JP2012117022A - タイヤトレッド用ゴム組成物 - Google Patents

タイヤトレッド用ゴム組成物 Download PDF

Info

Publication number
JP2012117022A
JP2012117022A JP2010270804A JP2010270804A JP2012117022A JP 2012117022 A JP2012117022 A JP 2012117022A JP 2010270804 A JP2010270804 A JP 2010270804A JP 2010270804 A JP2010270804 A JP 2010270804A JP 2012117022 A JP2012117022 A JP 2012117022A
Authority
JP
Japan
Prior art keywords
group
rubber
silica
weight
conjugated diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010270804A
Other languages
English (en)
Other versions
JP5691456B2 (ja
Inventor
Yoshihiro Kameda
慶寛 亀田
Makoto Ashiura
誠 芦浦
Keisuke Maejima
圭介 前島
Takashi Shirokawa
隆 城川
Masaki Sato
正樹 佐藤
Ayumi Naga
あゆみ 那賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010270804A priority Critical patent/JP5691456B2/ja
Publication of JP2012117022A publication Critical patent/JP2012117022A/ja
Application granted granted Critical
Publication of JP5691456B2 publication Critical patent/JP5691456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】粒子径の大きなシリカを配合し転がり抵抗を低減しながら耐摩耗性及び操縦安定性を向上するようにしたタイヤトレッド用ゴム組成物を提供する。
【解決手段】末端変性基を有する変性共役ジエン系重合体ゴムを30重量%以上、天然ゴムを15重量%以上含むジエン系ゴム100重量部に対し、充填剤を40〜120重量部配合すると共に、前記充填剤がシリカを50重量%以上含み、該シリカが、CTAB比表面積(CTAB)が80〜100m2/g、このCTABに対するDBP吸収量(DBP;単位ml/100g)の比(DBP/CTAB)が1.755以上であるシリカを含むことを特徴とする。
【選択図】図1

