JP2012108301A - Optical transmitter and method for generating polarization-bit-interleaved signal - Google Patents

Optical transmitter and method for generating polarization-bit-interleaved signal Download PDF

Info

Publication number
JP2012108301A
JP2012108301A JP2010256856A JP2010256856A JP2012108301A JP 2012108301 A JP2012108301 A JP 2012108301A JP 2010256856 A JP2010256856 A JP 2010256856A JP 2010256856 A JP2010256856 A JP 2010256856A JP 2012108301 A JP2012108301 A JP 2012108301A
Authority
JP
Japan
Prior art keywords
signal
optical
output
phase
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010256856A
Other languages
Japanese (ja)
Other versions
JP5691426B2 (en
Inventor
Kazuyuki Ishida
和行 石田
Takashi Sugihara
隆嗣 杉原
Takeshi Yoshida
剛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010256856A priority Critical patent/JP5691426B2/en
Publication of JP2012108301A publication Critical patent/JP2012108301A/en
Application granted granted Critical
Publication of JP5691426B2 publication Critical patent/JP5691426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmitter simply achieving polarization bit interleaving.SOLUTION: The optical transmitter according to present invention for generating polarization-bit-interleaved signal includes: a branching unit for dividing an RZ modulated optical signal into two; a first phase change unit and a second phase change unit that are coupled with the branching unit, operate according to a prescribed modulator driving signal and apply a prescribed phase difference between the branched optical signals; a dual output modulator that includes a merging/branching unit for merging an optical signal output from the first phase change unit with an optical signal output from the second phase change unit and alternately dividing them into two outputs for every one pulse signal; and a polarizing multiplexer for multiplexing two optical signal strings output from the dual output modulator.

Description

本発明は、光ファイバを通信線路として用いる光伝送システムにおいて、偏波ビットインターリーブされた光信号列を生成する光送信器に関する。   The present invention relates to an optical transmitter that generates a polarization bit interleaved optical signal sequence in an optical transmission system using an optical fiber as a communication line.

長距離光伝送システムでは1.5μm帯の光を直接増幅できるエルビウム添加ファイバ増幅器(Erubium Doped Fiber Amplifier:以下、EDFAと略す。)を利用した光中継増幅伝送方式が主流となっている。さらに、近年では広帯域に増幅可能なEDFAにより、波長多重伝送方式を用いた大容量光伝送システムが実現されている。   In the long-distance optical transmission system, an optical relay amplification transmission system using an erbium-doped fiber amplifier (hereinafter abbreviated as EDFA) capable of directly amplifying light in the 1.5 μm band is mainly used. Furthermore, in recent years, a large-capacity optical transmission system using a wavelength division multiplexing transmission system has been realized by an EDFA that can be amplified over a wide band.

さらなる大容量化と低コスト化が要求される昨今、これを実現する手段として1チャネルあたりの伝送速度の増加が考えられ、現在主流の10Gbit/sから40Gbit/s、100Gbit/sへの期待が高まっている。   In recent years, where higher capacity and lower cost are required, an increase in transmission speed per channel is considered as a means to realize this, and expectations are currently increasing from 10 Gbit / s to 40 Gbit / s, 100 Gbit / s. It is growing.

伝送速度を増加させるには受信端においてより高い光信号対雑音比を必要とするため、光ファイバ中では高い光信号パワーで伝送することが求められる。しかしながら、高い光信号パワーによる伝送は、光ファイバ中における非線形効果の影響を助長するため、一般に伝送速度を増加させると伝送距離が制限される。   In order to increase the transmission speed, a higher optical signal-to-noise ratio is required at the receiving end. Therefore, it is required to transmit with high optical signal power in the optical fiber. However, transmission with high optical signal power promotes the influence of nonlinear effects in the optical fiber, so that generally increasing the transmission speed limits the transmission distance.

そこで、伝送速度を上昇させるために非線形耐力に優れる変調方式が求められており、隣接パルス間の偏波状態を直交関係にする偏波ビットインターリーブ(ビット交番偏波)方式が注目されている。   Therefore, there is a demand for a modulation method with excellent nonlinear tolerance in order to increase the transmission speed, and a polarization bit interleaving (bit alternating polarization) method that makes the polarization state between adjacent pulses orthogonal is attracting attention.

偏波ビットインターリーブ方式は、例えば、TEモード(Transverse Electric mode)とTMモード(Transverse Magnetic mode)などの2つの直交する偏波状態で交互に遷移する光パルス列によってデータ信号を伝送させる。この方式は、隣接パルス間の符号間干渉を抑制できるため、非線形耐力に優れていることが知られている。   In the polarization bit interleaving method, for example, a data signal is transmitted by an optical pulse train that alternately changes in two orthogonal polarization states, such as a TE mode (Transverse Electric mode) and a TM mode (Transverse Magnetic mode). This method is known to be excellent in non-linear strength because it can suppress intersymbol interference between adjacent pulses.

従来の偏波ビットインターリーブを行う送信器の一例として、光源と、RZ(Return to Zero)変調を行うパルスカーバと、RZ信号をデータ変調するデータ変調器と、偏波変調部(Polarization Alternator)を備えており、偏波変調部は、偏波ビームスプリッター(PBS:Polarization Beam Splitter)と、位相変調器(PM:Phase modulator)と、偏波合波器(PBC:Polarization Beam Combiner)から構成される送信器が提案されている(例えば、下記非特許文献1の図1(b))。   As an example of a transmitter that performs conventional polarization bit interleaving, a light source, a pulse carver that performs RZ (Return to Zero) modulation, a data modulator that performs data modulation on an RZ signal, and a polarization modulation unit (Polarization Alternator) are provided. The polarization modulator is a transmission composed of a polarization beam splitter (PBS), a phase modulator (PM), and a polarization beam combiner (PBC). A device has been proposed (for example, FIG. 1B of Non-Patent Document 1 below).

