JP2012117503A - Multicylinder internal combustion engine - Google Patents

Multicylinder internal combustion engine Download PDF

Info

Publication number
JP2012117503A
JP2012117503A JP2010270843A JP2010270843A JP2012117503A JP 2012117503 A JP2012117503 A JP 2012117503A JP 2010270843 A JP2010270843 A JP 2010270843A JP 2010270843 A JP2010270843 A JP 2010270843A JP 2012117503 A JP2012117503 A JP 2012117503A
Authority
JP
Japan
Prior art keywords
cylinder
compression ratio
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010270843A
Other languages
Japanese (ja)
Other versions
JP5392241B2 (en
Inventor
Kazuo Kurata
和郎 倉田
Kisao Kuroda
喜佐夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010270843A priority Critical patent/JP5392241B2/en
Publication of JP2012117503A publication Critical patent/JP2012117503A/en
Application granted granted Critical
Publication of JP5392241B2 publication Critical patent/JP5392241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multicylinder internal combustion engine which allows a cylinder-by-cylinder compression ratio to be exactly estimated and allows an operation control value of the internal combustion engine to be corrected using the obtained cylinder-by-cylinder compression ratio in such a manner that the dispersion in the compression ratio of each cylinder is eliminated.SOLUTION: Upon operating the multicylinder internal combustion engine with no injection, that is the fuel is not supplied to each cylinder 6, the top dead center temperature T2 of each cylinder reaching the top dead center is estimated with the consideration of adiabatic compression, the exhaust port temperature Tex of the cylinder reaching the bottom dead center is obtained by an exhaust gas temperature sensor 45, then the compression ratio ε of each cylinder is estimated and the operation control value of the internal combustion engine is corrected and controlled for each cylinder based on the estimated compression ratio ε of each cylinder.

Description

本発明は、多気筒内燃機関に関するものである。   The present invention relates to a multi-cylinder internal combustion engine.

複数気筒を持つ内燃機関においては、各気筒の燃焼室を形成するピストンとシリンダヘッドとにわずかの製造誤差が存在し、これにより気筒毎の実圧縮比にばらつきが生じる。 ここで、各気筒が相互に実圧縮比のばらつきを生じている場合、各気筒毎に、圧縮端の温度、圧力が相互に異なるという事態が生じることとなる。このため、各気筒を同一の燃料噴射条件で運転したとしても、各気筒毎に回転変動が発生する憂いがある。また、特定の気筒で排気ガス特性が最適な運転となっていない状態が生じることもある。   In an internal combustion engine having a plurality of cylinders, there is a slight manufacturing error between the piston and the cylinder head that form the combustion chamber of each cylinder, which causes variations in the actual compression ratio for each cylinder. Here, when each cylinder has a variation in the actual compression ratio, a situation occurs in which the temperature and pressure at the compression end of each cylinder are different from each other. For this reason, even if each cylinder is operated under the same fuel injection condition, there is a concern that rotational fluctuation occurs in each cylinder. In addition, there may be a case where the exhaust gas characteristics are not optimally operated in a specific cylinder.

そこで、複数気筒を持つ内燃機関において、各気筒が相互に実圧縮比のばらつきを生じているか否かを検査し、その各気筒相互の圧縮比のばらつきを予め検出しておき、そのばらつきを補正するための補正値を求めておくことで、その補正値を用いて運転制御値を補正し、複数気筒の相互のばらつきを排除し、ばらつきによる気筒間の制御ずれに起因する、例えば、排気ガス特性が悪化するというような事態の発生を防止し、あるいは、各気筒の回転変動を抑制するため、圧縮比が低い気筒はその分燃料噴射量を多くするようにして圧縮比ばらつきに起因する振動を抑えるとの処理を行えると推測される。   Therefore, in an internal combustion engine having a plurality of cylinders, it is inspected whether each cylinder has a variation in the actual compression ratio, and the variation in the compression ratio between the cylinders is detected in advance, and the variation is corrected. By obtaining a correction value for performing the correction, the operation control value is corrected using the correction value, and mutual variations among a plurality of cylinders are eliminated. In order to prevent the occurrence of a situation where the characteristics deteriorate, or to suppress fluctuations in the rotation of each cylinder, the cylinders with a low compression ratio increase the fuel injection amount accordingly, and vibration caused by variations in the compression ratio. It is presumed that the processing can be performed with restraining.

そこで、このばらつきを測定する必要があるが、その場合、製造ラインでの各気筒の実圧縮比の計測には、工数がかかりすぎるため、困難である。
なお、特許文献1(特開平11−351025号公報)に開示のディーゼルエンジンの制御装置には、スタータ信号検出直後の数サイクルは、燃料噴射を停止し、該各気筒の吸気上死点時のエンジン回転数を検出し、該各気筒のエンジン回転数差から、該各気筒の圧縮比ばらつきを演算する圧縮比ばらつき演算手段が記載される。
Therefore, it is necessary to measure this variation, but in that case, it is difficult to measure the actual compression ratio of each cylinder in the production line because it takes too many steps.
Note that in the diesel engine control device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 11-351025), fuel injection is stopped for several cycles immediately after the starter signal is detected, and the intake top dead center of each cylinder is stopped. A compression ratio variation calculating means for detecting the engine speed and calculating the compression ratio variation of each cylinder from the difference in engine speed of each cylinder is described.

特開平11−351025号公報Japanese Patent Laid-Open No. 11-351025

上述のように、各気筒相互の圧縮比の相対的なずれを検出する必要があるが、特許文献1に記載されたように、クランキング中のエンジン回転数の変動から各気筒の圧縮比のずれを算出する場合、圧縮比のずれ以外にバッテリ電圧の変動やスタータ自体のトルク変動、各気筒のフリクションまたは外部負荷の変動などエンジン回転数の変動にかかわる要因が多々あるため、エンジン回転数の変動から実圧縮比を推定することは精度の低いものとなっている。   As described above, it is necessary to detect a relative shift in the compression ratio between the cylinders. However, as described in Patent Document 1, the compression ratio of each cylinder is determined from fluctuations in the engine speed during cranking. When calculating the deviation, in addition to the deviation in compression ratio, there are many factors related to fluctuations in the engine speed such as battery voltage fluctuation, starter torque fluctuation, each cylinder friction or external load fluctuation. Estimating the actual compression ratio from the fluctuation is less accurate.

