JP2012119287A - Collector base material for solid fuel cell - Google Patents

Collector base material for solid fuel cell Download PDF

Info

Publication number
JP2012119287A
JP2012119287A JP2010270923A JP2010270923A JP2012119287A JP 2012119287 A JP2012119287 A JP 2012119287A JP 2010270923 A JP2010270923 A JP 2010270923A JP 2010270923 A JP2010270923 A JP 2010270923A JP 2012119287 A JP2012119287 A JP 2012119287A
Authority
JP
Japan
Prior art keywords
fiber
tensile strength
heat
tensile elongation
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010270923A
Other languages
Japanese (ja)
Other versions
JP5543322B2 (en
Inventor
Yuji Katagiri
裕治 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2010270923A priority Critical patent/JP5543322B2/en
Publication of JP2012119287A publication Critical patent/JP2012119287A/en
Application granted granted Critical
Publication of JP5543322B2 publication Critical patent/JP5543322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a collector base material for a solid fuel cell, which is a nonwoven fabric base material including an ultrafine glass fiber, is excellent in surface smoothness, and is also excellent in workability and heat resistance when a conductor is provided.SOLUTION: A collector base material for a solid fuel cell includes a glass fiber and an organic fiber. The glass fiver comprises 30-60 wt.% of an ultrafine glass fiber, and the organic fiber comprises 10-50 wt.% of a heat-resistant organic fiber and 10-50 wt.% of a thermally adhesive organic fiber.

Description

本発明は、固体燃料電池用の集電体基材に関する。   The present invention relates to a current collector substrate for a solid fuel cell.

現在、固体燃料電池のガス拡散電極は、炭素繊維織布や炭素系材料の成型体が使用されている。しかしながら炭素繊維織布や炭素系材料の成型体は高価なため、より安価な材料が求められている。また、脆性材料であることから柔軟性、靱性を付与することも検討されている。
このような要望に応えるものとして、例えば、特許文献1にガラス繊維にアクリル樹脂及び/又は酢酸ビニル樹脂を含むバインダを付着せしめたガラス不織布(ガラス繊維ペーパー)からなる基材が提案されている。また、特許文献2にはガラスクロス等の網目内部に炭素繊維や炭素微粒子を入り込ませて複合化してなる基材が提案されている。
しかしながら、前記特許文献1に記載のものは、基材に導電体を付与するために導電ペーストを含浸し、300〜360℃で焼成して、導電ペーストに含ませたPTFE等のバインダを硬化させてガス拡散電極を作製しているが、この導電体ペーストの焼成時に、基材のガラス繊維ペーパーのバインダであるアクリル樹脂や酢酸ビニル樹脂は焼成温度域での耐熱性が乏しく、分解、燃焼して消失してしまい、柔軟性が悪くなり、脆くなるという問題があった。
また、前記特許文献2に記載のものは、ガラスクロスを構成するガラス繊維の繊維径が4〜20μmと太いために基材表面の凹凸が大きいという問題があった。
Currently, a carbon fiber woven fabric or a molded body of a carbon-based material is used for a gas diffusion electrode of a solid fuel cell. However, since a carbon fiber woven fabric or a molded body of a carbon-based material is expensive, a cheaper material is required. Further, since it is a brittle material, it has been studied to impart flexibility and toughness.
As a response to such a demand, for example, Patent Document 1 proposes a substrate made of a glass nonwoven fabric (glass fiber paper) in which a binder containing an acrylic resin and / or a vinyl acetate resin is attached to glass fibers. Further, Patent Document 2 proposes a base material formed by compounding carbon fibers or carbon fine particles into a mesh such as a glass cloth.
However, the one described in Patent Document 1 is impregnated with a conductive paste for imparting a conductor to a substrate, and baked at 300 to 360 ° C. to cure a binder such as PTFE contained in the conductive paste. Gas diffusion electrodes are manufactured, but when baking this conductive paste, acrylic resin and vinyl acetate resin, which are binders for the glass fiber paper of the base material, have poor heat resistance in the baking temperature range and decompose and burn. It disappears, and the problem is that the flexibility becomes poor and the frame becomes brittle.
Moreover, the thing of the said patent document 2 had the problem that the unevenness | corrugation of the base-material surface was large because the fiber diameter of the glass fiber which comprises a glass cloth was as thick as 4-20 micrometers.

特開2010−153222号公報JP 2010-153222 A 特開2008−204945号公報JP 2008-204945 A

本発明は、このような従来の問題点に着目してなされたもので、その目的は、極細ガラス繊維を含む不織布基材で、表面平滑性に優れ、導電体付与時の加工性、耐熱性にも優れる固体燃料電池用集電体基材を提供することである。   The present invention has been made paying attention to such conventional problems, and the purpose thereof is a nonwoven fabric substrate containing ultrafine glass fibers, which has excellent surface smoothness, workability at the time of applying a conductor, and heat resistance. Another object of the present invention is to provide a current collector base material for a solid fuel cell which is excellent in the above.

本発明の固体燃料電池用集電体基材は請求項1記載の通り、ガラス繊維と有機繊維とからなる固体燃料電池用集電体基材であって、前記ガラス繊維として極細ガラス繊維が30〜60wt%、前記有機繊維として耐熱性有機繊維が10〜50wt%、熱接着性有機繊維が10〜50wt%からなることを特徴とする。
また、請求項2記載の固体燃料電池用集電体基材は、請求項1記載の固体燃料電池用集電体用基材において、前記極細ガラス繊維が35〜50wt%、前記耐熱性有機繊維が20〜40wt%、前記熱接着性有機繊維が15〜45wt%からなることを特徴とする。
また、請求項3記載の固体燃料電池用集電体基材は、請求項2記載の固体燃料電池用集電体基材において、前記極細ガラス繊維が40〜50wt%、前記耐熱性有機繊維が25〜35wt%、前記熱接着性有機繊維が20〜40wt%からなることを特徴とする。
また、請求項4記載の固体燃料電池用集電体基材は、請求項1乃至3の何れかに記載の固体燃料電池用集電体基材において、前記極細ガラス繊維の繊維径が0.1〜3μm、前記耐熱性有機繊維の平均繊維径が0.1〜30μm、前記熱接着性有機繊維の平均繊維径が1〜20μmであることを特徴とする。
また、請求項5記載の固体燃料電池用集電体基材は、請求項4記載の固体燃料電池用集電体基材において、前記極細ガラス繊維の平均繊維径が0.1〜1μmであることを特徴とする。
また、請求項6記載の固体燃料電池用集電体基材は、請求項1乃至5の何れかに記載の固体燃料電池用集電体用基材において、前記耐熱性有機繊維がアラミド繊維であることを特徴とする。
また、請求項7記載の固体燃料電池用集電体基材は、請求項1乃至6の何れかに記載の固体燃料電池用集電体用基材において、更に、セルロース繊維を5〜15wt%含ませてなることを特徴とする。
また、請求項8記載の固体燃料電池用集電体基材は、請求項1乃至7の何れかに記載の固体燃料電池用集電体用基材において、更に、極細PET繊維を5〜20wt%含ませてなることを特徴とする。
また、請求項9記載の固体燃料電池用集電体基材は、請求項1乃至8の何れかに記載の固体燃料電池用集電体基材において、更に、シリカフレークを5〜15wt%含ませてなることを特徴とする。
The current collector base material for a solid fuel cell according to the present invention is a current collector base material for a solid fuel cell comprising glass fibers and organic fibers as defined in claim 1, wherein 30 ultrafine glass fibers are used as the glass fibers. It is characterized in that the organic fiber is composed of 10 to 50 wt%, and the heat-adhesive organic fiber is 10 to 50 wt% as the organic fiber.
Moreover, the current collector substrate for a solid fuel cell according to claim 2 is the substrate material for a current collector for a solid fuel cell according to claim 1, wherein the ultrafine glass fiber is 35 to 50 wt%, and the heat-resistant organic fiber. Is 20 to 40 wt%, and the heat-adhesive organic fiber is 15 to 45 wt%.
Moreover, the current collector substrate for a solid fuel cell according to claim 3 is the current collector substrate for a solid fuel cell according to claim 2, wherein the ultrafine glass fiber is 40 to 50 wt%, and the heat-resistant organic fiber is 25 to 35 wt%, and the heat-adhesive organic fiber is 20 to 40 wt%.
The current collector base material for a solid fuel cell according to claim 4 is the current collector base material for a solid fuel cell according to any one of claims 1 to 3, wherein the fiber diameter of the ultrafine glass fiber is 0.00. The average fiber diameter of the heat-resistant organic fiber is 1 to 30 μm, and the average fiber diameter of the heat-adhesive organic fiber is 1 to 20 μm.
The current collector base material for a solid fuel cell according to claim 5 is the current collector base material for a solid fuel cell according to claim 4, wherein the ultrafine glass fiber has an average fiber diameter of 0.1 to 1 µm. It is characterized by that.
The current collector base material for a solid fuel cell according to claim 6 is the base material for a current collector for a solid fuel cell according to any one of claims 1 to 5, wherein the heat-resistant organic fiber is an aramid fiber. It is characterized by being.
The current collector base material for a solid fuel cell according to claim 7 is the base material for current collector for a solid fuel cell according to any one of claims 1 to 6, further comprising 5 to 15 wt% of cellulose fiber. It is characterized by being included.
The current collector base material for a solid fuel cell according to claim 8 is the base material for a current collector for a solid fuel cell according to any one of claims 1 to 7, further comprising 5 to 20 wt. % Is included.
The current collector base material for a solid fuel cell according to claim 9 is the current collector base material for a solid fuel cell according to any one of claims 1 to 8, further comprising 5 to 15 wt% of silica flakes. It is characterized by becoming.

