JP2012119651A - Semiconductor module and electrode member - Google Patents

Semiconductor module and electrode member Download PDF

Info

Publication number
JP2012119651A
JP2012119651A JP2011051251A JP2011051251A JP2012119651A JP 2012119651 A JP2012119651 A JP 2012119651A JP 2011051251 A JP2011051251 A JP 2011051251A JP 2011051251 A JP2011051251 A JP 2011051251A JP 2012119651 A JP2012119651 A JP 2012119651A
Authority
JP
Japan
Prior art keywords
semiconductor module
spring
electrode
flat plate
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011051251A
Other languages
Japanese (ja)
Inventor
Yoshiki Morikawa
良樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2011051251A priority Critical patent/JP2012119651A/en
Publication of JP2012119651A publication Critical patent/JP2012119651A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor module capable of improving heat dissipation and operation stability.SOLUTION: A semiconductor module 1 having an IGBT element 2, a collector electrode terminal 3 and an emitter electrode terminal 7 that are electrically connected to electrode layers of the IGBT element 2, comprises a spring electrode 6 between the IGBT element 2 and the emitter electrode terminal 7. The spring electrode 6 is configured that a conductive plate member 8 is folded and a spring member 9 is provided into the folded conductive plate member 8. The form of the spring member 9 is exemplified by a disc spring, a corrugated sheet spring, a convex spring, a mesh spring, and so on. A natural length of the spring member 9 being provided on the conductive plate member 8 is set to be about 0.1 to 2 mm. Cooling plates 11, 12 are provided on the collector electrode terminal 3 and the emitter electrode terminal 7 respectively via insulating plates 10, 10. The cooling plates 11, 12 are fixed in a state that the collector electrode terminal 3 and the emitter electrode terminal 7 are pressed in the IGBT element 2 direction.

Description

本発明は、半導体素子とこの半導体素子の電極層に圧接により電気的に接続される電極端子とを備えた半導体モジュール及びこの半導体モジュールに備えられる電極部材に関する。   The present invention relates to a semiconductor module including a semiconductor element and an electrode terminal electrically connected to an electrode layer of the semiconductor element by pressure contact, and an electrode member provided in the semiconductor module.

近年、産業用・車両用システムや変電設備、インバータ等電力変換装置といった分野等に用いられる絶縁形パワー半導体モジュールに対して、高耐圧、大容量のIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)の適用が行われている。このIGBTモジュールに代表される「絶緑形パワー半導体モジュール」若しくは「Isolated power semiconductor devices」は、それぞれJEC−2407−2007、IEC60747−15にて規格が制定されている。   In recent years, high-voltage, high-capacity IGBTs (Insulated Gate Bipolar Transistors) are used for insulated power semiconductor modules used in fields such as industrial and vehicle systems, substation equipment, and power converters such as inverters. Has been applied. Standards for “green green power semiconductor modules” or “Isolated power semiconductor devices” typified by this IGBT module are established in JEC-2407-2007 and IEC60747-15, respectively.

一般的な絶緑形パワー半導体モジュールにおいて、スイッチング素子であるIGBTやダイオード等の半導体素子は、半導体素子の下面に備えられた電極層をDBC(Direct Bond Copper)基板(或いはDCB基板)の銅回路箔上にはんだ付けすることにより備えられる(例えば、非特許文献1)。DBC基板とは、セラミックス等からなる絶縁板に銅回路箔を直接接合したものである。   In a general green-type power semiconductor module, a semiconductor element such as an IGBT or a diode as a switching element has a copper circuit on a DBC (Direct Bond Copper) substrate (or DCB substrate) with an electrode layer provided on the lower surface of the semiconductor element. It is provided by soldering on a foil (for example, Non-Patent Document 1). The DBC substrate is obtained by directly bonding a copper circuit foil to an insulating plate made of ceramics or the like.

半導体素子の上面に備えられる電極層には、超音波ボンディング等の方法によりアルミワイヤが接続され、例えば、DBC基板上の銅回路箔と電気的に結線される。そして、DBC基板の銅回路箔から外部へ電気を接続するための銅端子(リードフレームやブスバー)は、銅回路箔とはんだ付けにより接続される。さらに、この周りは(スーパー)エンジニアリングプラスチックのケースで囲まれ、その中を電気絶緑のためのシリコンゲル等が充填される。   An aluminum wire is connected to the electrode layer provided on the upper surface of the semiconductor element by a method such as ultrasonic bonding, and is electrically connected to, for example, a copper circuit foil on a DBC substrate. A copper terminal (lead frame or bus bar) for connecting electricity from the copper circuit foil of the DBC substrate to the outside is connected to the copper circuit foil by soldering. Furthermore, this area is surrounded by a (super) engineering plastic case and filled with silicon gel or the like for electric green.

年々電力密度の増加に伴い半導体素子上の電極とアルミワイヤ間等の接合温度が高くなり、はんだのせん断応力、アルミワイヤの応力が大きくなってきている。これに対して熱膨張の影響が半導体モジュールの設計寿命に至るまでの期間に亘って顕在化しないように半導体モジュールの構造を設計する必要がある。SiCやGaNのような高温で使用できるワイドバンドキャップ半導体素子の出現により、さらに熱膨張の影響の低減が要求されている。このように、半導体素子の動作温度の高温化が進んでおり、動作温度が175℃〜200℃となると、この温度がはんだ材料の融点に近いため、従来のはんだ材料を用いることができない場合がある。そこで、はんだに置換する材料として、例えば、金属系高温はんだ(Bi、Zn、Au)、化合物系高温はんだ(Sn−Cu)、低温焼結金属(Ag粉、nanoAg)等が提案されている。なお、次世代の半導体素子であるSiCは、250〜300℃での動作が報告されている。   As the power density increases year by year, the bonding temperature between the electrode on the semiconductor element and the aluminum wire increases, and the shear stress of the solder and the stress of the aluminum wire increase. On the other hand, it is necessary to design the structure of the semiconductor module so that the influence of thermal expansion does not become apparent over the period until the design life of the semiconductor module is reached. With the advent of wideband cap semiconductor elements that can be used at high temperatures such as SiC and GaN, there is a demand for further reduction of the effects of thermal expansion. As described above, the operating temperature of the semiconductor element is increasing, and when the operating temperature is 175 ° C. to 200 ° C., this temperature is close to the melting point of the solder material, so that the conventional solder material may not be used. is there. Therefore, as a material to be replaced with solder, for example, metal-based high-temperature solder (Bi, Zn, Au), compound-based high-temperature solder (Sn—Cu), low-temperature sintered metal (Ag powder, nanoAg), and the like have been proposed. In addition, operation | movement at 250-300 degreeC is reported for SiC which is a next-generation semiconductor element.

はんだを用いた絶緑形パワー半導体モジュールには、以下の2つの課題がある。
1.RoHS(Restriction of Hazardous Substances)に対応するため、はんだの鉛フリー化
2.温度サイクル、パワーサイクル等の信頼性の向上
はんだの鉛フリー化の課題に対して、鉛フリーはんだを用いることやはんだを用いない半導体モジュール構造が検討されている。例えば、鉛フリーはんだ材料として、上述のようなSn−Ag系やSn−Cu系のものが検討されている。
The green type power semiconductor module using solder has the following two problems.
1. 1. Lead free solder to meet RoHS (Restriction of Hazardous Substances) Improvement of reliability of temperature cycle, power cycle, etc. In response to the problem of lead-free soldering, the use of lead-free solder or a semiconductor module structure that does not use solder is being studied. For example, as a lead-free solder material, Sn-Ag-based or Sn-Cu-based materials as described above are being studied.

一方、温度サイクル、パワーサイクル等の信頼性を向上させる課題に対しては、半導体モジュールを構成する各部材(半導体、金属、セラミックス等)の熱膨張率の違いより生じる課題を改善する必要がある。すなわち、基板−銅ベース間、基板−銅端子間において、銅とセラミックスの熱膨張係数の差から間のはんだにせん断応力が働き、はんだに亀裂が生じて熱抵抗が増大したり端子が剥離したりするおそれがある。さらに、半導体素子−基板間のはんだにも亀裂が生じる場合がある。その他、半導体素子上のアルミワイヤの接続部でもアルミニウムと半導体素子の熱膨張の差で応力が発生してアルミワイヤが疲労破断する場合がある。   On the other hand, for the problem of improving the reliability such as temperature cycle and power cycle, it is necessary to improve the problem caused by the difference in thermal expansion coefficient of each member (semiconductor, metal, ceramics, etc.) constituting the semiconductor module. . That is, between the substrate and the copper base, between the substrate and the copper terminal, the shear stress acts on the solder between the copper and ceramics due to the difference in the thermal expansion coefficient, causing cracks in the solder, increasing the thermal resistance, and peeling the terminals. There is a risk of Furthermore, cracks may also occur in the solder between the semiconductor element and the substrate. In addition, stress may be generated due to the difference in thermal expansion between aluminum and the semiconductor element at the connection portion of the aluminum wire on the semiconductor element, and the aluminum wire may be fatigued.

この2つの課題を解決する半導体モジュールとして、はんだを用いない半導体モジュール構造である、平型圧接構造パッケージが提案されている(特許文献1、非特許文献1、2)。   As a semiconductor module that solves these two problems, a flat pressure contact structure package that has a semiconductor module structure that does not use solder has been proposed (Patent Document 1, Non-Patent Documents 1 and 2).

この平型圧接構造パッケージにおいて、一般的に半導体素子(例えば、IGBT、ダイオード等)の端部には、半導体素子及びコンタクト端子の位置決めをするガイドが備えられる。そして、半導体素子の上面電極層がコンタクト端子に接触した状態で半導体素子が基板(Mo基板やDBC基板等)上に備えられる。そして、これらコンタクト端子と基板が半導体素子を挟持するように押圧された状態で半導体モジュールの筺体内に備えられる。平型圧接構造パッケージでは、各部材は圧接により接続されるため、はんだを用いることがなく、さらに、各部材の熱膨張率の違いによる応力を緩和することができる。   In this flat type pressure contact structure package, a guide for positioning the semiconductor element and the contact terminal is generally provided at the end of the semiconductor element (for example, IGBT, diode, etc.). Then, the semiconductor element is provided on a substrate (Mo substrate, DBC substrate, etc.) with the upper electrode layer of the semiconductor element in contact with the contact terminal. The contact terminals and the substrate are provided in the housing of the semiconductor module in a state of being pressed so as to sandwich the semiconductor element. In the flat type pressure contact structure package, since each member is connected by pressure contact, solder is not used, and stress due to a difference in thermal expansion coefficient of each member can be relieved.

このような平型圧接構造パッケージでは、圧接によりコンタクト端子と半導体素子との接続、及び半導体素子と基板との接続が行われる。よって、この平型圧接構造パッケージを使用するためには、半導体モジュールの外部から半導体モジュール内に備えられる両端の電極部(コンタクト端子及び外部接続端子)に力を加えて電極部と半導体素子の電極層との圧接を行う必要がある。   In such a flat pressure contact structure package, the contact terminal and the semiconductor element are connected and the semiconductor element and the substrate are connected by pressure contact. Therefore, in order to use this flat pressure contact structure package, force is applied to the electrode portions (contact terminals and external connection terminals) at both ends provided in the semiconductor module from the outside of the semiconductor module, and the electrode portion and the electrode of the semiconductor element It is necessary to perform pressure contact with the layer.

図8に示すように、一般的に平型の半導体モジュール19には、半導体モジュール19を圧接するようにヒートシンク20、20が備えられる。このような半導体モジュール19では、例えば、半導体モジュール19を挟持したヒートシンク20、20に連結棒21、21が貫設され、この連結棒21の少なくとも一端部に絶縁ブロック22、ばね23を介して締結ナット24が備えられる。そして、この締結ナット24を締めることで、ヒートシンク20、20が半導体モジュール19を押圧し、半導体モジュール19内の各部材の圧接が行われる。このような半導体モジュール19は、半導体素子を両面から冷却できるとともに、はんだを用いることなく電気的、熱的に外部と接続できる。なお、このヒートシンク20、20と平型圧接構造パッケージ19の圧接は、主にユーザが実施する。   As shown in FIG. 8, the generally flat semiconductor module 19 is provided with heat sinks 20 and 20 so as to press-contact the semiconductor module 19. In such a semiconductor module 19, for example, connecting rods 21, 21 are provided through heat sinks 20, 20 sandwiching the semiconductor module 19, and are fastened to at least one end of the connecting rod 21 via an insulating block 22 and a spring 23. A nut 24 is provided. Then, by tightening the fastening nut 24, the heat sinks 20, 20 press the semiconductor module 19, and each member in the semiconductor module 19 is pressed. Such a semiconductor module 19 can cool the semiconductor element from both sides and can be electrically and thermally connected to the outside without using solder. The heat sinks 20 and 20 and the flat pressure contact structure package 19 are mainly pressed by the user.

米国特許第6320268号明細書US Pat. No. 6,320,268

電気学会高性能高機能パワーデバイス・パワーIC調査専門委員会、「パワーデバイス・パワーICハンドブック」、コロナ社、1996年7月、p289、p336IEEJ Technical Committee on High Performance and High Performance Power Devices and Power ICs, “Power Device and Power IC Handbook”, Corona, July 1996, p289, p336 森睦宏、関康和、「大容量IGBTの最近の進歩」、電気学会誌、社団法人電気学会、1998年5月、Vol.118(5)、pp.274−277Hiroshi Mori, Yasukazu Seki, “Recent Advances in Large Capacity IGBTs”, The Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, May 1998, Vol. 118 (5), pp. 274-277

しかしながら、この圧接構造の半導体モジュールでは、圧接力が各半導体素子等に均等にかかるように半導体モジュールを組み立てる必要がある。つまり、圧接は圧接構造パッケージの上下の電極端子間とを電気的に絶緑する必要があること、板バネで圧接構造パッケージを圧接するがこの設計の圧接力が圧接構造パッケージの電極ポストに均等にかかるようにする必要がある。例えば、図8に示す半導体モジュール19では上記条件を満たすように組立て時に締結ナット24を均等に締め付ける必要があり、圧接が不良であった場合にはオン抵抗の増加や半導体素子温度の上昇等により半導体素子の破壊の原因となるおそれがある。   However, in the semiconductor module having this pressure contact structure, it is necessary to assemble the semiconductor module so that the pressure contact force is equally applied to each semiconductor element and the like. In other words, it is necessary to electrically insulate between the upper and lower electrode terminals of the pressure contact structure package, and the pressure contact structure package is pressed by the leaf spring, but the pressure contact force of this design is equal to the electrode post of the pressure contact structure package. It is necessary to make it take. For example, in the semiconductor module 19 shown in FIG. 8, the fastening nut 24 needs to be tightened evenly during assembly so as to satisfy the above conditions. If the pressure contact is poor, the ON resistance increases, the temperature of the semiconductor element increases, etc. There is a risk of destroying the semiconductor element.

また、回路を構成するのに、このヒートシンクや圧接のための板バネが小型化の妨げとなる等、使いこなすのには熟練が要求される場合がある。このことから圧接構造パッケージは限られた装置への適用となり、代わりに使い勝手の良い従来型の絶縁形パワー半導体モジュールが使われる場合が少なくない。   Further, in constructing the circuit, skill may be required to use the heat sink and the leaf spring for pressure contact, which hinders miniaturization. For this reason, the pressure contact structure package is applied to a limited apparatus, and a conventional, insulated power semiconductor module that is easy to use is used in many cases.

また、特許文献1のように、半導体モジュールの内部にばね部材を備えた場合には、ばねの高さにより熱伝導の経路が長くなる。つまり、熱抵抗は経路の長さに大幅に変化するものであり、熱伝導の経路が長くなると熱抵抗が大きくなり熱伝導が悪くなる。   Further, as in Patent Document 1, when a spring member is provided inside the semiconductor module, the heat conduction path becomes longer depending on the height of the spring. That is, the thermal resistance greatly changes in the length of the path. When the thermal conduction path becomes longer, the thermal resistance increases and the thermal conduction becomes worse.

上記課題を解決する本発明の半導体モジュールは、半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、前記半導体素子と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を備えて構成される電極部材を備えたことを特徴としている。すなわち、半導体モジュールに備えられる弾性部材の長さ及び弾性部材が備えられる場所での熱抵抗を制御する電極部材を備えることを特徴としている。   A semiconductor module of the present invention that solves the above problem is a semiconductor module comprising a semiconductor element and an electrode terminal electrically connected to an electrode layer of the semiconductor element, the semiconductor module being interposed between the semiconductor element and the electrode terminal. Further, the present invention is characterized in that an electrode member configured by folding a conductive flat plate and including an elastic member between the folded conductive flat plates is provided. That is, it is characterized by comprising an electrode member for controlling the length of the elastic member provided in the semiconductor module and the thermal resistance at the place where the elastic member is provided.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記導体平板を折り返すことで形成される折り返し部の可撓性を、前記導体平板の前記弾性部材を挟持する平板部より向上させることを特徴としている。   In the semiconductor module of the present invention, the flexibility of the folded portion formed by folding the conductive flat plate in the semiconductor module is higher than that of the flat plate portion sandwiching the elastic member of the conductive flat plate. It is said.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記折り返し部の厚さを、前記平板部の厚さより薄く形成することを特徴としている。   The semiconductor module according to the present invention is characterized in that, in the semiconductor module, the folded portion is formed to be thinner than the flat plate portion.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記導体平板を、前記弾性部材が備えられる方向に凸となるように屈曲させることを特徴としている。   The semiconductor module of the present invention is characterized in that, in the semiconductor module, the conductor flat plate is bent so as to be convex in a direction in which the elastic member is provided.

また、半導体モジュールは、上記半導体モジュールにおいて、前記導体平板の前記折り返し部を、前記弾性部材が備えられる方向に凸となるように屈曲させることを特徴としている。   The semiconductor module is characterized in that, in the semiconductor module, the folded portion of the conductive flat plate is bent so as to protrude in a direction in which the elastic member is provided.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記導体平板の前記電極端子と接触する側の前記平板部を前記弾性部材が備えられる方向に凸となるように屈曲させることを特徴としている。   The semiconductor module of the present invention is characterized in that, in the semiconductor module, the flat plate portion on the side contacting the electrode terminal of the conductive flat plate is bent so as to protrude in the direction in which the elastic member is provided. .

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記折り返した導体平板間に前記弾性部材を複数備えることを特徴としている。   The semiconductor module of the present invention is characterized in that the semiconductor module includes a plurality of the elastic members between the folded conductor flat plates.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記弾性部材はばね部材であって、前記ばね部材の自然長が、0.1mm〜2mmであることを特徴としている。   The semiconductor module according to the present invention is characterized in that, in the semiconductor module, the elastic member is a spring member, and a natural length of the spring member is 0.1 mm to 2 mm.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記弾性部材の圧接力が、1〜10MPaであることを特徴としている。   The semiconductor module of the present invention is characterized in that, in the semiconductor module, a pressure contact force of the elastic member is 1 to 10 MPa.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記弾性部材は、皿ばね、波板ばね、凸ばね、メッシュばねのいずれかであることを特徴としている。   In the semiconductor module of the present invention, the elastic member is any one of a disc spring, a corrugated spring, a convex spring, and a mesh spring.

また、本発明の半導体モジュールは、上記半導体モジュールにおいて、前記弾性部材と前記導体平板間に、前記弾性部材の圧力を分散させる板部材を備えることを特徴としている。   The semiconductor module of the present invention is characterized in that in the semiconductor module, a plate member that disperses the pressure of the elastic member is provided between the elastic member and the conductive flat plate.

また、上記課題を解決する本発明の半導体モジュールは、筺体内部に半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、前記筺体と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を備えて構成される電極部材を備えたことを特徴としている。   In addition, a semiconductor module of the present invention that solves the above-described problem is a semiconductor module that includes a semiconductor element and an electrode terminal electrically connected to an electrode layer of the semiconductor element inside the casing, the casing and the casing It is characterized in that an electrode member comprising a conductive flat plate folded between the electrode terminals and an elastic member provided between the folded conductive flat plates is provided.