本発明は以上のような課題に基づきなされたもので、目的とするところは、気筒毎の圧縮比を的確に推定でき、求めた気筒毎の圧縮比を用いて内燃機関の運転制御値を各気筒の圧縮比のばらつきを排除するように補正できる多気筒内燃機関を提供することにある。   The present invention has been made based on the problems as described above, and the object is to accurately estimate the compression ratio for each cylinder, and to determine the operation control value of the internal combustion engine using the obtained compression ratio for each cylinder. An object of the present invention is to provide a multi-cylinder internal combustion engine that can be corrected so as to eliminate variations in the compression ratio of cylinders.

本願請求項1の発明は、複数の気筒に吸入される吸気の温度を検出する吸気温度検出手段と、各気筒から排出される排気の温度を検出する排気温度検出手段と、前記吸気温度検出手段で検出した吸気温度と前記排気温度検出手段で検出した排気温度に基づいて各気筒の圧縮比を推定する圧縮比推定手段と、前記圧縮比推定手段で推定した各気筒の圧縮比に基づき内燃機関の運転制御値を気筒毎に補正する補正制御手段と
を備えたことを特徴とする。
The invention of claim 1 of the present application is an intake air temperature detecting means for detecting the temperature of intake air taken into a plurality of cylinders, an exhaust gas temperature detecting means for detecting the temperature of exhaust gas discharged from each cylinder, and the intake air temperature detecting means. The compression ratio estimating means for estimating the compression ratio of each cylinder based on the intake air temperature detected by the exhaust gas and the exhaust temperature detected by the exhaust temperature detecting means, and the internal combustion engine based on the compression ratio of each cylinder estimated by the compression ratio estimating means Correction control means for correcting the operation control value for each cylinder.

請求項2の発明は、請求項1記載の多気筒内燃機関において、前記内燃機関の冷却水温度を検出する冷却水温度検出手段を備え、前記圧縮比推定手段は、前記吸気温度検出手段で検出した吸気温度と前記冷却水温度検出手段で検出した冷却水温度に基づいて各気筒の上死点筒内温度を推定し、推定した各気筒の上死点筒内温度と前記吸気温度検出手段で検出した排気温度に基づいて各気筒の圧縮比を推定することを特徴とする。   A second aspect of the invention is the multi-cylinder internal combustion engine according to the first aspect, further comprising a cooling water temperature detecting means for detecting a cooling water temperature of the internal combustion engine, wherein the compression ratio estimating means is detected by the intake air temperature detecting means. The top dead center in-cylinder temperature of each cylinder is estimated based on the intake air temperature and the coolant temperature detected by the cooling water temperature detecting means, and the estimated top dead center in-cylinder temperature of each cylinder and the intake air temperature detecting means The compression ratio of each cylinder is estimated based on the detected exhaust gas temperature.

請求項3の発明は、請求項2記載の多気筒内燃機関において、前記圧縮比推定手段は、前記上死点筒内温度と前記吸気温度との比が大きいほど圧縮比が高いと推定することを特徴とする。   According to a third aspect of the present invention, in the multi-cylinder internal combustion engine according to the second aspect, the compression ratio estimation means estimates that the compression ratio is higher as the ratio between the top dead center in-cylinder temperature and the intake air temperature is larger. It is characterized by.

請求項4の発明は、請求項1から3の何れか1つに記載の多気筒内燃機関において、各気筒に燃料を供給する燃料供給手段を備え、前記圧縮比推定手段は、前記内燃機関のクランキング中で、かつ前記燃料供給手段からの燃料供給が停止している運転状態で圧縮比を推定することを特徴とする。   A fourth aspect of the present invention is the multi-cylinder internal combustion engine according to any one of the first to third aspects, further comprising fuel supply means for supplying fuel to each cylinder, wherein the compression ratio estimation means is provided in the internal combustion engine. The compression ratio is estimated in an operating state during cranking and when the fuel supply from the fuel supply means is stopped.

請求項1の発明は、気筒に吸入される吸気の吸気温度と、気筒から排出される排気の排気温度とに基づいて圧縮比を推定するので、各気筒の圧縮比にそって圧縮膨張した空気、即ち圧縮比の影響を受けた排気の温度により各気筒の圧縮比を的確に推定でき、求めた各気筒の圧縮比のばらつきの影響を排除するように内燃機関の運転制御値を補正することができる。   In the first aspect of the invention, the compression ratio is estimated based on the intake air temperature of the intake air sucked into the cylinder and the exhaust gas temperature of the exhaust gas discharged from the cylinder. Therefore, the air compressed and expanded in accordance with the compression ratio of each cylinder In other words, the compression ratio of each cylinder can be accurately estimated based on the exhaust temperature affected by the compression ratio, and the operation control value of the internal combustion engine is corrected so as to eliminate the influence of the obtained variation in the compression ratio of each cylinder. Can do.

請求項2の発明は、吸気温度と冷却水温とに基づいて上死点筒内温度を推定し、推定した上死点筒内温度と排気温度に基づいて圧縮比を推定するので、気筒内の空気が冷却水と熱量の授受を行っても各気筒の圧縮比を的確に推定でき、求めた各気筒の圧縮比のばらつきの影響を排除するように内燃機関の運転制御値を補正することができる。   The invention of claim 2 estimates the top dead center in-cylinder temperature based on the intake air temperature and the coolant temperature, and estimates the compression ratio based on the estimated top dead center in-cylinder temperature and exhaust temperature. Even if the air exchanges heat with the cooling water, the compression ratio of each cylinder can be accurately estimated, and the operation control value of the internal combustion engine can be corrected so as to eliminate the influence of the obtained variation in the compression ratio of each cylinder. it can.

請求項3の発明は、上死点筒内温度と排気温度の比により圧縮比を容易に推定できる。   In the invention of claim 3, the compression ratio can be easily estimated from the ratio between the top dead center in-cylinder temperature and the exhaust temperature.

請求項4の発明は、燃料の気化熱による温度低下や燃焼による温度上昇を抑制して各気筒の圧縮比を的確に推定でき、求めた各気筒の圧縮比のばらつきの影響を排除するように内燃機関の運転制御値を補正することができる。   According to the invention of claim 4, it is possible to accurately estimate the compression ratio of each cylinder by suppressing the temperature decrease due to the heat of vaporization of the fuel and the temperature increase due to combustion, and to eliminate the influence of the obtained variation in the compression ratio of each cylinder. The operation control value of the internal combustion engine can be corrected.