この例においては、データ変調器によってデータ変調された光信号列は、偏波ビームスプリッターに入力されて、2つの直交した偏波(Ex,Ey)に分離される。分離された一方の光信号列は、位相変調器においてデータ変調のビットレートで1と0が交番する信号に位相変調される。すなわち、位相がπシフトするビットと、位相シフトしないビットが交互に並ぶ光信号列となる。偏波合波器では位相変調された光信号列と他方の光信号列を合波する。偏波ビームスプリッターと偏波合波器間の2つの光信号がビット単位で遅延量が同じである場合、偏波合波器からは偏波ビットインターリーブされた光信号列が出力される。   In this example, an optical signal sequence that has been data-modulated by a data modulator is input to a polarization beam splitter and separated into two orthogonal polarizations (Ex, Ey). One of the separated optical signal trains is phase-modulated into a signal in which 1 and 0 alternate at the data modulation bit rate in the phase modulator. That is, an optical signal sequence in which bits whose phase is shifted by π and bits whose phase is not shifted is alternately arranged. The polarization multiplexer combines the phase-modulated optical signal train with the other optical signal train. When the two optical signals between the polarization beam splitter and the polarization multiplexer have the same delay amount in units of bits, the polarization signal is output from the polarization multiplexer.

C. Xie et al.,“Suppression of intra−channel nonlinear penalties in high−speed transmission with alternate−polarization formats,” ThT5,OFC2004C. Xie et al. , “Suppression of intra-channel non-linear linearities in high-speed transmission with alternate-polarization formats,” ThT5, OFC 2004.

しかしながら、上記の非特許文献1に記載される従来技術では、位相変調器でビット毎にパルス列を変交番させるための位相調整に加え、偏波ビームスプリッターと偏波合波器間でビット単位での遅延量調整も併せて行わなければならず、制御が複雑になるという問題点があった。   However, in the conventional technique described in Non-Patent Document 1 described above, in addition to phase adjustment for changing the pulse train for each bit by the phase modulator, in units of bits between the polarization beam splitter and the polarization multiplexer. Therefore, there is a problem in that the control is complicated.

この発明は、上記の課題を解決するためになされたもので、偏波ビットインターリーブを行う光送信器に、2出力型変調器を用いることで、制御箇所を減らして制御性を向上させ、偏波ビットインターリーブを簡易に実現する光送信器を提供するものである。   The present invention has been made to solve the above-described problems. By using a two-output type modulator for an optical transmitter that performs polarization bit interleaving, the number of control points is reduced and controllability is improved. An optical transmitter that easily realizes wave bit interleaving is provided.

本発明にかかる光送信器は、偏波ビットインターリーブ信号を生成する光送信器であって、RZ変調された光信号を2分岐する分岐部、前記分岐部に接続し、所定の変調器駆動信号によって動作し、分岐された前記光信号間に所定の位相差を与える第1の位相変化部および第2の位相変化部、前記第1の位相変化部から出力された光信号と、前記第2の位相変化部から出力された光信号とを合流させ、1パルス信号毎に交互に2つの出力に分ける合流分岐部、を有する2出力型変調器と、前記2出力型変調器から出力された2つの光信号列を合波する偏波合波器と、を備えるものである。   An optical transmitter according to the present invention is an optical transmitter that generates a polarization bit interleaved signal, a branching unit that splits an RZ-modulated optical signal into two branches, connected to the branching unit, and a predetermined modulator driving signal The first phase change unit and the second phase change unit that give a predetermined phase difference between the branched optical signals, the optical signal output from the first phase change unit, and the second A two-output type modulator having a merging / branching unit that merges the optical signal output from the phase change unit of each of the two and alternately divides it into two outputs for each pulse signal, and is output from the two-output type modulator A polarization multiplexer that multiplexes two optical signal trains.

本発明によれば、偏波ビットインターリーブを簡易に実現する光送信器を提供することができる。   According to the present invention, an optical transmitter that easily realizes polarization bit interleaving can be provided.

この発明の実施の形態1にかかる光送信器の構成例を示す図である。It is a figure which shows the structural example of the optical transmitter concerning Embodiment 1 of this invention. この発明の実施の形態1にかかる2出力型変調器の構成例を示す図である。It is a figure which shows the structural example of the 2 output type | mold modulator concerning Embodiment 1 of this invention. この発明の実施の形態1にかかる2出力型変調器の入力光信号列と変調器駆動信号の関係の一例を示す図である。It is a figure which shows an example of the relationship between the input optical signal sequence of a 2 output type modulator concerning Embodiment 1 of this invention, and a modulator drive signal. この発明の実施の形態1にかかる2出力型変調器の出力信号の一例を示す図である。It is a figure which shows an example of the output signal of the 2 output type | mold modulator concerning Embodiment 1 of this invention. この発明の実施の形態2にかかる2出力型変調器の入力光信号列と変調器駆動信号の関係の一例を示す図である。It is a figure which shows an example of the relationship between the input optical signal sequence and modulator drive signal of a 2 output type modulator concerning Embodiment 2 of this invention. この発明の実施の形態2にかかる光送信器の構成例を示す図である。It is a figure which shows the structural example of the optical transmitter concerning Embodiment 2 of this invention. この発明の実施の形態2にかかる光送信器の構成例を示す図である。It is a figure which shows the structural example of the optical transmitter concerning Embodiment 2 of this invention. この発明の実施の形態1または実施の形態2にかかる光送信器を備える光伝送システムの構成例である。It is a structural example of an optical transmission system provided with the optical transmitter concerning Embodiment 1 or Embodiment 2 of this invention. この発明の実施の形態1または実施の形態2にかかる光送信器を備える光伝送システムの構成例である。It is a structural example of an optical transmission system provided with the optical transmitter concerning Embodiment 1 or Embodiment 2 of this invention.

以下に、本実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は、それぞれが本発明を具体化する際の一形態であって、本発明をその範囲内に限定するためのものではない。   Hereinafter, the present embodiment will be described in detail with reference to the drawings. Note that each of the embodiments described below is an embodiment for embodying the present invention, and is not intended to limit the present invention within the scope thereof.

実施の形態1.
図1は本実施の形態にかかる光送信器の構成例を示す図である。図示するように本実施の形態にかかる光送信器は、光源1と、データ変調器2と、パルスカーバ3と、2出力型変調器4と、偏波合波器5によって構成される。本実施の形態においてデータ変調器2は一例として強度変調器であるとする。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of an optical transmitter according to the present embodiment. As shown in the figure, the optical transmitter according to the present embodiment includes a light source 1, a data modulator 2, a pulse carver 3, a two-output modulator 4, and a polarization multiplexer 5. In the present embodiment, the data modulator 2 is assumed to be an intensity modulator as an example.