Description

本発明は、タイヤトレッド用ゴム組成物に関し、更に詳しくは粒子径の大きなシリカを配合し転がり抵抗を低減しながら耐摩耗性及び操縦安定性を維持・向上するようにしたタイヤトレッド用ゴム組成物に関する。
近年、空気入りタイヤに対する要求性能として、地球環境問題への関心の高まりに伴い燃費性能が優れることが求められている。燃費性能を向上するためには転がり抵抗を低減することが知られている。このため空気入りタイヤのトレッド部を構成するゴム組成物にシリカを配合して発熱を抑え転がり抵抗を低くすることが行われている。特に、特許文献1は、70重量部以上の天然ゴム及び30重量部以下の末端変性スチレン−ブタジエンゴムからなるジエン系ゴム100重量部に、BET比表面積を140m2/g以下のシリカを50〜100重量部配合することにより、転がり抵抗を改良することを提案している。
しかし、シリカは、カーボンブラックに比べジエン系ゴムに対する補強性能が小さいため、特許文献1に記載のように、シリカの粒子径を大きくすると補強性能が一層小さくなり、ゴム組成物の強度や耐摩耗性が不足するという問題があった。また、空気入りタイヤに使用したときにタイヤの操縦安定性が不足するという問題があった。
このため、粒子径の大きなシリカを配合して転がり抵抗を低減しようとしたときに、耐摩耗性及び操縦安定性を維持・向上するようにしたタイヤトレッド用ゴム組成物の開発が求められていた。
特開2008−208309号公報
本発明の目的は、粒子径の大きなシリカを配合し転がり抵抗を低減しながら耐摩耗性及び操縦安定性を従来レベル以上に向上するようにしたタイヤトレッド用ゴム組成物を提供することにある。
上記目的を達成する本発明のタイヤトレッド用ゴム組成物は、末端変性基を有する変性共役ジエン系重合体ゴムを30重量%以上、天然ゴムを15重量%以上含むジエン系ゴム100重量部に対し、充填剤を40〜120重量部配合すると共に、前記充填剤がシリカを50重量%以上含み、該シリカが、CTAB比表面積(CTAB)が80〜100m2/g、このCTABに対するDBP吸収量(DBP;単位ml/100g)の比(DBP/CTAB)が1.755以上であるシリカを含むことを特徴とする。
本発明のタイヤトレッド用ゴム組成物は、末端変性基を有する変性共役ジエン系重合体ゴムを30重量%以上、天然ゴムを15重量%以上含むジエン系ゴム100重量部に、シリカを50重量%以上含む充填剤を30〜120重量部配合し、かつシリカのCTAB比表面積(CTAB)が80〜100m2/gで、このCTABに対するDBP吸収量(DBP)の比(DBP/CTAB)が1.755以上にすることにより、ジエン系ゴムとシリカとの親和性を高くしシリカの分散性を向上するため発熱性を小さくして転がり抵抗を低減すると共に、耐摩耗性及び操縦安定性を従来レベル以上に向上することができる。
前記変性共役ジエン系重合体ゴムの末端変性基としては、ヒドロキシル基含有ポリオルガノシロキサン構造、アルコキシシリル基、ヒドロキシル基、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基から選ばれる少なくとも1種であるとよく、シリカの分散性を一層向上することができる。
このゴム組成物をトレッド部に使用した空気入りタイヤは、転がり抵抗を低減し燃費性能を向上すると共に、耐摩耗性及び操縦安定性を従来レベル以上に向上することができる。
本発明のタイヤトレッド用ゴム組成物を使用した空気入りタイヤの実施形態の一例を示すタイヤ子午線方向の部分断面図である。
図1は、タイヤトレッド用ゴム組成物を使用した空気入りタイヤの実施形態の一例を示し、1はトレッド部、2はサイドウォール部、3はビード部である。
図1において、左右のビード部3間にタイヤ径方向に延在する補強コードをタイヤ周方向に所定の間隔で配列してゴム層に埋設した2層のカーカス層4が延設され、その両端部がビード部3に埋設したビードコア5の周りにビードフィラー6を挟み込むようにしてタイヤ軸方向内側から外側に折り返されている。カーカス層4の内側にはインナーライナー層7が配置されている。トレッド部1のカーカス層4の外周側には、タイヤ周方向に傾斜して延在する補強コードをタイヤ軸方向に所定の間隔で配列してゴム層に埋設した2層のベルト層8が配設されている。この2層のベルト層8の補強コードは層間でタイヤ周方向に対する傾斜方向を互いに逆向きにして交差している。ベルト層8の外周側には、ベルトカバー層9が配置されている。このベルトカバー層9の外周側に、トレッド部1がトレッドゴム層12により形成される。トレッドゴム層12はタイヤトレッド用ゴム組成物により構成されている。各サイドウォール部2のカーカス層4の外側にはサイドゴム層13が配置され、各ビード部3のカーカス層4の折り返し部外側にはリムクッションゴム層14が設けられている。
本発明のタイヤトレッド用ゴム組成物において、ゴム成分はジエン系ゴムであり、そのジエン系ゴムは末端変性基を有する変性共役ジエン系重合体ゴム及び天然ゴムを必ず含むようにする。変性共役ジエン系重合体ゴムは、分子鎖の片末端又は両末端に官能基を有するようにした溶液重合で製造した共役ジエン系重合体ゴムである。変性共役ジエン系重合体ゴムを配合することによりシリカとの親和性を高くし分散性を改善するため、シリカの作用効果を一層向上すると共に、耐摩耗性及び操縦安定性を高くする。
本発明において、変性共役ジエン系重合体の骨格は、共役ジエン系単量体と芳香族ビニル単量体とを共重合して得られた共重合体により構成される。共役ジエン系単量体としては、例えば1,3−ブタジエン、イソプレン(2−メチル−1,3−ブタジエン)、2,3−ジメチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1,3−ペンタジエンなどが例示される。また芳香族ビニル単量体としては、例えばスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、α−メチルスチレン、2,4−ジメチルスチレン、2,4−ジイソプロピルスチレン、4−tert−ブチルスチレン、ジビニルベンゼン、tert−ブトキシスチレン、ビニルベンジルジメチルアミン、(4−ビニルベンジル)ジメチルアミノエチルエーテル、N,N−ジメチルアミノエチルスチレン、ビニルピリジンなどが挙げられる。
骨格となる共役ジエン系重合体は、その末端がイソプレン単位ブロックによって構成されることが好ましい。末端がイソプレン単位ブロックにより構成されることにより、その末端を変性し、シリカを配合したときに、変性共役ジエン系重合体とシリカとの親和性が良好となり、低発熱性、耐摩耗性が良好となる。したがって、重合体を構成する共役ジエン単量体単位が、例えばスチレン−ブタジエン重合体のように、イソプレン単位以外の共役ジエンを含む場合には、活性末端を有する重合体を含有する溶液に、分子鎖の両末端を変性する前にイソプレンを添加することにより、その重合体末端にイソプレン単位ブロックを導入することが好ましい。
本発明において、変性共役ジエン系重合体ゴムの末端を変性する官能基としては、例えばヒドロキシル基含有ポリオルガノシロキサン構造、アルコキシシリル基、ヒドロキシル基、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基等を例示することができる。なかでもアルコキシル基、ヒドロキシル基を含むオルガノシロキサン構造、ヒドロキシル基、カルボキシル基が好ましい。
本発明において、変性共役ジエン系重合体ゴムとしては、上述した変性基を有するものであれば特に制限されるものではないが、炭化水素溶媒中、有機活性金属化合物を開始剤として用いて共役ジエン系単量体と芳香族ビニル単量体とを共重合させた活性共役ジエン系重合体鎖に、その重合体鎖の活性末端と反応可能な官能基を有する少なくとも1種類の化合物を反応させた末端変性基を有し、この末端変性基がシリカとの相互作用を有する官能基を含む変性共役ジエン系重合体ゴムが好ましい。また変性共役ジエン系重合体ゴムは、好ましくは芳香族ビニル単位含有量が38〜48重量%、ビニル単位含有量が20〜35%、重量平均分子量が60万〜100万であるとよい。
共役ジエン系重合体は、上述した共役ジエン系単量体及び芳香族ビニル単量体を、炭化水素溶媒中で有機活性金属化合物を開始剤として共重合して調製する。炭化水素溶媒としては、通常使用される溶媒であればよく、例えばシクロヘキサン、n−ヘキサン、ベンゼン、トルエン等が例示される。