本発明の一実施形態としての多気筒内燃機関の全体構成図である。1 is an overall configuration diagram of a multi-cylinder internal combustion engine as one embodiment of the present invention. 図1の多気筒内燃機関の駆動時の各気筒の排気温度の経時変化特性線図である。FIG. 2 is a time-dependent change characteristic diagram of the exhaust temperature of each cylinder when the multi-cylinder internal combustion engine of FIG. 1 is driven. 図1の多気筒内燃機関で用いる圧縮比―前後温度比設定マップの特性説明図である。FIG. 2 is a characteristic explanatory diagram of a compression ratio-front / rear temperature ratio setting map used in the multi-cylinder internal combustion engine of FIG. 1. 図1の多気筒内燃機関の圧縮比補正制御ルーチンのフローチャートである。2 is a flowchart of a compression ratio correction control routine of the multi-cylinder internal combustion engine of FIG. 図1の多気筒内燃機関の圧縮比推定ルーチンのフローチャートである。2 is a flowchart of a compression ratio estimation routine of the multi-cylinder internal combustion engine of FIG. 図1の多気筒内燃機関の圧縮比推定ルーチンの変形例でのフローチャートである。7 is a flowchart of a modification of the compression ratio estimation routine of the multi-cylinder internal combustion engine of FIG.

以下、本発明の第1の実施の形態である多気筒内燃機関について説明する。
図1は、本発明の多気筒内燃機関(以後エンジンと記す)1の全体構成図である。
本実施形態にかかるエンジン1はシリンダブロック及びその下側部材(不図示)等からなるエンジン本体101と、エンジン本体101内に設けられピストンsを収容する燃焼室6と、エンジン本体101の上部に組み付けられたシリンダヘッド3とを備えている。ここでピストンsの上面からその上方(紙面手前方向)に位置するシリンダヘッド3の低壁までの間が燃焼室6を形成しており、この燃焼室6に連通するように吸気ポートipと排気ポートepがシリンダヘッド3に形成されている。吸気ポートipには新気を燃焼室6内に導入するための吸気通路Riが接続され、排気ポートepには燃焼ガスを排出するための排気通路Reが接続されている。
Hereinafter, the multi-cylinder internal combustion engine which is the 1st Embodiment of this invention is demonstrated.
FIG. 1 is an overall configuration diagram of a multi-cylinder internal combustion engine (hereinafter referred to as an engine) 1 of the present invention.
The engine 1 according to this embodiment includes an engine main body 101 including a cylinder block and a lower member (not shown), a combustion chamber 6 provided in the engine main body 101 and containing a piston s, and an upper portion of the engine main body 101. And an assembled cylinder head 3. Here, the combustion chamber 6 is formed from the upper surface of the piston s to the lower wall of the cylinder head 3 located above (frontward in the drawing), and the intake port ip and the exhaust gas are communicated with the combustion chamber 6. A port ep is formed in the cylinder head 3. An intake passage Ri for introducing fresh air into the combustion chamber 6 is connected to the intake port ip, and an exhaust passage Re for discharging combustion gas is connected to the exhaust port ep.

エンジン本体101の上側のシリンダヘッド3の左右側壁面には吸気マニホールド4及び排気マニホールド5が一体結合され、吸気マニホールド4には吸気路Riが、排気マニホールド5には排気路Reが接続される。
シリンダヘッド3において、吸気ポートipと燃焼室6との接続部には、吸気バルブb1が設けられ、排気ポートepと燃焼室6との接続部には、排気バルブb2が設けられ、燃焼室6の頂部には、燃料供給手段の要部をなす電気制御式燃料噴射弁(以後単に燃料噴射弁と記す)17が配置されている。なお、シリンダヘッド3には機関駆動に連動する動弁系(一部のみ図示する)41の吸気カムシャフト42及び排気カムシャフト43が配備され、これにより吸気バルブb1や排気バルブb2が開閉駆動され、吸気及び排気作動を行う。
An intake manifold 4 and an exhaust manifold 5 are integrally coupled to the left and right side wall surfaces of the cylinder head 3 on the upper side of the engine body 101, and an intake passage Ri is connected to the intake manifold 4 and an exhaust passage Re is connected to the exhaust manifold 5.
In the cylinder head 3, an intake valve b 1 is provided at a connection portion between the intake port ip and the combustion chamber 6, and an exhaust valve b 2 is provided at a connection portion between the exhaust port ep and the combustion chamber 6. An electric control type fuel injection valve (hereinafter simply referred to as a fuel injection valve) 17 that constitutes a main part of the fuel supply means is disposed at the top of the. The cylinder head 3 is provided with an intake camshaft 42 and an exhaust camshaft 43 of a valve operating system (only part of which is shown in the figure) 41 that is linked to the engine drive, whereby the intake valve b1 and the exhaust valve b2 are driven to open and close. Intake and exhaust operations are performed.

ここで、エンジン1は4気筒であり、各気筒の吸気マニホールド4は吸気管8を介して排気ターボチャージャ50のコンプレッサ51を経てエアクリーナ9に接続される。エアクリーナ9には、吸入吸気量Qa情報を得るエアフローメータ11が取り付けられる。   Here, the engine 1 has four cylinders, and the intake manifold 4 of each cylinder is connected to the air cleaner 9 via the intake pipe 8 and the compressor 51 of the exhaust turbocharger 50. An air flow meter 11 for obtaining intake air intake amount Qa information is attached to the air cleaner 9.

吸気管8内にはステップモータ121により駆動されるスロットル弁12が配置され、更に吸気管8の途中には吸気管8内を流れる吸入空気を冷却するためのインタークーラ7が配置されている。
スロットルバルブ12は、アクセルペダル13とは独立してエンジン制御装置(以後単にECUと記す)14の出力信号に基づいてその開度が制御される。さらに、スロットルバルブ12にはスロットル開度センサ28が配備され、同センサのスロットル開度θs情報がECU14に出力される。なお、図1において、エンジン本体2には同本体内の水温Tw情報を検出する水温センサ44(冷却水温度検出手段)が配備され、その検出信号はECU14に出力されている。
A throttle valve 12 driven by a step motor 121 is arranged in the intake pipe 8, and an intercooler 7 for cooling intake air flowing in the intake pipe 8 is arranged in the intake pipe 8.
The throttle valve 12 has its opening degree controlled independently of the accelerator pedal 13 based on an output signal of an engine control device (hereinafter simply referred to as ECU) 14. Further, the throttle valve 12 is provided with a throttle opening sensor 28, and throttle opening θs information of the sensor is output to the ECU 14. In FIG. 1, the engine body 2 is provided with a water temperature sensor 44 (cooling water temperature detection means) that detects water temperature Tw information in the body, and the detection signal is output to the ECU 14.