本発明の固体燃料電池用集電体基材は、細径ガラス繊維を用いることで、耐熱性と平滑性が得られ、耐熱性を有する有機繊維を用いることで、焼成処理後も有機繊維による強化が図れ、さらに柔軟性も付与できる。また、熱接着性を有する有機繊維を用いることで、導電体付与時の作業強度を高めることができる。更に、全体が繊維状なので導電ペースト等の含浸性がよい。   The current collector base material for the solid fuel cell of the present invention can obtain heat resistance and smoothness by using small-diameter glass fibers, and by using organic fibers having heat resistance, the organic fiber can be used even after the baking treatment. Reinforcement can be achieved and further flexibility can be given. Moreover, the working intensity | strength at the time of conductor provision can be raised by using the organic fiber which has heat adhesiveness. Furthermore, since the whole is fibrous, the impregnation property of a conductive paste or the like is good.

本発明の固体燃料電池用集電体基材は、ガラス繊維と有機繊維とからなる固体燃料電池用集電体基材であって、前記ガラス繊維として極細ガラス繊維が30〜60wt%、前記有機繊維として耐熱性有機繊維が10〜50wt%、熱接着性有機繊維が10〜50wt%からなるものである。   The current collector base material for a solid fuel cell according to the present invention is a current collector base material for a solid fuel cell comprising glass fibers and organic fibers, wherein the glass fibers are 30 to 60 wt% of ultrafine glass fibers, and the organic As the fibers, 10 to 50 wt% of heat-resistant organic fibers and 10 to 50 wt% of thermoadhesive organic fibers are used.

前記の通り極細ガラス繊維を30〜60wt%含むため、柔軟性が向上し、耐熱性、耐酸性が高く、耐久性が向上する。また極細繊維であるため、基材の表面平滑性がよい。また、表面平滑性がよいので、多孔質のガス拡散電極とした場合に、電解質との接触がよくなり、電気伝導もよくなる。
また、極細ガラス繊維の他に、柔軟性の高い耐熱性有機繊維(アラミド繊維など)を10〜50wt%含むため、導電体含浸処理後の焼成に耐え、繊維が残るため、集電体の柔軟性を残すことができる。
また、熱接着性有機繊維(PET繊維、PP繊維など)を10〜50wt%含むため、水に濡れても強度が低下せず、導電体含浸処理時の作業強度が高まり、加工性がよい。また、従来のアクリル樹脂や酢酸ビニル樹脂バインダは膜を張っているが、繊維状バインダならば、膜を張らないので、導電ペーストの含浸性がよい。
Since 30-60 wt% of ultrafine glass fibers are contained as described above, flexibility is improved, heat resistance and acid resistance are high, and durability is improved. Moreover, since it is an ultrafine fiber, the surface smoothness of a base material is good. Further, since the surface smoothness is good, when the porous gas diffusion electrode is used, the contact with the electrolyte is improved and the electric conduction is also improved.
In addition to ultra-fine glass fibers, it contains 10 to 50 wt% of highly flexible heat-resistant organic fibers (such as aramid fibers), so it can withstand firing after the conductor impregnation treatment, and the fibers remain. You can leave sex.
Moreover, since 10-50 wt% of heat-adhesive organic fibers (PET fibers, PP fibers, etc.) are contained, the strength does not decrease even when wet with water, the working strength during the conductor impregnation treatment is increased, and the workability is good. Conventional acrylic resins and vinyl acetate resin binders are stretched, but fibrous binders do not stretch the membrane, so that the conductive paste has good impregnation properties.

前記極細ガラス繊維は、柔軟性を高め、基材の骨格形成と耐熱性、耐久性の確保に寄与するもので、Cガラス繊維、Eガラス繊維、Bガラス繊維、シリカ繊維、ARガラス繊維、Tガラス繊維等のガラス繊維が用いられ、平均繊維径0.1〜3μm、平均繊維長1〜15mm程度のものが用いられる。基材の表面平滑性をより高めるには、平均繊維径0.1〜1μmが好ましい。尚、比較的に安価に入手できることから平均繊維径は0.4〜1.0μmが好ましい。また、水への分散が容易であることから平均繊維長1〜5mm程度が好ましい。尚、電解質膜を作製する電解液が酸性であるため、Cガラス繊維、シリカ繊維が好ましく、より安価なCガラス繊維がより好ましい。
また、前記ガラス繊維の配合量は、30wt%未満であると補強材(抄紙)の収縮が発生し、また、60wt%を超えると引張強度不足で脆くなるので、30〜60wt%、好ましくは、35〜50wt%、より好ましくは、40〜50wt%の配合量とする。
The ultrafine glass fiber contributes to increasing the flexibility and ensuring the skeleton formation, heat resistance and durability of the base material. C glass fiber, E glass fiber, B glass fiber, silica fiber, AR glass fiber, T Glass fibers such as glass fibers are used, and those having an average fiber diameter of about 0.1 to 3 μm and an average fiber length of about 1 to 15 mm are used. In order to further improve the surface smoothness of the substrate, an average fiber diameter of 0.1 to 1 μm is preferable. The average fiber diameter is preferably 0.4 to 1.0 μm because it can be obtained relatively inexpensively. Moreover, since the dispersion | distribution to water is easy, about 1-5 mm of average fiber length is preferable. In addition, since the electrolyte solution which produces an electrolyte membrane is acidic, C glass fiber and a silica fiber are preferable, and cheaper C glass fiber is more preferable.
Further, if the glass fiber content is less than 30 wt%, shrinkage of the reinforcing material (papermaking) occurs, and if it exceeds 60 wt%, it becomes brittle due to insufficient tensile strength, so 30-60 wt%, preferably, The blending amount is 35-50 wt%, more preferably 40-50 wt%.

前記耐熱性有機繊維は、導電体含浸処理後の焼成に耐え、繊維が残るため、集電体に柔軟性を残すことと、有機繊維同士での接着の際の骨格形成に寄与するもので、アラミド繊維、ポリテトラフルオロエチレン繊維、ポリイミド繊維等の有機繊維が用いられ、繊維径0.1〜30μm程度のものが用いられる。また、前記耐熱性有機繊維の配合量は、10wt%未満であると焼成後の引張強度が不足し、柔軟性が低下することになり、また、50wt%を超えると焼成時に収縮が発生するので、10〜50wt%、好ましくは20〜40wt%、より好ましくは25〜35wt%の配合量とする。   The heat-resistant organic fibers endure firing after the conductor impregnation treatment, and the fibers remain, so that the current collector remains flexible, and contributes to the skeleton formation when bonding between the organic fibers, Organic fibers such as aramid fibers, polytetrafluoroethylene fibers and polyimide fibers are used, and those having a fiber diameter of about 0.1 to 30 μm are used. Further, if the blending amount of the heat-resistant organic fiber is less than 10 wt%, the tensile strength after firing is insufficient and flexibility is reduced, and if it exceeds 50 wt%, shrinkage occurs during firing. 10 to 50 wt%, preferably 20 to 40 wt%, more preferably 25 to 35 wt%.