使用する有機活性金属触媒としては、有機アルカリ金属化合物が好ましく使用され、例えばn−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物が挙げられる。また、3,3−(N,N−ジエメチルアミノ)−1−プロピルリチウム、3−(N,N−ジエチルアミノ)−1−プロピルリチウム、3−(N,N−ジプロピルアミノ)−1−プロピルリチウム、3−モルホリノ−1−プロピルリチウム、3−イミダゾール−1−プロピルリチウム及びこれらをブタジエン、イソプレン又はスチレン1〜10ユニットにより鎖延長した有機リチウム化合物なども使用することができる。
また、重合反応において、芳香族ビニル単量体を共役ジエン系単量体とランダムに共重合する目的で、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラハイドロフラン、2,2−ビス(2−オキソラニル)プロパン等のエーテル類、トリエチルアミン、テトラメチルエチレンジアミン等のアミン類等の非プロトン性極性化合物を添加することも実施可能である。
共役ジエン系単量体及び芳香族ビニル単量体を共重合して得られた活性共役ジエン系重合体鎖の活性末端に、反応可能な官能基を有する化合物を少なくとも1種結合させることにより、末端変性基を生成することができる。ここで、活性共役ジエン系重合体鎖の活性末端に反応可能な官能基を有する化合物は、少なくとも一つの活性共役ジエン系重合体鎖と結合すればよく、一つの化合物に一つ以上の活性共役ジエン系重合体鎖が結合することができる。すなわち、変性共役ジエン系重合体ゴムは、共役ジエン系重合体の両末端に変性基を有した変性ゴム、任意にその変性基が1以上の他の共役ジエン系重合体と結合した変性ゴム及びこれら複数の変性ゴムの混合物を含むことができる。また、活性共役ジエン系重合体鎖の活性末端とこの活性末端に反応可能な官能基を有する化合物との反応は、一段或いは多段に反応させることができる。また同一或いは異なる化合物を、逐次的に反応させることができる。
活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物としては、例えばスズ化合物、ケイ素化合物、シラン化合物、アミド化合物および/またはイミド化合物、イソシアネートおよび/またはイソチオシアネート化合物、ケトン化合物、エステル化合物、ビニル化合物、オキシラン化合物、チイラン化合物、オキセタン化合物、ポリスルフィド化合物、ポリシロキサン化合物、ポリオルガノシロキサン化合物、ポリエーテル化合物、ポリエン化合物、ハロゲン化合物、フラーレン類などを有する化合物を挙げることができる。なかでもポリオルガノシロキサン化合物が好ましい。これら化合物は一種類の化合物、或いは複数の化合物を組み合わせて、重合体に結合させることができる。
ポリオルガノシロキサン化合物としては、下記一般式(I)〜(III)で表される化合物が好ましい。すなわち、活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物は、これらのポリオルガノシロキサン化合物から選ばれる少なくとも1種類を含むとよく、複数の種類を組み合わせてもよい。またこれらのポリオルガノシロキサン化合物と、活性末端と反応可能な官能基を有する他の化合物とを組み合わせてもよい。
一般式(I)
(上記式(I)において、R1〜R8は、炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違してもよい。X1およびX4は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基、または炭素数1〜6のアルキル基もしくは炭素数6〜12のアリール基であり、X1およびX4は互いに同一であっても相違してもよい。X2は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。X3は、2〜20のアルキレングリコールの繰返し単位を含有する基であり、X3の一部は2〜20のアルキレングリコールの繰返し単位を含有する基から導かれる基であってもよい。mは3〜200の整数、nは0〜200の整数、kは0〜200の整数である。)
一般式(II)
(上記式(II)において、R9〜R16は、炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違してもよい。X5〜X8は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。)
一般式(III):
(上記式(III)において、R17〜R19は、炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違してもよい。X9〜X11は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。)
上記一般式(I)で表されるポリオルガノシロキサンにおいて、R1〜R8、X1およびX4を構成する炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基などが挙げられる。炭素数6〜12のアリール基としては、例えば、フェニル基、メチルフェニル基などが挙げられる。これらのアルキル基およびアリール基の中では、メチル基が特に好ましい。
一般式(I)のポリオルガノシロキサンにおいて、X1、X2およびX4を構成する重合体鎖の活性末端と反応する官能基を有する基としては、炭素数1〜5のアルコキシル基、2−ピロリドニル基を含有する炭化水素基、およびエポキシ基を含有する炭素数4〜12の基が好ましい。
1、X2およびX4を構成する炭素数1〜5のアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などが挙げられる。なかでも、メトキシ基が好ましい。X1、X2およびX4の少なくとも一つが炭素数1〜5のアルコキシル基の場合、活性共役ジエン系重合体鎖の活性末端にアルコキシル基を有するポリオルガノシロキサンを反応させると、ケイ素原子とアルコキシル基の酸素原子との結合が開裂して、そのケイ素原子に活性共役ジエン系重合体鎖が直接結合して単結合を形成する。
1、X2およびX4を構成する2−ピロリドニル基を含有する炭化水素基としては、下記一般式(IV)で表される基が好ましく挙げられる。
(式(IV)中、jは2〜10の整数である。特にjは2であることが好ましい。)
このようにX1,X2及びX4の少なくとも一つが2−ピロリドニル基を含有する炭化水素基を含むポリオルガノシロキサンを、活性共役ジエン系重合体鎖の活性末端に反応させると、2−ピロリドニル基を構成するカルボニル基の炭素−酸素結合が開裂して、その炭素原子に重合体鎖が結合した構造を形成する。
1、X2およびX4を構成するエポキシ基を有する炭素数4〜12の基としては、下記一般式(V)で表される基が好ましく挙げられる。
一般式(V): ZYE
上記式(V)中、Zは炭素数1〜10のアルキレン基またはアルキルアリーレン基であり、Yはメチレン基、硫黄原子または酸素原子であり、Eはエポキシ基を有する炭素数2〜10の炭化水素基である。これらの中でも、Yが酸素原子であるものが好ましく、Yが酸素原子かつEがグリシジル基であるものがより好ましく、Zが炭素数3のアルキレン基、Yが酸素原子かつEがグリシジル基であるものが特に好ましい。
一般式(I)で表されるポリオルガノシロキサンにおいて、X1、X2およびX4の少なくとも一つがエポキシ基を含有する炭素数4〜12の基の場合、活性共役ジエン系重合体鎖の活性末端にポリオルガノシロキサンを反応させると、エポキシ環を構成する炭素−酸素結合が開裂して、その炭素原子に重合体鎖が結合した構造を形成する。
一般式(I)で表されるポリオルガノシロキサンにおいて、X1およびX4としては、上記の中でも、エポキシ基を含有する炭素数4〜12の基または炭素数1〜6のアルキル基が好ましく、また、X2としては、エポキシ基を含有する炭素数4〜12の基が好ましい。
一般式(I)で表されるポリオルガノシロキサンにおいて、X3は、2〜20のアルキレングリコールの繰返し単位を含有する基である。2〜20のアルキレングリコールの繰返し単位を含有する基としては、下記一般式(VI)で表される基が好ましい。
式(VI)中、tは2〜20の整数であり、R1は炭素数2〜10のアルキレン基またはアルキルアリーレン基であり、R3は水素原子またはメチル基であり、R2は炭素数1〜10のアルコキシル基またはアリーロキシ基である。これらの中でも、tが2〜8の整数であり、R1が炭素数3のアルキレン基であり、R3が水素原子であり、かつR2がメトキシ基であるものが好ましい。
上記一般式(II)で表されるポリオルガノシロキサンにおいて、R9〜R16は炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。X5〜X8は、重合体鎖の活性末端と反応する官能基を有する基である。