ECU14は、デジタルコンピュータから構成され、双方向性バス141を介して相互に接続されたROM142、RAM143、CPU144、入力ポート145および出力ポート146を備え、後述する制御機能を備える。
なお、アクセルペダル13の踏込み量に比例した出力を発生するアクセル開度センサ21、エンジン回転数Neを算出するための出力パルスを発生する回転パルス発生器22、複数の気筒に吸入される吸気の温度を吸気マニホールド4の分岐前の位置で検出する吸気温度センサ23(吸気温度検出手段)の各検出信号は入力ポート145に入力される。ここで、ECU14のROM142には、上述のアクセル開度センサ21および回転パルス発生器22により得られる機関負荷率および機関回転数に基づき、運転状態に対応させて設定されている燃料噴射量の値Qfや機関冷却水温Twに応じた補正値などが予めマップ化されて記憶されている。
The ECU 14 is composed of a digital computer, and includes a ROM 142, a RAM 143, a CPU 144, an input port 145, and an output port 146 connected to each other via a bidirectional bus 141, and has a control function described later.
An accelerator opening sensor 21 that generates an output proportional to the amount of depression of the accelerator pedal 13, a rotation pulse generator 22 that generates an output pulse for calculating the engine speed Ne, and intake air that is sucked into a plurality of cylinders. Each detection signal of the intake air temperature sensor 23 (intake air temperature detecting means) that detects the temperature at a position before the branch of the intake manifold 4 is input to the input port 145. Here, in the ROM 142 of the ECU 14, the value of the fuel injection amount set corresponding to the operating state based on the engine load factor and the engine speed obtained by the accelerator opening sensor 21 and the rotation pulse generator 22 described above. Correction values and the like corresponding to Qf and engine coolant temperature Tw are previously mapped and stored.

一方、エンジン1の各燃焼室6から延びる排気ポートepは排気マニホールド5にそれぞれ連結され、この排気マニホールド5の合流部の下流は排気管16を介して排気ターボチャージャ50の排気タービン52に連結され、更に、排気タービン52の出口は排気管16内の未燃燃料を酸化する機能を備えた触媒152を内蔵したケーシング151に連結され、その下流にはマフラー161が順次接続されている。
排気マニホールド5には、各気筒から延びる排気ポートep内の排ガス温度を検出する排ガス温度センサ45が取り付けられ、各気筒の排ガス温度情報をECU14に出力している。
On the other hand, the exhaust ports ep extending from the combustion chambers 6 of the engine 1 are respectively connected to the exhaust manifold 5, and the downstream of the merging portion of the exhaust manifold 5 is connected to the exhaust turbine 52 of the exhaust turbocharger 50 via the exhaust pipe 16. Further, the outlet of the exhaust turbine 52 is connected to a casing 151 containing a catalyst 152 having a function of oxidizing unburned fuel in the exhaust pipe 16, and a muffler 161 is sequentially connected downstream thereof.
An exhaust gas temperature sensor 45 that detects an exhaust gas temperature in an exhaust port ep extending from each cylinder is attached to the exhaust manifold 5, and exhaust gas temperature information of each cylinder is output to the ECU 14.

排気マニホールド5と吸気マニホールド4とは排気ガス再循環(以下「EGR」という)通路53を介して互いに連結され、EGR通路53には電気制御式EGR制御弁54が配置されている。
図1に示すように、各気筒の燃焼室6に設けられた燃料噴射弁17はECU14からの噴射信号を燃料噴射駆動回路(インジェクタドライバ)37を介して受けて、燃料供給源から供給された燃料をその噴射量を制御して燃焼室6に噴射する。
The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as “EGR”) passage 53, and an electrically controlled EGR control valve 54 is disposed in the EGR passage 53.
As shown in FIG. 1, a fuel injection valve 17 provided in the combustion chamber 6 of each cylinder receives an injection signal from the ECU 14 via a fuel injection drive circuit (injector driver) 37 and is supplied from a fuel supply source. The fuel is injected into the combustion chamber 6 by controlling the injection amount.

各燃料噴射弁17は不図示の燃料供給管を介して燃料リザーバ、いわゆるコモンレール30に連結されている。このコモンレール30内へは燃料供給源側の電気制御式の吐出量可変な燃料ポンプ31から燃料が供給され、コモンレール30内に供給された燃料は各燃料噴射弁17に供給される。コモンレール30にはコモンレール30内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコモンレール30内の燃料圧が目標燃料圧となるように燃料ポンプ31の吐出量が制御される。   Each fuel injection valve 17 is connected to a fuel reservoir, a so-called common rail 30 via a fuel supply pipe (not shown). Fuel is supplied into the common rail 30 from an electrically controlled fuel pump 31 with variable discharge amount on the fuel supply source side, and the fuel supplied into the common rail 30 is supplied to each fuel injection valve 17. A fuel pressure sensor 29 for detecting the fuel pressure in the common rail 30 is attached to the common rail 30, and a fuel pump 31 is set so that the fuel pressure in the common rail 30 becomes the target fuel pressure based on the output signal of the fuel pressure sensor 29. The discharge amount is controlled.

燃料供給源側の燃料ポンプ31の吐出側は燃圧調整手段である電磁スピル弁32を介して吸入側に戻されており、この電磁スピル弁32の開度が小さいときほど、高圧燃料ポンプ31からコモンレール30に供給される燃料量が増大される。
一方、低圧燃料ポンプ34は燃料フィルタ35を介して燃料タンク36に接続されている。燃料圧レギュレータ33は低圧燃料ポンプ34から吐出された燃料の燃料圧が予め定められた設定燃料圧よりも高くなると、燃料の一部を燃料タンク36に戻すように構成されており、燃料圧が設定燃料圧よりも高くなるのを阻止している。
The discharge side of the fuel pump 31 on the fuel supply side is returned to the suction side via an electromagnetic spill valve 32 that is a fuel pressure adjusting means. The smaller the opening of the electromagnetic spill valve 32, the higher the pressure from the high-pressure fuel pump 31. The amount of fuel supplied to the common rail 30 is increased.
On the other hand, the low-pressure fuel pump 34 is connected to a fuel tank 36 via a fuel filter 35. The fuel pressure regulator 33 is configured to return a part of the fuel to the fuel tank 36 when the fuel pressure of the fuel discharged from the low pressure fuel pump 34 becomes higher than a predetermined set fuel pressure. This prevents the fuel pressure from becoming higher than the set fuel pressure.