前記熱接着性有機繊維は、水に濡れても強度が低下せず、導電体含浸処理時の作業強度と加工性を高めることに寄与するとともに、前記ガラス繊維と前記耐熱性有機繊維間の空隙に膜形成することなく、これら繊維の点接着に寄与するもので、ポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等の有機繊維が用いられ、繊維径1〜20μm、繊維長1〜10mm程度のものが用いられる。特に、前記熱接着性有機繊維の融着温度が160℃以下であると前記耐熱性有機繊維の強度劣化がないため好ましい。
引張強度を高くすることおよび容易に入手できることから繊維径は1〜10μmが好ましい。水に分散し再凝集しにくいことから、繊維長は3〜5mmが好ましい。
尚、種類が多く生産量も多く比較的安価に入手しやすいことからポリエステルの中でもポリエチレンテレフタレート繊維、ポリエチレン繊維、ポリプロピレン繊維が好ましい。
また、前記熱接着性有機繊維の配合量は、10wt%未満であると、湿潤時の引張強度が不足し、また、50wt%を超えると焼成時に収縮が発生するので、10〜50wt%、好ましくは15〜45wt%、より好ましくは20〜40wt%の配合量とする。
また、接着点を増やすため、より細い繊維が入手できることから、耐熱性有機繊維としてはより細いものを使用するのが好ましい。また、接着力が高くなり、補強材の引張強度が上がることから、耐熱性有機繊維と熱接着性繊維は同材質系のもの同士を使用するとよい。
The heat-adhesive organic fiber does not decrease in strength even when wet with water, contributes to improving the working strength and workability during the conductor impregnation treatment, and the gap between the glass fiber and the heat-resistant organic fiber. It contributes to the point adhesion of these fibers without forming a film, and organic fibers such as polyester, polyethylene, polypropylene, polymethylpentene, etc. are used, and those having a fiber diameter of 1 to 20 μm and a fiber length of 1 to 10 mm Used. In particular, it is preferable that the heat-bonding organic fiber has a fusion temperature of 160 ° C. or lower because the heat-resistant organic fiber does not deteriorate in strength.
The fiber diameter is preferably 1 to 10 μm because the tensile strength is increased and it can be easily obtained. The fiber length is preferably 3 to 5 mm because it is dispersed in water and hardly re-aggregates.
Among polyesters, polyethylene terephthalate fiber, polyethylene fiber, and polypropylene fiber are preferable because they are many kinds and are produced in a large amount and are easily available at a relatively low cost.
Further, if the blending amount of the heat-adhesive organic fiber is less than 10 wt%, the tensile strength at the time of wetness is insufficient, and if it exceeds 50 wt%, shrinkage occurs at the time of firing. Is 15 to 45 wt%, more preferably 20 to 40 wt%.
Moreover, in order to increase an adhesion point, since a thinner fiber can be obtained, it is preferable to use a thinner heat-resistant organic fiber. Moreover, since the adhesive strength is increased and the tensile strength of the reinforcing material is increased, it is preferable to use heat-resistant organic fibers and heat-bonding fibers of the same material type.

また、前記基材は、乾紙時の強度を高めるために、平均繊維径0.1〜1μm程度のセルロース繊維を5〜15wt%含むようにしてもよい。   Further, the base material may contain 5 to 15 wt% of cellulose fibers having an average fiber diameter of about 0.1 to 1 μm in order to increase the strength during dry paper.

また、前記基材は、接着性有機繊維の他に、250℃以上では繊維形状を維持できない非接着性繊維として、接着性有機繊維との接着点を増やし湿潤時の強度を上げるために、平均繊維径1〜6μm程度の極細PET繊維を5〜20wt%含むようにしてもよい。   In addition to the adhesive organic fiber, the base material is a non-adhesive fiber that cannot maintain the fiber shape at 250 ° C. or higher, in order to increase the adhesion point with the adhesive organic fiber and increase the strength when wet. You may make it contain 5-20 wt% of ultrafine PET fibers with a fiber diameter of about 1-6 μm.

また、前記基材は、少量の添加で高いバインダー効果が得られ、湿式抄造時の歩留まりが良好であることから平均粒径0.2〜1.0μm程度のシリカフレークをバインダ成分として5〜15wt%含むようにしてもよい。   Further, the base material has a high binder effect with a small amount of addition, and the yield during wet papermaking is good, so silica flakes having an average particle size of about 0.2 to 1.0 μm as a binder component is 5 to 15 wt. % May be included.

以下実施例によって本発明をさらに詳細に説明するが、本発明は実施例の記載された発明に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the inventions described in the examples.

(実施例1)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)45wt%と、耐熱性有機繊維として繊度2.2dtex(平均繊維径20μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)15wt%と、0.2μm径のフィブリル状アラミド繊維(ダイセル化学工業社製ティアラ)10wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.1g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、水に濡らした時の引張強度(以下、「湿潤引張強度」とする。)、水に濡らした時の伸び(以下、「湿潤引張伸び」とする。)、360℃焼成後の引張強度(以下、「耐熱引張強度」とする。)、360℃焼成後の引張伸び(以下、「耐熱引張伸び」とする。)を測定したところ、引張強度11.3N/25mm幅、引張伸び2.0%、湿潤引張強度6.7N/25mm幅、湿潤引張伸び1.3%、耐熱引張強度8.8N/25mm幅、耐熱引張伸び1.4%の結果が得られた。
上記測定結果から明らかな通り、乾紙時の強度が高く、濡れた時の強度、360℃加熱時の強度と柔軟性が乾紙時から5割以上に維持され、集電体(ガス拡散電極)への加工性に優れ、導電体坦持後の柔軟性に優れるものであった。
Example 1
45 wt% C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, aramid fiber (Teijin) with a fineness of 2.2 dtex (average fiber diameter of 20 μm) and a fiber length of 5 mm Conex, Inc.) 15 wt%, 0.2 μm diameter fibrillar aramid fibers (Daicel Chemical Industries, Tiara) 10 wt%, thermal adhesive fibers having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm Disperse and mix 30wt% of core-sheath type PET-PET fiber (Casven, manufactured by Unitika Ltd., fusion temperature 160 ° C) in water, and add a suitable amount of polymer flocculant to form a square sheet machine for hand-making. and wet papermaking Te, after applying a pressure of 3MPa at a press, and dried at 110 ° C., and heated for 3 minutes at 200 ° C., a basis weight of 19.1 g / m , To obtain an inorganic-organic fibrous sheet substrate having a thickness of 0.1 mm.
The resulting solid electrolyte membrane reinforcing material has tensile strength, tensile elongation, tensile strength when wetted with water (hereinafter referred to as “wet tensile strength”), and elongation when wetted with water (hereinafter referred to as “wet tensile”). The tensile strength after firing at 360 ° C. (hereinafter referred to as “heat-resistant tensile strength”) and the tensile elongation after firing at 360 ° C. (hereinafter referred to as “heat-resistant tensile elongation”) were measured. Tensile strength 11.3 N / 25 mm width, tensile elongation 2.0%, wet tensile strength 6.7 N / 25 mm width, wet tensile elongation 1.3%, heat resistant tensile strength 8.8 N / 25 mm width, heat resistant tensile elongation A result of 4% was obtained.
As is clear from the above measurement results, the strength during dry paper is high, the strength when wet, the strength and flexibility when heated at 360 ° C. are maintained at 50% or more from the time of dry paper, and the current collector (gas diffusion electrode ) And excellent flexibility after carrying the conductor.

(実施例2)
極細ガラス繊維として平均繊維径0.4μmのガラス繊維(ジョーンズマンビル社製#102)45wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)20wt%と、カナディアン濾水度50mlのパルプ状アラミド繊維(帝人社製トワロン)10wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)25wt%を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.1g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度10.9N/25mm幅、引張伸び1.9%、湿潤引張強度6.4N/25mm幅、湿潤引張伸び1.2%、耐熱引張強度6.8N/25mm幅、耐熱引張伸び1.0%の結果が得られた。
(Example 2)
45 wt% of glass fiber with an average fiber diameter of 0.4 μm as an ultrafine glass fiber (# 102 manufactured by Jones Manville), aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Teijin) Cornex, Inc.) 20 wt%, Canadian arid fiber 50 ml pulp aramid fiber (Teijin Corporation Twaron) 10 wt%, thermal adhesive fiber fineness 0.5 dtex (average fiber diameter 7 μm), fiber length 5 mm core Sheath-type PET-PET fiber (Tepyrus manufactured by Teijin Ltd., fusion temperature: 150 ° C.) 25 wt% is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added, followed by a wet hand-made square sheet machine. and papermaking, after applying a pressure of 3MPa at a press, and dried at 110 ° C., and heated for 3 minutes at 200 ° C., a basis weight of 19.1 g / m 2, a thickness of 0. It was obtained mm inorganic or organic fibrous sheet substrate of the.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength and heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.9 N / 25 mm width and the tensile elongation was 1.9. %, Wet tensile strength 6.4 N / 25 mm width, wet tensile elongation 1.2%, heat resistant tensile strength 6.8 N / 25 mm width, heat resistant tensile elongation 1.0%.

(実施例3)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)60wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)10wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)20wt%と、乾紙の強度向上および紙形成材として、フィブリル状セルロース繊維(ダイセル化学工業社製セリッシュ)15wt%と、を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて2MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.5g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度11.9N/25mm幅、引張伸び1.2%、湿潤引張強度5.9N/25mm幅、湿潤引張伸び1.3%、耐熱引張強度5.8N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Example 3)
60% by weight of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, an aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm (Teijin) Cornex, Inc.) 10 wt%, core-sheath type PET-PET fiber having a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm as heat-adhesive fiber (Tepyrus Tepyrus, fusion temperature 150 ° C.) 20 wt% In addition, 15% by weight of fibrillated cellulose fiber (Delcel Chemical Industries, Ltd. serish) as a paper forming material is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added. Wet paper with a square sheet machine, pressurize 2MPa with a press, dry at 110 ° C, and heat-treat at 200 ° C for 3 minutes. Basis weight 19.5 g / m 2, to obtain an inorganic-organic fibrous sheet substrate having a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, and heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 11.9 N / 25 mm width and the tensile elongation was 1.2. %, Wet tensile strength 5.9 N / 25 mm width, wet tensile elongation 1.3%, heat resistant tensile strength 5.8 N / 25 mm width, heat resistant tensile elongation 1.1%.