上記一般式(III)で表されるポリオルガノシロキサンにおいて、R17〜R19は炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。X9〜X11は、重合体鎖の活性末端と反応する官能基を有する基である。sは1〜18の整数である。
上記一般式(II)および上記一般式(III)で表されるポリオルガノシロキサンにおいて、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、ならびに重合体鎖の活性末端と反応する官能基を有する基は、一般式(I)のポリオルガノシロキサンについて説明したものと同様である。
さらに、上記反応により生成した末端変性基は、シリカとの相互作用を有する官能基を有する。このシリカとの相互作用を有する官能基は、上述した化合物の構造に含まれた官能基でよい。また、上記化合物と活性末端との反応により生じ得た官能基でもよい。シリカとの相互作用を有する官能基としては、特に制限されるものではないが、例えばアルコキシシリル基、ヒドロキシル基、ヒドロキシル基含有ポリオルガノシロキサン構造、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基等を例示することができる。なかでもアルコキシル基、ヒドロキシル基を含むオルガノシロキサン構造、ヒドロキシル基、カルボキシル基が好ましい。このように末端変性基がシリカとの相互作用を有する官能基を含むことにより、シリカとの親和性をより高くし、分散性を大幅に改良することができる。
変性共役ジエン系重合体ゴムにおける末端変性基の濃度は、変性共役ジエン系重合体ゴムの重量平均分子量(Mw)との関係で決められる。変性共役ジエン系重合体ゴムの重量平均分子量は好ましくは60万〜100万、より好ましくは65〜85万であるとよい。変性共役ジエン系重合体ゴムの重量平均分子量が60万未満であると、変性共役ジエン系重合体ゴム末端の変性基濃度が高くなり、ゴム組成物の特性がシリカの分散性は良化するが、重合体自身の分子量が低いために、強度、剛性が発現しない可能性があり、耐摩耗性及び操縦安定性を改良する効果も小さくなってしまう。また変性共役ジエン系重合体ゴムの重量平均分子量が100万を超えると、変性共役ジエン系重合体ゴム末端の変性基濃度が低くなりシリカとの親和性が不足し、分散性が悪化するため転がり抵抗を低減する効果が不足する。また同時にゴム組成物の剛性、強度及び耐摩耗性が低下する。なお変性共役ジエン系重合体ゴムの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
変性共役ジエン系重合体ゴムは、芳香族ビニル単位含有量が好ましくは38〜48重量%、より好ましくは40〜45重量%であるとよい。変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量をこのような範囲内にすることにより、ゴム組成物の剛性、強度及び耐摩耗性を高くすると共に、空気入りタイヤにしたときの操縦安定性をより高くすることができる。また変性共役ジエン系重合体ゴム以外の他のジエン系ゴムを配合するとき、変性共役ジエン系重合体ゴムが他のジエン系ゴムに対して微細な相分離形態を形成する。このため、ゴム組成物にしたとき、変性共役ジエン系重合体ゴムの剛性、強度及び耐摩耗性が損なわれないようにする。更に、変性共役ジエン系重合体ゴムがシリカ粒子の近くに局在化するようになり、その末端変性基がシリカに対して効率的に作用することにより親和性を一層高くし、シリカの分散性を良好にすることができる。変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が38重量%未満であると、他のジエン系ゴムに対して微細な相分離形態を形成する作用が十分に得られない。またゴム組成物の剛性及び強度を高くする効果が十分に得られない。また変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が48重量%を超えると、共役ジエン系重合体ゴムのガラス転移温度(Tg)が上昇し、粘弾性特性のバランスが悪くなり、発熱性を低減する効果が得られにくくなる。なお変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。
変性共役ジエン系重合体ゴムのビニル単位含有量は好ましくは20〜35重量%、より好ましくは26〜34重量%にする。変性共役ジエン系重合体ゴムのビニル単位含有量を20〜35重量%にすることにより、変性共役ジエン系重合体ゴムのガラス転移温度(Tg)を適正化することができる。また、他のジエン系ゴムに対して形成された変性共役ジエン系重合体ゴムの微細な相分離形態を安定化することができる。変性共役ジエン系重合体ゴムのビニル単位含有量が20重量%未満であると、変性共役ジエン系重合体ゴムのTgが低くなり、湿潤路でのグリップの指標である0℃における動的粘弾性特性の損失正接(tanδ)が低下してしまう。また、変性共役ジエン系重合体ゴムの微細な相分離形態を安定化することができない。また変性共役ジエン系重合体ゴムのビニル単位含有量が35重量%を超えると、加硫速度が低下したり、強度や剛性が低下したりする可能性がある。なお変性共役ジエン系重合体ゴムのビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。
変性共役ジエン系重合体ゴムは、油展することによりゴム組成物の成形加工性を良好にすることができる。油展量は特に制限させるものではないが、変性共役ジエン系重合体ゴム100重量部に対し、好ましくは40重量部以下にするとよい。変性共役ジエン系重合体ゴムの油展量が40重量部を超えると、ゴム組成物にオイル、軟化剤、粘着性付与剤等を配合するとき組成設計の自由度が小さくなる。
また、変性共役ジエン系重合体ゴムのガラス転移温度(Tg)は、特に限定されるものではないが、好ましくは−30〜−15℃にするとよい。変性共役ジエン系重合体ゴムのTgをこのような範囲内にすることにより、耐摩耗性及び操縦安定性を確保すると共に、転がり抵抗を低減することができる。変性共役ジエン系重合体ゴムのガラス転移温度(Tg)は、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度とする。また、変性共役ジエン系重合体ゴムが油展品であるときは、油展成分(オイル)を含まない状態における変性共役ジエン系重合体ゴムのガラス転移温度とする。
本発明において、変性共役ジエン系重合体ゴムの含有量は、ジエン系ゴム100重量%中、30重量%以上、好ましくは30〜85重量%、より好ましくは45〜80重量%である。変性共役ジエン系重合体ゴムの含有量がジエン系ゴム中の30重量%未満であると、シリカとの親和性を改良し、その分散性を良好にすることができない。また、耐摩耗性及び操縦安定性を改良することができない。
本発明のタイヤトレッド用ゴム組成物は、天然ゴムを含有することにより低転がり抵抗性及び操縦安定性を高いレベルで維持しながら耐摩耗性を一層改良することができる。天然ゴムの含有量は、ジエン系ゴム100重量%中、15重量%以上、好ましくは15〜70重量%、より好ましくは20〜55重量%である。天然ゴムの含有量がジエン系ゴム中の15重量%未満であると、ゴム組成物の耐摩耗性を改良する効果が十分に得られない。
本発明において、ゴム成分として変性共役ジエン系重合体ゴム及び天然ゴム以外の他のジエン系ゴムを配合することができる。他のジエン系ゴムとしては、例えばイソプレンゴム、ブタジエンゴム、末端変性していない溶液重合スチレンブタジエンゴム(S−SBR)、乳化重合スチレンブタジエンゴム(E−SBR)、ブチルゴム、ハロゲン化ブチルゴム等を例示することができる。好ましくはイソプレンゴム、ブタジエンゴム、乳化重合スチレンブタジエンゴムがよい。このようなジエン系ゴムは、単独又は複数のブレンドとして使用することができる。他のジエン系ゴムの含有量は、ジエン系ゴム100重量%中、55重量%以下にするとよい。
本発明において、シリカを50重量%以上含む充填剤をジエン系ゴム100重量部に対し40〜120重量部、好ましくは50〜90重量部配合する。充填剤の配合量をこのような範囲にすることにより、ゴム組成物の低転がり抵抗と耐摩耗性及び操縦安定性とをより高いレベルでバランスさせることができる。充填剤の配合量が40重量部未満であると、耐摩耗性及び操縦安定性を確保することができない。充填剤の配合量が120重量部を超えると、発熱性が大きくなり転がり抵抗が悪化する。
また充填剤100重量%中のシリカの含有量は50重量%以上、好ましくは60〜95重量%にする。充填剤中のシリカの含有量をこのような範囲にすることにより、ゴム組成物の低転がり抵抗と耐摩耗性及び操縦安定性とを両立する。また、変性共役ジエン系重合体ゴムの配合により、シリカとの親和性を高くし分散性を改善するため、シリカ配合の効果を向上する。