光源1には、例えば、レーザー出力器を用いることができる。パルスカーバ3、2出力型変調器4のそれぞれには、例えば、マッハツェンダ型LiNbO3変調器を用いることができる。または、InPなど他の材質の変調器であってもよい。   As the light source 1, for example, a laser output device can be used. For example, a Mach-Zehnder type LiNbO 3 modulator can be used for each of the pulse carver 3 and the two-output type modulator 4. Alternatively, a modulator made of another material such as InP may be used.

次に、図1を用いて本実施の形態にかかる光送信器の動作を説明する。まず、光源1は所定の波長のCW(Continuous Wave)光を生成し、データ変調器2へ出力する。データ変調器2は図示されていない発振器から入力されるクロック信号に基づき、CW光をf[Gbit/s]となる周波数で強度変調し、パルスカーバ3へ出力する。パルスカーバ3は強度変調された光信号からRZ変調された光信号を生成し、2出力型変調器4に出力する。パルスカーバ3は上記のデータ変調信号に同期するf[GHz]またはf/2[GHz]の信号によって駆動している。2出力型変調器4は入力されたRZ変調された光信号を1パルス信号毎に交互に2つの出力に振り分ける。2出力型変調器4は、上記のデータ変調信号に同期するf/2[GHz]の信号で駆動している。または、上記データ変調信号に同期するf[GHz]で0と1が変交番する信号によって駆動していてもよい。偏波合波器5は2出力型変調器4の2つの出力に分けられた光信号を合波する。これにより、偏波合波器5から偏波ビットインターリーブされた光信号が出力される。   Next, the operation of the optical transmitter according to the present embodiment will be described with reference to FIG. First, the light source 1 generates CW (Continuous Wave) light having a predetermined wavelength and outputs it to the data modulator 2. The data modulator 2 modulates the intensity of the CW light at a frequency of f [Gbit / s] based on a clock signal input from an oscillator (not shown), and outputs it to the pulse cover 3. The pulse carver 3 generates an RZ-modulated optical signal from the intensity-modulated optical signal and outputs it to the two-output modulator 4. The pulse carver 3 is driven by a signal of f [GHz] or f / 2 [GHz] synchronized with the data modulation signal. The two-output modulator 4 distributes the input RZ-modulated optical signal alternately to two outputs for each pulse signal. The two-output type modulator 4 is driven by an f / 2 [GHz] signal synchronized with the data modulation signal. Alternatively, it may be driven by a signal in which 0 and 1 alternate at f [GHz] synchronized with the data modulation signal. The polarization multiplexer 5 combines the optical signals divided into the two outputs of the two-output modulator 4. As a result, a polarization bit interleaved optical signal is output from the polarization multiplexer 5.

上記のデータ変調器2、パルスカーバ3、2出力型変調器4のデータ変調信号への同期方法としては、例えば、図示していない同一の発振器から出力されるクロック信号を、移相器により位相を調整して各機能部に入力することにより同期状態を保つ方法であってもよい。また、例えば、同一の発振器を用いる場合に限らず複数の発振器を用いてそれらの間で位相調整を行うことにより、同期を保つ方法であってもよい。上記以外の任意の方法を用いてもよい。   As a method of synchronizing the data modulator 2, the pulse carver 3, and the two-output modulator 4 with the data modulation signal, for example, the phase of a clock signal output from the same oscillator (not shown) is adjusted by a phase shifter. A method may be used in which the synchronization state is maintained by adjusting and inputting each function unit. Further, for example, the method is not limited to the case where the same oscillator is used, and a method of maintaining synchronization by performing phase adjustment among a plurality of oscillators may be used. Any method other than the above may be used.

図2は本実施の形態にかかる2出力型変調器の構成例を示す図である。パルスカーバ3によりRZ変調された光信号は入力導波路401から入力し、分岐部402によって分岐されて位相変化部403、404にそれぞれ伝播する。位相変化部403、404は導波路と導波路を伝播する光波の位相を変化させるための変調器駆動電圧を印加する電極によって構成されている。位相変化部403、404は変調器駆動信号によりプッシュプル駆動し、位相変化部403、404を進む光波には互いに逆向きの位相変化(±Φ)が与えられる。位相変化部403、404を伝播した光波は3dB方向性結合器405にて合流して光結合し、その後に分岐して出力導波路406、407から出力される。なお、本実施の形態の説明では、一例として3dB方向性結合器405を用いているが、これにかえてX分岐導波路、または、マルチモード干渉型(MMI:Multi−Mode Interference)導波路を用いることも可能である。上記の位相変化部403、404は第1の位相変化部および第2の位相変化部に対応する。上記3dB方向性結合器405は合流分岐部に対応する。   FIG. 2 is a diagram illustrating a configuration example of the two-output modulator according to the present embodiment. The optical signal RZ-modulated by the pulse carver 3 is input from the input waveguide 401, branched by the branching unit 402, and propagated to the phase change units 403 and 404, respectively. The phase changing units 403 and 404 are constituted by a waveguide and electrodes for applying a modulator driving voltage for changing the phase of a light wave propagating through the waveguide. The phase change units 403 and 404 are push-pull driven by a modulator drive signal, and phase changes (± Φ) in opposite directions are given to the light waves traveling through the phase change units 403 and 404. The light waves propagated through the phase change units 403 and 404 are combined by the 3 dB directional coupler 405 and optically coupled, and then branched and output from the output waveguides 406 and 407. In the description of the present embodiment, a 3 dB directional coupler 405 is used as an example, but an X-branch waveguide or a multi-mode interference (MMI) waveguide is used instead. It is also possible to use it. The phase change units 403 and 404 correspond to the first phase change unit and the second phase change unit. The 3 dB directional coupler 405 corresponds to the merge branch.