(実施例4)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)30wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)50wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)15wt%と、乾紙の強度向上および焼成後の強度向上として、シリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.7g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度9.6N/25mm幅、引張伸び1.2%、湿潤引張強度5.5N/25mm幅、湿潤引張伸び1.4%、耐熱引張強度8.2N/25mm幅、耐熱引張伸び3.1%の結果が得られた。
Example 4
30 wt% C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as ultrafine glass fiber, aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and fiber length of 5 mm (Teijin) Cornex, Inc.) 50 wt%, core-sheath type PET-PET fiber having a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Tepyrus Tepyrus, fusion temperature 150 ° C.) 15 wt% In order to improve the strength of the dry paper and the strength after firing, 5 wt% of silica flakes (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added. Wet paper making with a square sheet machine for paper making, pressure of 5 MPa with a press machine, drying at 110 ° C., and heat treatment at 200 ° C. for 3 minutes Te to obtain a basis weight 18.7 g / m 2, a thickness of 0.1mm inorganic or organic fiber sheet substrate.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 9.6 N / 25 mm width, the tensile elongation was 1.2. %, Wet tensile strength 5.5 N / 25 mm width, wet tensile elongation 1.4%, heat resistant tensile strength 8.2 N / 25 mm width, heat resistant tensile elongation 3.1%.

(実施例5)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)35wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)40wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)10wt%と、乾紙の強度向上および焼成後の強度向上として、シリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、乾紙の強度向上および紙形成材として、フィブリル状セルロース繊維(ダイセル化学工業社製セリッシュ)10wt%を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.6g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度12.2N/25mm幅、引張伸び1.3%、湿潤引張強度5.0N/25mm幅、湿潤引張伸び1.1%、耐熱引張強度7.7N/25mm幅、耐熱引張伸び1.9%の結果が得られた。
(Example 5)
35% by weight of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as an ultrafine glass fiber, 0.9 atex fiber (average fiber diameter of 10 μm) as heat-resistant organic fiber, and aramid fiber (Teijin) having a fiber length of 5 mm Cornex, Inc.) 40 wt%, core-sheath type PET-PET fiber with a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm as thermal adhesive fiber (Tepyrus Co., Ltd., fusion temperature 150 ° C.) 10 wt% In addition, silica flakes (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) 5 wt% as strength improvement of dry paper and strength after firing, and fibrillated cellulose fibers (Daicel Chemical Industries, Ltd.) as strength improvement of dry paper and paper forming materials 10% by weight of seric (made by the company) is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added to make a square sheet for handmaking. And wet papermaking by machine, after applying a pressure of 3MPa at a press, and dried at 110 ° C., and 3 minutes heat treatment at 200 ° C., a basis weight of 19.6 g / m 2, a thickness of 0. A substrate of 1 mm inorganic / organic fiber sheet was obtained.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 12.2 N / 25 mm width, the tensile elongation was 1.3. %, Wet tensile strength 5.0 N / 25 mm width, wet tensile elongation 1.1%, heat resistant tensile strength 7.7 N / 25 mm width, heat resistant tensile elongation 1.9%.

(実施例6)
極細ガラス繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)30wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)10wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)50wt%と、乾紙の強度向上および焼成後の強度向上として、シリカフレーク(AGCエスアイテック社製サンラブリーLFS)10wt%と、を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.3g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度10.5N/25mm幅、引張伸び2.5%、湿潤引張強度9.3N/25mm幅、湿潤引張伸び4.3%、耐熱引張強度6.0N/25mm幅、耐熱引張伸び1.2%の結果が得られた。
(Example 6)
30% by weight of C glass short fiber (# 100) manufactured by Jones Manville Co. as an ultrafine glass fiber, and aramid fiber having a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as heat-resistant organic fiber (Conex manufactured by Teijin Ltd.) 10 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Cassven manufactured by Unitika Co., Ltd., fusion temperature: 160 ° C.) Silica flakes (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) 10 wt% were dispersed and mixed in water to improve the strength of dry paper and the strength after firing, and an appropriate amount of a polymer flocculant was added. Wet paper with a square sheet machine for hand-making, pressurize 5 MPa with a press machine, dry at 110 ° C., and at 200 ° C. Min heat treatment to obtain a basis weight of 18.3 g / m 2, a thickness of 0.1mm inorganic or organic fiber sheet substrate.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.5 N / 25 mm width and the tensile elongation was 2.5. %, Wet tensile strength 9.3 N / 25 mm width, wet tensile elongation 4.3%, heat resistant tensile strength 6.0 N / 25 mm width, heat resistant tensile elongation 1.2%.

(実施例7)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)60wt%と、耐熱性有機繊維として繊度2.2dtex(平均繊維径20μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)10wt%と、0.2μm径のフィブリル状アラミド繊維(ダイセル化学工業製ティアラ)5wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)20wt%と、フィブリル状セルロース繊維(ダイセル化学工業社製セリッシュ)5wt%を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.8g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度9.3N/25mm幅、引張伸び1.4%、湿潤引張強度5.6N/25mm幅、湿潤引張伸び1.2%、耐熱引張強度6.7N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Example 7)
60% by weight of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, and 2.2 μtex (average fiber diameter of 20 μm) as a heat-resistant organic fiber, an aramid fiber with a fiber length of 5 mm (Teijin) Conex, Inc.) 10 wt%, 0.2 μm diameter fibrillar aramid fiber (Tiara manufactured by Daicel Chemical Industries) 5 wt%, a thermal adhesive fiber having a fineness of 0.5 dtex (average fiber diameter 7 μm), and a fiber length of 5 mm A sheath type PET-PET fiber (Tepyrus manufactured by Teijin Ltd., fusion temperature: 150 ° C.) 20 wt% and a fibrillar cellulose fiber (Delcel Chemical Industries Co., Ltd.) 5 wt% are dispersed and mixed in water, and a polymer flocculant is further added. Add an appropriate amount, wet paper making with a square sheet machine for hand making, apply a pressure of 3MPa with a press machine, then at 110 ° C And燥, and 3 minutes heat treatment at 200 ° C., to obtain a basis weight of 19.8 g / m 2, a thickness of 0.1mm inorganic or organic fiber sheet substrate.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 9.3 N / 25 mm width and the tensile elongation was 1.4. %, Wet tensile strength 5.6 N / 25 mm width, wet tensile elongation 1.2%, heat resistant tensile strength 6.7 N / 25 mm width, heat resistant tensile elongation 1.1%.

(実施例8)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)60wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)10wt%と、0.2μm径のフィブリル状アラミド繊維(ダイセル化学工業社製ティアラ)5wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μ)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)30wt%と、極細有機繊維繊維として繊度0.11dtex(平均繊維径10μ)、繊維長3mmのポリエステル繊維(帝人社製テピルス)10wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて4MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.5g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度11.1N/25mm幅、引張伸び2.4%、湿潤引張強度7.9N/25mm幅、湿潤引張伸び3.2%、耐熱引張強度6.3N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Example 8)
60% by weight of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, an aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm (Teijin) Conex, Inc.) 10 wt%, 0.2 μm diameter fibrillar aramid fibers (Daicel Chemical Industries, Tiara) 5 wt%, thermal adhesive fibers with a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm 30% by weight of core-sheath type PET-PET fiber (Tepile manufactured by Teijin Ltd., fusion temperature 150 ° C.), polyester fiber having a fineness of 0.11 dtex (average fiber diameter of 10 μm) and a fiber length of 3 mm as an ultrafine organic fiber fiber (Tepyrus manufactured by Teijin Ltd.) ) Disperse and mix 10 wt% in water, add an appropriate amount of polymer flocculant, and wet by hand-made square sheet machine After making paper and applying a pressure of 4 MPa with a press machine, the film was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain an inorganic / basic weight of 19.5 g / m 2 and a thickness of 0.1 mm An organic fiber sheet substrate was obtained.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 11.1 N / 25 mm width and the tensile elongation was 2.4. %, Wet tensile strength 7.9 N / 25 mm width, wet tensile elongation 3.2%, heat resistant tensile strength 6.3 N / 25 mm width, heat resistant tensile elongation 1.1%.