シリカとしては、CTAB比表面積(CTAB)が80〜100m2/gで、このCTABに対するDBP吸収量(DBP;単位ml/100g)の比(DBP/CTAB)が1.755以上であるシリカを必ず含むようにする。シリカは、単独の種類を使用してもよいし、複数の種類を組み合わせて使用してもよい。複数の種類を組み合わせて使用するときは、少なくとも1種が上述したCTAB及び比(DBP/CTAB)の条件を満たせばよい。
シリカのCTAB比表面積(CTAB)は80〜100m2/gにする。シリカのCTABが80m2/g未満であると、ゴム組成物に対する補強性が不十分となり耐摩耗性及び操縦安定性が不足する。またシリカのCTABが100m2/gを超えると、転がり抵抗が大きくなる。なおシリカのCTABはJIS K6217−3に準拠して求めるものとする。
シリカのCTAB比表面積(CTAB)に対するDBP吸収量(DBP)の比(DBP/CTAB)は1.755以上、好ましくは1.770以上にする。比(DBP/CTAB)が1.755未満であると、耐摩耗性が不足する。なお、シリカのDBP吸収量(単位ml/100g)は、JIS K6217−4吸油量A法に準拠して求めるものとする。
本発明で使用するシリカは、上述した特性を有するシリカであればよく、製品化されたもののなかから適宜選択してもよいし、通常の方法で上述した特性を有するように製造してもよい。シリカの種類としては、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。
本発明のゴム組成物において、シリカと共にシランカップリング剤を配合することが好ましく、シリカの分散性を向上しジエン系ゴムとの補強性をより高くすることができる。シランカップリング剤は、シリカ配合量に対して好ましくは3〜15重量%、より好ましくは5〜12重量%配合するとよい。シランカップリング剤の配合量がシリカ重量の3重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤の配合量が15重量%を超えると、シランカップリング剤同士が縮合してしまい、所望の効果を得ることができなくなる。
シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス−(3−トリエトキシシリルプロピル)テトラサルファイド、ビス(3−トリエトキシシリルプロピル)ジサルファイド、3−トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ−メルカプトプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン等を例示することができる。
本発明のタイヤトレッド用ゴム組成物は、シリカ以外の他の充填剤を配合することができる。シリカ以外の他の充填剤としては、例えばカーボンブラック、クレー、マイカ、タルク、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等が例示される。なかでもカーボンブラックが好ましい。カーボンブラックを含む他の充填剤を配合することによりゴム強度を高くすることができる。他の充填剤の含有量は、充填剤100重量%中50重量%以下、好ましくは1〜30重量%にするとよい。他の充填剤の含有量が50重量%を超えると転がり抵抗が悪化する。
タイヤトレッド用ゴム組成物には、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤、液状ポリマー、テルペン系樹脂、熱硬化性樹脂などのタイヤトレッド用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤトレッド用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって製造することができる。
本発明のタイヤトレッド用ゴム組成物は、空気入りタイヤに好適に使用することができる。このゴム組成物をトレッド部に使用した空気入りタイヤは、転がり抵抗が低く燃費性能が優れると共に、耐摩耗性及び操縦安定性を従来レベル以上に向上することができる。
以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
表1〜3に示す配合からなる17種類のタイヤトレッド用ゴム組成物(実施例1〜6、比較例1〜11)を、硫黄、加硫促進剤を除く成分を16Lの密閉型ミキサーで150℃、6分間混練し放出し室温冷却したマスターバッチに、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。
得られた17種類のタイヤトレッド用ゴム組成物を所定形状の金型中で、160℃、20分間プレス加硫して加硫ゴムサンプルを作製し、下記に示す方法で転がり抵抗(60℃のtanδ)及び耐摩耗性を測定した。
転がり抵抗:tanδ(60℃)
得られた加硫ゴムサンプルの転がり抵抗を、転がり抵抗の指標であることが知られている損失正接tanδ(60℃)により評価した。tanδ(60℃)は、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hz、温度60℃の条件下で測定した。得られた結果は比較例1を100とする指数として、表1〜3に示した。この指数が小さいほどtanδ(60℃)が小さく低発熱であり、空気入りタイヤにしたとき転がり抵抗が小さく燃費性能が優れることを意味する。
耐摩耗性
得られた加硫ゴムサンプルの耐摩耗性を、JIS K6264に準拠して、ランボーン摩耗試験機(岩本製作所社製)を使用して、温度20℃、荷重39N、スリップ率30%、時間4分の条件で摩耗量を測定した。得られた結果は、比較例1の値の逆数を100とする指数として、表1〜3に示した。この指数が大きいほど耐摩耗性が優れることを意味する。
次に、タイヤ構造が図1に示す構成で、タイヤサイズが225/50R17の空気入りタイヤを、上述した17種類のタイヤトレッド用ゴム組成物をトレッド部に使用して4本ずつ製作した。得られた17種類の空気入りタイヤの操縦安定性を下記に示す方法により評価した。
操縦安定性
得られた空気入りタイヤをリムサイズ7×Jのホイールに組付け、国産2.5リットルクラスの試験車両に装着し、空気圧230kPaの条件で乾燥路面からなる1周2.6kmのテストコースを実車走行させ、そのときの操縦安定性を専門パネラー3名による感応評価により採点した。得られた結果は比較例1を100とする指数として、表1〜3に示した。この指数が大きいほど乾燥路面における操縦安定性が優れていることを意味する。
なお、表1〜3において使用した原材料の種類を下記に示す。
・変性S−SBR1:末端にアルコキシル基を有する変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が30重量%、ビニル単位含有量が61重量%、重量平均分子量(Mw)が59万、Tgが−25℃、日本ゼオン社製Nipol NS530、ゴム成分100重量部に対しオイル分20重量部を含む末端変性溶液重合スチレンブタジエンゴム
・変性S−SBR2:末端にヒドロキシル基含有ポリオルガノシロキサン構造を有する変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が42重量%、ビニル単位含有量が32重量%、重量平均分子量(Mw)が75万、Tgが−25℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
〔変性S−SBR2の製造方法〕
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4533g、スチレン338.9g(3.254mol)、ブタジエン468.0g(8.652mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′−テトラメチルエチレンジアミン0.189mL(1.271mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n−ブチルリチウム5.061mL(7.945mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6−ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.281g(0.318mmol)を添加し、30分間反応させた。さらに、下記に示すポリオルガノシロキサンAの40wt%キシレン溶液18.3g(0.318mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油(株)製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S−SBR1を得た。
ポリオルガノシロキサンA; 前記一般式(I)の構造を有するポリオルガノシロキサンであって、m=80、n=0、k=120、X1,X4,R1〜R3,R5〜R8がそれぞれメチル基(−CH3)、X2が下記式で表される炭化水素基であるポリオルガノシロキサン
・変性S−SBR3:末端にヒドロキシル基を有する変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が37重量%、ビニル単位含有量が43重量%、重量平均分子量(Mw)が120万、Tgが−27℃、旭化成ケミカルズ社製タフデン E581、ゴム成分100重量部に対しオイル分37.5重量部を含む末端変性溶液重合スチレンブタジエンゴム
・変性S−SBR4:末端にカルボキシル基を有する変性共役ジエン系重合体ゴム、スチレン含有量が41重量%、ビニル含有量が30重量%、重量平均分子量(Mw)が72万、Tgが−25℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した。
変性S−SBR4の製造方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン3138g、スチレン228.4g(2.190mol)、ブタジエン328.6g(6.075mol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n−ブチルリチウム2.045mL(3.211mmol)を添加した。重合転化率が100%に到達した後、四塩化ケイ素0.0568g(0.334mmol)添加し、50℃にて15分間撹拌した。さらに、1,1−ジフェニルエチレン0.0861g(0.478mmol)を添加し50℃にて1時間攪拌した。次に、二酸化炭素を間欠的にス数回バブリングした。続いて、10%塩酸−メタノール1mLを添加して1時間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油(株)製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S−SBR4を得た。
・S−SBR:未変性の溶液重合スチレンブタジエンゴム、スチレン含有量が25重量%、ビニル含有量が50重量%、重量平均分子量(Mw)が72万、Tgが−24℃、LANXESS社製Buna VSL 5025−2、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・E−SBR:乳化重合スチレンブタジエンゴム、芳香族ビニル単位含有量が35重量%、ビニル単位含有量が13重量%、重量平均分子量(Mw)が76万、Tgが−28℃、日本ゼオン社製Nipol 1739、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・シリカ1:Rhodia社製Zeosil 115GR、CTAB吸着比表面積106m2/g、DBP/CTAB=1.722
・シリカ2:下記の製造方法により得られた試作シリカであり、CTAB吸着比表面積が86m2/g、DBP/CTABが1.802
シリカ2の製造方法は、1m3の反応容器に158Lのケイ酸ナトリウム水溶液(SiO2濃度:10g/L、モル比:SiO2/Na2O=3.41)を投入し、90℃に昇温した。次いで、22%硫酸88Lとケイ酸ナトリウム水溶液(SiO2濃度:90g/L、モル比:SiO2/Na2O=3.41)522Lを同時に197分かけて投入した。10分間熟成後、22%硫酸17Lを40分かけて投入した。この反応は反応液温度を90℃に保持し、反応液を常時攪拌しながら行い、最終的に反応液のpHが3.1のシリカスラリーを得た。これをフィルタープレスでろ過、水洗し、シリカ湿ケークを乾燥し、試作シリカ(シリカ2)を得た。
・シリカ3:下記の製造方法により得られた試作シリカであり、CTAB吸着比表面積が65m2/g、DBP/CTABが1.850
シリカ3の製造方法は、1m3の反応容器に132Lのケイ酸ナトリウム水溶液(SiO2濃度:10g/L、モル比:SiO2/Na2O=3.41)を投入し、90℃に昇温した。次いで、22%硫酸93Lとケイ酸ナトリウム水溶液(SiO2濃度:90g/L、モル比:SiO2/Na2O=3.41)552Lを同時に221分かけて投入した。10分間熟成後、22%硫酸17Lを42分かけて投入した。この反応は反応液温度を90℃に保持し、反応液を常時攪拌しながら行い、最終的に反応液のpHが3.3のシリカスラリーを得た。これをフィルタープレスでろ過、水洗し、シリカ湿ケークを乾燥し、試作シリカ(シリカ3)を得た。
・シリカ4:下記の製造方法により得られた試作シリカであり、CTAB吸着比表面積が115m2/g、DBP/CTABが1.850
シリカ4の製造方法は、1m3の反応容器に194Lのケイ酸ナトリウム水溶液(SiO2濃度:10g/L、モル比:SiO2/Na2O=3.41)を投入し、90℃に昇温した。次いで、22%硫酸81Lとケイ酸ナトリウム水溶液(SiO2濃度:90g/L、モル比:SiO2/Na2O=3.41)481Lを同時に163分かけて投入した。10分間熟成後、22%硫酸16Lを33分かけて投入した。この反応は反応液温度を90℃に保持し、反応液を常時攪拌しながら行い、最終的に反応液のpHが2.9のシリカスラリーを得た。これをフィルタープレスでろ過、水洗し、シリカ湿ケークを乾燥し、試作シリカ(シリカ4)を得た。
・シリカ5:下記の製造方法により得られた試作シリカであり、CTAB吸着比表面積が90m2/g、DBP/CTABが1.650
シリカ5の製造方法は、1m3の反応容器に163Lのケイ酸ナトリウム水溶液(SiO2濃度:10g/L、モル比:SiO2/Na2O=3.41)を投入し、90℃に昇温した。次いで、22%硫酸87Lとケイ酸ナトリウム水溶液(SiO2濃度:90g/L、モル比:SiO2/Na2O=3.41)516Lを同時に192分かけて投入した。10分間熟成後、22%硫酸17Lを37分かけて投入した。この反応は反応液温度を90℃に保持し、反応液を常時攪拌しながら行い、最終的に反応液のpHが3.1のシリカスラリーを得た。これをフィルタープレスでろ過、水洗し、シリカ湿ケークを乾燥し、試作シリカ(シリカ5)を得た。
・カーボンブラック:東海カーボン社製シーストKH
・シランカップリング剤:エボニックデグサ社製Si69
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸YR
・老化防止剤:フレキシス社製サントフレックス6PPD
・ワックス:大内新興化学工業社製サンノック
・加工助剤:SCHILL&SEILACHER Gmbh.&CO.製STRUKTOL A50P
・オイル:昭和シェル石油社製エキストラクト 4号S
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤1:加硫促進剤CBS、大内新興化学工業社製ノクセラーCZ−G
・加硫促進剤2:加硫促進剤DPG、大内新興化学工業社製ノクセラーD
表2から明らかなように、実施例1〜6のタイヤトレッド用ゴム組成物は、低転がり抵抗性(60℃のtanδ)、耐摩耗性及び操縦安定性に優れることが確認された。
表1から明らかなように、比較例1,2及び3のゴム組成物は、シリカ1のCTABが100m2/gより大きく、DBP/CTABが1.755未満であるので、それぞれ実施例1,3及び4と比べ転がり抵抗が大きい。比較例4のゴム組成物は、変性共役ジエン系重合体ゴムの代わりに未変性のS−SBRを配合したので転がり抵抗を低減する効果が得られず、また耐摩耗性及び操縦安定性が悪化する。比較例5及び6のゴム組成物は、天然ゴムを配合しなかったので、耐摩耗性及び操縦安定性が不足する。
表3から明らかなように、比較例7のゴム組成物は、シリカ3のCTABが80m2/g未満であるので、転がり抵抗性は大きく低減し良化するが、耐摩耗性能,操縦安定性能が大きく悪化する。比較例8のゴム組成物は、シリカ4のCTABが100m2/gを超えるので、耐摩耗性能,操縦安定性能は向上するが、転がり性能は悪化する。比較例9のゴム組成物は、シリカ5のDBP/CTABが1.755未満であるので、転がり性能は良好な結果を示しているが、耐摩耗性,操縦安定性能が悪化する。比較例10のゴム組成物は、変性S−SBR1の配合量がジエン系ゴム中の30重量%未満であるので転がり抵抗を低減することができない。また耐摩耗性及び操縦安定性を高くすることができない。比較例11のゴム組成物は、充填剤中のシリカの含有量が50重量%未満であるので転がり抵抗を低減することができない。
1 トレッド部
12 トレッドゴム層

Claims (3)

  1. 末端変性基を有する変性共役ジエン系重合体ゴムを30重量%以上、天然ゴムを15重量%以上含むジエン系ゴム100重量部に対し、充填剤を40〜120重量部配合すると共に、前記充填剤がシリカを50重量%以上含み、該シリカが、CTAB比表面積(CTAB)が80〜100m2/g、このCTABに対するDBP吸収量(DBP;単位ml/100g)の比(DBP/CTAB)が1.755以上であるシリカを含むことを特徴とするタイヤトレッド用ゴム組成物。
  2. 前記変性共役ジエン系重合体ゴムの末端変性基が、ヒドロキシル基含有ポリオルガノシロキサン構造、アルコキシシリル基、ヒドロキシル基、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基から選ばれる少なくとも1種であることを特徴とする請求項1に記載のタイヤトレッド用ゴム組成物。
  3. 請求項1又は2に記載のタイヤトレッド用ゴム組成物を使用した空気入りタイヤ。
JP2010270804A 2010-12-03 2010-12-03 タイヤトレッド用ゴム組成物 Active JP5691456B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270804A JP5691456B2 (ja) 2010-12-03 2010-12-03 タイヤトレッド用ゴム組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270804A JP5691456B2 (ja) 2010-12-03 2010-12-03 タイヤトレッド用ゴム組成物

Publications (2)

Publication Number Publication Date
JP2012117022A true JP2012117022A (ja) 2012-06-21
JP5691456B2 JP5691456B2 (ja) 2015-04-01

Family

ID=46500247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270804A Active JP5691456B2 (ja) 2010-12-03 2010-12-03 タイヤトレッド用ゴム組成物

Country Status (1)

Country Link
JP (1) JP5691456B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047295A (ja) * 2012-08-31 2014-03-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2014091777A (ja) * 2012-11-02 2014-05-19 Bridgestone Corp タイヤトレッド用ゴム組成物の製造方法
JP2015086307A (ja) * 2013-10-31 2015-05-07 日本ゼオン株式会社 共役ジエン系ゴム組成物およびゴム架橋物
JP5846333B2 (ja) * 2013-02-25 2016-01-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2016031783A1 (ja) * 2014-08-27 2016-03-03 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2016047888A (ja) * 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2016047886A (ja) * 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JPWO2015098264A1 (ja) * 2013-12-27 2017-03-23 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
WO2023013639A1 (ja) * 2021-08-04 2023-02-09 株式会社Eneosマテリアル 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155383A (ja) * 2001-11-21 2003-05-27 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
JP2005041947A (ja) * 2003-07-24 2005-02-17 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いたタイヤ
JP2006306947A (ja) * 2005-04-27 2006-11-09 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及び空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155383A (ja) * 2001-11-21 2003-05-27 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
JP2005041947A (ja) * 2003-07-24 2005-02-17 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いたタイヤ
JP2006306947A (ja) * 2005-04-27 2006-11-09 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及び空気入りタイヤ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047295A (ja) * 2012-08-31 2014-03-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2014091777A (ja) * 2012-11-02 2014-05-19 Bridgestone Corp タイヤトレッド用ゴム組成物の製造方法
JP5846333B2 (ja) * 2013-02-25 2016-01-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2015086307A (ja) * 2013-10-31 2015-05-07 日本ゼオン株式会社 共役ジエン系ゴム組成物およびゴム架橋物
JPWO2015098264A1 (ja) * 2013-12-27 2017-03-23 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
WO2016031783A1 (ja) * 2014-08-27 2016-03-03 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2016047888A (ja) * 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2016047886A (ja) * 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2016047884A (ja) * 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
CN106795336A (zh) * 2014-08-27 2017-05-31 横滨橡胶株式会社 轮胎用橡胶组合物和充气轮胎
US10450454B2 (en) 2014-08-27 2019-10-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire and pneumatic tire
WO2023013639A1 (ja) * 2021-08-04 2023-02-09 株式会社Eneosマテリアル 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ

Also Published As

Publication number Publication date
JP5691456B2 (ja) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5316660B2 (ja) タイヤトレッド用ゴム組成物
JP5240410B2 (ja) タイヤトレッド用ゴム組成物
JP5447667B2 (ja) タイヤトレッド用ゴム組成物
JP5429255B2 (ja) タイヤトレッド用ゴム組成物及びこれを用いる空気入りタイヤ
JP5691456B2 (ja) タイヤトレッド用ゴム組成物
JP5240409B2 (ja) タイヤトレッド用ゴム組成物
KR101582169B1 (ko) 타이어용 고무 조성물
JP5835409B2 (ja) タイヤトレッド用ゴム組成物
JP5776356B2 (ja) タイヤトレッド用ゴム組成物
JP6019946B2 (ja) タイヤトレッド用ゴム組成物
JP5789968B2 (ja) タイヤトレッド用ゴム組成物
JP6064953B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
EP3196241B1 (en) Tire rubber composition and pneumatic tire
WO2013157545A1 (ja) タイヤ用ゴム組成物、空気入りタイヤ
JP2013166865A (ja) タイヤトレッド用ゴム組成物
JP5838760B2 (ja) タイヤトレッド用ゴム組成物
JP6651787B2 (ja) タイヤ用ゴム組成物
JP6651788B2 (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250