図3は本実施の形態にかかる2出力型変調器の入力光信号列と変調器駆動信号の関係の一例を示す図である。図3(a)に示すように、2出力型変調器4に入力されるRZ変調された光信号はデータ変調と同じf[GHz]で変調されているとし、全て「1」であるとする。また、図3(b)に示すように、変調器駆動信号はデータ変調の半分の周波数f/2[GHz]の正弦波であるとし、RZ変調された光信号のデータ変調信号と変調器駆動信号は略位相同期しているものとする。なお、当然ながら、完全な位相同期が必要となるわけではなく、偏波合波器5で合波された光信号列の符号間干渉が低減され、適用する通信経路で必要とされる通信品質が得られる程度の略位相同期がとれていればよい。   FIG. 3 is a diagram showing an example of the relationship between the input optical signal train and the modulator drive signal of the two-output modulator according to this embodiment. As shown in FIG. 3A, it is assumed that the RZ-modulated optical signal input to the two-output modulator 4 is modulated at the same f [GHz] as the data modulation, and is all “1”. . Further, as shown in FIG. 3B, the modulator drive signal is a sine wave having a frequency f / 2 [GHz] which is half of the data modulation, and the data modulation signal of the RZ-modulated optical signal and the modulator drive are used. It is assumed that the signal is substantially phase synchronized. Of course, perfect phase synchronization is not required, and the intersymbol interference of the optical signal sequence combined by the polarization multiplexer 5 is reduced, and the communication quality required for the communication path to be applied. It is only necessary that the phase synchronization is obtained to such an extent that can be obtained.

変調器駆動信号の駆動振幅が最大となる点で位相変化部403を進む光波の位相変化量がπ/4であるときには位相変化部404を進む光波の位相変化量は−π/4となり、両位相変化部を伝播する光波間の相対的な位相差はπ/2となる。一方、駆動振幅が最小となる点では上記位相変化量の符号は反転する。変調器駆動信号は図3(b)に示すようにf[GHz]で駆動振幅の最大、最小を繰り返すので、上記の位相差π/2で両位相変化部間の位相変化量の正負が周波数f[GHz]で切り替わる。これによって、3dB方向性結合器405で合流分岐して出力されるRZ変調された光信号は、出力導波路406、407から1パルス信号毎に交互に出力される。   When the phase change amount of the light wave traveling through the phase change unit 403 is π / 4 at the point where the drive amplitude of the modulator drive signal is maximum, the phase change amount of the light wave traveling through the phase change unit 404 is −π / 4. The relative phase difference between the light waves propagating through the phase change portion is π / 2. On the other hand, the sign of the phase change amount is reversed at the point where the drive amplitude is minimized. As shown in FIG. 3B, the modulator drive signal repeats the maximum and minimum drive amplitudes at f [GHz]. Therefore, the phase change amount between the two phase change units is positive or negative with the above phase difference π / 2. Switch at f [GHz]. As a result, RZ-modulated optical signals that are output after being merged and branched by the 3 dB directional coupler 405 are alternately output from the output waveguides 406 and 407 for each pulse signal.

出力導波路406、407から出力された光信号列は偏波合波器5にて合波される。合波された光信号列の光強度を図3(c)に示す。以下の説明において直交する偏波成分はX偏波、Y偏波とする。図示するように、X偏波(実線)、Y偏波(破線)が交互に入れ替わる偏波ビットインターリーブされた光パルス信号列となることがわかる。   The optical signal trains output from the output waveguides 406 and 407 are combined by the polarization multiplexer 5. The light intensity of the combined optical signal train is shown in FIG. In the following description, orthogonal polarization components are assumed to be X polarization and Y polarization. As shown in the figure, it can be seen that a polarization bit interleaved optical pulse signal sequence in which the X polarization (solid line) and the Y polarization (broken line) are alternately switched is obtained.

図4は本実施の形態にかかる2出力型変調器の出力信号の一例を示す図である。図4(a)は、2出力型変調器4に入力されるRZ変調された光信号列を示している。上記と同様に、RZ変調された光信号列はデータ変調と同じf[GHz]で変調されているとし、全て「1」であるとする。全ての光信号の偏波状態をX偏波としている。2出力型変調器4をデータ変調の半分の周波数f/2[GHz]の正弦波または矩形波の信号、または、f[GHz]で0と1が変交番する信号によって駆動することで、RZ変調された光信号は2出力型変調器4の2つの出力導波路406、407から4(b)、4(c)に示すように交互に振り分けて出力される。この2つの光信号列を偏波合波器5にて合波することで4(d)に示すような隣接パルスの偏波が直交した偏波ビットインターリーブされた光信号列を得ることができる。   FIG. 4 is a diagram illustrating an example of an output signal of the two-output modulator according to the present embodiment. FIG. 4A shows an RZ-modulated optical signal string input to the two-output type modulator 4. Similarly to the above, it is assumed that the RZ-modulated optical signal train is modulated at the same f [GHz] as the data modulation and is all “1”. The polarization state of all optical signals is X polarization. By driving the two-output type modulator 4 with a sine wave or rectangular wave signal having a frequency f / 2 [GHz] which is half of the data modulation, or with a signal in which 0 and 1 alternate in f [GHz], RZ The modulated optical signals are alternately distributed and output from the two output waveguides 406 and 407 of the two-output modulator 4 as shown in 4 (b) and 4 (c). By combining these two optical signal sequences by the polarization multiplexer 5, it is possible to obtain a polarization bit interleaved optical signal sequence in which the polarizations of adjacent pulses are orthogonal as shown in 4 (d). .

以上のように、本実施の形態にかかる光送信器は、RZ変調された光信号を1パルス信号毎に2つの出力に交互に振り分けていく2出力型変調器4と、振り分けられた光信号列を合波する偏波合波器5を備えるように構成した。これにより、2出力型変調器の位相制御により偏波ビットインターリーブされた光信号列を得ることができ、従来と比べ制御性が向上し、偏波ビットインターリーブを簡易に実現することができる。またさらには、偏波ビームスプリッターと偏波合波器間のビット単位の遅延調整が不要となり、偏波ビットインターリーブ信号列を安定して生成できる。またさらには、従来と比べ、制御の簡易化により部品点数を削減できるので、小型化、低コスト化を実現することができる。   As described above, the optical transmitter according to the present embodiment includes the two-output modulator 4 that alternately distributes the RZ-modulated optical signal into two outputs for each pulse signal, and the distributed optical signal. A polarization multiplexer 5 for multiplexing the columns is provided. This makes it possible to obtain a polarization bit interleaved optical signal sequence by phase control of the two-output type modulator, improving controllability compared to the prior art, and realizing polarization bit interleaving easily. Furthermore, it is not necessary to adjust the delay in bit units between the polarization beam splitter and the polarization multiplexer, and a polarization bit interleave signal sequence can be generated stably. Furthermore, since the number of parts can be reduced by simplifying the control as compared with the conventional case, it is possible to realize downsizing and cost reduction.