(実施例9)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)50wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)25wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)25wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.3g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度9.8N/25mm幅、引張伸び1.6%、湿潤引張強度6.2N/25mm幅、湿潤引張伸び1.2%、耐熱引張強度6.3N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
Example 9
50 wt% C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as ultrafine glass fiber, aramid fiber (Teijin) with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm Cornex, Inc.) 25 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as heat-adhesive fiber (Casven, manufactured by Unitika Ltd., fusion temperature 160 ° C.) 25 wt% Is dispersed and mixed in water, a suitable amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, and a pressure of 3 MPa is applied with a press machine, and then at 110 ° C. It dried and heat-processed at 200 degreeC for 3 minute (s), and obtained the base material of the inorganic and organic fiber sheet of basic weight 19.3g / m < 2 > and thickness 0.1mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 9.8 N / 25 mm width, the tensile elongation was 1.6. %, Wet tensile strength 6.2 N / 25 mm width, wet tensile elongation 1.2%, heat resistant tensile strength 6.3 N / 25 mm width, and heat resistant tensile elongation 1.1%.

(実施例10)
極細ガラス繊維として平均繊維径0.4μmのガラス繊維(ジョーンズマンビル社製#102)40wt%と、耐熱性有機繊維として繊度2.2dtex(平均繊維径20μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)30wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)25wt%と、乾紙の強度向上および焼成後の強度向上として、平均粒径0.5μmのシリカフレーク5wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.4g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度10.4N/25mm幅、引張伸び1.3%、湿潤引張強度6.3N/25mm幅、湿潤引張伸び1.3%、耐熱引張強度7.2N/25mm幅、耐熱引張伸び1.0%の結果が得られた。
(Example 10)
40% by weight of glass fiber having an average fiber diameter of 0.4 μm as an ultrafine glass fiber (# 102, manufactured by Jones Manville), aramid fiber having a fineness of 2.2 dtex (average fiber diameter of 20 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Teijin) Cornex, Inc.) 30 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter 10 μm) and a fiber length of 5 mm as heat-adhesive fiber (Casven, manufactured by Unitika Ltd., fusion temperature 160 ° C.) 25 wt% In order to improve the strength of the dry paper and the strength after firing, 5 wt% of silica flakes with an average particle size of 0.5 μm are dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added to make the paper. Wet paper making using a square sheet machine, applying a pressure of 3 MPa with a press machine, drying at 110 ° C., and heat-treating at 200 ° C. for 3 minutes, basis weight 18.4 g m 2, and obtain an inorganic-organic fibrous sheet substrate having a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.4 N / 25 mm width, the tensile elongation was 1.3. %, Wet tensile strength 6.3 N / 25 mm width, wet tensile elongation 1.3%, heat resistant tensile strength 7.2 N / 25 mm width, and heat resistant tensile elongation 1.0%.

(実施例11)
極細ガラス繊維として平均繊維径0.4μmのガラス繊維(ジョーンズマンビル社製#102)40wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)20wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)35wt%と、乾紙の強度向上および紙形成材として、フィブリル状セルロース繊維(ダイセル化学工業社製セリッシュ)5wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.9g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度10.7N/25mm幅、引張伸び1.8%、湿潤引張強度7.8N/25mm幅、湿潤引張伸び1.8%、耐熱引張強度7.9N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Example 11)
40% by weight of glass fiber having an average fiber diameter of 0.4 μm as an ultrafine glass fiber (# 102 manufactured by Jones Manville), aramid fiber having a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Teijin) Cornex, Inc.) 20 wt%, core-sheath type PET-PET fiber with a fineness of 1.1 dtex (average fiber diameter 10 μm) and a fiber length of 5 mm as heat-adhesive fiber (Casven, manufactured by Unitika Ltd., fusion temperature 160 ° C.) 35 wt% And 5% by weight of fibrillated cellulose fiber (Daicel Chemical Industries, Ltd. serish) as a paper-forming material, dispersed and mixed in water, and a suitable amount of polymer flocculant added, Wet paper making using a square sheet machine, applying pressure of 3 MPa with a press machine, drying at 110 ° C, and heat treatment at 200 ° C for 3 minutes A basis weight of 18.9 g / m 2, to obtain an inorganic-organic fibrous sheet substrate having a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.7 N / 25 mm width and the tensile elongation was 1.8. %, Wet tensile strength 7.8 N / 25 mm width, wet tensile elongation 1.8%, heat resistant tensile strength 7.9 N / 25 mm width, heat resistant tensile elongation 1.1%.

(実施例12)
極細ガラス繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)35wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)20wt%と、熱接着性繊維として繊度2.2dtex(平均繊維径14μm)繊維長5mmの芯鞘型PET−PET繊維45wt%を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量17.8g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度10.2N/25mm幅、引張伸び2.4%、湿潤引張強度8.4N/25mm幅、湿潤引張伸び3.6%、耐熱引張強度6.8N/25mm幅、耐熱引張伸び1.3%の結果が得られた。
(Example 12)
35% by weight of C glass short fiber (# 100) manufactured by Jones Manville Co., as an ultrafine glass fiber, and aramid fiber having a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as heat-resistant organic fibers. (Connex manufactured by Teijin Ltd.) 20 wt% and core-sheath type PET-PET fiber 45 wt% with a fineness of 2.2 dtex (average fiber diameter 14 μm) and a fiber length of 5 mm as heat-adhesive fibers are dispersed and mixed in water. Add appropriate amount of flocculant, wet paper making with hand-made square sheet machine, apply pressure of 3MPa with press machine, dry at 110 ° C, heat treatment at 200 ° C for 3 minutes. Thus, an inorganic / organic fiber sheet substrate having a basis weight of 17.8 g / m 2 and a thickness of 0.1 mm was obtained.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.2 N / 25 mm width and the tensile elongation was 2.4. %, Wet tensile strength 8.4 N / 25 mm width, wet tensile elongation 3.6%, heat resistant tensile strength 6.8 N / 25 mm width, heat resistant tensile elongation 1.3%.

(実施例13)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)45wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)20wt%と熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)40wt%と、乾紙の強度向上および焼成後の強度向上として、平均粒径0.5μmのシリカフレーク5wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.1g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度11.0N/25mm幅、引張伸び2.1%、湿潤引張強度7.4N/25mm幅、湿潤引張伸び2.8%、耐熱引張強度7.0N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Example 13)
45 wt% C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, aramid fiber (Teijin) with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm Cornex, Inc.) 20 wt%, core-sheath-type PET-PET fiber (Unitika Casbene, fusion temperature 160 ° C.) 40 wt% with a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber In order to improve the strength of dry paper and the strength after firing, 5 wt% of silica flakes with an average particle size of 0.5 μm are dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added to make a hand-grip angle. Wet paper making using a mold sheet machine, applying a pressure of 3 MPa with a press machine, drying at 110 ° C., and heat-treating at 200 ° C. for 3 minutes to obtain a basis weight of 18.1 g m 2, and obtain an inorganic-organic fibrous sheet substrate having a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 11.0 N / 25 mm width, the tensile elongation was 2.1. %, Wet tensile strength 7.4 N / 25 mm width, wet tensile elongation 2.8%, heat resistant tensile strength 7.0 N / 25 mm width, heat resistant tensile elongation 1.1%.

(実施例14)
極細ガラス繊維として平均繊維径0.1μmのCガラス短繊維50wt%と、耐熱性有機繊維として平均繊維径0.1μm、繊維長5mmのアラミド繊維10wt%と、熱接着性繊維として繊度0.01dtex(平均繊維径1μm)、繊維長5mmの芯鞘型PET−PET繊維40wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量17.4g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度8.9N/25mm幅、引張伸び2.3%、湿潤引張強度7.7N/25mm幅、湿潤引張伸び3.1%、耐熱引張強度5.9N/25mm幅、耐熱引張伸び1.2%の結果が得られた。
(Example 14)
C glass short fiber with an average fiber diameter of 0.1 μm as an ultrafine glass fiber, 50 wt% of an average fiber diameter of 0.1 μm as a heat-resistant organic fiber, and 10 wt% of an aramid fiber with a fiber length of 5 mm, and a fineness of 0.01 dtex as a thermal adhesive fiber (Average fiber diameter 1 μm), core-sheath type PET-PET fiber 40 wt% with a fiber length of 5 mm is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added, and hand-made square sheet machine After wet papermaking and applying a pressure of 3 MPa with a press machine, it is dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain an inorganic material having a basis weight of 17.4 g / m 2 and a thickness of 0.1 mm. -The base material of the organic fiber sheet was obtained.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength and heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 8.9 N / 25 mm width and the tensile elongation was 2.3. %, Wet tensile strength 7.7 N / 25 mm width, wet tensile elongation 3.1%, heat resistant tensile strength 5.9 N / 25 mm width, heat resistant tensile elongation 1.2%.

(実施例15)
極細ガラス繊維として平均繊維径3.0μmのCガラス短繊維40wt%と、耐熱性有機繊維として繊度3.3dtex(平均繊維径30μm)、繊維長5mmのアラミド繊維40wt%と、熱接着性繊維として繊度4.0dtex(平均繊維径20μm)、繊維長5mmの芯鞘型PET−PET繊維20wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量17.1g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度8.1N/25mm幅、引張伸び1.4%、湿潤引張強度6.7N/25mm幅、湿潤引張伸び1.6%、耐熱引張強度9.1N/25mm幅、耐熱引張伸び2.3%の結果が得られた。
(Example 15)
As an ultrafine glass fiber, 40 wt% of C glass short fiber having an average fiber diameter of 3.0 μm, as a heat-resistant organic fiber, a fineness of 3.3 dtex (average fiber diameter of 30 μm), an aramid fiber having a fiber length of 5 mm, 40 wt%, and a thermal adhesive fiber Square shape for hand-drawing by dispersing and mixing 20 wt% of core-sheath type PET-PET fiber with a fineness of 4.0 dtex (average fiber diameter of 20 μm) and fiber length of 5 mm, and adding an appropriate amount of polymer flocculant. Wet paper making using a sheet machine, applying a pressure of 3 MPa with a press machine, drying at 110 ° C., and heat-treating at 200 ° C. for 3 minutes, basis weight 17.1 g / m 2 , thickness 0 A substrate of 1 mm inorganic / organic fiber sheet was obtained.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 8.1 N / 25 mm width and the tensile elongation was 1.4. %, Wet tensile strength 6.7 N / 25 mm width, wet tensile elongation 1.6%, heat resistant tensile strength 9.1 N / 25 mm width, heat resistant tensile elongation 2.3%.

(実施例16)
極細ガラス繊維として平均繊維径0.1μmのガラス繊維40wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)25wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)35wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量17.3g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度8.3N/25mm幅、引張伸び1.7%、湿潤引張強度7.5N/25mm幅、湿潤引張伸び2.0%、耐熱引張強度7.9N/25mm幅、耐熱引張伸び1.8%の結果が得られた。
(Example 16)
40 wt% of glass fiber having an average fiber diameter of 0.1 μm as an ultrafine glass fiber, 25 wt% of aramid fiber (conex manufactured by Teijin Limited) having a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as heat-resistant organic fibers, Disperse and mix 35 wt% of core-sheath type PET-PET fiber (Casven, manufactured by Unitika Co., Ltd., 160 ° C.) having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber, Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 3 MPa is applied with a press machine, and then dried at 110 ° C. and then at 200 ° C. for 3 minutes. Heat treatment was performed to obtain an inorganic / organic fiber sheet substrate having a basis weight of 17.3 g / m 2 and a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength and heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 8.3 N / 25 mm width and the tensile elongation was 1.7. %, Wet tensile strength 7.5 N / 25 mm width, wet tensile elongation 2.0%, heat resistant tensile strength 7.9 N / 25 mm width, heat tensile elongation 1.8%.

(実施例17)
極細ガラス繊維として平均繊維径1.0μmのCガラス短繊維50wt%と、耐熱性有機繊維として0.2μm径のフィブリル状アラミド繊維(ダイセル化学工業社製ティアラ)30wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス、融着温度150℃)20wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量18.4g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、水に濡らした時の引張強度(以下、「湿潤引張強度」とする。)、水に濡らした時の伸び(以下、「湿潤引張伸び」とする。)、360℃焼成後の引張強度(以下、「耐熱引張強度」とする。)、360℃焼成後の引張伸び(以下、「耐熱引張伸び」とする。)を測定したところ、引張強度8.6N/25mm幅、引張伸び1.4%、湿潤引張強度6.2N/25mm幅、湿潤引張伸び1.2%、耐熱引張強度6.9N/25mm幅、耐熱引張伸び1.9%の結果が得られた。
(Example 17)
As an ultrafine glass fiber, 50 wt% of C glass short fibers having an average fiber diameter of 1.0 μm, as a heat-resistant organic fiber, 30 wt% of a fibrillar aramid fiber (Tiara manufactured by Daicel Chemical Industries) as a heat-resistant organic fiber, A core-sheath type PET-PET fiber having a fineness of 0.5 dtex (average fiber diameter 7 μm) and a fiber length of 5 mm (Tepyrus manufactured by Teijin Ltd., fusion temperature 150 ° C.) 20 wt% is dispersed and mixed in water, and further a polymer flocculant Is added in an appropriate amount, wet-made with a square sheet machine for hand-making, and after applying a pressure of 3 MPa with a press machine, dried at 110 ° C., and heat-treated at 200 ° C. for 3 minutes, A base material of an inorganic / organic fiber sheet having a basis weight of 18.4 g / m 2 and a thickness of 0.1 mm was obtained.
The resulting solid electrolyte membrane reinforcing material has tensile strength, tensile elongation, tensile strength when wetted with water (hereinafter referred to as “wet tensile strength”), and elongation when wetted with water (hereinafter referred to as “wet tensile”). The tensile strength after firing at 360 ° C. (hereinafter referred to as “heat-resistant tensile strength”) and the tensile elongation after firing at 360 ° C. (hereinafter referred to as “heat-resistant tensile elongation”) were measured. , Tensile strength 8.6 N / 25 mm width, tensile elongation 1.4%, wet tensile strength 6.2 N / 25 mm width, wet tensile elongation 1.2%, heat resistant tensile strength 6.9 N / 25 mm width, heat resistant tensile elongation A 9% result was obtained.

(比較例1)
極細ガラス繊維として平均繊維径0.4μmのCガラス短繊維(ジョーンズマンビル社製#104)29wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)40wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)31wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量14.4g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度6.2N/25mm幅、引張伸び2.1%、湿潤引張強度4.8N/25mm幅、湿潤引張伸び0.8%、耐熱引張強度5.1N/25mm幅、耐熱引張伸び2.0%の結果が得られた。
(Comparative Example 1)
29% by weight of C glass short fiber (# 104 manufactured by Jones Manville) with an average fiber diameter of 0.4 μm as an ultrafine glass fiber, and aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Conex manufactured by Teijin Ltd.) 40 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Cassven manufactured by Unitika, fusion temperature: 160 ° C.) 31 wt% was dispersed and mixed in water, a suitable amount of a polymer flocculant was added, wet papermaking was performed with a square sheet machine for handmaking, and a pressure of 5 MPa was applied with a press machine. And dried at 200 ° C. for 3 minutes to obtain an inorganic / organic fiber sheet substrate having a basis weight of 14.4 g / m 2 and a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 6.2 N / 25 mm width and the tensile elongation was 2.1. %, Wet tensile strength 4.8 N / 25 mm width, wet tensile elongation 0.8%, heat resistant tensile strength 5.1 N / 25 mm width, heat resistant tensile elongation 2.0%.

(比較例2)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(ジョーンズマンビル社製#106)61wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)20wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)19wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量15.9g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度5.5N/25mm幅、引張伸び1.2%、湿潤引張強度4.0N/25mm幅、湿潤引張伸び1.1%、耐熱引張強度4.2N/25mm幅、耐熱引張伸び1.1%の結果が得られた。
(Comparative Example 2)
61% by weight of C glass short fiber (# 106 manufactured by Jones Manville) with an average fiber diameter of 0.6 μm as an ultrafine glass fiber, an aramid fiber with a fineness of 0.9 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Conex manufactured by Teijin Ltd.) 20 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Cassven manufactured by Unitika, fusion temperature: 160 ° C.) 19 wt% was dispersed and mixed in water, an appropriate amount of a polymer flocculant was added, wet papermaking was performed with a square sheet machine for handmaking, and a pressure of 3 MPa was applied with a press machine. And heated at 200 ° C. for 3 minutes to obtain an inorganic / organic fiber sheet substrate having a basis weight of 15.9 g / m 2 and a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 5.5 N / 25 mm width and the tensile elongation was 1.2. %, Wet tensile strength 4.0 N / 25 mm width, wet tensile elongation 1.1%, heat resistant tensile strength 4.2 N / 25 mm width, heat resistant tensile elongation 1.1%.

(比較例3)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)60wt%と、耐熱性有機繊維として0.2μm径のフィブリル状アラミド繊維(ダイセル化学工業製ティアラ)9wt%と、熱接着性繊維として繊度2.2dtex(平均繊維径14μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)31wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量16.0g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度5.9N/25mm幅、引張伸び1.8%、湿潤引張強度4.6N/25mm幅、湿潤引張伸び0.7%、耐熱引張強度2.8N/25mm幅、耐熱引張伸び0.7%の結果が得られた。
(Comparative Example 3)
60 wt% of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as ultrafine glass fiber, and 9 wt% of fibrillar aramid fiber (Tiara manufactured by Daicel Chemical Industries) having a diameter of 0.2 μm as heat-resistant organic fiber Then, 31 wt% of core-sheath type PET-PET fiber (Casven, manufactured by Unitika Co., Ltd., fusion temperature: 160 ° C.) having a fineness of 2.2 dtex (average fiber diameter of 14 μm) and a fiber length of 5 mm is dispersed and mixed in water. Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 3 MPa is applied with a press machine, the film is dried at 110 ° C, and 3 at 200 ° C. The base material of the inorganic and organic fiber sheet | seat of basic weight 16.0g / m < 2 > and thickness 0.1mm was obtained by heat-processing for minutes.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 5.9 N / 25 mm width and the tensile elongation was 1.8. %, Wet tensile strength 4.6 N / 25 mm width, wet tensile elongation 0.7%, heat resistant tensile strength 2.8 N / 25 mm width, heat resistant tensile elongation 0.7%.

(比較例4)
極細ガラス繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)30wt%と、耐熱性有機繊維として繊度2.2dtex(平均繊維径20μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)51wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)19wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量15.6g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度4.9N/25mm幅、引張伸び1.0%、湿潤引張強度3.7N/25mm幅、湿潤引張伸び1.0%、耐熱引張強度7.7N/25mm幅、耐熱引張伸び2.6%の結果が得られた。
(Comparative Example 4)
30% by weight of C glass short fiber (# 100 manufactured by Jones Manville) with an average fiber diameter of 0.3 μm as an ultrafine glass fiber, and an aramid fiber with a fineness of 2.2 dtex (average fiber diameter of 20 μm) and a fiber length of 5 mm as a heat-resistant organic fiber (Teijin Corp. Conex) 51 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Casven by Unitika Ltd., fusion temperature 160 ° C.) 19 wt% was dispersed and mixed in water, an appropriate amount of a polymer flocculant was added, wet papermaking was performed with a square sheet machine for handmaking, and a pressure of 5 MPa was applied with a press machine. And dried at 200 ° C. for 3 minutes to obtain an inorganic / organic fiber sheet substrate having a basis weight of 15.6 g / m 2 and a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 4.9 N / 25 mm width and the tensile elongation was 1.0. %, Wet tensile strength 3.7 N / 25 mm width, wet tensile elongation 1.0%, heat resistant tensile strength 7.7 N / 25 mm width, heat resistant tensile elongation 2.6%.

(比較例5)
極細ガラス繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)50wt%と、耐熱性有機繊維として繊度2.2dtex(平均繊維径20μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)41wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)9wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量16.8g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度5.0N/25mm幅、引張伸び0.8%、湿潤引張強度3.4N/25mm幅、湿潤引張伸び0.9%、耐熱引張強度7.1N/25mm幅、耐熱引張伸び2.2%の結果が得られた。
(Comparative Example 5)
50 wt% C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as ultrafine glass fiber, aramid fiber with a fineness of 2.2 dtex (average fiber diameter of 20 μm) and fiber length of 5 mm (Teijin) Cornex, Inc.) 41 wt%, core-sheath type PET-PET fiber having a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm as heat-adhesive fiber (Casven, manufactured by Unitika Ltd., fusion temperature 160 ° C.) 9 wt% Is dispersed and mixed in water, a suitable amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, and a pressure of 3 MPa is applied with a press machine, and then at 110 ° C. It dried and heat-processed at 200 degreeC for 3 minute (s), and obtained the base material of the inorganic and organic fiber sheet of basic weight 16.8g / m < 2 > and thickness 0.1mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 5.0 N / 25 mm width and the tensile elongation was 0.8. %, Wet tensile strength 3.4 N / 25 mm width, wet tensile elongation 0.9%, heat resistant tensile strength 7.1 N / 25 mm width, heat resistant tensile elongation 2.2%.

(比較例6)
極細ガラス繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)39wt%と、耐熱性有機繊維として繊度0.9dtex(平均繊維径10μm)、繊維長5mmのアラミド繊維(帝人社製コーネックス)10wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン、融着温度160℃)51wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量13.1g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度、耐熱引張伸びを測定したところ、引張強度4.4N/25mm幅、引張伸び7.9%、湿潤引張強度4.2N/25mm幅、湿潤引張伸び6.7%、耐熱引張強度3.7N/25mm幅、耐熱引張伸び0.9%の結果が得られた。
(Comparative Example 6)
C glass short fiber (# 100) manufactured by Jones Manville Co., Ltd., having an average fiber diameter of 0.3 μm as ultrafine glass fiber, aramid fiber having a fineness of 0.9 dtex (average fiber diameter of 10 μm), and a fiber length of 5 mm as heat-resistant organic fiber (Conex manufactured by Teijin Ltd.) 10 wt%, core-sheath type PET-PET fiber having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm as a heat-adhesive fiber (Cassven manufactured by Unitika Co., Ltd., fusion temperature: 160 ° C.) 51 wt% was dispersed and mixed in water, an appropriate amount of a polymer flocculant was added, wet papermaking was performed with a square sheet machine for handmaking, a pressure of 5 MPa was applied with a press machine, and then 110 ° C. And heated at 200 ° C. for 3 minutes to obtain an inorganic / organic fiber sheet substrate having a basis weight of 13.1 g / m 2 and a thickness of 0.1 mm.
When the tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength and heat resistant tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 4.4 N / 25 mm width and the tensile elongation was 7.9. %, Wet tensile strength 4.2 N / 25 mm width, wet tensile elongation 6.7%, heat resistant tensile strength 3.7 N / 25 mm width, heat resistant tensile elongation 0.9%.

尚、前記引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度および耐熱引張伸びの測定は次のように行った。
引張強度および引張伸びの測定はJIS P8113「紙及び板紙−引張特性の試験方法−第2部:定速伸張法」に準拠し、湿潤引張強度および湿潤引張伸びの測定はJIS P8135「紙及び板紙−湿潤引張強さ試験方法」に準拠し、耐熱引張強度および耐熱引張伸びの測定は、370℃で30分加熱後、室温にて、JIS P8113「紙及び板紙−引張特性の試験方法−第2部:定速伸張法」に準拠して行った。詳細は次の通りである。
引張強度:等速度引張試験機により常温での引張強度を測定した。サンプル寸法は25mm幅×100mm長、測定条件は、引張速度10mm/分、チャック間距離50mmとして行った。
引張伸び:前記引張強度の測定時に、サンプルが破断した時の距離を測定し、その破断時の距離からチャック間を引いた値をチャック間で割り、100を掛けて、引張伸びとした。
湿潤引張強度:引張強度と同様に常温にて測定した。ただし、測定用サンプルは水に30秒間浸して濡らしてから、市販のワイパー(ふき取り紙)であるキムタオルの上に置いて水切りをした後に測定した。
湿潤引張伸び:前記湿潤引張強度の測定時に、サンプルが破断した時の距離を測定し、その破断時の距離からチャック間を引いた値をチャック間で割り、100を掛けて、湿潤引張伸びとした。
耐熱引張強度:寸法25mm幅×100mm長のサンプルを370℃、30分で加熱した後、等速度引張試験機により常温での引張強度を測定した。サンプル寸法は25mm幅×100mm長、測定条件は、引張速度10mm/分、チャック間距離50mmとして行った。
耐熱引張伸び:前記耐熱引張強度の測定時に、サンプルが破断した時の距離を測定し、その破断時の距離からチャック間を引いた値をチャック間で割り、100を掛けて、引張伸びとした。
The tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength and heat resistant tensile elongation were measured as follows.
Tensile strength and tensile elongation are measured in accordance with JIS P8113 “Paper and Paperboard-Test Method for Tensile Properties-Part 2: Constant Speed Elongation Method”. Wet tensile strength and wet tensile elongation are measured in accordance with JIS P8135 “Paper and Paperboard”. -Measurement of heat-resistant tensile strength and heat-resistant tensile elongation in accordance with "Test Method for Wet Tensile Strength" is as follows. JIS P8113 "Paper and Paperboard-Test Method for Tensile Properties-Second Method" after heating at 370 ° C for 30 minutes Part: constant speed extension method ". Details are as follows.
Tensile strength: Tensile strength at room temperature was measured with a constant velocity tensile tester. The sample size was 25 mm wide × 100 mm long, the measurement conditions were a tensile speed of 10 mm / min, and a chuck distance of 50 mm.
Tensile elongation: At the time of measuring the tensile strength, the distance when the sample broke was measured, and the value obtained by subtracting the distance between chucks from the distance at the time of breaking was divided between chucks and multiplied by 100 to obtain the tensile elongation.
Wet tensile strength: measured at room temperature in the same way as tensile strength. However, the measurement sample was soaked in water for 30 seconds, wetted, placed on a Kim towel, which is a commercially available wiper (wiping paper), and then drained.
Wet tensile elongation: When measuring the wet tensile strength, measure the distance when the sample breaks, divide the distance between the chucks by the distance between the chucks, divide by the chuck, and multiply by 100 to obtain the wet tensile elongation. did.
Heat-resistant tensile strength: After heating a sample of dimensions 25 mm wide × 100 mm long at 370 ° C. for 30 minutes, the tensile strength at room temperature was measured with a constant-speed tensile tester. The sample dimensions were 25 mm width × 100 mm length, and the measurement conditions were a tensile speed of 10 mm / min and a distance between chucks of 50 mm.
Heat-resistant tensile elongation: When measuring the heat-resistant tensile strength, the distance at which the sample broke was measured, and the value obtained by subtracting the distance between chucks from the distance at the time of breaking was divided between chucks and multiplied by 100 to obtain the tensile elongation. .

実施例1−17及び比較例1−6の配合及び評価をまとめ、表1として示した。   The formulations and evaluations of Example 1-17 and Comparative Example 1-6 are summarized and shown in Table 1.

Figure 2012119287
Figure 2012119287

このように、実施例1−17では、引張強度、引張伸び、湿潤引張強度、湿潤引張伸び、耐熱引張強度および耐熱引張伸びの評価項目全てを満足しており、比較例1−6に対して優れたものとなることがわかった。   Thus, in Example 1-17, all the evaluation items of tensile strength, tensile elongation, wet tensile strength, wet tensile elongation, heat resistant tensile strength, and heat resistant tensile elongation were satisfied, and compared with Comparative Example 1-6 It turned out to be excellent.

本発明の固体燃料電池用集電体基材は、極細ガラス繊維を含む不織布基材で、表面平滑性に優れ、導電体付与時の加工性、耐熱性にも優れるので、固体燃料電池用集電体基材として有用である。   The current collector base material for the solid fuel cell of the present invention is a nonwoven fabric base material containing ultrafine glass fibers, and has excellent surface smoothness, and excellent workability and heat resistance when a conductor is applied. Useful as an electrical substrate.

Claims (9)

ガラス繊維と有機繊維とからなる固体燃料電池用集電体基材であって、前記ガラス繊維として極細ガラス繊維が30〜60wt%、前記有機繊維として耐熱性有機繊維が10〜50wt%、熱接着性有機繊維が10〜50wt%からなることを特徴とする固体燃料電池用集電体基材。   A current collector base material for a solid fuel cell comprising glass fibers and organic fibers, wherein the glass fibers are 30 to 60 wt% of ultrafine glass fibers, the organic fibers are 10 to 50 wt% of heat-resistant organic fibers, and thermal bonding A current collector base material for a solid fuel cell, comprising 10 to 50 wt% of a conductive organic fiber. 前記極細ガラス繊維が35〜50wt%、前記耐熱性有機繊維が20〜40wt%、前記熱接着性有機繊維が15〜45wt%からなることを特徴とする請求項1記載の固体燃料電池用集電体基材。   2. The current collector for a solid fuel cell according to claim 1, wherein the ultrafine glass fiber is 35 to 50 wt%, the heat-resistant organic fiber is 20 to 40 wt%, and the thermally adhesive organic fiber is 15 to 45 wt%. Body substrate. 前記極細ガラス繊維が40〜50wt%、前記耐熱性有機繊維が25〜35wt%、前記熱接着性有機繊維が20〜40wt%からなることを特徴とする請求項2記載の固体燃料電池用集電体基材。   The current collector for a solid fuel cell according to claim 2, wherein the ultrafine glass fiber is 40 to 50 wt%, the heat-resistant organic fiber is 25 to 35 wt%, and the thermoadhesive organic fiber is 20 to 40 wt%. Body substrate. 前記極細ガラス繊維の繊維径が0.1〜3μm、前記耐熱性有機繊維の平均繊維径が0.1〜30μm、前記熱接着性有機繊維の平均繊維径が1〜20μmであることを特徴とする請求項1乃至3の何れかに記載の固体燃料電池用集電体基材。   The ultrafine glass fiber has a fiber diameter of 0.1 to 3 μm, the heat-resistant organic fiber has an average fiber diameter of 0.1 to 30 μm, and the heat-adhesive organic fiber has an average fiber diameter of 1 to 20 μm. The current collector base material for a solid fuel cell according to any one of claims 1 to 3. 前記極細ガラス繊維の平均繊維径が0.1〜1μmであることを特徴とする請求項4記載の固体燃料電池用集電体基材。   The current collector base material for a solid fuel cell according to claim 4, wherein the ultrafine glass fiber has an average fiber diameter of 0.1 to 1 µm. 前記耐熱性有機繊維がアラミド繊維であることを特徴とする請求項1乃至5の何れかに記載の固体燃料電池用集電体基材。   The current collector base material for a solid fuel cell according to any one of claims 1 to 5, wherein the heat-resistant organic fiber is an aramid fiber. 更に、セルロース繊維を5〜15wt%含ませてなることを特徴とする請求項1乃至6の何れかに記載の固体燃料電池用集電体基材。   Furthermore, 5-15 wt% of cellulose fibers are contained, The collector base material for solid fuel cells in any one of the Claims 1 thru | or 6 characterized by the above-mentioned. 更に、極細PET繊維を5〜20wt%含ませてなることを特徴とする請求項1乃至7の何れかに記載の固体燃料電池用集電体基材。   The current collector substrate for a solid fuel cell according to any one of claims 1 to 7, further comprising 5 to 20 wt% of ultrafine PET fibers. 更に、シリカフレークを5〜15wt%含ませてなることを特徴とする請求項1乃至8の何れかに記載の固体燃料電池用集電体基材。   Furthermore, 5-15 wt% of silica flakes are contained, The collector base material for solid fuel cells in any one of the Claims 1 thru | or 8 characterized by the above-mentioned.
JP2010270923A 2010-12-03 2010-12-03 Current collector substrate for solid fuel cell Active JP5543322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270923A JP5543322B2 (en) 2010-12-03 2010-12-03 Current collector substrate for solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270923A JP5543322B2 (en) 2010-12-03 2010-12-03 Current collector substrate for solid fuel cell

Publications (2)

Publication Number Publication Date
JP2012119287A true JP2012119287A (en) 2012-06-21
JP5543322B2 JP5543322B2 (en) 2014-07-09

Family

ID=46501872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270923A Active JP5543322B2 (en) 2010-12-03 2010-12-03 Current collector substrate for solid fuel cell

Country Status (1)

Country Link
JP (1) JP5543322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044913A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP2017128744A (en) * 2017-05-09 2017-07-27 王子ホールディングス株式会社 Thermoplastic prepreg and manufacturing method of thermoplastic prepreg

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100767A (en) * 1997-09-29 1999-04-13 Shin Kobe Electric Mach Co Ltd Base material for laminate board and its production, and prepreg and laminate board
JP2004281363A (en) * 2003-01-21 2004-10-07 Tomoegawa Paper Co Ltd Gas diffusion electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell using it
JP2005011724A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
JP2008204945A (en) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100767A (en) * 1997-09-29 1999-04-13 Shin Kobe Electric Mach Co Ltd Base material for laminate board and its production, and prepreg and laminate board
JP2004281363A (en) * 2003-01-21 2004-10-07 Tomoegawa Paper Co Ltd Gas diffusion electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell using it
JP2005011724A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
JP2008204945A (en) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044913A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP2017128744A (en) * 2017-05-09 2017-07-27 王子ホールディングス株式会社 Thermoplastic prepreg and manufacturing method of thermoplastic prepreg

Also Published As

Publication number Publication date
JP5543322B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN110528314A (en) A kind of composite sheet and its preparation method and application of the polyphenylene sulfide superfine fiber containing melt-blown
JP5585450B2 (en) Porous electrode substrate and method for producing the same
KR20130098309A (en) Conductive sheet and production method for same
JP6686437B2 (en) Gas diffusion electrode substrate and method for producing gas diffusion electrode substrate
CN107408706B (en) Porous carbon electrode substrate, method for producing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
CN104584292A (en) Gas-diffusion electrode base material for fuel cell
Kim et al. Fabrication of carbon papers using polyacrylonitrile fibers as a binder
JPWO2011065327A1 (en) Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2013080590A (en) Conductive sheet and method for producing the same
CN104285324A (en) Gas diffusion electrode substrate for fuel cell
JP2013016476A (en) Gas diffusion electrode base material and production method therefor
JP2009283259A (en) Porous carbon electrode base material
JP2016081901A (en) Fuel cell separator and manufacturing method thereof, fuel cell, conductive molding and manufacturing method thereof, and sheet making method of conductive molding wet-type unwoven fabric
CN108774808A (en) A kind of polyimide nanofiber membrane and preparation method thereof that there is the surface of crosslinking pattern to coat zirconium dioxide
Yarar Kaplan et al. Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells
JP5543322B2 (en) Current collector substrate for solid fuel cell
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP5526969B2 (en) Porous electrode substrate and method for producing the same
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP4781016B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
KR20210153029A (en) Gas diffusion electrode substrate and manufacturing method thereof, gas diffusion electrode, membrane electrode assembly, and polymer fuel cell
JP5398687B2 (en) Solid electrolyte membrane reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250