次に、ECU14の制御機能を説明する。ECU14は、運転情報に応じて設定された噴射燃料量Qfの燃料を燃料噴射弁17が噴射するよう制御する燃料噴射制御手段A1として機能し、特に、アイドル運転域で通常アイドル制御を発揮するアイドル燃料供給手段A1−1と、クランキング時燃料供給手段A1−2と、定常運転時燃料供給手段A1−3との機能を各運転状態に応じて発揮する。   Next, the control function of the ECU 14 will be described. The ECU 14 functions as the fuel injection control means A1 that controls the fuel injection valve 17 to inject the fuel of the injected fuel amount Qf set according to the operation information. In particular, the ECU 14 is an idle that exhibits normal idle control in the idle operation range. The functions of the fuel supply means A1-1, the cranking time fuel supply means A1-2, and the steady operation time fuel supply means A1-3 are exhibited in accordance with each operation state.

アイドル燃料供給手段A1−1は始動後において、冷態時であると冷態時噴射量QfLを、暖気時であると暖気時噴射量QfDをそれぞれ予め設定した運転条件であるアイドル回転数Nea,アクセル開度θa、水温Twに基づき設定し、同噴射量で各気筒の燃料噴射弁17を駆動し、アイドル回転を実行する。
クランキング時燃料供給手段A1−2は、クランキング開始時t1より設定回転数の経過までの測定域を各気筒への燃料供給をストップした燃料供給ストップ運転領域E1として設定し、そのストップ運転領域経過後の時点t2に燃料供給を行い始動領域E2に入るよう設定される。
When the idle fuel supply means A1-1 is started, the idling engine speed Nea, which is an operating condition in which the cold injection amount QfL is set when it is cold and the warm injection amount QfD is set when it is warm, respectively. It is set based on the accelerator opening θa and the water temperature Tw, and the fuel injection valve 17 of each cylinder is driven with the same injection amount to execute idle rotation.
The cranking fuel supply means A1-2 sets a measurement region from the cranking start time t1 to the elapse of the set rotational speed as a fuel supply stop operation region E1 in which the fuel supply to each cylinder is stopped, and the stop operation region. The fuel is supplied at the time point t2 after the lapse of time and set to enter the start region E2.

ここで、クランキング時燃料供給手段A1−2は、燃料供給ストップ運転領域E1では、圧縮比推定手段としての機能を発揮する。即ち、ここでは、燃料噴射をストップに保持し、上死点に達した各気筒の上死点温度を吸気温度センサ23により求めた吸気温度に基づいて断熱圧縮を考慮して推定し、下死点に達した各気筒の排気ポート温度Te1〜Te4を各排気温度センサ45により求めた上で、各気筒の圧縮比を推定する。   Here, the cranking fuel supply means A1-2 exhibits a function as a compression ratio estimation means in the fuel supply stop operation region E1. That is, here, the fuel injection is held at the stop, and the top dead center temperature of each cylinder that has reached the top dead center is estimated in consideration of adiabatic compression based on the intake air temperature obtained by the intake air temperature sensor 23, and the bottom dead center The exhaust port temperatures Te1 to Te4 of the cylinders that have reached the point are obtained by the exhaust temperature sensors 45, and then the compression ratio of each cylinder is estimated.

この場合、図2に示すように、無噴射状態での燃料供給ストップ運転領域E1が時点t1から開始し、経過後の時点t2(ここでは3サイクルの経過時点とする)で各気筒の排気温度Te1〜Te4を取り込む。
次いで、各気筒の上死点筒内温度T2を断熱圧縮を考慮して下記の式(1)、(2)により推定する。
In this case, as shown in FIG. 2, the fuel supply stop operation region E1 in the non-injection state starts from the time point t1, and the exhaust temperature of each cylinder at the time point t2 after the passage (here, the passage time of 3 cycles). Capture Te1 to Te4.
Next, the top dead center in-cylinder temperature T2 of each cylinder is estimated by the following equations (1) and (2) in consideration of adiabatic compression.

T2=Tex×ε(k−1)+dt(T2in−Twt)・・・・(1)
ε(k−1)=T2/T1・・・・(2)
ここで、
T1:吸気ポート温度
T2:上死点筒内温度
T2in:吸気温度T1から演算した圧縮端温度
ここで、T2in=T1×(V1/V2)(k−1)=T1×ε(k−1)・・・・(3)
Tex:排気温度
Twt:冷却水温度
V1:下死点燃焼室容積
V2:上死点燃焼室容積
k:比熱比
ε:圧縮比
とする。
T2 = Tex × ε (k−1) + dt (T2in−Twt) (1)
ε (k−1) = T2 / T1 (2)
here,
T1: intake port temperature T2: top dead center in-cylinder temperature T2in: compression end temperature calculated from intake air temperature T1 T2in = T1 × (V1 / V2) (k−1) = T1 × ε (k−1) .... (3)
Tex: exhaust temperature Twt: cooling water temperature V1: bottom dead center combustion chamber volume V2: top dead center combustion chamber volume k: specific heat ratio ε: compression ratio

上述のところで、式(1)の第1項は、断熱膨張の場合,T×V(k−1)=一定より、
T2×V2(k−1)=Tex×V1(k−1)を導き、これより、
T2=Tex×(V1/V2)(k−1)
T2=Tex×ε(k−1)、が得られることに基づく。
In the above, in the case of adiabatic expansion, the first term of equation (1) is T × V (k−1) = constant,
T2 × V2 (k−1) = Tex × V1 (k−1) is derived, and from this,
T2 = Tex × (V1 / V2) (k−1)
T2 = Tex × ε (k−1) is obtained.