なお、本実施の形態における偏波ビットインターリーブでは、一例として全て「1」のRZパルス化された光信号列に対する偏波ビットインターリーブについて説明したが、本実施の形態を適用できる変調信号はこれに限られるものではなく、伝送する情報に基づいて他の変調方式であってもよい。例えば、データ変調器2において、通常のOOK(On−Off Keying)、DPSK(Differential Phase Shift Keying)、DQPSK(Differential Quadrature Phase Shift Keying)などの他の変調方式でデータ変調したとしても本実施の形態を適用することができる。   In the polarization bit interleaving in the present embodiment, as an example, the polarization bit interleaving for the optical signal sequence in which all RZ pulses are “1” has been described. However, the modulation signal to which the present embodiment can be applied is described here. It is not limited, and other modulation schemes may be used based on information to be transmitted. For example, in the data modulator 2, other modulation schemes such as normal OOK (On-Off Keying), DPSK (Differential Phase Shift Keying), and DQPSK (Differential Quadrature Phase Shift Keying) are also used as modulation data in this embodiment. Can be applied.

なお、上記の実施の形態では1つのRZ信号、すなわち、1パルス信号(1シンボル)が1ビットを表す場合について説明したが、多値信号のように1パルス信号(1シンボル)がN(N:任意の整数)ビットを表す場合にも適用できる。すなわち、この場合にも2出力型変調器4は1パルス信号毎に交互に2つの出力に振り分けて、直交する偏波が1パルス信号毎に遷移する光信号列となる。   In the above embodiment, one RZ signal, that is, one pulse signal (one symbol) represents one bit, but one pulse signal (one symbol) is N (N : Arbitrary integer) bits can also be applied. That is, in this case as well, the two-output modulator 4 is alternately distributed to two outputs for each pulse signal, and becomes an optical signal train in which orthogonal polarization changes for each pulse signal.

なお、本実施の形態における図1ではデータ変調器2を光源1とパルスカーバ3の間に配置されているが、データ変調器2をパルスカーバ3と2出力型変調器4の間に配置してもよい。または、偏波直交多重した信号に対応可能なデータ変調器であれば、偏波合波器5の後段に配置することもできる。   Although the data modulator 2 is arranged between the light source 1 and the pulse carver 3 in FIG. 1 in the present embodiment, the data modulator 2 may be arranged between the pulse carver 3 and the two-output type modulator 4. Good. Alternatively, a data modulator that can handle a signal that is polarization-orthogonal-multiplexed can be arranged at the subsequent stage of the polarization multiplexer 5.

なお、本実施の形態における2出力型変調器4は、位相変化部403、404に変調器駆動信号を印加してプッシュプル駆動させているが、例えば、片側の位相変化部に印加して、上記と同様の変調器駆動信号の制御によって、両位相変化部を伝播する光波の相対的な位相差がπ/2となり、両位相変化部間の位相変化量の正負がデータ変調と同じ周波数で切り替わるように制御すれば、上記と同様の結果を得ることができる。   In the two-output type modulator 4 in the present embodiment, the modulator driving signal is applied to the phase changing units 403 and 404 to perform push-pull driving. For example, the two-output type modulator 4 is applied to the phase changing unit on one side, By controlling the modulator driving signal as described above, the relative phase difference between the light waves propagating through the two phase change units becomes π / 2, and the phase change amount between the two phase change units has the same frequency as the data modulation. If it is controlled to switch, the same result as described above can be obtained.

実施の形態2.
実施の形態1においては、2出力型変調器4の変調器駆動信号の位相を制御する構成を備えていなかったが、本実施の形態ではこれを追加する構成としている。
Embodiment 2. FIG.
In the first embodiment, the configuration for controlling the phase of the modulator drive signal of the two-output type modulator 4 is not provided, but in the present embodiment, this is added.

図5は本実施の形態にかかる2出力型変調器の入力光信号列と変調器駆動信号の関係の一例を示す図である。図3と同様に図5(a)に示すように、2出力型変調器4に入力されるRZ変調された光信号列はデータ変調と同じf[GHz]で変調されているとし、全て「1」であるとする。また、図5(b)に示すように、位相変化部403、404に印加される変調器駆動信号はデータ変調の半分の周波数f/2[GHz]の正弦波であるとする。しかし、データ変調信号と変調器駆動信号は略位相同期しておらず、変調器駆動信号が位相同期状態から1/4周期ずれた状態となっている。   FIG. 5 is a diagram showing an example of the relationship between the input optical signal sequence and the modulator drive signal of the two-output modulator according to this embodiment. As in FIG. 3, as shown in FIG. 5A, it is assumed that the RZ-modulated optical signal sequence input to the two-output modulator 4 is modulated at the same f [GHz] as the data modulation. 1 ”. As shown in FIG. 5B, it is assumed that the modulator drive signal applied to the phase change units 403 and 404 is a sine wave having a frequency f / 2 [GHz] which is half of the data modulation. However, the data modulation signal and the modulator drive signal are not substantially phase-synchronized, and the modulator drive signal is in a state that is shifted from the phase-synchronized state by a quarter cycle.

このような場合には、図5(c)に示すとおり、X偏波(実線)とY偏波(破線)の両偏波成分に重なりが生じることによって両偏波成分の周期性が失われ、偏波ビットインターリーブされた光信号列を得ることができなくなる。一般的に、光変調器では温度変化や経時劣化などによって変調器駆動信号が最適な動作点からずれることがある。したがって、偏波ビットインターリーブを安定して実現するには、2出力型変調器4に入力されるRZ変調された光信号のデータ変調に変調器駆動信号が同期するよう位相関係を制御する構成があることが望ましい。   In such a case, as shown in FIG. 5 (c), both the polarization components of the X polarization (solid line) and the Y polarization (broken line) are overlapped, thereby losing the periodicity of both polarization components. Thus, it becomes impossible to obtain a polarization bit interleaved optical signal sequence. In general, in an optical modulator, the modulator drive signal may deviate from the optimum operating point due to temperature change or deterioration with time. Therefore, in order to stably realize the polarization bit interleaving, there is a configuration in which the phase relationship is controlled so that the modulator driving signal is synchronized with the data modulation of the RZ-modulated optical signal input to the two-output modulator 4. It is desirable to be.

図6は本実施の形態にかかる光送信器の構成例を示す図である。本実施の形態にかかる光送信器は、実施の形態1の図1に光カプラ6と、受光器7と、制御回路8と、移相器9を追加する構成としている。図6において、実施の形態1の図1と同様の機能を有する構成は、図1と同一の符号を付して、重複する説明を省略する。   FIG. 6 is a diagram illustrating a configuration example of the optical transmitter according to the present embodiment. The optical transmitter according to the present embodiment has a configuration in which an optical coupler 6, a light receiver 7, a control circuit 8, and a phase shifter 9 are added to FIG. 1 of the first embodiment. In FIG. 6, configurations having the same functions as those in FIG. 1 of the first embodiment are denoted by the same reference numerals as those in FIG.

次に、図6を用いて本実施の形態にかかる光送信器の動作について説明する。光カプラ6は偏波合波器5から出力された光信号のうちの一部を分岐する。受光器7は光カプラ6によって分岐された光信号を受光し、光信号を電流信号に変換する。変換された電流信号は制御回路8に出力される。受光器7は、例えば、光検出器(PD:Photo Detector)を用いることができる。なお、受光器7は、光検出器の後段にトランスインピーダンスアンプ(TIA:Trans−Impedance Amplifier)を配置して電流信号を電圧信号に変換してから制御回路8に出力するものであってもよい。制御回路8は受光器7からの電気出力信号に基づいて2出力型変調器4に入力されるRZ信号列のデータ変調信号と変調器駆動信号間の位相ずれを制御する制御信号を出力する。移相器9は制御回路8からの制御信号に基づき変調器駆動信号の位相調整を行う。   Next, the operation of the optical transmitter according to the present embodiment will be described with reference to FIG. The optical coupler 6 branches a part of the optical signal output from the polarization multiplexer 5. The light receiver 7 receives the optical signal branched by the optical coupler 6 and converts the optical signal into a current signal. The converted current signal is output to the control circuit 8. As the light receiver 7, for example, a photodetector (PD: Photo Detector) can be used. Note that the light receiver 7 may be one in which a trans-impedance amplifier (TIA) is arranged at the subsequent stage of the photodetector to convert the current signal into a voltage signal and then output to the control circuit 8. . The control circuit 8 outputs a control signal for controlling the phase shift between the data modulation signal of the RZ signal sequence input to the two-output modulator 4 and the modulator drive signal based on the electrical output signal from the light receiver 7. The phase shifter 9 adjusts the phase of the modulator drive signal based on the control signal from the control circuit 8.

制御回路8の位相ずれの制御方法の一例として、変調器駆動信号の周波数f/2[GHz]よりも十分に遅い低周波信号を重畳した変調器駆動信号によって2出力型変調器4を駆動し、受光器7の電気出力信号から低周波信号の周波数成分を抽出して位相ずれを制御する方法がある。2出力型変調器4が最適な設定で動作している場合には、低周波信号の2倍の周波数成分が最大となり、低周波信号の周波数成分が最小となる。一方、最適な設定からずれが生じると、低周波信号の2倍の周波数成分が減少し、低周波信号の周波数成分が増加する。制御回路8は受光器7の電気出力信号からバンドパスフィルターによって高周波成分を取り除き、残った低周波成分と低周波信号と同期検波する。この結果に基づき、制御回路8は低周波信号の周波数成分が最小、または、低周波信号の2倍の周波数成分が最大となるように変調器駆動信号の位相をずらす制御信号を生成する。移相器9は制御回路8から出力される制御信号に基づき変調器駆動信号の位相調整を行う。   As an example of the control method of the phase shift of the control circuit 8, the two-output modulator 4 is driven by a modulator drive signal on which a low-frequency signal sufficiently slower than the frequency f / 2 [GHz] of the modulator drive signal is superimposed. There is a method of controlling the phase shift by extracting the frequency component of the low frequency signal from the electrical output signal of the light receiver 7. When the two-output type modulator 4 is operating at an optimal setting, the frequency component twice as high as that of the low frequency signal is maximized and the frequency component of the low frequency signal is minimized. On the other hand, when a deviation occurs from the optimum setting, the frequency component twice as low as that of the low-frequency signal is reduced and the frequency component of the low-frequency signal is increased. The control circuit 8 removes high frequency components from the electrical output signal of the light receiver 7 by a band pass filter, and performs synchronous detection on the remaining low frequency components and low frequency signals. Based on this result, the control circuit 8 generates a control signal that shifts the phase of the modulator drive signal so that the frequency component of the low-frequency signal is minimum or the frequency component that is twice that of the low-frequency signal is maximized. The phase shifter 9 adjusts the phase of the modulator drive signal based on the control signal output from the control circuit 8.

以上のように、本実施の形態にかかる光送信器は、偏波合波器5から出力された光信号の一部を分岐し、光信号を変換した電気信号から制御回路8によってRZ変調された光信号のデータ変調信号と変調器駆動信号間の位相ずれを制御し、制御回路8の制御信号に基づき変調器駆動信号の位相を調整する移相器9を備えるように構成した。これによって、2出力型変調器に入力されるRZ変調された光信号のデータ変調信号と変調器駆動信号の位相同期を保持する制御が適宜行われることなり、直交する両偏波成分が交互に入れ替わる周期性が安定し、偏波ビットインターリーブを安定に実現することができる。   As described above, the optical transmitter according to the present embodiment branches a part of the optical signal output from the polarization multiplexer 5 and is RZ-modulated by the control circuit 8 from the electrical signal obtained by converting the optical signal. The phase shifter 9 is configured to control the phase shift between the data modulation signal of the optical signal and the modulator drive signal and adjust the phase of the modulator drive signal based on the control signal of the control circuit 8. As a result, control for maintaining the phase synchronization between the data modulation signal of the RZ-modulated optical signal input to the two-output modulator and the modulator drive signal is appropriately performed, so that both orthogonal polarization components alternate. The switching periodicity is stable, and polarization bit interleaving can be realized stably.

なお、本実施の形態は図6に示す構成に限られない。例えば、図7に示すような構成とすることも可能である。図7は本実施の形態にかかる光送信器の構成例を示す図である。図6と異なる点は光カプラ6の位置を偏波合波器5の前段の2出力型変調器4の一方の出力側に設ける構成としている。すなわち、偏波合波器5から出力される光信号でなくても、2出力型変調器4から出力された光信号であれば、位相ずれを検出することができる。   The present embodiment is not limited to the configuration shown in FIG. For example, a configuration as shown in FIG. 7 is also possible. FIG. 7 is a diagram illustrating a configuration example of the optical transmitter according to the present embodiment. The difference from FIG. 6 is that the position of the optical coupler 6 is provided on one output side of the two-output modulator 4 in the preceding stage of the polarization multiplexer 5. That is, even if it is not the optical signal output from the polarization multiplexer 5, the phase shift can be detected as long as it is an optical signal output from the two-output modulator 4.

また、上記実施の形態1または実施の形態2にかかる光送信器と、該光送信器からの光信号列を受信する光受信器を備える光伝送システムを形成することができる。図8は上記実施の形態1または実施の形態2にかかる光送信器を備える光伝送システムの構成例である。図示している光送信器10と光受信器11は光ファイバ12を介して光信号列を伝送する。このような光伝送システムは、例えば、海底ケーブル、または、伝送区間の一部または全てが陸上の区間の光伝送システムなどに適用することができる。なお、上記実施の形態1または実施の形態2にかかる光送信器は、他の光送信器からの光信号列を受信する機能を備えていてもよい。図9はこの場合における上記実施の形態1または実施の形態2にかかる光送信器を備える光伝送システムの構成例である。図示するように図8の光伝送システムにおいて光送信器10、光受信器11のそれぞれを、光送受信機能を備えた実施の形態1または実施の形態2の光送信器である光送受信器13によって置き換えたものとすることもできる。なお、図8および図9において省略されている先には光送信器10、光受信器11、または光送受信器13がある。   In addition, an optical transmission system including the optical transmitter according to the first embodiment or the second embodiment and an optical receiver that receives an optical signal train from the optical transmitter can be formed. FIG. 8 is a configuration example of an optical transmission system including the optical transmitter according to the first embodiment or the second embodiment. The illustrated optical transmitter 10 and optical receiver 11 transmit an optical signal train via an optical fiber 12. Such an optical transmission system can be applied to, for example, an undersea cable or an optical transmission system in which a part or all of a transmission section is a land section. In addition, the optical transmitter according to the first embodiment or the second embodiment may have a function of receiving an optical signal sequence from another optical transmitter. FIG. 9 is a configuration example of an optical transmission system including the optical transmitter according to the first embodiment or the second embodiment in this case. As shown, the optical transmitter 10 and the optical receiver 11 in the optical transmission system of FIG. It can also be replaced. 8 and 9 are the optical transmitter 10, the optical receiver 11, or the optical transceiver 13.

1 光源
2 データ変調器
3 パルスカーバ
4 2出力型変調器
401 入力導波路
402 分岐部
403、404 位相変化部
405 3dB方向性結合器
406、407 出力導波路
5 偏波合波器
6 光カプラ
7 受光器
8 制御回路
9 移相器
10 送信器
11 受信器
12 光ファイバ
13 光送受信器
DESCRIPTION OF SYMBOLS 1 Light source 2 Data modulator 3 Pulse carver 4 2 output type modulator 401 Input waveguide 402 Branch part 403, 404 Phase change part 405 3dB directional coupler 406,407 Output waveguide 5 Polarization multiplexer 6 Optical coupler 7 Light reception 8 Control circuit 9 Phase shifter 10 Transmitter 11 Receiver 12 Optical fiber 13 Optical transceiver

Claims (7)