また、上記課題を解決する本発明の電極部材は、平型半導体モジュールに備えられる半導体素子の電極層と、この電極層に電気的に接続される電極端子との間に備えられる電極部材であって、前記電極部材は、導体平板を折り返し、前記折り返した導体平板間に弾性部材を備えたことを特徴としている。   In addition, an electrode member of the present invention that solves the above problems is an electrode member provided between an electrode layer of a semiconductor element provided in a flat semiconductor module and an electrode terminal electrically connected to the electrode layer. The electrode member is characterized in that a conductive flat plate is folded and an elastic member is provided between the folded conductive flat plates.

以上の発明によれば、半導体モジュールの放熱性の向上に貢献する。そして、半導体モジュールの動作安定性の向上に貢献する。   According to the above invention, it contributes to the improvement of the heat dissipation of a semiconductor module. And it contributes to the improvement of the operational stability of the semiconductor module.

本発明の実施形態1に係る半導体モジュールの要部断面図である。It is principal part sectional drawing of the semiconductor module which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る半導体モジュールの要部断面図であり、モジュール内で生じる圧接力を示す図である。It is principal part sectional drawing of the semiconductor module which concerns on Embodiment 1 of this invention, and is a figure which shows the press-contact force which arises in a module. 本発明の実施形態2に係る半導体モジュールの要部断面図である。It is principal part sectional drawing of the semiconductor module which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る半導体モジュールに備えられる電極部材の断面図である。It is sectional drawing of the electrode member with which the semiconductor module which concerns on Embodiment 3 of this invention is equipped. 折り返し部での抗力が無視できない場合の電極部材の変形状態を示した模式図である。It is the schematic diagram which showed the deformation | transformation state of the electrode member when the drag in a folding | turning part cannot be disregarded. 本発明の実施形態4に係る半導体モジュールに備えられる電極部材の断面図である。It is sectional drawing of the electrode member with which the semiconductor module which concerns on Embodiment 4 of this invention is equipped. 本発明の実施形態5に係る半導体モジュールに備えられる電極部材の断面図である。It is sectional drawing of the electrode member with which the semiconductor module which concerns on Embodiment 5 of this invention is equipped. 従来技術に係る平型圧接構造を有する半導体モジュールの断面図である。It is sectional drawing of the semiconductor module which has the flat type pressure-contact structure based on a prior art.

(実施形態1)
本発明の実施形態1に係る半導体モジュール及び電極部材について、図を参照して詳細に説明する。実施形態1ではIGBT素子を備えた平型圧接構造の半導体モジュールを例示して説明するが、本発明はこの実施形態に限定されるものではなく、圧接により半導体素子の電極層と外部(若しくは、内部の別の回路)に接続するための電極端子とを電気的に接続する半導体モジュールに適用可能である。
(Embodiment 1)
A semiconductor module and an electrode member according to Embodiment 1 of the present invention will be described in detail with reference to the drawings. In the first embodiment, a semiconductor module having a flat pressure contact structure including an IGBT element will be described as an example. However, the present invention is not limited to this embodiment, and the electrode layer of the semiconductor element and the outside (or The present invention can be applied to a semiconductor module that is electrically connected to an electrode terminal for connection to another internal circuit.

図1に示すように、本発明の実施形態1に係る半導体モジュール1の内部にはIGBT素子2(半導体素子)が少なくとも1つ備えられる。IGBT素子2には、図示省略するが、上面にエミッタ、ゲート(制御電極)が形成され、底面にコレクタが形成されている。なお、実施形態の説明では、便宜上、上面及び底面とするが上下方向は、本発明をなんら限定するものではない。また、ゲート(制御電極)と制御回路との接続については、従来の接続方法を用いればよいので図示省略する。   As shown in FIG. 1, at least one IGBT element 2 (semiconductor element) is provided in the semiconductor module 1 according to the first embodiment of the present invention. Although not shown, the IGBT element 2 has an emitter and a gate (control electrode) formed on the top surface and a collector formed on the bottom surface. In the description of the embodiment, for convenience, the top surface and the bottom surface are used, but the vertical direction does not limit the present invention. The connection between the gate (control electrode) and the control circuit is not shown because a conventional connection method may be used.

IGBT素子2は、例えば、コレクタ(カソード)電極端子3上にモリブデン製コンタクト電極4を介して備えられる。コレクタ電極端子3は、コンタクト電極4を介してIGBT素子2のコレクタと電気的に接続される。   The IGBT element 2 is provided, for example, on a collector (cathode) electrode terminal 3 via a molybdenum contact electrode 4. Collector electrode terminal 3 is electrically connected to the collector of IGBT element 2 via contact electrode 4.

コレクタ電極端子3(及び、後述のエミッタ電極端子7)を構成する材料は適宜周知の電極材料を用いることができる。例えば、コレクタ電極端子3(及び、後述のエミッタ電極端子7)の材料に銅等の熱伝導性の良い金属を用いると半導体モジュール1(IGBT素子2)の放熱性が向上する。   As a material constituting the collector electrode terminal 3 (and an emitter electrode terminal 7 described later), a well-known electrode material can be appropriately used. For example, when a metal having good thermal conductivity such as copper is used as the material of the collector electrode terminal 3 (and emitter electrode terminal 7 described later), the heat dissipation of the semiconductor module 1 (IGBT element 2) is improved.

コンタクト電極4(及び、後述のコンタクト電極5)の材料にIGBT素子2を構成する材料(例えば、SiやSiC、GaN)に比較的熱膨張係数が近い材料(例えば、MoやW、その他化合物等)を用いることで、コンタクト電極4(コンタクト電極5)がIGBT素子2とコレクタ電極端子3(ばね電極6)との熱応力の緩衝板として作用し、温度サイクルにおける半導体モジュール1の信頼性を高めることができる。   A material (for example, Mo, W, other compounds, etc.) whose thermal expansion coefficient is relatively close to a material (for example, Si, SiC, GaN) constituting the IGBT element 2 as a material for the contact electrode 4 (and a contact electrode 5 described later) ), The contact electrode 4 (contact electrode 5) acts as a buffer plate for thermal stress between the IGBT element 2 and the collector electrode terminal 3 (spring electrode 6), and increases the reliability of the semiconductor module 1 in the temperature cycle. be able to.

IGBT素子2のエミッタには、コンタクト電極5、ばね電極6を介してエミッタ電極端子7が備えられる。エミッタ電極端子7は、コンタクト電極5、ばね電極6を介してIGBT素子2のエミッタと電気的に接続される。   An emitter electrode terminal 7 is provided on the emitter of the IGBT element 2 via a contact electrode 5 and a spring electrode 6. The emitter electrode terminal 7 is electrically connected to the emitter of the IGBT element 2 through the contact electrode 5 and the spring electrode 6.

ばね電極6は、導電板部材8を折り返し、この折り返した導電板部材8間にばね部材9を挟持して構成される。なお、この導電板部材8とばね部材9との間に分散板(図示省略)を備えると、ばね部材9の弾性力が導電板部材8の一部に集中せず、ばね電極6とエミッタ電極端子7(またはコンタクト電極5)との接続面で押圧する力がより均一になる。   The spring electrode 6 is configured by folding the conductive plate member 8 and sandwiching the spring member 9 between the folded conductive plate members 8. When a dispersion plate (not shown) is provided between the conductive plate member 8 and the spring member 9, the elastic force of the spring member 9 is not concentrated on a part of the conductive plate member 8, and the spring electrode 6 and the emitter electrode The pressing force on the connection surface with the terminal 7 (or contact electrode 5) becomes more uniform.

導電板部材8は、銅、アルミニウム等の導電材料より構成される。そして、この導電板部材8の折り返し部分は図1に記載のようにU字状に折り返す形態の他に、導電板部材8の両端を折り返す形態等ばね部材9を挟持できる形態であればどのように折り返してもよい。   The conductive plate member 8 is made of a conductive material such as copper or aluminum. The folded portion of the conductive plate member 8 is not limited to a U-shaped folded shape as shown in FIG. 1, but may be any shape that can hold the spring member 9 such as a folded shape of both ends of the conductive plate member 8. It may be folded back.

ばね部材9の形状としては、皿ばね、波板ばね、凸ばね、メッシュばね等が例示される。ばね部材9の形状をこれらの形状とすることで、導電板部材8間に備えられるばね部材9の自然長を0.1〜2mmとした場合においても半導体モジュール1内に備えられるIGBT素子2に適切な圧接力が働くようにばね電極6を半導体モジュール1に備えることができる。また、ばね部材9の自然長を、0.1〜2mm程度に設定するとばね電極6の高さ(後述の冷却板12とIGBT素子2との間)の熱抵抗が小さくなり、IGBT素子2の冷却効率が向上するとともに、半導体モジュールが小型化できる。また、ばね電極6に備えられた際、ばね部材9の圧接力は1〜10MPaとすると、絶縁形パワー半導体モジュール1を構成した際に、絶縁形パワー半導体の保管及び動作時に半導体モジュール1に備えられる各部材(例えば、IGBT素子2等)に適切な圧接力がかかるように半導体モジュール1を構成することができる。ばね部材9を構成する材料は、例えば、ステンレス、インコネル(登録商標)等既知のばね材料を用いればよい。   Examples of the shape of the spring member 9 include a disc spring, a corrugated spring, a convex spring, and a mesh spring. By setting the shape of the spring member 9 to these shapes, even when the natural length of the spring member 9 provided between the conductive plate members 8 is 0.1 to 2 mm, the IGBT element 2 provided in the semiconductor module 1 The spring electrode 6 can be provided in the semiconductor module 1 so that an appropriate pressure contact force acts. Moreover, when the natural length of the spring member 9 is set to about 0.1 to 2 mm, the thermal resistance at the height of the spring electrode 6 (between a cooling plate 12 and an IGBT element 2 described later) becomes small, and the IGBT element 2 The cooling efficiency is improved and the semiconductor module can be downsized. Also, when the spring electrode 6 is provided, when the pressure contact force of the spring member 9 is 1 to 10 MPa, when the insulated power semiconductor module 1 is configured, the insulated power semiconductor is provided in the semiconductor module 1 during storage and operation. The semiconductor module 1 can be configured such that an appropriate pressure contact force is applied to each member (for example, the IGBT element 2 or the like). As a material constituting the spring member 9, for example, a known spring material such as stainless steel or Inconel (registered trademark) may be used.

さらに、コレクタ電極端子3とエミッタ電極端子7をIGBT素子2方向に押圧するように、コレクタ電極端子3とエミッタ電極端子7のそれぞれに絶縁板10、10を介して冷却板11、12が備えられる。すなわち、冷却板11、12は、コレクタ電極端子3とエミッタ電極端子7をIGBT素子2方向に押圧した状態で固定される。   Further, cooling plates 11 and 12 are provided on the collector electrode terminal 3 and the emitter electrode terminal 7 via insulating plates 10 and 10 so as to press the collector electrode terminal 3 and the emitter electrode terminal 7 in the direction of the IGBT element 2. . That is, the cooling plates 11 and 12 are fixed in a state where the collector electrode terminal 3 and the emitter electrode terminal 7 are pressed in the direction of the IGBT element 2.

冷却板11、12は、銅、アルミニウム等の金属板や熱伝導性の高いセラミックス板が用いられる。この冷却板11、12にヒートシンクを接続したり、冷却板11、12に直接冷却媒体(気体または液体)を接触させたりすることで半導体モジュール1を冷却する。この冷却板11、12を半導体モジュール1の筺体として用いることができるが、さらに図示省略の筺体に冷却板11、12に挟持されたIGBT素子2を収納してもよい。なお、絶縁板10、10を備えず、冷却板11、12を半導体モジュール1の外部回路と接続される外部接続用電極として用いることも可能である。   As the cooling plates 11 and 12, a metal plate such as copper or aluminum or a ceramic plate having high thermal conductivity is used. The semiconductor module 1 is cooled by connecting a heat sink to the cooling plates 11 and 12 or bringing a cooling medium (gas or liquid) into direct contact with the cooling plates 11 and 12. Although the cooling plates 11 and 12 can be used as a housing of the semiconductor module 1, the IGBT element 2 sandwiched between the cooling plates 11 and 12 may be housed in a housing not shown. The insulating plates 10 and 10 are not provided, and the cooling plates 11 and 12 can be used as external connection electrodes that are connected to an external circuit of the semiconductor module 1.

図2に示すように、コレクタ電極端子3とエミッタ電極端子7をIGBT素子2方向に押圧するように冷却板11、12を固定して備えると、ばね電極6のばね部材9に弾性エネルギーが蓄積される。ばね電極6は、ばね部材9の弾性力により、エミッタ電極端子7と絶縁板10とを冷却板12方向に押圧し(矢印a)、コンタクト電極5をIGBT素子2(IGBT素子2のエミッタ)方向に押圧する(矢印b)。また、ばね電極6の押圧により、コレクタ電極端子3及び絶縁板10は冷却板11方向に押圧され(矢印c)、この押圧する力の反力によりコレクタ電極端子3がコンタクト電極4をIGBT素子2(IGBT素子2のコレクタ)方向に押圧する(矢印d)。このように、半導体モジュール1内部で各部材を押圧する力のバランスが保たれ、各部材間に適当な圧接力が働く。   As shown in FIG. 2, when the cooling plates 11 and 12 are fixed so as to press the collector electrode terminal 3 and the emitter electrode terminal 7 in the direction of the IGBT element 2, elastic energy is accumulated in the spring member 9 of the spring electrode 6. Is done. The spring electrode 6 presses the emitter electrode terminal 7 and the insulating plate 10 in the direction of the cooling plate 12 by the elastic force of the spring member 9 (arrow a), and the contact electrode 5 in the direction of the IGBT element 2 (emitter of the IGBT element 2). (Arrow b). Further, the collector electrode terminal 3 and the insulating plate 10 are pressed toward the cooling plate 11 by the pressing of the spring electrode 6 (arrow c), and the collector electrode terminal 3 connects the contact electrode 4 to the IGBT element 2 by the reaction force of the pressing force. Press in the direction of (collector of IGBT element 2) (arrow d). Thus, the balance of the force which presses each member inside the semiconductor module 1 is maintained, and an appropriate pressure contact force works between each member.

以上の構成からなる本発明の実施形態1に係る半導体モジュール1によれば、半導体モジュール1にばね電極6を備えるだけで、半導体モジュール1に備えられる各部材に適切な圧接力を加えることができる。よって、半導体モジュール1の組立て作業が容易になり、不適切な組立てによる半導体モジュール1の性能低下や半導体素子の破壊の発生を防止することができる。さらに、半導体モジュール1を構成する各部材が圧接により接続されるため、はんだフリーな半導体モジュール1を得ることができる。   According to the semiconductor module 1 according to the first embodiment of the present invention having the above-described configuration, an appropriate pressure contact force can be applied to each member provided in the semiconductor module 1 simply by providing the semiconductor module 1 with the spring electrode 6. . Therefore, the assembling work of the semiconductor module 1 is facilitated, and it is possible to prevent the deterioration of the performance of the semiconductor module 1 and the destruction of the semiconductor element due to improper assembly. Furthermore, since each member which comprises the semiconductor module 1 is connected by press-contact, the solder free semiconductor module 1 can be obtained.

また、半導体モジュール1の保管または動作時において、半導体モジュール1の温度が低下または上昇した場合、内部部品の熱収縮や熱膨張による各部材間距離の変動幅をばね部材9(ばね電極6)の形状変化によって緩和することができ、各部材間に働く圧接力を所定の圧接力に維持することができる。すなわち、IGBT素子2と各電極端子3、7との電気的な接続が良好に保たれることで半導体モジュール1の動作安定性が向上し、各電極端子3、7と冷却部材11、12との密着性が確保できるので半導体モジュール1の放熱性が向上する。   Further, when the temperature of the semiconductor module 1 is decreased or increased during storage or operation of the semiconductor module 1, the fluctuation width of the distance between the members due to the thermal contraction or thermal expansion of the internal components is determined by the spring member 9 (spring electrode 6). It can be relieved by the shape change, and the pressing force acting between the members can be maintained at a predetermined pressing force. That is, the electrical connection between the IGBT element 2 and each of the electrode terminals 3 and 7 is kept good, so that the operational stability of the semiconductor module 1 is improved, and the electrode terminals 3 and 7 and the cooling members 11 and 12 are Therefore, the heat dissipation of the semiconductor module 1 is improved.

そして、ばね電極6は、ばね部材9が導電板部材8に包まれるように形成され、この導電板部材8が熱拡散板として作用するので、半導体モジュール1の放熱性が向上する。   The spring electrode 6 is formed so that the spring member 9 is wrapped in the conductive plate member 8, and the conductive plate member 8 acts as a heat diffusion plate, so that the heat dissipation of the semiconductor module 1 is improved.

(実施形態2)
本発明の実施形態2に係る半導体モジュール及び電極部材について、図を参照して詳細に説明する。実施形態2に係る半導体モジュール15及びばね電極14(電極部材)は、ばね電極14がばね部材9、16を複数備えること以外は、実施形態1に係る半導体モジュール1及びばね電極6(電極部材)と同じである。よって、実施形態1に係る半導体モジュール1及びばね電極6と同様の構成については同じ符号を付し、その詳細な説明を省略する。
(Embodiment 2)
A semiconductor module and an electrode member according to Embodiment 2 of the present invention will be described in detail with reference to the drawings. The semiconductor module 15 and the spring electrode 14 (electrode member) according to the second embodiment are the same as the semiconductor module 15 and the spring electrode 14 (electrode member) except that the spring electrode 14 includes a plurality of spring members 9 and 16. Is the same. Therefore, the same code | symbol is attached | subjected about the structure similar to the semiconductor module 1 and the spring electrode 6 which concern on Embodiment 1, and the detailed description is abbreviate | omitted.

図3に示すように、本発明の実施形態2に係る半導体モジュール15は、半導体モジュール15の内部にIGBT素子2及びFWD(Free Wheeling Diode)素子17(半導体素子)が少なくとも1つずつ備えられる。   As shown in FIG. 3, the semiconductor module 15 according to the second embodiment of the present invention includes at least one IGBT element 2 and FWD (Free Wheeling Diode) element 17 (semiconductor element) inside the semiconductor module 15.

IGBT素子2及びFWD素子17は、例えば、コレクタ(カソード)電極端子3上にモリブデン製コンタクト電極4を介して備えられる。コレクタ(カソード)電極端子3は、コンタクト電極4を介して、IGBT素子2のコレクタ及びFWD素子17のアノードと電気的に接続される。   The IGBT element 2 and the FWD element 17 are provided, for example, on a collector (cathode) electrode terminal 3 via a molybdenum contact electrode 4. The collector (cathode) electrode terminal 3 is electrically connected to the collector of the IGBT element 2 and the anode of the FWD element 17 through the contact electrode 4.

IGBT素子2のエミッタ及びFWD素子17のカソードには、コンタクト電極5、18、ばね電極14を介してエミッタ電極端子7が備えられる。エミッタ電極端子7は、コンタクト電極5、18、ばね電極14を介して、IGBT素子2のエミッタ及びFWD素子17のカソードそれぞれと電気的に接続される。   An emitter electrode terminal 7 is provided on the emitter of the IGBT element 2 and the cathode of the FWD element 17 via contact electrodes 5 and 18 and a spring electrode 14. The emitter electrode terminal 7 is electrically connected to the emitter of the IGBT element 2 and the cathode of the FWD element 17 via the contact electrodes 5 and 18 and the spring electrode 14.

ばね電極14は、導電板部材8を折り返し、この折り返した導電板部材8間にばね部材9、16を挟持して構成される。なお、この導電板部材8とばね部材9、16との間に図示省略の分散板を備えると、ばね部材9、16の弾性力が導電板部材8の一部に集中することがないので、ばね電極14がエミッタ電極端子7(またはコンタクト電極5、18)をより均一に押圧できる。   The spring electrode 14 is configured by folding the conductive plate member 8 and sandwiching the spring members 9 and 16 between the folded conductive plate members 8. If a dispersion plate (not shown) is provided between the conductive plate member 8 and the spring members 9 and 16, the elastic force of the spring members 9 and 16 does not concentrate on a part of the conductive plate member 8. The spring electrode 14 can press the emitter electrode terminal 7 (or the contact electrodes 5 and 18) more uniformly.

導電板部材8は、銅、アルミニウム等の導電材料より構成される。そして、この導電板部材8の折り返し部分は図3に記載のようにU字状に折り返す形態の他に、導電板部材8の両端を折り返す形態等、ばね部材9、16を挟持できる形態であればどのように折り返してもよい。   The conductive plate member 8 is made of a conductive material such as copper or aluminum. The folded portion of the conductive plate member 8 may be configured to hold the spring members 9 and 16 such as a folded shape of both ends of the conductive plate member 8 in addition to a U-shaped folded shape as shown in FIG. It may be folded in any way.

ばね部材9、16の形状としては、皿ばね、波板ばね、凸ばね、メッシュばね等が例示される。実施形態1に係る半導体モジュール1のばね部材9と同様に、ばね部材9、16の形状をこれらの形状とすることで、導電板部材8間に備えられるばね部材9、16の自然長を0.1〜2mmとした場合においても半導体モジュール1内に備えられるIGBT素子2に適切な圧接力が働くようにばね電極14を半導体モジュール15に備えることができる。導電板部材8にばね部材9、16を複数備える場合は、ばね部材9、16が接続される各半導体素子(例えば、IGBT素子2やFWD素子17)に所定の圧接力が作用するように、ばね部材9、16の高さや、材質、形状等を各々適宜調節する。   Examples of the shape of the spring members 9 and 16 include a disc spring, a corrugated spring, a convex spring, and a mesh spring. Similar to the spring member 9 of the semiconductor module 1 according to the first embodiment, the natural length of the spring members 9 and 16 provided between the conductive plate members 8 is reduced to 0 by setting the shapes of the spring members 9 and 16 to these shapes. The spring electrode 14 can be provided in the semiconductor module 15 so that an appropriate pressure contact force acts on the IGBT element 2 provided in the semiconductor module 1 even in the case of .1 to 2 mm. When the conductive plate member 8 includes a plurality of spring members 9 and 16, a predetermined pressure contact force acts on each semiconductor element (for example, the IGBT element 2 and the FWD element 17) to which the spring members 9 and 16 are connected. The height, material, shape, and the like of the spring members 9, 16 are adjusted as appropriate.

さらに、コレクタ電極端子3とエミッタ電極端子7をIGBT素子2(及びFWD素子17)方向に押圧するように、コレクタ電極端子3とエミッタ電極端子7のそれぞれに絶縁板10、10を介して冷却板11、12を備える。   Further, a cooling plate is provided on each of the collector electrode terminal 3 and the emitter electrode terminal 7 via the insulating plates 10 and 10 so as to press the collector electrode terminal 3 and the emitter electrode terminal 7 in the direction of the IGBT element 2 (and the FWD element 17). 11 and 12 are provided.

以上の構成からなる本発明の実施形態2に係る半導体モジュール15によれば、本発明の実施形態1に係る半導体モジュール1の効果に加えて、半導体モジュール15内に備えられる半導体素子2、17毎に適切な圧接力を設定することができる。導電板部材8間に異なる種類のばね部材9、16を複数備えることにより、各半導体素子2、17に作用させる圧接力を個別に設定できるとともに、異なる種類の半導体素子2、17を一つのばね電極14に接続する場合において各半導体素子2、17の高さの違いによる圧接力の不一致を緩和することができる。   According to the semiconductor module 15 according to the second embodiment of the present invention having the above configuration, in addition to the effects of the semiconductor module 1 according to the first embodiment of the present invention, each of the semiconductor elements 2 and 17 provided in the semiconductor module 15. An appropriate pressure contact force can be set. By providing a plurality of different types of spring members 9, 16 between the conductive plate members 8, it is possible to individually set the pressure contact force that acts on each of the semiconductor elements 2, 17 and to connect the different types of semiconductor elements 2, 17 to one spring. In the case of connection to the electrode 14, it is possible to alleviate the mismatch of the pressing force due to the difference in height between the semiconductor elements 2 and 17.

(実施形態3)
本発明の実施形態3に係る半導体モジュール及び電極部材について、図4を参照して詳細に説明する。実施形態3に係る半導体モジュールは、半導体モジュールに備えられるばね電極25の形状が実施形態1に係る半導体モジュール1に備えられるばね電極6と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同様である。よって、実施形態の説明では、ばね電極25について詳細に説明し、実施形態1と同様の構成については同じ符号を付し、その詳細な説明を省略する。
(Embodiment 3)
A semiconductor module and an electrode member according to Embodiment 3 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the third embodiment is described with reference to FIG. 1 except that the shape of the spring electrode 25 provided in the semiconductor module is different from that of the spring electrode 6 provided in the semiconductor module 1 according to the first embodiment. 1 is the same as the semiconductor module 1 according to FIG. Therefore, in the description of the embodiment, the spring electrode 25 will be described in detail, the same reference numerals are given to the same configurations as those in Embodiment 1, and the detailed description thereof will be omitted.

図4(a)に示すように、本発明の実施形態3に係る半導体モジュールに備えられるばね電極25は、導電板部材8を折り返し、この折り返した導電板部材8間にばね部材9を挟持して構成される。   As shown in FIG. 4A, the spring electrode 25 provided in the semiconductor module according to Embodiment 3 of the present invention folds the conductive plate member 8 and sandwiches the spring member 9 between the folded conductive plate members 8. Configured.

ばね電極25は、導電板部材8を折り返すことで、U字状の折り返し部8aと、ばね部材9挟持する平板部8b,8cが形成される。また、折り返し部8aの他端は、平板部8b,8cにより開口部8dが形成される。そして、折り返し部8aの厚さは、平板部8b,8cよりも薄く形成される。   The spring electrode 25 folds the conductive plate member 8, thereby forming a U-shaped folded portion 8 a and flat plate portions 8 b and 8 c that sandwich the spring member 9. The other end of the folded portion 8a is formed with an opening 8d by the flat plate portions 8b and 8c. And the thickness of the folding | returning part 8a is formed thinner than flat plate part 8b, 8c.

なお、実施形態では、図1に示した半導体モジュールにおいて、ばね電極25の平板部8bはエミッタ電極端子7と接し、平板部8cはコンタクト電極5と接するものとして説明する(実施形態4,5も同様である)。   In the embodiment, the flat plate portion 8b of the spring electrode 25 is in contact with the emitter electrode terminal 7 and the flat plate portion 8c is in contact with the contact electrode 5 in the semiconductor module shown in FIG. The same).

図4(b)に示すように、ばね電極25を押圧する力が作用した場合、折り返し部8aが撓むことで、平板部8bと平板部8cとが略平行状態を維持して、平板部8b,8cの間隔が狭くなるようにばね電極25が変形する。その結果、ばね電極25に設けられたばね部材9の変位もばね電極25に設けられる位置にかかわらず略一定となり、平板部8b,8cがコンタクト電極5及びエミッタ電極端子7をそれぞれ均一に押圧することができる。   As shown in FIG. 4B, when a force pressing the spring electrode 25 is applied, the folded portion 8a bends so that the flat plate portion 8b and the flat plate portion 8c are maintained in a substantially parallel state. The spring electrode 25 is deformed so that the interval between 8b and 8c is narrowed. As a result, the displacement of the spring member 9 provided on the spring electrode 25 is also substantially constant regardless of the position provided on the spring electrode 25, and the flat plate portions 8b and 8c press the contact electrode 5 and the emitter electrode terminal 7 uniformly. Can do.

つまり、ばね電極25に挟持されるばね部材9の反発力に対して、折り返し部8aの反発力(抗力)が無視できない場合、図5に示すように、開口部8d近傍における平板部8b(若しくは、平板部8c)の変位が折り返し部8a近傍における変位より大きくなるおそれがある。もし、開口部8d近傍と折り返し部8a近傍に設けられるばね部材9の変形量の不均一が生じると、ばね電極25に設けられる位置によって、ばね部材9が平板部8b,8cを押圧する力が異なり、ばね電極25が各部材(コンタクト電極5やエミッタ電極端子7等)を均一に押圧することができなくなる。   That is, when the repulsive force (repulsive force) of the folded portion 8a is not negligible with respect to the repulsive force of the spring member 9 sandwiched between the spring electrodes 25, as shown in FIG. 5, the flat plate portion 8b in the vicinity of the opening 8d (or , The displacement of the flat plate portion 8c may be larger than the displacement in the vicinity of the folded portion 8a. If the deformation amount of the spring member 9 provided in the vicinity of the opening 8d and in the vicinity of the folded-back portion 8a is uneven, the force by which the spring member 9 presses the flat plate portions 8b and 8c depending on the position provided in the spring electrode 25. In contrast, the spring electrode 25 cannot uniformly press each member (the contact electrode 5, the emitter electrode terminal 7, etc.).

また、図5に示すように、開口部8d近傍で平板部8b,8cが変形してしまうと、ばね電極25とコンタクト電極5(若しくは、エミッタ電極端子7)との接触状態が悪くなり、部材間の熱伝導性が低下するとともに、電流が接触している箇所のみに集中することで局所的なジュール熱が発生するおそれが生じる。   As shown in FIG. 5, when the flat plate portions 8b and 8c are deformed in the vicinity of the opening 8d, the contact state between the spring electrode 25 and the contact electrode 5 (or the emitter electrode terminal 7) is deteriorated, and the member In addition to the decrease in the thermal conductivity between them, local Joule heat may be generated by concentrating only on the portion where the current is in contact.

そこで、本発明の実施形態3に係るばね電極25は、折り返し部8aの厚さを平板部8b,8cよりも薄くすることで、折り返し部8aの可撓性を向上させる。その結果、ばね電極25を押圧する力がばね電極25に作用した場合に、折り返し部8aでの抗力を低減させ、平板部8bと平板部8cとが略平行な状態を維持して、ばね電極25を変位させることができる。よって、ばね電極25に設けられるばね部材9の変形量がばね電極25に設けられる位置にかかわらず略均一となり、ばね電極25が、半導体モジュールに備えられる各部材(例えば、コンタクト電極5やエミッタ電極端子7)をより均一に押圧することができる。   Therefore, the spring electrode 25 according to Embodiment 3 of the present invention improves the flexibility of the folded portion 8a by making the folded portion 8a thinner than the flat plate portions 8b and 8c. As a result, when a force that presses the spring electrode 25 acts on the spring electrode 25, the drag force at the folded portion 8a is reduced, and the flat plate portion 8b and the flat plate portion 8c are maintained in a substantially parallel state. 25 can be displaced. Therefore, the amount of deformation of the spring member 9 provided on the spring electrode 25 is substantially uniform regardless of the position provided on the spring electrode 25, and the spring electrode 25 is provided with each member provided in the semiconductor module (for example, the contact electrode 5 and the emitter electrode). The terminal 7) can be pressed more uniformly.

なお、本発明の実施形態3に係るばね電極25は、折り返し部8a全体が弾性変形する形態であるので、局所的な変形による金属疲労や機械的劣化を低減することができる。   Note that the spring electrode 25 according to the third embodiment of the present invention has a configuration in which the entire folded portion 8a is elastically deformed, and therefore metal fatigue and mechanical deterioration due to local deformation can be reduced.

以上のように、本発明の実施形態3に係るばね電極25によれば、折り返し部8aの可撓性を向上させることで、ばね電極25が各部材(コンタクト電極5またはエミッタ電極端子7)をより均一に押圧することができる。よって、本発明の実施形態3に係るばね電極25を備えた半導体モジュールは、実施形態1に係る半導体モジュール1の奏する効果に加えて、各部材により均一な圧接力を加えることができる。   As described above, according to the spring electrode 25 according to the third embodiment of the present invention, the spring electrode 25 improves the flexibility of the folded portion 8a, so that the spring electrode 25 can connect each member (contact electrode 5 or emitter electrode terminal 7). It can press more uniformly. Therefore, in addition to the effect which the semiconductor module 1 which concerns on Embodiment 1 show | plays, the semiconductor module provided with the spring electrode 25 which concerns on Embodiment 3 of this invention can apply uniform press-contact force by each member.

(実施形態4)
本発明の実施形態4に係る半導体モジュール及び電極部材について、図6を参照して詳細に説明する。実施形態4に係る半導体モジュールは、半導体モジュールに備えられるばね電極26の形状が実施形態1に係る半導体モジュール1に備えられるばね電極6と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同様である。よって、実施形態の説明では、ばね電極26について詳細に説明し、実施形態1と同様の構成については同じ符号を付し、その詳細な説明を省略する。
(Embodiment 4)
A semiconductor module and electrode members according to Embodiment 4 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the fourth embodiment is described with reference to FIG. 1 except that the shape of the spring electrode 26 provided in the semiconductor module is different from the spring electrode 6 provided in the semiconductor module 1 according to the first embodiment. 1 is the same as the semiconductor module 1 according to FIG. Therefore, in description of embodiment, the spring electrode 26 is demonstrated in detail, the same code | symbol is attached | subjected about the structure similar to Embodiment 1, and the detailed description is abbreviate | omitted.

図6(a)に示すように、本発明の実施形態4に係る半導体モジュールに備えられるばね電極26は、導電板部材8を折り返し、この折り返した導電板部材8間にばね部材9を挟持して構成される。   As shown in FIG. 6A, the spring electrode 26 provided in the semiconductor module according to Embodiment 4 of the present invention is configured to fold back the conductive plate member 8 and sandwich the spring member 9 between the folded conductive plate members 8. Configured.

ばね電極26は、導電板部材8を折り返すことで、U字状の折り返し部8aと、ばね部材9挟持する平板部8b,8cが形成される。そして、折り返し部8aの導電板部材8をばね部材9が設けられる方向に凸となるようにさらに屈曲させて屈曲部8eが形成される。   The spring electrode 26 folds the conductive plate member 8, thereby forming a U-shaped folded portion 8 a and flat plate portions 8 b and 8 c that sandwich the spring member 9. Then, the bent portion 8e is formed by further bending the conductive plate member 8 of the folded portion 8a so as to be convex in the direction in which the spring member 9 is provided.

図6(b)に示すように、ばね電極26を押圧する力が作用した場合、屈曲部8eが弾性変形することにより、平板部8bと平板部8cとが略平行な状態を維持して、平板部8bと平板部8cとの間隔が狭くなるようにばね電極26が変形する。よって、ばね電極26に挟持されるばね部材9の変位がばね電極26に設けられる位置にかかわらず略均一となるので、平板部8b,8cがコンタクト電極5及びエミッタ電極端子7をそれぞれ均一に押圧することができる。   As shown in FIG. 6B, when a force pressing the spring electrode 26 is applied, the bent portion 8e is elastically deformed, so that the flat plate portion 8b and the flat plate portion 8c are maintained in a substantially parallel state. The spring electrode 26 is deformed so that the distance between the flat plate portion 8b and the flat plate portion 8c is narrowed. Therefore, the displacement of the spring member 9 sandwiched between the spring electrodes 26 is substantially uniform regardless of the position where the spring electrode 26 is provided, so that the flat plate portions 8b and 8c press the contact electrode 5 and the emitter electrode terminal 7 uniformly. can do.

また、この屈曲部8eは、導電板部材8を屈曲させて形成するので、屈曲部8eの厚さは、折り返し部8a(及び平板部8b,8c)と同じである。よって、屈曲部8eにおいて、ばね電極26の熱伝導が妨げられることがないので、半導体モジュールにばね電極26を備えることにより、半導体モジュールの冷却能力を損なうことなく、ばね電極26が各部材を押圧する圧力を略均一にすることができる。   Since the bent portion 8e is formed by bending the conductive plate member 8, the thickness of the bent portion 8e is the same as that of the folded portion 8a (and the flat plate portions 8b and 8c). Therefore, since heat conduction of the spring electrode 26 is not hindered in the bent portion 8e, by providing the semiconductor module with the spring electrode 26, the spring electrode 26 presses each member without impairing the cooling capacity of the semiconductor module. Can be made substantially uniform.

なお、屈曲部8eを複数形成し、折り返し部8aをベローズ状に形成すると、より折り返し部8aでの反発力を低減させることができる。   If a plurality of bent portions 8e are formed and the folded portion 8a is formed in a bellows shape, the repulsive force at the folded portion 8a can be further reduced.

以上のように、本発明の実施形態4に係るばね電極26によれば、屈曲部8eが弾性変形することにより、折り返し部8a近傍における抗力を低減させることができる。その結果、平板部8bと平板部8cとが略平行な状態で、平板部8bと平板部8cとの間の距離が短くなるようにばね電極26が変形するので、ばね電極26に挟持されたばね部材9の変位が略等しくなる。よって、ばね電極26が各部材(コンタクト電極5またはエミッタ電極端子7)をより均一に押圧することができる。   As described above, according to the spring electrode 26 according to the fourth embodiment of the present invention, the bending force in the vicinity of the folded portion 8a can be reduced by the elastic deformation of the bent portion 8e. As a result, the spring electrode 26 is deformed so that the distance between the flat plate portion 8b and the flat plate portion 8c is shortened in a state in which the flat plate portion 8b and the flat plate portion 8c are substantially parallel, so that the spring sandwiched between the spring electrodes 26 The displacement of the member 9 becomes substantially equal. Therefore, the spring electrode 26 can press each member (the contact electrode 5 or the emitter electrode terminal 7) more uniformly.

よって、本発明の実施形態4に係るばね電極26を備えた半導体モジュールは、実施形態1に係る半導体モジュール1の奏する効果に加えて、各部材により均一な圧接力を加えることができる。   Therefore, the semiconductor module including the spring electrode 26 according to the fourth embodiment of the present invention can apply a uniform pressure contact force to each member in addition to the effect exhibited by the semiconductor module 1 according to the first embodiment.

(実施形態5)
本発明の実施形態5に係る半導体モジュール及び電極部材について、図7を参照して詳細に説明する。実施形態5に係る半導体モジュールは、半導体モジュールに備えられるばね電極27の形状が実施形態1に係る半導体モジュール1に備えられるばね電極6と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同様である。よって、実施形態の説明では、ばね電極27について詳細に説明し、実施形態1と同様の構成については同じ符号を付し、詳細な説明を省略する。
(Embodiment 5)
A semiconductor module and an electrode member according to Embodiment 5 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the fifth embodiment is described with reference to FIG. 1 except that the shape of the spring electrode 27 provided in the semiconductor module is different from the spring electrode 6 provided in the semiconductor module 1 according to the first embodiment. 1 is the same as the semiconductor module 1 according to FIG. Therefore, in the description of the embodiment, the spring electrode 27 will be described in detail, the same reference numerals are given to the same configurations as those in Embodiment 1, and the detailed description will be omitted.

図7(a)に示すように、本発明の実施形態5に係る半導体モジュールに備えられるばね電極27は、導電板部材8を折り返し、この折り返した導電板部材8間にばね部材9を挟持して構成される。   As shown in FIG. 7A, the spring electrode 27 provided in the semiconductor module according to Embodiment 5 of the present invention folds the conductive plate member 8 and sandwiches the spring member 9 between the folded conductive plate members 8. Configured.

ばね電極27は、導電板部材8を折り返すことで、U字状の折り返し部8aと、ばね部材9挟持する平板部8b,8cが形成される。そして、折り返し部8aの近傍の平板部8bをばね部材9が設けられる方向に凸となるように屈曲させて屈曲部8fが形成される。   The spring electrode 27 folds the conductive plate member 8 to form a U-shaped folded portion 8 a and flat plate portions 8 b and 8 c that sandwich the spring member 9. The bent portion 8f is formed by bending the flat plate portion 8b in the vicinity of the turned-up portion 8a so as to protrude in the direction in which the spring member 9 is provided.

図7(b)に示すように、ばね電極27を押圧する力が作用した場合、屈曲部8fが弾性変形することにより、平板部8bと平板部8cとが略平行の状態を維持して、平板部8bと平板部8cとの間隔が狭くなるようにばね電極27が変形する。よって、ばね電極27に挟持されるばね部材9の変位がばね電極27に設けられる位置にかかわらず略均一となるので、平板部8b,8cがコンタクト電極5及びエミッタ電極端子7をそれぞれ均一に押圧することができる。   As shown in FIG. 7B, when a force pressing the spring electrode 27 is applied, the bent portion 8f is elastically deformed, so that the flat plate portion 8b and the flat plate portion 8c are maintained in a substantially parallel state. The spring electrode 27 is deformed so that the distance between the flat plate portion 8b and the flat plate portion 8c is narrowed. Accordingly, since the displacement of the spring member 9 held between the spring electrodes 27 is substantially uniform regardless of the position where the spring electrode 27 is provided, the flat plate portions 8b and 8c press the contact electrode 5 and the emitter electrode terminal 7 uniformly. can do.

本発明の実施形態5に係るばね電極27は、屈曲部8fが弾性変形する場合、コンタクト電極5と接する平板部8c、折り返し部8a、ばね部材9の相対的な位置は変化しない。つまり、屈曲部8fが弾性変形することにより、エミッタ電極端子7と接する平板部8bが移動することで、折り返し部8a近傍の抗力の影響を緩和している。よって、コンタクト電極5とばね電極27間に発生する接触面と平行方向の応力の発生を抑制することができる。その結果、ばね電極27の横滑りを防止することができる。   In the spring electrode 27 according to the fifth embodiment of the present invention, when the bent portion 8f is elastically deformed, the relative positions of the flat plate portion 8c, the folded portion 8a, and the spring member 9 that are in contact with the contact electrode 5 do not change. That is, when the bent portion 8f is elastically deformed, the flat plate portion 8b in contact with the emitter electrode terminal 7 is moved, so that the influence of the drag near the folded portion 8a is reduced. Accordingly, it is possible to suppress the generation of stress parallel to the contact surface generated between the contact electrode 5 and the spring electrode 27. As a result, the skid of the spring electrode 27 can be prevented.

また、この屈曲部8fは、導電板部材8を屈曲させて形成するので、屈曲部8fの厚さは、折り返し部8a(及び平板部8b,8c)と同じである。よって、屈曲部8fにおいて、ばね電極27の熱伝導が妨げられることがないので、半導体モジュールに本発明のばね電極27を備えることにより、半導体モジュールの冷却能力を損なうことなく、ばね電極27が各部材を押圧する圧力を略均一にすることができる。   In addition, since the bent portion 8f is formed by bending the conductive plate member 8, the thickness of the bent portion 8f is the same as that of the folded portion 8a (and the flat plate portions 8b and 8c). Therefore, since heat conduction of the spring electrode 27 is not hindered in the bent portion 8f, the spring electrode 27 is provided in the semiconductor module without damaging the cooling capacity of the semiconductor module. The pressure which presses a member can be made substantially uniform.

以上のように、本発明の実施形態5に係るばね電極27によれば、屈曲部8fが弾性変形することにより、折り返し部8a近傍における抗力の影響を低減させることができる。その結果、平板部8bと平板部8cとが略平行な状態で、平板部8b,8c間の距離が短くなるようにばね電極27が変形するので、ばね電極27に挟持されたばね部材9の変位が、ばね電極27に設けられる位置にかかわらず略等しくなる。よって、ばね電極27が各部材(コンタクト電極5またはエミッタ電極端子7)をより均一に押圧することができる。   As described above, according to the spring electrode 27 according to the fifth embodiment of the present invention, the influence of the drag force in the vicinity of the folded portion 8a can be reduced by elastically deforming the bent portion 8f. As a result, the spring electrode 27 is deformed so that the distance between the flat plate portions 8b and 8c is shortened in a state in which the flat plate portion 8b and the flat plate portion 8c are substantially parallel, so that the displacement of the spring member 9 held between the spring electrodes 27 is displaced. Is substantially equal regardless of the position provided on the spring electrode 27. Therefore, the spring electrode 27 can press each member (the contact electrode 5 or the emitter electrode terminal 7) more uniformly.

よって、本発明の実施形態5に係るばね電極27を備えた半導体モジュールは、実施形態1に係る半導体モジュール1の奏する効果に加えて、各部材により均一な圧接力を加えることができる。   Therefore, in addition to the effect of the semiconductor module 1 according to the first embodiment, the semiconductor module including the spring electrode 27 according to the fifth embodiment of the present invention can apply a uniform pressure contact force to each member.

なお、本発明の半導体モジュール及び電極部材は、上述した実施形態1〜5に限らず、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明の実施形態に係る半導体モジュール及び電極部材である。   The semiconductor module and the electrode member of the present invention are not limited to the above-described first to fifth embodiments, and can be appropriately changed in design without departing from the characteristics of the present invention, and such modified forms are also included in the present invention. It is a semiconductor module and an electrode member which concern on this embodiment.

例えば、半導体素子が備えられるコレクタ電極端子は、既知の電極を構成する材料(例えば、銅、アルミニウム)を用いることができる。また、基板(例えば、DBC基板等)上に半導体素子を備えてもよい。そして、半導体素子のエミッタと接続されるエミッタ電極端子も、既知の電極端子を構成する材料(例えば、銅、アルミニウム)で形成することができる。   For example, the material (for example, copper, aluminum) which comprises a known electrode can be used for the collector electrode terminal with which a semiconductor element is provided. Further, a semiconductor element may be provided over a substrate (for example, a DBC substrate). And the emitter electrode terminal connected with the emitter of a semiconductor element can also be formed with the material (for example, copper, aluminum) which comprises a known electrode terminal.

なお、本発明に係るばね電極をコレクタ電極端子と半導体素子との間若しくは、冷却板とエミッタ電極端子(コレクタ電極端子)間に設けることで、電極端子に係る圧力を略等しくすることができる。また、エミッタ電極端子(またはコレクタ電極端子)、ばね電極、及びコンタクト電極を一体に形成することもできる。さらに、コレクタ電極端子とエミッタ電極端子とを半導体素子方向に押圧する押圧部材を備え、この押圧部材によりコレクタ電極端子(及びエミッタ電極端子)を半導体素子方向に押圧してもよい。   By providing the spring electrode according to the present invention between the collector electrode terminal and the semiconductor element or between the cooling plate and the emitter electrode terminal (collector electrode terminal), it is possible to make the pressure applied to the electrode terminal substantially equal. Further, the emitter electrode terminal (or collector electrode terminal), the spring electrode, and the contact electrode can be integrally formed. Further, a pressing member that presses the collector electrode terminal and the emitter electrode terminal in the semiconductor element direction may be provided, and the collector electrode terminal (and the emitter electrode terminal) may be pressed in the semiconductor element direction by the pressing member.

また、半導体モジュールに備えられる半導体素子は、IGBT素子やFWD素子に限定されるものでなく、サイリスタ(GTOサイリスタ等)、トランジスタ(MOSFET等)等の半導体素子を適宜選択して用いることができる。そして、ばね電極にばね部材を複数備える場合において、接続される半導体素子の数は特に限定するものではなく、接続される半導体素子の数に応じてばね電極に備えられるばね部材の数を適宜設定する。   The semiconductor element provided in the semiconductor module is not limited to the IGBT element or the FWD element, and a semiconductor element such as a thyristor (GTO thyristor, etc.), a transistor (MOSFET, etc.) can be appropriately selected and used. When the spring electrode includes a plurality of spring members, the number of semiconductor elements to be connected is not particularly limited, and the number of spring members provided to the spring electrode is appropriately set according to the number of semiconductor elements to be connected. To do.

また、折り返し部での抗力の影響を低減させる方法は、実施形態3〜5に限定されるものではなく、例えば、折り返し部に切れ込みを入れることでも折り返し部での抗力の影響を低減させることができる。   Moreover, the method of reducing the influence of the drag in a folding | returning part is not limited to Embodiment 3-5, For example, it can reduce the influence of the drag in a folding | turning part also by making a notch in a folding | turning part. it can.

以上のように、本発明の半導体モジュール及び電極部材によれば、半導体モジュールの高信頼性、環境性、利便性を同時に実現することができる。すなわち、ばね電極の弾性力により半導体モジュールに備えられる各部材を接続するので、はんだ接合あるいはワイヤーボンドを用いず、かつ使い勝手の良い絶縁形パワー半導体モジュールを得ることができる。さらに、ばね電極がばね部材を導電板部材で包んで構成されるため、半導体モジュールの放熱性が向上する。よって、SiC、GaNなどの高温で使用可能な半導体素子の性能を生かす半導体モジュールにおいて、温度サイクル、パワーサイクル等の信頼性が向上する。   As described above, according to the semiconductor module and the electrode member of the present invention, high reliability, environmental performance, and convenience of the semiconductor module can be realized at the same time. That is, since each member provided in the semiconductor module is connected by the elastic force of the spring electrode, an easy-to-use insulated power semiconductor module can be obtained without using solder bonding or wire bonding. Furthermore, since the spring electrode is configured by wrapping the spring member with the conductive plate member, the heat dissipation of the semiconductor module is improved. Therefore, in a semiconductor module that takes advantage of the performance of a semiconductor element that can be used at high temperatures, such as SiC and GaN, reliability such as temperature cycle and power cycle is improved.

特に、本発明の半導体モジュール及び電極部材を、高耐圧、大容量のIGBT素子が備えられた平型圧接構造の半導体モジュールに適用すると、半導体モジュール(半導体素子)をエミッタ、コレクタ両電極から冷却可能であり、半導体モジュールの放熱性が向上する。   In particular, the semiconductor module (semiconductor element) can be cooled from both the emitter and collector electrodes when the semiconductor module and electrode member of the present invention are applied to a semiconductor module having a flat pressure contact structure equipped with a high breakdown voltage and large capacity IGBT element. Thus, the heat dissipation of the semiconductor module is improved.

1,15…半導体モジュール
2,17…半導体素子
3…コレクタ電極端子(電極端子)
6,25,26,27…ばね電極(電極部材)
7…エミッタ電極端子(電極端子)
8…導電板部材(導体平板)
8a…折り返し部
8b,8c…平板部
8e,8f…屈曲部
9,16…ばね部材(弾性部材)
11,12…冷却板(筺体)
DESCRIPTION OF SYMBOLS 1,15 ... Semiconductor module 2, 17 ... Semiconductor element 3 ... Collector electrode terminal (electrode terminal)
6, 25, 26, 27 ... Spring electrodes (electrode members)
7: Emitter electrode terminal (electrode terminal)
8 ... Conductive plate member (conductive plate)
8a ... folded portions 8b, 8c ... flat plate portions 8e, 8f ... bent portions 9, 16 ... spring members (elastic members)
11, 12 ... Cooling plate (frame)

Claims (13)

半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、
前記半導体素子と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を設けて構成される電極部材を備える
ことを特徴とする半導体モジュール。
A semiconductor module comprising a semiconductor element and an electrode terminal electrically connected to the electrode layer of the semiconductor element,
A semiconductor module comprising an electrode member configured by folding a conductive plate between the semiconductor element and the electrode terminal and providing an elastic member between the folded conductive plates.
前記導体平板を折り返すことで形成される折り返し部の可撓性を、前記導体平板の前記弾性部材を挟持する平板部より向上させる
ことを特徴とする請求項1に記載の半導体モジュール。
The semiconductor module according to claim 1, wherein flexibility of a folded portion formed by folding the conductive flat plate is improved as compared with a flat plate portion sandwiching the elastic member of the conductive flat plate.
前記折り返し部の厚さを、前記平板部の厚さより薄く形成する
ことを特徴とする請求項2に記載の半導体モジュール。
The semiconductor module according to claim 2, wherein a thickness of the folded portion is formed thinner than a thickness of the flat plate portion.
前記導体平板を、前記弾性部材が備えられる方向に凸となるように屈曲させる
ことを特徴とする請求項2に記載の半導体モジュール。
The semiconductor module according to claim 2, wherein the conductive flat plate is bent so as to be convex in a direction in which the elastic member is provided.
前記導体平板の前記折り返し部を、前記弾性部材が備えられる方向に凸となるように屈曲させる
ことを特徴とする請求項4に記載の半導体モジュール。
The semiconductor module according to claim 4, wherein the folded portion of the conductor flat plate is bent so as to protrude in a direction in which the elastic member is provided.
前記導体平板の前記電極端子と接触する側の前記平板部を前記弾性部材が備えられる方向に凸となるように屈曲させる
ことを特徴とする請求項4に記載の半導体モジュール。
The semiconductor module according to claim 4, wherein the flat plate portion on the side contacting the electrode terminal of the conductive flat plate is bent so as to be convex in a direction in which the elastic member is provided.
前記折り返した導体平板間に前記弾性部材を複数備える
ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
The semiconductor module according to claim 1, wherein a plurality of the elastic members are provided between the folded conductor flat plates.
前記弾性部材はばね部材であって、前記ばね部材の自然長は、0.1mm〜2mmである
ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
The semiconductor module according to claim 1, wherein the elastic member is a spring member, and a natural length of the spring member is 0.1 mm to 2 mm.
前記弾性部材の圧接力は、1〜10MPaである
ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
The semiconductor module according to claim 1, wherein a pressure contact force of the elastic member is 1 to 10 MPa.
前記弾性部材は、皿ばね、波板ばね、凸ばね、メッシュばねのいずれかである
ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
The semiconductor module according to claim 1, wherein the elastic member is one of a disc spring, a corrugated spring, a convex spring, and a mesh spring.
前記弾性部材と前記導体平板間に、前記弾性部材の圧力を分散させる板部材を備える
ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
The semiconductor module according to claim 1, further comprising a plate member that disperses pressure of the elastic member between the elastic member and the conductive flat plate.
筺体内部に半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、
前記筺体と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を設けて構成される電極部材を備えた
ことを特徴とする半導体モジュール。
A semiconductor module comprising a semiconductor element inside the housing and an electrode terminal electrically connected to the electrode layer of the semiconductor element,
A semiconductor module comprising an electrode member configured by folding a conductor flat plate between the casing and the electrode terminal and providing an elastic member between the folded conductor flat plates.
平型半導体モジュールに備えられる半導体素子の電極層と、この電極層に電気的に接続される電極端子との間に設けられる電極部材であって、
前記電極部材は、導体平板を折り返し、前記折り返した導体平板間に弾性部材を設けてなる
ことを特徴とする電極部材。
An electrode member provided between an electrode layer of a semiconductor element provided in a flat semiconductor module and an electrode terminal electrically connected to the electrode layer,
The electrode member is formed by folding a conductive flat plate and providing an elastic member between the folded conductive flat plates.
JP2011051251A 2010-11-12 2011-03-09 Semiconductor module and electrode member Withdrawn JP2012119651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051251A JP2012119651A (en) 2010-11-12 2011-03-09 Semiconductor module and electrode member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010253534 2010-11-12
JP2010253534 2010-11-12
JP2011051251A JP2012119651A (en) 2010-11-12 2011-03-09 Semiconductor module and electrode member

Publications (1)

Publication Number Publication Date
JP2012119651A true JP2012119651A (en) 2012-06-21

Family

ID=46502121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051251A Withdrawn JP2012119651A (en) 2010-11-12 2011-03-09 Semiconductor module and electrode member

Country Status (1)

Country Link
JP (1) JP2012119651A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053440A (en) * 2012-09-07 2014-03-20 Meidensha Corp Semiconductor module and semiconductor module manufacturing method
JP2014098867A (en) * 2012-11-16 2014-05-29 Hitachi Metals Ltd Signal transmission device
KR101444550B1 (en) 2012-12-12 2014-09-24 삼성전기주식회사 Semiconductor module
JP2015018943A (en) * 2013-07-11 2015-01-29 株式会社 日立パワーデバイス Power semiconductor module and power conversion device using the same
JP2016021558A (en) * 2014-06-19 2016-02-04 パナソニックIpマネジメント株式会社 Electronic device and manufacturing method for the same
DE102018129336A1 (en) * 2018-11-21 2020-05-28 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with a substrate and with a load connection element
CN113725179A (en) * 2021-07-27 2021-11-30 南瑞联研半导体有限责任公司 Elastic submodule group and modularized crimping type semiconductor module
US11251163B2 (en) 2019-12-18 2022-02-15 Fuji Electric Co., Ltd. Semiconductor device having circuit board interposed between two conductor layers
US11658231B2 (en) 2019-12-17 2023-05-23 Fuji Electric Co., Ltd. Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053440A (en) * 2012-09-07 2014-03-20 Meidensha Corp Semiconductor module and semiconductor module manufacturing method
JP2014098867A (en) * 2012-11-16 2014-05-29 Hitachi Metals Ltd Signal transmission device
KR101444550B1 (en) 2012-12-12 2014-09-24 삼성전기주식회사 Semiconductor module
JP2015018943A (en) * 2013-07-11 2015-01-29 株式会社 日立パワーデバイス Power semiconductor module and power conversion device using the same
JP2016021558A (en) * 2014-06-19 2016-02-04 パナソニックIpマネジメント株式会社 Electronic device and manufacturing method for the same
DE102018129336A1 (en) * 2018-11-21 2020-05-28 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with a substrate and with a load connection element
DE102018129336B4 (en) 2018-11-21 2021-07-08 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with a substrate and with a load connection element
US11658231B2 (en) 2019-12-17 2023-05-23 Fuji Electric Co., Ltd. Semiconductor device
US11251163B2 (en) 2019-12-18 2022-02-15 Fuji Electric Co., Ltd. Semiconductor device having circuit board interposed between two conductor layers
CN113725179A (en) * 2021-07-27 2021-11-30 南瑞联研半导体有限责任公司 Elastic submodule group and modularized crimping type semiconductor module

Similar Documents

Publication Publication Date Title
JP2012119651A (en) Semiconductor module and electrode member
JP4967447B2 (en) Power semiconductor module
JP6300386B2 (en) Semiconductor device
US10217690B2 (en) Semiconductor module that have multiple paths for heat dissipation
JP2013065836A (en) Electrode member and power semiconductor device using the same
JP2017147327A (en) Semiconductor device and manufacturing method
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP5807432B2 (en) Semiconductor module and spacer
JP5899952B2 (en) Semiconductor module
JP2013102065A (en) Semiconductor module and electrode member
JP6056286B2 (en) Semiconductor module and semiconductor module manufacturing method
WO2018020640A1 (en) Semiconductor device
JP2012084621A (en) Electrode terminal and semiconductor module
JP2015002273A (en) Semiconductor module
JP2014116478A (en) Semiconductor module, semiconductor module manufacturing method and power conversion apparatus
JP5909924B2 (en) Semiconductor module
JP2015026667A (en) Semiconductor module
JP2005209784A (en) Pressure contact semiconductor device and converter using same
JP5100674B2 (en) Inverter device
US20130043579A1 (en) Power semiconductor arrangement, power semiconductor module with multiple power semiconductor arrangements, and module assembly comprising multiple power semiconductor modules
JP2013236035A (en) Semiconductor module and manufacturing method of the same
JP2019050301A (en) Power semiconductor module
JP5724415B2 (en) Semiconductor module
JP2011176087A (en) Semiconductor module, and power conversion apparatus
JP2012222239A (en) Semiconductor module and pressing force dispersion member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513