ここで、上述の式(1)の第2項は吸気温度から演算した圧縮端温度T2in(:断熱圧縮での上死点温度のこと)を式(3)を用いて求め、更に、これより冷却水による放熱が考慮されるよう、冷却水温度Twtを減算し、その補正値dt(T2in−Twt)を算出したもので、この値を第1項に修正値として加算している。
更に、式(1)で算出される上死点筒内温度T2と吸気ポート温度T1を用いて式(2)より、圧縮比εを推定できる。この際、式(2)の特性を図3に示す演算マップm1として作成し、演算を簡素化できる。ここで、圧縮比推定手段が用いる演算マップm1は上死点筒内温度T2と吸気ポート温度T1(吸気温度)との比が大きいほど圧縮比εが高くなるように設定する。
Here, the second term of the above-mentioned formula (1) is to calculate the compression end temperature T2in (: top dead center temperature in adiabatic compression) calculated from the intake air temperature using the formula (3), and from this The correction value dt (T2in−Twt) is calculated by subtracting the cooling water temperature Twt so that the heat radiation by the cooling water is taken into account, and this value is added to the first term as a correction value.
Further, the compression ratio ε can be estimated from the equation (2) using the top dead center in-cylinder temperature T2 and the intake port temperature T1 calculated by the equation (1). At this time, the characteristic of the expression (2) can be created as an operation map m1 shown in FIG. 3 to simplify the operation. Here, the calculation map m1 used by the compression ratio estimation means is set so that the compression ratio ε increases as the ratio between the top dead center in-cylinder temperature T2 and the intake port temperature T1 (intake air temperature) increases.

ここで演算する圧縮比εは各気筒毎にε1〜ε4と求められ、これらの相対的偏差が求められる。即ち、ε1〜ε4の平均値εmを求め、それに対する各気筒の圧縮比の偏差、δε1〜δε4を求める。この圧縮比偏差δε1〜δε4は所定エリアにストアされることとなる。   The compression ratio ε calculated here is determined as ε1 to ε4 for each cylinder, and the relative deviation between them is determined. That is, an average value εm of ε1 to ε4 is obtained, and deviations of compression ratios of the respective cylinders, δε1 to δε4, are obtained. The compression ratio deviations δε1 to δε4 are stored in a predetermined area.

次に、クランキング時燃料供給手段A1−2は、圧縮比偏差の演算済みを判断して燃料噴射開始時点t2に達すると、燃料供給ストップ運転領域E1の経過時と見做し、始動領域E2に入り、燃料噴射を開始し、エンジン回転数が所定値を上回る時点でクランキングを停止する。ここでは所定の始動時燃料量Qfsを所定の冷態始動用燃料量演算マップ(不図示)で求める。更に、各気筒の気筒識別信号に応じて該当する燃料噴射弁17を駆動し、始動処理する。なお、上述の燃料噴射開始時点t2は全気筒において圧縮比推定を行うに足る時間が設定されている。具体的には全気筒において吸気行程→圧縮行程→膨張行程→排気行程を経験するまでの時間が予め設定される。   Next, when the cranking fuel supply means A1-2 determines that the compression ratio deviation has been calculated and reaches the fuel injection start time t2, it is considered that the fuel supply stop operation region E1 has elapsed, and the start region E2 The fuel injection is started, and the cranking is stopped when the engine speed exceeds a predetermined value. Here, a predetermined starting fuel amount Qfs is obtained by a predetermined cold starting fuel amount calculation map (not shown). Further, the corresponding fuel injection valve 17 is driven in accordance with the cylinder identification signal of each cylinder, and the starting process is performed. Note that, at the above-described fuel injection start time t2, a time sufficient for estimating the compression ratio is set for all the cylinders. Specifically, the time until the intake stroke → compression stroke → expansion stroke → exhaust stroke is experienced in all cylinders is preset.

次に、定常運転時燃料供給手段A1−3は定常時の走行条件である要求出力を反映するアクセル開度θa相当の出力を確保できるよう各気筒の燃料噴射弁17を噴射駆動して走行を継続することとなる。この際、補正制御手段としての機能を発揮し、適正燃料噴射量を噴射するようフィードバック制御する。   Next, the steady operation fuel supply means A1-3 travels by injecting and driving the fuel injection valves 17 of the respective cylinders so as to ensure an output corresponding to the accelerator opening θa that reflects the required output that is a steady traveling condition. Will continue. At this time, feedback control is performed so that the function as the correction control means is exhibited and the appropriate fuel injection amount is injected.

この際、各気筒の燃料噴射量Qf1〜Qf4は圧縮比偏差δε1〜δε4に応じて補正される。ここでは、各圧縮比偏差δε1〜δε4に所定の燃料補正係数α(燃料量変換係数でもある)を乗算して各気筒の燃料補正量δq1〜δq4(δε1×α〜δε4×αを乗算処理する)を求める。これで、燃料噴射量Qf1〜Qf4を補正し、補正燃料噴射量Qfa1〜Qfa4(δq1〜δq4を加減処理する)を求める。この補正燃料噴射量fa1〜Qfa4で各気筒の燃料噴射弁17を駆動することで、気筒相互の出力変動が排除され、排ガス特性も均一化され、更に、排ガス処理における制御を一律化して行うことが出来る。   At this time, the fuel injection amounts Qf1 to Qf4 of each cylinder are corrected according to the compression ratio deviations δε1 to δε4. Here, each compression ratio deviation δε1 to δε4 is multiplied by a predetermined fuel correction coefficient α (also a fuel amount conversion coefficient), and the fuel correction amounts δq1 to δq4 (δε1 × α to δε4 × α) of each cylinder are multiplied. ) Thus, the fuel injection amounts Qf1 to Qf4 are corrected, and corrected fuel injection amounts Qfa1 to Qfa4 (δq1 to δq4 are added / subtracted) are obtained. By driving the fuel injection valve 17 of each cylinder with the corrected fuel injection amounts fa1 to Qfa4, output fluctuations between cylinders are eliminated, exhaust gas characteristics are made uniform, and control in exhaust gas processing is performed uniformly. I can do it.

図4は本実施形態の圧縮端温度算出制御方法を示したフローチャートである。
このルーチンが開始されると、まずステップs1において吸気温度Tim、排気温度Tex、冷却水温度Twt、エンジン回転数Ne,負荷θa,吸入空気量Qa,等が読み込まれる。
ステップs2では、燃料カット状態であるか否かが判定される。Yesのときにはステップs3に進み、Noのときには圧縮端温度を正確に推定することができないと判断し、このルーチンを終了する。ステップs3では、燃料カット指令を、メインルーチンに出力し、時点t1を設定し、カウントに入る。
FIG. 4 is a flowchart showing the compression end temperature calculation control method of the present embodiment.
When this routine is started, first, in step s1, the intake air temperature Tim, the exhaust gas temperature Tex, the cooling water temperature Twt, the engine speed Ne, the load θa, the intake air amount Qa, and the like are read.
In step s2, it is determined whether or not the fuel is cut. If Yes, the process proceeds to step s3. If No, it is determined that the compression end temperature cannot be accurately estimated, and this routine is terminated. In step s3, a fuel cut command is output to the main routine, a time point t1 is set, and the count starts.