偏波ビットインターリーブ信号を生成する光送信器であって、
RZ(Return to Zero)変調された光信号を2分岐する分岐部、
前記分岐部に接続し、所定の変調器駆動信号によって動作し、分岐された前記光信号間に所定の位相差を与える第1の位相変化部および第2の位相変化部、
前記第1の位相変化部から出力された光信号と、前記第2の位相変化部から出力された光信号とを合流させ、1パルス信号毎に交互に2つの出力に分ける合流分岐部、を有する2出力型変調器と、
前記2出力型変調器から出力された2つの光信号列を合波する偏波合波器と、を備えることを特徴とする光送信器。
An optical transmitter that generates a polarization bit interleaved signal,
A branching unit that splits an RZ (Return to Zero) modulated optical signal into two branches;
A first phase change unit and a second phase change unit connected to the branch unit, operated by a predetermined modulator drive signal, and giving a predetermined phase difference between the branched optical signals;
A merging / branching unit that combines the optical signal output from the first phase change unit and the optical signal output from the second phase change unit, and alternately divides the signal into two outputs for each pulse signal; A two-output modulator having
An optical transmitter comprising: a polarization multiplexer that multiplexes two optical signal sequences output from the two-output modulator.
前記第1の位相変化部と第2の位相変化部のうち少なくとも一方は、前記RZ変調された光信号のデータ変調信号と略位相同期する変調器駆動信号で動作させることを特徴とする請求項1に記載の光送信器。   The at least one of the first phase change unit and the second phase change unit is operated by a modulator driving signal that is substantially phase-synchronized with a data modulation signal of the RZ-modulated optical signal. The optical transmitter according to 1. 請求項1または2のいずれか1つに記載の光送信器はさらに、
前記2出力型変調器から出力された光信号の一部を受光し、該光信号を電気信号に変換する受光器と、
前記受光器からの電気出力信号に基づき、前記RZ変調された光信号のデータ変調信号と変調器駆動信号との位相ずれを制御する制御信号を生成する制御回路と、
前記制御回路からの制御信号に基づき、前記変調器駆動信号の位相を調整する移相器と、を備えることを特徴とする光送信器。
The optical transmitter according to claim 1 or 2, further comprising:
A light receiver that receives a part of the optical signal output from the two-output modulator and converts the optical signal into an electrical signal;
A control circuit for generating a control signal for controlling a phase shift between a data modulation signal of the RZ-modulated optical signal and a modulator drive signal based on an electrical output signal from the light receiver;
An optical transmitter comprising: a phase shifter that adjusts a phase of the modulator driving signal based on a control signal from the control circuit.
請求項1乃至3のいずれか1つに記載の光送信器を備える光送受信器。   An optical transceiver comprising the optical transmitter according to any one of claims 1 to 3. 請求項1乃至3に記載の光送信器、または、請求項4に記載の光送受信器のうちいずれか1つを備える光伝送システム。   An optical transmission system comprising any one of the optical transmitter according to claim 1 or the optical transmitter / receiver according to claim 4. RZ変調された光信号を2分岐する分岐ステップと、
前記分岐された光信号のそれぞれの位相を変化させ、光信号間に所定の位相差を与える位相変化ステップと、
前記分岐された光信号を合流させ、1パルス信号毎に交互に2つの出力に分ける合流分岐ステップと、
前記合流分岐ステップによって出力された2つの光信号列を合波する合波ステップと、を有することを特徴とする偏波ビットインターリーブ信号生成方法。
A branching step for branching the RZ-modulated optical signal into two;
A phase changing step for changing a phase of each of the branched optical signals and providing a predetermined phase difference between the optical signals;
A merging / branching step for merging the branched optical signals and dividing them alternately into two outputs for each pulse signal;
A polarization bit interleaving signal generation method, comprising: a multiplexing step for multiplexing the two optical signal sequences output by the merging / branching step.
請求項6に記載の偏波ビットインターリーブ信号生成方法はさらに、
前記合流分岐ステップによって出力された光信号の一部を受光し、該光信号を電気信号に変換する受光ステップと、
前記受光ステップによって出力された電気出力信号に基づき、前記RZ変調された光信号のデータ変調信号と、前記分岐された光信号の位相を変化させる信号との位相ずれを制御する制御信号を生成する制御ステップと、
前記制御ステップによって出力された制御信号に基づき、前記分岐された光信号の位相を変化させる信号の位相を調整する位相調整ステップと、を有することを特徴とする偏波ビットインターリーブ信号生成方法。
The polarization bit interleave signal generation method according to claim 6, further comprising:
Receiving a part of the optical signal output by the merging and branching step, and converting the optical signal into an electrical signal; and
Based on the electrical output signal output by the light receiving step, a control signal for controlling a phase shift between the data modulation signal of the RZ-modulated optical signal and a signal for changing the phase of the branched optical signal is generated. Control steps;
And a phase adjustment step of adjusting a phase of a signal that changes a phase of the branched optical signal based on the control signal output by the control step.
JP2010256856A 2010-11-17 2010-11-17 Optical transmitter and polarization bit interleave signal generation method Expired - Fee Related JP5691426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256856A JP5691426B2 (en) 2010-11-17 2010-11-17 Optical transmitter and polarization bit interleave signal generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256856A JP5691426B2 (en) 2010-11-17 2010-11-17 Optical transmitter and polarization bit interleave signal generation method

Publications (2)

Publication Number Publication Date
JP2012108301A true JP2012108301A (en) 2012-06-07
JP5691426B2 JP5691426B2 (en) 2015-04-01

Family

ID=46493990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256856A Expired - Fee Related JP5691426B2 (en) 2010-11-17 2010-11-17 Optical transmitter and polarization bit interleave signal generation method

Country Status (1)

Country Link
JP (1) JP5691426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107619A (en) * 2012-11-26 2014-06-09 Mitsubishi Electric Corp Optical signal generating apparatus
JP2014183369A (en) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp Optical transmitter, optical communication system, polarization modulation method and program
US10128940B2 (en) 2014-05-08 2018-11-13 Mitsubishi Electric Corporation Optical transmission method and optical transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237010A (en) * 2004-02-20 2005-09-02 Lucent Technol Inc Method and apparatus for optical transmission
JP2009060461A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Polarization multiplex transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237010A (en) * 2004-02-20 2005-09-02 Lucent Technol Inc Method and apparatus for optical transmission
JP2009060461A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Polarization multiplex transmitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014018461; 'Suppression of Intra-channel Nonlinear Penalties in High-speed transmissions with Alternate Polariza' OFC2004 ThT5, 2004 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107619A (en) * 2012-11-26 2014-06-09 Mitsubishi Electric Corp Optical signal generating apparatus
JP2014183369A (en) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp Optical transmitter, optical communication system, polarization modulation method and program
US10128940B2 (en) 2014-05-08 2018-11-13 Mitsubishi Electric Corporation Optical transmission method and optical transmission system

Also Published As

Publication number Publication date
JP5691426B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US9419720B2 (en) Optical signal transmitter
JP4465458B2 (en) Phase control optical FSK modulator
US7224906B2 (en) Method and system for mitigating nonlinear transmission impairments in fiber-optic communications systems
US7398022B2 (en) Optical return-to-zero phase-shift keying with improved transmitters
JP4710387B2 (en) Optical receiver and optical receiving method corresponding to differential M phase shift keying
US8676060B2 (en) Quadrature amplitude modulation signal generating device
US9716552B2 (en) OTDM coherent transceiver
US7515834B2 (en) Upgraded optical communication system with increased transmission capacity and method
US20150132013A1 (en) Advanced optical modulation generation by combining orthogonal polarized optical signals
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
JP2008530900A (en) Optical MSK data format
US7349636B2 (en) Optical phase and intensity modulation with improved transmitters
JP5068240B2 (en) Optical transmission system, transmitter and receiver
JP4889661B2 (en) Optical multicarrier generator and optical multicarrier transmitter using the same
JP5691426B2 (en) Optical transmitter and polarization bit interleave signal generation method
JP5411538B2 (en) Optical multicarrier generation apparatus and method, and optical multicarrier transmission apparatus using optical multicarrier generation apparatus
EP1482662A1 (en) System and method for alternate mark inversion and duobinary optical transmission
JP2011002640A (en) Optical modulation device and optical transmitter, and control method of optical modulation device
JP2004070130A (en) Optical transmitter
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
JP3447664B2 (en) Optical transmitter and optical transmitter control method
Zhao et al. 40G QPSK and DQPSK modulation
JP7492158B2 (en) Optical Transmitter
JP5374709B2 (en) Optical transmitter
Kanno et al. 166 Gb/s PDM-NRZ-DPSK modulation using thin-LiNb0 3-substrate modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

LAPS Cancellation because of no payment of annual fees