compound A-1 at a coating amount of 0.8 g / m 2 and drying at 180 ° C. for 1 minute.

以上のようにして、PET支持体の両面に塗布により各層が形成されたバックシート試料を作製した。   As described above, a backsheet sample in which each layer was formed by coating on both sides of a PET support was produced.

−太陽電池モジュールの作製−
厚さ3mmの強化ガラスと、EVAシート〔SC50B、三井化学ファブロ(株)製〕と、結晶系太陽電池セルと、EVAシート〔SC50B、三井化学ファブロ(株)製〕と、上記のように作製し、下記評価「3.接着性」の「(B)湿熱経時後の接着性」と同様の処理を行なった後のバックシート試料とをこの順に重ね、真空ラミネータ〔日清紡(株)製、真空ラミネート機〕を用いてホットプレスすることにより接着させた。但し、バックシート試料は、その着色層の表面がEVAシートと接触するように配置した。また、接着は、真空ラミネータにより、128℃で3分間の真空引きの後、2分間加圧して仮接着し、さらにドライオーブンにて150℃で30分間本接着処理する条件にて行なった。このようにして、結晶系の太陽電池モジュールを作製した。
作製した太陽電池モジュールを用いて発電運転を行なったところ、太陽電池として良好な発電性能を示した。
-Fabrication of solar cell module-
A tempered glass having a thickness of 3 mm, an EVA sheet [SC50B, manufactured by Mitsui Chemicals, Inc.], a crystalline solar cell, and an EVA sheet [SC50B, manufactured by Mitsui Chemicals, Inc.], produced as described above. The back sheet samples after the same treatment as “(B) Adhesion after wet heat aging” in the following evaluation “3. Adhesiveness” were stacked in this order, and a vacuum laminator [manufactured by Nisshinbo Co., Ltd., vacuum It was bonded by hot pressing using a laminating machine. However, the back sheet sample was arranged so that the surface of the colored layer was in contact with the EVA sheet. Adhesion was performed under the condition that a vacuum laminator was evacuated at 128 ° C. for 3 minutes, then pressure-bonded for 2 minutes to perform temporary adhesion, and further in a dry oven at 150 ° C. for 30 minutes. In this way, a crystalline solar cell module was produced.
When power generation operation was performed using the produced solar cell module, it showed good power generation performance as a solar cell.

(実施例2〜6、比較例1)
実施例1において、化合物A−1の量を下記表1に示すように変更したこと以外、実施例1と同様にして、バックシート試料を作製し、評価すると共に、太陽電池モジュールを作製した。評価結果は下記表1に示す。
(Examples 2-6, Comparative Example 1)
A backsheet sample was prepared and evaluated in the same manner as in Example 1 except that the amount of Compound A-1 was changed as shown in Table 1 below in Example 1, and a solar cell module was prepared. The evaluation results are shown in Table 1 below.

(実施例7〜11、比較例2〜4)
実施例1において、裏面層1形成用塗布液の調製に用いた化合物A−1を、以下に示す化合物A−2〜A−6、A−101〜A−103に変更したこと以外、実施例1と同様にして、バックシート試料を作製し、評価した。評価結果は下記表1に示す。
(Examples 7-11, Comparative Examples 2-4)
In Example 1, except that the compound A-1 used for the preparation of the coating solution for forming the back layer 1 was changed to the compounds A-2 to A-6 and A-101 to A-103 shown below. A backsheet sample was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.

(実施例12)
実施例1において、裏面層1形成用塗布液の調製に用いたバインダーB−1をB−2に代えたこと以外、実施例1と同様にして、バックシート試料を作製し、評価すると共に、太陽電池モジュールを作製した。評価結果は下記表1に示す。
(Example 12)
In Example 1, except that the binder B-1 used for the preparation of the coating liquid for forming the back layer 1 was replaced with B-2, a backsheet sample was prepared and evaluated in the same manner as in Example 1, A solar cell module was produced. The evaluation results are shown in Table 1 below.

(実施例13)
実施例1において、PET支持体の反射層が設けられた側とは反対側の面に形成された裏面層1(ポリマー層)の表面に、以下に示す手順にしたがって、裏面層2形成用塗布液を塗布することによりさらに裏面層2(保護ポリマー層)を形成したこと以外は、実施例1と同様にして、バックシート試料を作製すると共に、太陽電池モジュールを作製した。
(Example 13)
In Example 1, on the surface of the back layer 1 (polymer layer) formed on the surface opposite to the side on which the reflective layer of the PET support is provided, the back layer 2 forming application is performed according to the following procedure. A backsheet sample was produced and a solar cell module was produced in the same manner as in Example 1 except that the back layer 2 (protective polymer layer) was further formed by applying the liquid.

−裏面層2の形成−
(1)裏面層2形成用塗布液の調製
下記組成中の各成分を混合し、裏面層2形成用塗布液を調製した。
<塗布液の組成>
・アクリル/シリコーン系バインダー(バインダーB−1)・・・362.3部
(セラネートWSA−1070、DIC(株)製、固形分:40質量%)
・カルボジイミド化合物(架橋剤) ・・・24.2部
(カルボジライトV−02−L2、日清紡績(株)製、固形分:40質量%)
・界面活性剤 ・・・24.2部
(ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水 ・・・589.3部
-Formation of back layer 2-
(1) Preparation of coating solution for forming back layer 2 Each component in the following composition was mixed to prepare a coating solution for forming back layer 2.
<Composition of coating solution>
-Acrylic / silicone binder (Binder B-1) ... 362.3 parts (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass)
-Carbodiimide compound (crosslinking agent) 24.2 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 40% by mass)
-Surfactant ... 24.2 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water ... 589.3 parts

(2)裏面層2の形成
得られた裏面層2形成用塗布液を裏面層1の上に、バインダー塗布量が2.0g/mになるように#10のメイヤーバーで塗布した後、180℃で1分間乾燥させて、保護ポリマー層として、乾燥厚み約2μmの裏面層2を形成した。このようにして、PET支持体の両面の各層が、塗布による塗布層として設けられたバックシート試料を作製した。
(2) Formation of Back Layer 2 After coating the obtained back layer 2 forming coating solution on the back layer 1 with a # 10 Meyer bar so that the binder coating amount is 2.0 g / m 2 , It dried at 180 degreeC for 1 minute, and formed the back surface layer 2 with a dry thickness of about 2 micrometers as a protective polymer layer. In this way, a backsheet sample was prepared in which each layer on both sides of the PET support was provided as a coating layer by coating.

(実施例14)
実施例13において、裏面層1及び裏面層2における化合物A−1の塗布量がそれぞれ0.4g/mとなるように、各塗布液中の化合物A−1の含有比率を変更したこと以外、実施例13と同様にして、バックシート試料を作製し、評価すると共に、太陽電池モジュールを作製した。評価結果は下記表1に示す。
(Example 14)
In Example 13, except that the content ratio of compound A-1 in each coating solution was changed so that the coating amount of compound A-1 in back layer 1 and back layer 2 was 0.4 g / m 2 , respectively. In the same manner as in Example 13, a backsheet sample was produced and evaluated, and a solar cell module was produced. The evaluation results are shown in Table 1 below.

(実施例15〜16)
実施例13において、裏面層1及び裏面層2におけるバインダーを下記表1に示すように変更したこと以外、実施例13と同様にして、バックシート試料を作製し、評価すると共に、太陽電池モジュールを作製した。評価結果は下記表1に示す。
(Examples 15 to 16)
In Example 13, except that the binder in the back layer 1 and the back layer 2 was changed as shown in Table 1 below, a backsheet sample was prepared and evaluated in the same manner as in Example 13, and the solar cell module was Produced. The evaluation results are shown in Table 1 below.

(評価)
上記の実施例及び比較例で作製したバックシート試料について、下記の評価を行なった。評価結果は、下記表1に示す。
(Evaluation)
The following evaluation was performed on the backsheet samples prepared in the above examples and comparative examples. The evaluation results are shown in Table 1 below.

−1.耐光性−
日本電色工業(株)製の分光式色差計「Spectro Color Meter SE2000」を用いて、各バックシート試料のYI値(YI−1)を測定した。その後、各バックシート試料に対し、岩崎電気(株)製の耐光性試験機「アイスーパーUVテスター W−151」を用い、照度900W/mで48時間、紫外光を照射した。但し、紫外光照射時における環境条件は、63℃、50%RHとした。
次いで、上記同様の分光式色差計(Spectro Color Meter SE2000、日本電色工業(株)製)を用い、再び各バックシート試料のYI値(YI−2)を測定した。
測定した値から、YI=(YI−2)−(YI−1)を求め、各バックシート試料の着色の度合いを示す指標とし、YI値をもとに、下記評価基準にしたがってランク付けした。このうち、ランク3〜5が実用上許容可能な範囲である。
<評価基準>
5:YI値が3未満であった。
4:YI値が3以上5未満であった。
3:YI値が5以上10未満であった。
2:YI値が10以上20未満であった。
1:YI値が20以上であった。
-1. Light resistance
The YI value (YI-1) of each back sheet sample was measured using a spectroscopic color difference meter “Spectro Color Meter SE2000” manufactured by Nippon Denshoku Industries Co., Ltd. Thereafter, each backsheet sample was irradiated with ultraviolet light at an illuminance of 900 W / m 2 for 48 hours using a light resistance tester “I Super UV Tester W-151” manufactured by Iwasaki Electric Co., Ltd. However, environmental conditions at the time of ultraviolet light irradiation were 63 ° C. and 50% RH.
Subsequently, the YI value (YI-2) of each backsheet sample was measured again using the same spectral color difference meter (Spectro Color Meter SE2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
YI = (YI−2) − (YI−1) was determined from the measured values, and was used as an index indicating the degree of coloring of each backsheet sample, and was ranked according to the following evaluation criteria based on the YI value. Among these, ranks 3 to 5 are practically acceptable ranges.
<Evaluation criteria>
5: YI value was less than 3.
4: YI value was 3 or more and less than 5.
3: YI value was 5 or more and less than 10.
2: YI value was 10 or more and less than 20.
1: YI value was 20 or more.

−2.破断伸び保持率−
各バックシート試料について、以下の測定方法により得られた破断伸びの測定値L及びLに基づいて、下記式より破断伸び保持率[%]を算出した。実用上許容できる破断伸び保持率の範囲は50%以上である。
破断伸び保持率[%]=(L/L)×100
<破断伸びの測定方法>
バックシート試料を幅10mm×長さ200mmに裁断し、測定用の試料A及び試料Bを用意した。試料Aに対して、25℃、60%RHの雰囲気で24時間調湿を施した後、試料Aをテンシロン(ORIENTEC製、RTC−1210A)にて上下クリップに挟み、剥離角度180°、引っ張り速度300mm/分で引っ張り試験を行なった。なお、引っ張り試験は、延伸される試料Aの長さを10cm、引っ張り速度を20mm/分として行なった。この試験で得られた試料Aの破断伸びをLとする。
別途、試料Bに対して、120℃、100%RHの雰囲気で50時間湿熱処理を施した後、試料Aと同様にして引っ張り試験を行なった。このときの試料Bの破断伸びをLとする。
-2. Breaking elongation retention rate-
Each backsheet sample, based on the measured value L 0 and L 1 of breaking elongation obtained by the following measurement method was calculated elongation at break retention by the following formula [%]. The range of practically acceptable breaking elongation retention is 50% or more.
Elongation at break [%] = (L 1 / L 0 ) × 100
<Method for measuring elongation at break>
The back sheet sample was cut into a width of 10 mm and a length of 200 mm to prepare a sample A and a sample B for measurement. After subjecting sample A to humidity control at 25 ° C. and 60% RH for 24 hours, sample A was sandwiched between upper and lower clips with Tensilon (produced by ORIENTEC, RTC-1210A), peel angle 180 °, and pulling speed A tensile test was performed at 300 mm / min. In the tensile test, the length of the sample A to be stretched was 10 cm, and the tensile speed was 20 mm / min. The elongation at break of the sample A obtained in this study and L 0.
Separately, the sample B was subjected to a wet heat treatment in an atmosphere of 120 ° C. and 100% RH for 50 hours, and then a tensile test was performed in the same manner as the sample A. The elongation at break of Sample B at this time is L 1.

−3.接着性−
[A]湿熱経時前の接着性
各バックシート試料を20mm巾×150mmにカットして、サンプル片を2枚準備した。この2枚のサンプル片を、互いに反射層側が内側になるように配置し、その間に20mm巾×100mm長にカットしたEVAシート(三井化学ファブロ(株)製のEVAシート:SC50B)を挟み、真空ラミネータ(日清紡(株)製の真空ラミネート機)を用いてホットプレスすることにより、EVAと接着させた。このときの接着条件は、以下の通りとした。
真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着した。その後、ドライオーブンで150℃で30分間、本接着処理を施した。このようにして、互いに接着した2枚のサンプル片の一端から20mmの部分はEVAと未接着で、残りの100mmの部分にEVAシートが接着された接着評価用試料を得た。
-3. Adhesiveness
[A] Adhesiveness before wet heat aging Each backsheet sample was cut into a width of 20 mm × 150 mm to prepare two sample pieces. These two sample pieces are arranged so that the reflective layer side is inside, and an EVA sheet (EVA sheet manufactured by Mitsui Chemicals Fabro Co., Ltd .: SC50B) cut into a 20 mm width × 100 mm length is sandwiched between the two sample pieces. It was made to adhere to EVA by hot pressing using a laminator (vacuum laminator manufactured by Nisshinbo Co., Ltd.). The bonding conditions at this time were as follows.
Using a vacuum laminator, evacuation was performed at 128 ° C. for 3 minutes, and then pressure was applied for 2 minutes to temporarily bond. Thereafter, the main adhesion treatment was performed in a dry oven at 150 ° C. for 30 minutes. In this way, a sample for adhesion evaluation was obtained in which the 20 mm portion from one end of the two sample pieces adhered to each other was not bonded to EVA, and the EVA sheet was bonded to the remaining 100 mm portion.

得られた接着評価用試料のEVA未接着部分を、テンシロン(ORIENTEC製、RTC−1210A)にて上下クリップに挟み、剥離角度180°、引っ張り速度300mm/分で引っ張り試験を行ない、接着力を測定した。
測定された接着力をもとに以下の評価基準にしたがってランク付けした。評価ランク4、5が実用上許容可能な範囲である。
<評価基準>
5:密着が非常に良好であった(60N/20mm以上)。
4:密着は良好であった(30N/20mm以上60N/20mm未満)。
3:密着がやや不良であった(20N/20mm以上30N/20mm未満)。
2:密着不良が生じた(10N/20mm以上20N/20mm未満)。
1:密着不良が顕著であった(10N/20mm未満)。
The EVA non-bonded portion of the obtained sample for adhesion evaluation is sandwiched between upper and lower clips with Tensilon (ORITCTEC, RTC-1210A), and a tensile test is performed at a peeling angle of 180 ° and a pulling speed of 300 mm / min to measure the adhesive strength. did.
Based on the measured adhesive strength, ranking was performed according to the following evaluation criteria. Evaluation ranks 4 and 5 are practically acceptable ranges.
<Evaluation criteria>
5: Adhesion was very good (60 N / 20 mm or more).
4: Adhesion was good (30 N / 20 mm or more and less than 60 N / 20 mm).
3: Adhesion was slightly poor (20 N / 20 mm or more and less than 30 N / 20 mm).
2: Adhesion failure occurred (10 N / 20 mm or more and less than 20 N / 20 mm).
1: The adhesion failure was remarkable (less than 10 N / 20 mm).

[B]湿熱経時後の接着性
上記で得た接着評価用試料を、120℃、100%RHの環境条件下で48時間保持(湿熱経時)した後、前記[A]と同様の方法にて接着力を測定した。測定された保持後の接着力について、同じ接着評価用試料の前記[A]湿熱経時前の接着力に対する比率〔%;=湿熱経時後の接着力/[A]湿熱経時前の接着力×100〕を算出した。また、測定された湿熱経時後の接着力をもとに、前記[A]と同様の方法にて接着力を評価した。
[B] Adhesiveness after wet heat aging The sample for adhesion evaluation obtained above was held for 48 hours (wet heat aging) at 120 ° C. and 100% RH, and then the same method as in [A] above. The adhesive force was measured. For the measured adhesion strength after holding, the ratio of the same adhesion evaluation sample to [A] adhesion strength before wet heat aging [%; = adhesion strength after wet heat aging / [A] adhesive strength before wet heat aging × 100 ] Was calculated. Moreover, based on the measured adhesive strength after wet heat aging, the adhesive strength was evaluated by the same method as in the above [A].

前記表1に示すように、実施例では、既述の一般式(1)で表される化合物を用いない比較例に比べ、良好な耐光性を示した。   As shown in Table 1, the examples showed better light resistance than the comparative examples not using the compound represented by the general formula (1).

5・・・太陽電池用バックシート
10・・・太陽電池モジュール
12,14・・・ポリマー層
16・・・ポリマー基材
18・・・反射層(着色層)
20・・・太陽電池素子
22・・・封止材
24・・・透明性の基板
5 ... Back sheet for solar cell 10 ... Solar cell module 12, 14 ... Polymer layer 16 ... Polymer substrate 18 ... Reflective layer (colored layer)
20 ... solar cell element 22 ... sealing material 24 ... transparent substrate

Claims (12)

支持体と、該支持体の少なくとも一方に設けられ、下記一般式(1)で表される化合物及びポリマーを含有するポリマー層とを有する樹脂フィルム。

〔式中、R1a、R1b、R1c、R1d、及びR1eは、各々独立に、水素原子、又はヒドロキシ基を除く1価の置換基を表し、R1a〜R1eの少なくとも1つはハメット則のσp値が正である置換基であり、該置換基は互いに結合して環を形成してもよい。R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pは、各々独立に、水素原子、又は1価の置換基を表し、該置換基は互いに結合して環を形成してもよい。〕
A resin film comprising a support and a polymer layer provided on at least one of the supports and containing a compound represented by the following general formula (1) and a polymer.

[Wherein, R 1a , R 1b , R 1c , R 1d , and R 1e each independently represent a hydrogen atom or a monovalent substituent other than a hydroxy group, and at least one of R 1a to R 1e Is a substituent having a positive Hammett's σp value, and the substituents may be bonded to each other to form a ring. R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p each independently represent a hydrogen atom or a monovalent substituent, and the substituents are bonded to each other A ring may be formed. ]
前記一般式(1)で表される化合物の前記ポリマー層中における含有量が0.2g/m以上5.0g/m以下である請求項1に記載の樹脂フィルム。 2. The resin film according to claim 1, wherein the content of the compound represented by the general formula (1) in the polymer layer is 0.2 g / m 2 or more and 5.0 g / m 2 or less. 前記R1a、R1b、R1c、R1d、R1e、R1g、R1h、R1i、R1j、R1k、R1m、R1n、R1pで表される1価の置換基は、ハロゲン原子、炭素数1〜20のアルキル基、シアノ基、カルボキシル基、アルキル部位の炭素数が1〜20のアルコキシカルボニル基、カルバモイル基、アルキル部位の炭素数が1〜20のアルキルカルボニル基、ニトロ基、アミノ基、ヒドロキシ基(R1a、R1b、R1c、R1d、R1eを除く)、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、スルファモイル基、チオシアネート基、又はアルキル部位の炭素数が1〜20のアルキルスルホニル基である請求項1又は請求項2に記載の樹脂フィルム。 The monovalent substituents represented by R 1a , R 1b , R 1c , R 1d , R 1e , R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , R 1p are: Halogen atom, alkyl group having 1 to 20 carbon atoms, cyano group, carboxyl group, alkoxycarbonyl group having 1 to 20 carbon atoms in the alkyl moiety, carbamoyl group, alkylcarbonyl group having 1 to 20 carbon atoms in the alkyl moiety, nitro Group, amino group, hydroxy group (excluding R 1a , R 1b , R 1c , R 1d , R 1e ), C 1-20 alkoxy group, C 6-20 aryloxy group, sulfamoyl group, thiocyanate group The resin film according to claim 1 or 2, which is an alkylsulfonyl group having 1 to 20 carbon atoms in the alkyl moiety. 前記R1b、R1c及びR1dの少なくとも一つは、ハメット則のσp値が正である置換基である請求項1〜請求項3のいずれか1項に記載の樹脂フィルム。 4. The resin film according to claim 1, wherein at least one of R 1b , R 1c, and R 1d is a substituent having a positive Hammett's σp value. 5. 前記一般式(1)中のR1b、R1c、及びR1dの少なくとも1つは、ハメット則のσp値が0.3〜1.2の範囲である請求項1〜請求項4のいずれか1項に記載の樹脂フィルム。 At least one of R 1b , R 1c , and R 1d in the general formula (1) has a Hammett's rule σp value in the range of 0.3 to 1.2. 5. The resin film according to Item 1. 前記ハメット則のσp値が正である基は、COOR、CONR 、CN、CF、ハロゲン原子、NO、及びSOMより選択される基〔R及びRは、各々独立に、水素原子、又は1価の置換基を表し、Mは水素原子又はアルカリ金属を表す。〕である請求項1〜請求項5のいずれか1項に記載の樹脂フィルム。 The group having a positive σp value according to the Hammett rule is a group selected from COOR r , CONR s 2 , CN, CF 3 , a halogen atom, NO 2 , and SO 3 M [R r and R s are each independently Represents a hydrogen atom or a monovalent substituent, and M represents a hydrogen atom or an alkali metal. ] The resin film of any one of Claims 1-5. 前記一般式(1)中におけるR1a、R1b、R1d、R1e、R1g、R1h、R1i、R1j、R1k、R1m、R1n、及びR1pが水素原子であり、R1cがCOOR〔Rは1価の置換基を表す。〕である請求項1〜請求項6のいずれか1項に記載の樹脂フィルム。 In the general formula (1), R 1a , R 1b , R 1d , R 1e , R 1g , R 1h , R 1i , R 1j , R 1k , R 1m , R 1n , and R 1p are hydrogen atoms, R 1c is COOR r [R r represents a monovalent substituent. The resin film according to any one of claims 1 to 6. 前記支持体が、ポリエステル基材である請求項1〜請求項7のいずれか1項に記載の樹脂フィルム。   The said support body is a polyester base material, The resin film of any one of Claims 1-7. 前記支持体上の前記ポリマー層の上に更に、ポリマーを含み、前記一般式(1)で表される化合物の含有量がバインダーの総量に対して1.0質量%以下である保護ポリマー層を有する請求項1〜請求項8のいずれか1項に記載の樹脂フィルム。   A protective polymer layer further comprising a polymer on the polymer layer on the support, wherein the content of the compound represented by the general formula (1) is 1.0% by mass or less based on the total amount of the binder. It has a resin film of any one of Claims 1-8. 120℃、100%RHの条件で50時間保存した後の破断伸びが、保存する前の破断伸びに対して50%以上である請求項1〜請求項9のいずれか1項に記載の樹脂フィルム。   The resin film according to any one of claims 1 to 9, wherein the elongation at break after storage for 50 hours under the conditions of 120 ° C and 100% RH is 50% or more with respect to the elongation at break before storage. . 前記ポリマー層及び前記保護ポリマー層の少なくとも一方は、前記ポリマーの少なくとも一種として、フッ素系ポリマー及びシリコーン系ポリマーから選ばれるポリマーを含有する請求項1〜請求項10のいずれか1項に記載の樹脂フィルム。   The resin according to any one of claims 1 to 10, wherein at least one of the polymer layer and the protective polymer layer contains a polymer selected from a fluorine-based polymer and a silicone-based polymer as at least one of the polymers. the film. 太陽光が入射する透明性の基材と、太陽電池素子と、前記太陽電池素子の前記基材が配された側と反対側に設けられた請求項1〜請求項11のいずれか1項に記載の樹脂フィルムとを備えた太陽電池モジュール。
The transparent base material into which sunlight enters, the solar cell element, and the solar cell element according to any one of claims 1 to 11 provided on the side opposite to the side on which the base material is disposed. The solar cell module provided with the resin film of description.
JP2010274102A 2010-12-08 2010-12-08 Resin film, and solar cell module Pending JP2012121999A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010274102A JP2012121999A (en) 2010-12-08 2010-12-08 Resin film, and solar cell module
PCT/JP2011/076320 WO2012077470A1 (en) 2010-12-08 2011-11-15 Resin film and solar-cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274102A JP2012121999A (en) 2010-12-08 2010-12-08 Resin film, and solar cell module

Publications (1)

Publication Number Publication Date
JP2012121999A true JP2012121999A (en) 2012-06-28

Family

ID=46206968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274102A Pending JP2012121999A (en) 2010-12-08 2010-12-08 Resin film, and solar cell module

Country Status (2)

Country Link
JP (1) JP2012121999A (en)
WO (1) WO2012077470A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071321A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Film mirror and composite film used for the same
WO2014155861A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Film mirror and solar reflector using same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826978A (en) * 1987-12-29 1989-05-02 Milliken Research Corporation Reactive, non-yellowing triazine compounds useful as UV screening agents for polymers
DE4340725B4 (en) * 1992-12-03 2005-11-24 Ciba Speciality Chemicals Holding Inc. UV absorbers
US5354794A (en) * 1993-02-03 1994-10-11 Ciba-Geigy Corporation Electro coat/base coat/clear coat finishes stabilized with S-triazine UV absorbers
DE19532889A1 (en) * 1995-09-06 1997-03-13 Agfa Gevaert Ag Photographic recording material
JP2007298648A (en) * 2006-04-28 2007-11-15 Konica Minolta Opto Inc Cellulose ester optical film, method for producing the same, and polarizing plate and liquid crystal display device using the same
JP5448853B2 (en) * 2007-03-15 2014-03-19 データレース リミテッド Thermosensitive coating composition based on resorcinyl triazine derivative
JP5348134B2 (en) * 2008-06-23 2013-11-20 旭硝子株式会社 Back sheet for solar cell module and solar cell module
JP5613481B2 (en) * 2009-07-29 2014-10-22 富士フイルム株式会社 Novel triazine derivative, UV absorber
JP5647872B2 (en) * 2010-01-19 2015-01-07 富士フイルム株式会社 Polyester resin composition
WO2011089970A1 (en) * 2010-01-19 2011-07-28 富士フイルム株式会社 Coating composition and silicon resin composition
JP2011148865A (en) * 2010-01-19 2011-08-04 Fujifilm Corp Ultraviolet absorber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071321A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Film mirror and composite film used for the same
US9671599B2 (en) 2012-09-28 2017-06-06 Fujifilm Corporation Film mirror, and composite film for use in same
WO2014155861A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Film mirror and solar reflector using same

Also Published As

Publication number Publication date
WO2012077470A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5734569B2 (en) SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US9899553B2 (en) Adhesive sheet and protective sheet for solar cell
KR101511201B1 (en) Solar cell backsheet, method of manufacturing same, and solar cell module
KR101625420B1 (en) Back sheet for solar cells and process for production thereof, and solar cell module
JP2006270025A (en) Solar battery and thermoplastic resin sheet therefor
JP2011165967A (en) Solar cell backsheet and solar cell module
US20140206797A1 (en) Method of producing a polyester resin composition
TW201712088A (en) Rear surface protective sheet for solar cell and solar cell module
TW201317317A (en) Back sheet for solar cell and solar cell module
JP5484293B2 (en) SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US20140007941A1 (en) Protective sheet for solar cell, method for manufacturing the same, back sheet member for solar cell, back sheet for solar cell and solar cell module
WO2012063945A1 (en) Back sheet for solar cells, and solar cell module
JP5710140B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
TWI480310B (en) A polyester film for protective film on the back of solar cell
WO2012077470A1 (en) Resin film and solar-cell module
EP3075799A1 (en) Ir-reflective material
JP2012121998A (en) Resin film and production method of the same
WO2013008945A1 (en) Polymer sheet for solar cells and solar cell module
US9716189B2 (en) Cyclic carbodiimide compound, polyester film, back sheet for solar cell module, and solar cell module
JP2012222227A (en) Back sheet for solar cells, laminated body for the solar cells, solar cell module, and manufacturing methods of the back sheet, the laminated body, and the solar cell module
JP5606849B2 (en) Polymer sheet for solar cell backsheet and solar cell module
WO2016031340A1 (en) Solar cell rear surface protection sheet and solar cell module
WO2013161787A1 (en) Polyester film, back sheet for solar cell module, and solar cell module
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2012231029A (en) Protective sheet for solar cell and method for producing the same, and solar cell module