ステップs4では全気筒において圧縮比推定を行うに足る時間をカウントし、カウント経過の時点t2を判断し、経過前はステップs5に進み、不図示のメインルーチン側の指示でクランキングが成されているか否か判断し、Noではこの処理をメインルーチンに戻し、Yesでステップs6に達する。ここでは図5に示す圧縮比推定処理に進む。   In step s4, a time sufficient for estimating the compression ratio in all cylinders is counted, and a time point t2 at which the count has elapsed is determined. The process proceeds to step s5 before the count, and cranking is performed according to an instruction from the main routine (not shown). If NO, the process returns to the main routine, and if YES, the process reaches step s6. Here, the process proceeds to the compression ratio estimation process shown in FIG.

図5に示すように、圧縮比推定処理ではステップa1でエンジン回転数Ne、吸気温度Tin、排気温度Tex、冷却水温度Twtを読み取る。次いで、ステップa2において、ステップa1で読み込んだデータに応じた現在の上死点筒内温度T2を演算する。ここでは上述の式(3)を用い吸気温度T1から圧縮端温度T2inを演算し、この値や排気温度Tex等に応じた上死点温度T2を式(1)を用いて演算する。   As shown in FIG. 5, in the compression ratio estimation process, the engine speed Ne, the intake air temperature Tin, the exhaust gas temperature Tex, and the cooling water temperature Twt are read in step a1. Next, in step a2, the current top dead center in-cylinder temperature T2 corresponding to the data read in step a1 is calculated. Here, the compression end temperature T2in is calculated from the intake air temperature T1 using the above equation (3), and the top dead center temperature T2 corresponding to this value, the exhaust temperature Tex, etc. is calculated using the equation (1).

次いで、ステップa3では、式(2)及び図3のマップm1を用い、吸気温度T1、上死点筒内温度T2を用いて圧縮比εを推定する。
なお、この処理は各気筒ごとに行われ、ε1〜ε4が演算され、所定エリアにストアされ、ステップs7に進む。
Next, in step a3, the compression ratio ε is estimated using the intake air temperature T1 and the top dead center in-cylinder temperature T2 using the equation (2) and the map m1 in FIG.
This process is performed for each cylinder, ε1 to ε4 are calculated, stored in a predetermined area, and the process proceeds to step s7.

ステップs7では、各気筒毎にε1〜ε4と求められ有効圧縮比εに基づき、これらの相対的偏差が求められ、ε1〜ε4の平均値εmを求め、それに対する各気筒の圧縮比の偏差、δε1〜δε4を求め、この圧縮比偏差δε1〜δε4を用いて、各気筒の燃料噴射量Qf1〜Qf4を補正し、この補正燃料噴射量fa1〜Qfa4で各気筒の燃料噴射弁17を駆動することで、気筒相互の出力変動が排除され、排ガス特性も均一化され、更に、排ガス処理における制御を一律化して行うことが出来る。   In step s7, ε1 to ε4 are obtained for each cylinder, and based on the effective compression ratio ε, these relative deviations are obtained, an average value εm of ε1 to ε4 is obtained, and the deviation of the compression ratio of each cylinder with respect thereto, δε1 to δε4 are obtained, the compression ratio deviations δε1 to δε4 are used to correct the fuel injection amounts Qf1 to Qf4 of each cylinder, and the fuel injection valves 17 of each cylinder are driven with the corrected fuel injection amounts fa1 to Qfa4. Thus, output fluctuations between cylinders are eliminated, exhaust gas characteristics are made uniform, and control in exhaust gas processing can be performed uniformly.

上述のところで、ステップs7では、各気筒の圧縮比の偏差、δε1〜δε4を用いて、各気筒の補正燃料噴射量fa1〜Qfa4を求めたが、これに代えて、図6に示すステップs7’のように、各気筒の吸気弁b1の閉時期補正量を修正してもよい。   As described above, in step s7, the corrected fuel injection amounts fa1 to Qfa4 of each cylinder are obtained using the deviations in compression ratios of each cylinder, δε1 to δε4. Instead, step s7 ′ shown in FIG. As described above, the closing timing correction amount of the intake valve b1 of each cylinder may be corrected.

この場合、圧縮比の偏差、δε1〜δε4を用いて、各気筒の吸気弁b1の閉時期を基準値θc1〜θc4より進角補正係数δθで補正し(θc1’=θc1×δθ1:乗算する)、補正閉弁時期θc1’〜θc4’を求め、これを用いて吸気弁b1の閉時期を補正し、出力補正を行うことで、気筒相互の出力変動が排除される。
なお、本発明は上述の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
In this case, by using the deviation of the compression ratio, δε1 to δε4, the closing timing of the intake valve b1 of each cylinder is corrected from the reference values θc1 to θc4 by the advance correction coefficient δθ (θc1 ′ = θc1 × δθ1: multiply). Then, the corrected valve closing timings θc1 ′ to θc4 ′ are obtained, and the closing timing of the intake valve b1 is corrected using the corrected valve closing timings to perform output correction, thereby eliminating output fluctuations between the cylinders.
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 エンジン(内燃機関の燃料噴射装置)
6 燃焼室
11 エアフローメータ
23 吸気温度センサ(吸気温度検出手段)
44 水温センサ(冷却水温度検出手段)
45 排ガス温度センサ
ε 圧縮比
θa 負荷
A1 燃料噴射量演算手段
A1−2 クランキング時燃料供給手段(圧縮比推定手段)
A1−3 定常運転時燃料供給手段(補正制御手段)
E1 燃料供給ストップ運転領域
ECU 制御手段
Ne 機関回転数
T1 吸気ポート温度
T2 上死点筒内温度(上死点温度)
Tex 排気ポート温度
Qf 燃料噴射量
1 Engine (fuel injection device for internal combustion engine)
6 Combustion chamber 11 Air flow meter 23 Intake air temperature sensor (intake air temperature detection means)
44 Water temperature sensor (cooling water temperature detection means)
45 Exhaust gas temperature sensor ε Compression ratio θa Load A1 Fuel injection amount calculation means A1-2 Cranking fuel supply means (compression ratio estimation means)
A1-3 Fuel supply means during normal operation (correction control means)
E1 Fuel supply stop operation region ECU Control means Ne Engine speed T1 Intake port temperature T2 Top dead center in-cylinder temperature (top dead center temperature)
Tex Exhaust port temperature Qf Fuel injection amount

Claims (4)

複数の気筒に吸入される吸気の温度を検出する吸気温度検出手段と、
各気筒から排出される排気の温度を検出する排気温度検出手段と、
前記吸気温度検出手段で検出した吸気温度と前記排気温度検出手段で検出した排気温度に基づいて各気筒の圧縮比を推定する圧縮比推定手段と、
前記圧縮比推定手段で推定した各気筒の圧縮比に基づき内燃機関の運転制御値を気筒毎に補正する補正制御手段と
を備えたことを特徴とする多気筒内燃機関。
Intake air temperature detecting means for detecting the temperature of intake air taken into a plurality of cylinders;
Exhaust temperature detecting means for detecting the temperature of the exhaust discharged from each cylinder;
Compression ratio estimating means for estimating the compression ratio of each cylinder based on the intake air temperature detected by the intake air temperature detecting means and the exhaust gas temperature detected by the exhaust gas temperature detecting means;
A multi-cylinder internal combustion engine comprising correction control means for correcting the operation control value of the internal combustion engine for each cylinder based on the compression ratio of each cylinder estimated by the compression ratio estimation means.
前記内燃機関の冷却水温度を検出する冷却水温度検出手段を備え、
前記圧縮比推定手段は、前記吸気温度検出手段で検出した吸気温度と前記冷却水温度検出手段で検出した冷却水温度に基づいて各気筒の上死点筒内温度を推定し、推定した各気筒の上死点筒内温度と前記吸気温度検出手段で検出した排気温度に基づいて各気筒の圧縮比を推定することを特徴とする請求項1に記載の多気筒内燃機関。
A cooling water temperature detecting means for detecting a cooling water temperature of the internal combustion engine;
The compression ratio estimation means estimates the cylinder top dead center in-cylinder temperature based on the intake air temperature detected by the intake air temperature detection means and the cooling water temperature detected by the cooling water temperature detection means, and each estimated cylinder 2. The multi-cylinder internal combustion engine according to claim 1, wherein a compression ratio of each cylinder is estimated on the basis of a top dead center in-cylinder temperature and an exhaust temperature detected by the intake air temperature detecting means.
前記圧縮比推定手段は、前記上死点筒内温度と前記吸気温度との比が大きいほど圧縮比が高いと推定することを特徴とする請求項2に記載の多気筒内燃機関。   The multi-cylinder internal combustion engine according to claim 2, wherein the compression ratio estimation means estimates that the compression ratio is higher as the ratio between the top dead center in-cylinder temperature and the intake air temperature is larger. 各気筒に燃料を供給する燃料供給手段を備え、
前記圧縮比推定手段は、前記内燃機関のクランキング中で、かつ前記燃料供給手段からの燃料供給が停止している運転状態で圧縮比を推定することを特徴とする請求項1から3の何れか1つに記載の多気筒内燃機関。
A fuel supply means for supplying fuel to each cylinder;
4. The compression ratio estimation means estimates the compression ratio in an operating state during cranking of the internal combustion engine and when fuel supply from the fuel supply means is stopped. A multi-cylinder internal combustion engine according to claim 1.
JP2010270843A 2010-12-03 2010-12-03 Multi-cylinder internal combustion engine Expired - Fee Related JP5392241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270843A JP5392241B2 (en) 2010-12-03 2010-12-03 Multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270843A JP5392241B2 (en) 2010-12-03 2010-12-03 Multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012117503A true JP2012117503A (en) 2012-06-21
JP5392241B2 JP5392241B2 (en) 2014-01-22

Family

ID=46500626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270843A Expired - Fee Related JP5392241B2 (en) 2010-12-03 2010-12-03 Multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP5392241B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373952B1 (en) * 2012-09-04 2013-12-18 日野自動車株式会社 Exhaust temperature estimation device for internal combustion engine
US10519879B2 (en) 2014-02-17 2019-12-31 Nissan Motor Co., Ltd. Determining in-cylinder pressure by analyzing current of a spark plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351025A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Control device for diesel engine
JP2002129991A (en) * 2000-10-19 2002-05-09 Nissan Motor Co Ltd Valve timing control device for internal combustion engine
JP2005140054A (en) * 2003-11-07 2005-06-02 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351025A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Control device for diesel engine
JP2002129991A (en) * 2000-10-19 2002-05-09 Nissan Motor Co Ltd Valve timing control device for internal combustion engine
JP2005140054A (en) * 2003-11-07 2005-06-02 Toyota Motor Corp Control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373952B1 (en) * 2012-09-04 2013-12-18 日野自動車株式会社 Exhaust temperature estimation device for internal combustion engine
US9127586B2 (en) 2012-09-04 2015-09-08 Hino Motors, Ltd. Apparatus for estimating exhaust gas temperature of internal combustion engine
US10519879B2 (en) 2014-02-17 2019-12-31 Nissan Motor Co., Ltd. Determining in-cylinder pressure by analyzing current of a spark plug

Also Published As

Publication number Publication date
JP5392241B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP3966096B2 (en) Injection amount control device for internal combustion engine
US9261031B2 (en) Control device for internal combustion engine and method for controlling internal combustion engine
JP4782759B2 (en) Internal combustion engine control device and internal combustion engine control system
US10054071B2 (en) Method of operating an internal combustion engine
JP5790666B2 (en) Cetane number estimation device
US7840334B2 (en) Engine control system
JP5235739B2 (en) Fuel injection control device for internal combustion engine
US20110172898A1 (en) Internal combustion engine system control device
JP6381728B1 (en) Control device for internal combustion engine
JP2008038823A (en) Fresh air amount detecting error calculating device
JP3985602B2 (en) Injection rate control device for internal combustion engine
US7574298B2 (en) Fuel injection controller
JP5392241B2 (en) Multi-cylinder internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP3876766B2 (en) Injection rate control device for internal combustion engine
JP2017223138A (en) Exhaust temperature estimation device for internal combustion engine
JP4637036B2 (en) Control device for internal combustion engine
JP5720479B2 (en) Control device for internal combustion engine
JP5276693B2 (en) Control device for internal combustion engine
EP2290210A1 (en) Fuel supply control system for internal combustion engine
JP5664483B2 (en) Fuel injection control device for internal combustion engine
JP2013224616A (en) Torque estimating device for internal combustion engine and operation control device
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine
JP4032957B2 (en) Intake pipe pressure calculation device and intake pipe temperature calculation device
JP4956473B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5392241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees