JP2012108003A - METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY - Google Patents

METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY Download PDF

Info

Publication number
JP2012108003A
JP2012108003A JP2010257310A JP2010257310A JP2012108003A JP 2012108003 A JP2012108003 A JP 2012108003A JP 2010257310 A JP2010257310 A JP 2010257310A JP 2010257310 A JP2010257310 A JP 2010257310A JP 2012108003 A JP2012108003 A JP 2012108003A
Authority
JP
Japan
Prior art keywords
chromium
concentration
depth
containing alloy
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010257310A
Other languages
Japanese (ja)
Other versions
JP5473872B2 (en
Inventor
Yasuhiro Tanaka
康弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010257310A priority Critical patent/JP5473872B2/en
Publication of JP2012108003A publication Critical patent/JP2012108003A/en
Application granted granted Critical
Publication of JP5473872B2 publication Critical patent/JP5473872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring carburized depth of a Cr-containing alloy capable of simple measurement and quantitatively grasping the carburized depth without destroying a measuring object.SOLUTION: A plurality of samples of a Cr-containing alloy having different carburized depths are analyzed by a portable type fluorescent X-ray analyzer (step S2), and a relation between concentrations of chrome and metal elements other than chrome and carburized depth is previously determined (step 4). Then, a Cr-containing alloy which is a measuring object is analyzed by the portable type fluorescent X-ray analyzer and concentrations of chrome and metal elements other than chrome in the measuring object are measured (step S6). After that, based on the previously determined relation, carburized depth of the measuring object is determined from the measurement result of the concentrations of chrome and metal elements other than chrome in the measuring object (step S8).

Description

本発明は、例えばボイラや焼却炉等の材料に用いられるCr含有合金の表層の浸炭深さを測定する方法に関する。   The present invention relates to a method for measuring the carburization depth of a surface layer of a Cr-containing alloy used for materials such as boilers and incinerators.

クロムを含有する合金(以下、「Cr含有合金」という。)は、耐熱性、耐食性、耐摩耗性等の性質に優れるため、種々の産業で利用されている。例えば、耐食性に優れるオーステナイト系のステンレス鋼(ニッケルクロム鋼)は、ボイラの伝熱管や焼却炉の材料に用いられる。   Alloys containing chromium (hereinafter referred to as “Cr-containing alloys”) are excellent in properties such as heat resistance, corrosion resistance, and wear resistance, and thus are used in various industries. For example, austenitic stainless steel (nickel chrome steel) having excellent corrosion resistance is used as a material for boiler heat transfer tubes and incinerators.

ところで、回収ボイラや焼却炉は、未燃カーボンや炭素化合物(例えばCaCO)等が存在する高温環境下で運転されるため、浸炭が発生する。浸炭とは未燃カーボンや炭素化合物に含まれる炭素がCr含有合金内へ拡散して粒界に炭化物を形成する現象である。浸炭発生の結果、粒界近傍のクロム濃度が減少することで、同部位の耐食性が損なわれるため塩化腐食などの腐食が著しく増大してしまう。そこで、Cr含有合金の浸炭の程度つまりは耐食性の程度を把握するために、回収ボイラや焼却炉等の表層における浸炭深さを測定する必要がある。 By the way, since the recovery boiler and the incinerator are operated in a high temperature environment where unburned carbon, a carbon compound (for example, CaCO 3 ) and the like are present, carburization occurs. Carburization is a phenomenon in which unburned carbon or carbon contained in a carbon compound diffuses into a Cr-containing alloy to form carbides at grain boundaries. As a result of carburization, the chromium concentration in the vicinity of the grain boundary decreases, and the corrosion resistance of the same part is impaired, so that corrosion such as chloride corrosion significantly increases. Therefore, in order to grasp the degree of carburization of the Cr-containing alloy, that is, the degree of corrosion resistance, it is necessary to measure the carburization depth in the surface layer of a recovery boiler, an incinerator or the like.

従来、Cr含有合金の表層における浸炭深さの測定は、測定対象物を切断して試料を作製して断面組織を観察したり、測定対象物の表面組織をフィルムに転写して表面組織を観察したりすることで行われていた。しかし、前者の手法は、測定対象物の破壊(接断)を伴うため採用できない場合がある。また、後者の手法は、浸炭の有無を判別できるものの、浸炭深さを定量的に把握することはできない。
なお、これらの手法とは別に、回収ボイラや焼却炉の燃料性状や、測定対象物への付着物の分析結果から浸炭の発生を推察することもあるが、あくまで推察であり、実際に浸炭が発生しているかを正確に知ることはできない。
Conventionally, the measurement of carburization depth on the surface layer of Cr-containing alloy is performed by cutting the measurement object to produce a sample and observing the cross-sectional structure, or transferring the surface structure of the measurement object to the film and observing the surface structure It was done by doing. However, the former method may not be adopted because it involves destruction (connection) of the measurement object. Moreover, although the latter method can determine the presence or absence of carburization, the carburization depth cannot be grasped quantitatively.
In addition to these methods, carburization may be inferred from the fuel properties of the recovery boiler and incinerator and the analysis results of the deposits on the measurement object. It is not possible to know exactly what has happened.

したがって、測定対象物を破壊することなく、浸炭深さを定量的に把握しうる測定手法の開発が望まれていた。
この点、特許文献1には、発光分光分析により、熱処理後の鋼材の表層における脱炭層や浸炭層等の分析を行う方法が記載されている。この方法は、表層の深さ方向における主要元素の連続的な濃度分布を得るために、試料表面の削れ深さと放電時間との関係を予め取得しておき、この関係に基づいて、発光分光分析で連続的に測定した発光強度から任意の深さにおける主要元素の濃度を求めるというものである。特許文献1に記載された方法によれば、測定対象物を破壊することなく、浸炭深さを定量的に把握することができる。
Therefore, it has been desired to develop a measurement method capable of quantitatively grasping the carburization depth without destroying the measurement object.
In this regard, Patent Document 1 describes a method of analyzing a decarburized layer, a carburized layer, and the like in the surface layer of the steel material after heat treatment by emission spectroscopic analysis. In this method, in order to obtain a continuous concentration distribution of main elements in the depth direction of the surface layer, the relationship between the shaving depth of the sample surface and the discharge time is acquired in advance, and emission spectroscopy analysis is performed based on this relationship. The concentration of the main element at an arbitrary depth is obtained from the luminescence intensity continuously measured in (1). According to the method described in Patent Document 1, it is possible to quantitatively grasp the carburization depth without destroying the measurement object.

特開平11−352061号公報Japanese Patent Laid-Open No. 11-352061

しかしながら、特許文献1に記載された方法は、測定対象物の表層の元素をアーク放電により励起して発光させ、この発光を分光することで分析を行うものであるから、アーク放電のための電源及びケーブルが必要である。このため、ケーブルの取り回しができない等の理由により、簡易に測定できない場合がある。   However, since the method described in Patent Document 1 performs analysis by exciting elements on the surface layer of a measurement object by arc discharge to emit light and analyzing the emitted light, a power source for arc discharge is used. And cables are required. For this reason, there are cases where the measurement cannot be performed simply because the cable cannot be routed.

本発明は、上述の事情に鑑みてなされたものであり、簡易な測定が可能であり、かつ、測定対象物を破壊することなく、浸炭深さを定量的に把握しうるCr含有合金の浸炭深さ測定方法を提供することを目的とする。   The present invention has been made in view of the circumstances described above, and carburization of a Cr-containing alloy that allows simple measurement and can quantitatively grasp the carburization depth without destroying the measurement object. An object is to provide a depth measurement method.

本発明に係るCr含有合金の浸炭深さ測定方法は、主成分であるベース金属元素に対して、少なくともクロム及びクロム以外の金属元素が添加されてなるCr含有合金の表層における浸炭深さを測定する方法であって、浸炭深さが異なるCr含有合金の複数の試料についてポータブル型蛍光X線分析装置により分析を行って、クロム及びクロム以外の金属元素の濃度と浸炭深さとの関係を予め求めておき、測定対象物であるCr含有合金について前記ポータブル型蛍光X線分析装置により分析を行って、該測定対象物中のクロム及びクロム以外の金属元素の濃度を測定し、予め求めた前記関係に基づいて、前記測定対象物中のクロム及びクロム以外の金属元素の濃度の測定結果から、前記測定対象物の浸炭深さを求めることを特徴とする。   The method for measuring the carburization depth of a Cr-containing alloy according to the present invention measures the carburization depth in the surface layer of a Cr-containing alloy obtained by adding at least chromium and a metal element other than chromium to the base metal element as the main component. A plurality of Cr-containing alloy samples having different carburization depths are analyzed by a portable X-ray fluorescence spectrometer, and the relationship between the concentration of chromium and metal elements other than chromium and the carburization depth is obtained in advance. The Cr-containing alloy as the measurement object is analyzed by the portable fluorescent X-ray analyzer, and the concentrations of chromium and metal elements other than chromium in the measurement object are measured, and the relationship obtained in advance is determined. The carburization depth of the measurement object is obtained from the measurement results of the concentrations of chromium and metal elements other than chromium in the measurement object.

本願発明者は、主成分であるベース金属元素に対してクロム及びクロム以外の金属元素が添加されてなるCr含有合金について蛍光X線分析法による分析を行うと、Cr含有合金の表層における浸炭深さによって、クロム及びクロム以外の金属元素の濃度の測定結果に違いが出ることを見出した。本願発明者は、この知見に基づいて、上記浸炭深さ測定方法を着想した。   The inventor of the present application analyzed the Cr-containing alloy obtained by adding chromium and a metal element other than chromium to the base metal element as a main component, and analyzed the depth of carburization in the surface layer of the Cr-containing alloy. Thus, it was found that the measurement results of the concentrations of chromium and metal elements other than chromium differ. The inventor of the present application has conceived the carburization depth measurement method based on this finding.

上記浸炭深さ測定方法によれば、ポータブル型蛍光X線分析装置を用いて、測定対象物を破壊することなく測定を行うことができる。
また、予め取得したクロム及びクロム以外の金属元素の濃度と浸炭深さとの関係に基づいて、測定対象物中のクロム及びクロム以外の金属元素の濃度の測定結果から浸炭深さを求めるようにしたので、浸炭深さを定量的に把握できる。しかも、Cr濃度に加えてクロム以外の金属元素の濃度という2つのパラメータを用いて浸炭深さを求めるようにしたので、浸炭深さを高精度に算出できる。
さらに、持ち運び可能なポータブル型蛍光X線分析装置を用いるため、現地でも簡易かつ迅速に測定を行うことができる。
According to the carburization depth measurement method, measurement can be performed using the portable fluorescent X-ray analyzer without destroying the measurement object.
In addition, based on the relationship between the concentration of chromium and metal elements other than chromium and the carburization depth acquired in advance, the carburization depth is obtained from the measurement results of the concentrations of chromium and metal elements other than chromium in the measurement object. Therefore, the carburization depth can be grasped quantitatively. In addition, since the carburization depth is obtained using two parameters of the concentration of the metal element other than chromium in addition to the Cr concentration, the carburization depth can be calculated with high accuracy.
Furthermore, since a portable X-ray fluorescence analyzer that can be carried is used, measurements can be performed easily and quickly even on site.

上記浸炭深さ測定方法において、前記クロム以外の金属元素はニッケル又はモリブデンであってもよい。また、前記Cr含有合金はニッケルクロム鋼であってもよい。   In the carburization depth measurement method, the metal element other than chromium may be nickel or molybdenum. The Cr-containing alloy may be nickel chrome steel.

上記浸炭深さ測定方法において、前記測定対象物は回収ボイラの伝熱管であってもよい。
回収ボイラの伝熱管にはCr含有合金を用いることが多いが、回収ボイラの伝熱管は未燃カーボンや炭素化合物(例えばCaCO)等が存在する高温環境下に曝されるため、浸炭による粒界のクロム濃度の減少によってCr含有合金の耐食性が損なわれやすい。この点、上記浸炭深さ測定方法は、伝熱管を切断することなく、伝熱管を構成するCr含有合金の表層における浸炭深さを簡易に測定することができるから、回収ボイラの伝熱管のCr含有合金の耐食性を管理するために有用である。
In the carburization depth measurement method, the measurement object may be a heat transfer tube of a recovery boiler.
Although a Cr-containing alloy is often used for the heat transfer tube of the recovery boiler, the heat transfer tube of the recovery boiler is exposed to a high temperature environment in which unburned carbon, carbon compounds (for example, CaCO 3 ) and the like are present, so The corrosion resistance of the Cr-containing alloy is likely to be impaired due to the decrease in the chromium concentration in the boundary. In this respect, the above carburized depth measurement method can easily measure the carburized depth in the surface layer of the Cr-containing alloy constituting the heat transfer tube without cutting the heat transfer tube, so the Cr of the heat transfer tube of the recovery boiler It is useful for managing the corrosion resistance of the alloy containing.

本発明によれば、蛍光X線分析法を用いて、測定対象物を破壊することなく測定を行うことができる。
また、予め取得したクロム及びクロム以外の金属元素の濃度と浸炭深さとの関係に基づいて、測定対象物中のクロム及びクロム以外の金属元素の濃度の測定結果から浸炭深さを求めるようにしたので、浸炭深さを定量的に把握できる。しかも、Cr濃度に加えてクロム以外の金属元素の濃度という2つのパラメータを用いて浸炭深さを求めるようにしたので、浸炭深さを高精度に算出できる。
さらに、持ち運び可能なポータブル型蛍光X線分析装置を用いるため、現地でも簡易かつ迅速に測定を行うことができる。
According to the present invention, measurement can be performed using a fluorescent X-ray analysis method without destroying an object to be measured.
In addition, based on the relationship between the concentration of chromium and metal elements other than chromium and the carburization depth acquired in advance, the carburization depth is obtained from the measurement results of the concentrations of chromium and metal elements other than chromium in the measurement object. Therefore, the carburization depth can be grasped quantitatively. In addition, since the carburization depth is obtained using two parameters of the concentration of the metal element other than chromium in addition to the Cr concentration, the carburization depth can be calculated with high accuracy.
Furthermore, since a portable X-ray fluorescence analyzer that can be carried is used, measurements can be performed easily and quickly even on site.

蛍光X線分析法によるニッケルクロム鋼(SUS304)の成分分析結果を示す表である。It is a table | surface which shows the component-analysis result of nickel chromium steel (SUS304) by the fluorescent X ray analysis method. 第1実施形態に係るCr含有合金の表層における浸炭深さの測定方法を示すフローチャートである。It is a flowchart which shows the measuring method of the carburizing depth in the surface layer of Cr containing alloy which concerns on 1st Embodiment. ニッケルクロム鋼におけるCr濃度及びNi濃度と浸炭深さとの関係を示すグラフである。It is a graph which shows the relationship between Cr density | concentration and nickel density | concentration and carburizing depth in nickel chromium steel. クロムモリブデン鋼におけるCr濃度及びMo濃度と浸炭深さとの関係を示すグラフである。It is a graph which shows the relationship between Cr density | concentration in Mo chromium steel, Mo density | concentration, and carburizing depth.

[浸炭深さが蛍光X線分析結果に与える影響]
本願発明者は、主成分であるベース金属元素に対してクロム及びクロム以外の金属元素が添加されてなるCr含有合金について蛍光X線分析法による分析を行うと、Cr含有合金の表層における浸炭深さによって、クロム及びクロム以外の金属元素の濃度の測定結果に違いが出ることを見出した。
図1は、蛍光X線分析法によるニッケルクロム鋼(SUS304)の成分分析結果を示す表である。同図に示すように、浸炭が発生していない場合、SUS304の成分規格範囲内の数値を示すが、浸炭が発生すると、Cr濃度が減少し、Ni濃度が増大する。これは、蛍光X線分析法では、浸炭によって炭化物になったクロムが検出されずCr濃度が見かけ上減少し、その分だけNi濃度が見かけ上増大したためと考えられる。なお、含有量が最も多いベース金属元素である鉄は、浸炭の有無による影響がほとんどない。
本願発明者は、この知見に基づいて、本発明に係る浸炭深さ測定方法を着想した。
[Effect of carburization depth on fluorescent X-ray analysis results]
The inventor of the present application analyzed the Cr-containing alloy obtained by adding chromium and a metal element other than chromium to the base metal element as a main component, and analyzed the depth of carburization in the surface layer of the Cr-containing alloy. Thus, it was found that the measurement results of the concentrations of chromium and metal elements other than chromium differ.
FIG. 1 is a table showing the component analysis results of nickel chrome steel (SUS304) by fluorescent X-ray analysis. As shown in the figure, when carburization has not occurred, a numerical value within the component specification range of SUS304 is shown, but when carburization occurs, the Cr concentration decreases and the Ni concentration increases. This is presumably because, in the X-ray fluorescence analysis, chromium that became carbide by carburization was not detected, the Cr concentration apparently decreased, and the Ni concentration apparently increased by that amount. Note that iron, which is the base metal element with the largest content, has almost no effect due to the presence or absence of carburization.
Based on this finding, the inventor of the present application has conceived the carburization depth measurement method according to the present invention.

[第1実施形態]
以下、本発明の第1実施形態に係る浸炭深さ測定方法について説明する。本実施形態では、測定対象物は、Cr濃度が18%であり、Ni濃度が8%のニッケルクロム鋼(SUS304)からなるCr含有合金である。
[First Embodiment]
Hereinafter, the carburization depth measurement method according to the first embodiment of the present invention will be described. In this embodiment, the measurement object is a Cr-containing alloy made of nickel chromium steel (SUS304) having a Cr concentration of 18% and a Ni concentration of 8%.

図2は、本実施形態に係るCr含有合金の表層における浸炭深さの測定方法を示すフローチャートである。同図に示すように、最初に、浸炭深さが異なる複数の試料片(試料1〜3)について、ポータブル型蛍光X線分析装置を用いて分析を行う(ステップS2)。
ここで用いるポータブル型蛍光X線分析装置は、持ち運び可能であり、好ましくはケーブルレスである。例えば、ポータブル型蛍光X線分析装置として、サーモフィッシャーサイエンティフィック社製のXL3tシリーズ(XL3t−800,XL3t−800S,XL3t−900S−A)を用いることができる。
FIG. 2 is a flowchart showing a method for measuring the carburization depth in the surface layer of the Cr-containing alloy according to this embodiment. As shown in the figure, first, a plurality of sample pieces (samples 1 to 3) having different carburization depths are analyzed using a portable fluorescent X-ray analyzer (step S2).
The portable fluorescent X-ray analyzer used here is portable and preferably cableless. For example, XL3t series (XL3t-800, XL3t-800S, XL3t-900S-A) manufactured by Thermo Fisher Scientific can be used as a portable X-ray fluorescence analyzer.

試料1〜3は、いずれも測定対象物と同種のCr含有合金、すなわちニッケルクロム鋼(SUS304:Cr濃度;18%、Ni濃度;8%)である。各試料片の浸炭深さは、各試料片の断面組織の観察により予め測定されており、既知である。本実施形態では、試料1は浸炭が発生していない(すなわち、浸炭深さゼロ)のに対し、試料2及3は浸炭が発生しており、試料2よりも試料3のほうが浸炭深さは深い。   Samples 1 to 3 are all Cr-containing alloys of the same type as the object to be measured, that is, nickel chromium steel (SUS304: Cr concentration; 18%, Ni concentration; 8%). The carburization depth of each sample piece is measured in advance by observing the cross-sectional structure of each sample piece and is known. In the present embodiment, sample 1 has no carburization (that is, carburization depth is zero), while samples 2 and 3 have carburization, and sample 3 has a carburization depth that is greater than that of sample 2. deep.

次に、ステップS2の測定結果から、上記ニッケルクロム鋼の浸炭深さと、ポータブル蛍光X線分析装置により測定されたCr濃度及びNi濃度との関係を求める(ステップS4)。具体的には、測定された試料1〜3のCr濃度及びNi濃度に対して各試料片の浸炭深さをプロットし、最小二乗法等の公知の手法により近似曲線を求める。
なお、ステップS4においてCr濃度及びNi濃度と浸炭深さとの関係を求めるのは、浸炭の影響が出やすい添加金属元素(クロム及びニッケル)の濃度をパラメータとすることで、浸炭深さの測定を高精度に行うことができるからである。仮にFe濃度をパラメータとして用いると、ベース金属元素である鉄は浸炭の有無による影響をほとんど受けないため(図1参照)、浸炭深さの測定を高精度に行うことが難しい。
Next, the relationship between the carburizing depth of the nickel chrome steel and the Cr concentration and Ni concentration measured by the portable X-ray fluorescence analyzer is obtained from the measurement result of step S2 (step S4). Specifically, the carburizing depth of each sample piece is plotted against the measured Cr concentration and Ni concentration of samples 1 to 3, and an approximate curve is obtained by a known method such as the least square method.
In step S4, the relationship between the Cr concentration and the Ni concentration and the carburization depth is obtained by measuring the carburization depth by using the concentration of the additive metal elements (chromium and nickel) that are easily affected by carburization as parameters. This is because it can be performed with high accuracy. If the Fe concentration is used as a parameter, iron as the base metal element is hardly affected by the presence or absence of carburization (see FIG. 1), and therefore it is difficult to measure the carburization depth with high accuracy.

図3は、ニッケルクロム鋼におけるCr濃度及びNi濃度と浸炭深さとの関係を示すグラフである。なお、同図に示す近似曲線10は、試料1〜3の各座標の近似曲線である。
図3に示すように、浸炭が発生していない試料1は、Cr濃度が約18%であり、Ni濃度が約8%であって、いずれも成分規格範囲内の数値を示す。一方、浸炭が発生している試料2及び3は、Cr濃度が18%よりも低く、Ni濃度は8%よりも多くなっている。これは、蛍光X線分析法では、浸炭によって炭化物になったクロムが検出されずCr濃度が見かけ上減少し、その分だけNi濃度が見かけ上増大したためと考えられる。
FIG. 3 is a graph showing the relationship between Cr concentration and Ni concentration and carburization depth in nickel chromium steel. In addition, the approximate curve 10 shown to the same figure is an approximate curve of each coordinate of the samples 1-3.
As shown in FIG. 3, the sample 1 in which carburization did not occur has a Cr concentration of about 18% and a Ni concentration of about 8%, both of which are numerical values within the component specification range. On the other hand, Samples 2 and 3 in which carburization has occurred have a Cr concentration lower than 18% and a Ni concentration higher than 8%. This is presumably because, in the X-ray fluorescence analysis, chromium that became carbide by carburization was not detected, the Cr concentration apparently decreased, and the Ni concentration apparently increased by that amount.

続いて、図2に示すように、上記ポータブル蛍光X線分析装置を用いて測定対象物(ニッケルクロム鋼)の分析を行って、測定対象物のCr濃度及びNi濃度を測定する(ステップS6)。
なお、測定対象物は、回収ボイラの伝熱管であってもよい。回収ボイラの伝熱管のように、未燃カーボンや炭素化合物(例えばCaCO)等が存在する高温環境下に曝されるものは、粒界腐食によるクロムの減少によってCr含有合金の耐食性が損なわれやすい。この点、本実施形態の浸炭深さ測定方法は、伝熱管を切断することなく、伝熱管を構成するCr含有合金の表層における浸炭深さを簡易に測定することができるから、回収ボイラの伝熱管のCr含有合金の耐食性を管理するために有用である。
Subsequently, as shown in FIG. 2, the measurement object (nickel chrome steel) is analyzed using the portable fluorescent X-ray analyzer, and the Cr concentration and the Ni concentration of the measurement object are measured (step S6). .
Note that the measurement object may be a heat transfer tube of a recovery boiler. When exposed to high-temperature environments where unburned carbon or carbon compounds (for example, CaCO 3 ) exist, such as heat transfer tubes of recovery boilers, the corrosion resistance of Cr-containing alloys is impaired by the reduction of chromium due to intergranular corrosion. Cheap. In this respect, the carburization depth measurement method of the present embodiment can easily measure the carburization depth in the surface layer of the Cr-containing alloy constituting the heat transfer tube without cutting the heat transfer tube. This is useful for managing the corrosion resistance of the Cr-containing alloy of the heat tube.

最後に、ステップS4で求めたニッケルクロム鋼におけるCr濃度及びNi濃度と浸炭深さとの関係に基づいて、ステップS6で測定された測定対象物(ニッケルクロム鋼)のCr濃度及びNi濃度から、測定対象物の表層における浸炭深さを求める(ステップS8)。例えば、ステップS6で測定された測定対象物のCr濃度及びNi濃度を近似曲線10に代入して、測定対象物の表層における浸炭深さを求めてもよい。   Finally, based on the relationship between the Cr concentration and Ni concentration in the nickel chrome steel obtained in step S4 and the carburization depth, the measurement is performed from the Cr concentration and Ni concentration of the measurement object (nickel chrome steel) measured in step S6. The carburization depth in the surface layer of the object is obtained (step S8). For example, the carburization depth in the surface layer of the measurement object may be obtained by substituting the Cr concentration and Ni concentration of the measurement object measured in step S6 into the approximate curve 10.

以上説明したように、本実施形態では、主成分である鉄に対してクロム及びニッケルが添加されたニッケルクロム鋼からなり、浸炭深さが異なる試料1〜3についてポータブル型蛍光X線分析装置により分析を行って、Cr濃度及びNi濃度と浸炭深さとの関係を予め求めておき、ニッケルクロム鋼からなる測定対象物についてポータブル型蛍光X線分析装置により分析を行って、該測定対象物中のCr濃度及びNi濃度を測定し、予め求めたCr濃度及びNi濃度と浸炭深さとの関係に基づいて、Cr濃度及びNi濃度の測定結果から測定対象物の表層における浸炭深さを求める。   As described above, in the present embodiment, samples 1 to 3 made of nickel chromium steel in which chromium and nickel are added to iron as a main component and having different carburization depths are measured by a portable fluorescent X-ray analyzer. Analyze, the relationship between the Cr concentration and Ni concentration and the carburization depth is obtained in advance, and the measurement object made of nickel chrome steel is analyzed by a portable fluorescent X-ray analyzer. The Cr concentration and the Ni concentration are measured, and the carburization depth in the surface layer of the measurement object is obtained from the measurement result of the Cr concentration and the Ni concentration based on the relationship between the Cr concentration and the Ni concentration obtained in advance and the carburization depth.

本実施形態によれば、蛍光X線分析法を用いて、測定対象物を破壊することなく測定を行うことができる。
また、予め取得したCr濃度及びNi濃度と浸炭深さとの関係に基づいて、測定対象物中のCr濃度及びNi濃度の測定結果から浸炭深さを求めるようにしたので、浸炭深さを定量的に把握できる。しかも、Cr濃度に加えてNi濃度という2つのパラメータを用いて浸炭深さを求めるようにしたので、浸炭深さを高精度に算出できる。
さらに、持ち運び可能なポータブル型蛍光X線分析装置を用いるため、現地でも簡易かつ迅速に測定を行うことができる。
According to the present embodiment, measurement can be performed using a fluorescent X-ray analysis method without destroying the measurement object.
Further, since the carburization depth is obtained from the measurement results of the Cr concentration and the Ni concentration in the measurement object based on the relationship between the Cr concentration and Ni concentration acquired in advance and the carburization depth, the carburization depth is quantitatively determined. Can grasp. In addition, since the carburization depth is obtained using two parameters of Ni concentration in addition to Cr concentration, the carburization depth can be calculated with high accuracy.
Furthermore, since a portable X-ray fluorescence analyzer that can be carried is used, measurements can be performed easily and quickly even on site.

[第2実施形態]
次に、第2実施形態に係るCr含有合金の表層における浸炭深さの測定方法について説明する。本実施形態は、測定対象物であるCr含有合金が、Cr濃度が18%、Mo濃度が2%のクロムモリブデン鋼(SUS316)を用いる点を除けば、第1実施形態の測定方法と共通する。したがって、ここでは第1実施形態と異なる点を中心に説明する。
[Second Embodiment]
Next, a method for measuring the carburization depth in the surface layer of the Cr-containing alloy according to the second embodiment will be described. This embodiment is common to the measurement method of the first embodiment, except that the Cr-containing alloy as the measurement object uses chromium molybdenum steel (SUS316) having a Cr concentration of 18% and a Mo concentration of 2%. . Therefore, here, the description will focus on the differences from the first embodiment.

本実施形態で用いる試料片(試料4〜6)は、いずれも測定対象物と同種のCr含有合金、すなわちクロムモリブデン鋼(Cr濃度:18%、Mo濃度:2%)である。各試料片の浸炭深さは、各試料片の断面組織の観察により予め測定されており、既知である。試料4は浸炭が発生していない(すなわち、浸炭深さゼロ)のに対し、試料5及6は浸炭が発生しており、試料5よりも試料6のほうが浸炭深さは深い。
なお、クロムモリブデン鋼は、クロムだけでなくモリブデンも炭化物を形成する。すなわち、本実施形態でCr含有合金として用いるクロムモリブデン鋼は、クロム及びモリブデンの両方が炭化されて粒界腐食されうる点で、第1実施形態でCr含有合金として用いたニッケルクロム鋼と異なる(ニッケルクロム鋼の場合、クロムのみが炭化物を形成し、ニッケルは炭化物を形成しない)。
The sample pieces (samples 4 to 6) used in this embodiment are all Cr-containing alloys of the same type as the measurement object, that is, chromium molybdenum steel (Cr concentration: 18%, Mo concentration: 2%). The carburization depth of each sample piece is measured in advance by observing the cross-sectional structure of each sample piece and is known. Sample 4 has no carburization (that is, carburization depth is zero), while samples 5 and 6 have carburization, and sample 6 has a deeper carburization depth than sample 5.
Note that chromium molybdenum steel forms carbides not only with chromium but also with molybdenum. That is, the chromium molybdenum steel used as the Cr-containing alloy in this embodiment is different from the nickel chromium steel used as the Cr-containing alloy in the first embodiment in that both chromium and molybdenum can be carbonized to cause intergranular corrosion ( In the case of nickel-chrome steel, only chromium forms carbides, nickel does not form carbides).

本実施形態では、主成分である鉄に対してクロム及びモリブデンが添加されたクロムモリブデン鋼からなり、浸炭深さが異なる試料4〜6について、ポータブル型蛍光X線分析装置を用いて分析を行って、Cr濃度及びMo濃度と浸炭深さとの関係を予め求めておき、クロムモリブデン鋼からなる測定対象物についてポータブル型蛍光X線分析装置により分析を行って、該測定対象物中のCr濃度及びMo濃度を測定し、予め求めたCr濃度及びMo濃度と浸炭深さとの関係に基づいて、Cr濃度及びMo濃度の測定結果から測定対象物の表層における浸炭深さを求める。   In the present embodiment, samples 4 to 6 made of chromium molybdenum steel in which chromium and molybdenum are added to iron as a main component and having different carburization depths are analyzed using a portable X-ray fluorescence analyzer. Then, the relationship between the Cr concentration and the Mo concentration and the carburization depth is obtained in advance, the measurement object made of chromium molybdenum steel is analyzed by a portable X-ray fluorescence analyzer, and the Cr concentration and The Mo concentration is measured, and the carburization depth in the surface layer of the measurement object is obtained from the measurement results of the Cr concentration and the Mo concentration based on the relationship between the Cr concentration and the Mo concentration and the carburization depth obtained in advance.

図4は、クロムモリブデン鋼におけるCr濃度及びMo濃度と浸炭深さとの関係を示すグラフである。なお、同図に示す近似曲線20は、試料4〜6の各座標の近似曲線である。
図4に示すように、浸炭が発生していない試料4は、Cr濃度が約18%であり、Mo濃度が約2%であって、いずれも成分規格範囲内の数値を示す。一方、浸炭が発生している試料5及び6は、Cr濃度が18%よりも低く、Ni濃度も2%よりも低い。これは、蛍光X線分析法では、浸炭によって炭化物になったクロム及びモリブデンが検出されずCr濃度とMo濃度の両方が見かけ上減少したためと考えられる。
FIG. 4 is a graph showing the relationship between Cr concentration and Mo concentration and carburization depth in chromium molybdenum steel. The approximate curve 20 shown in the figure is an approximate curve of each coordinate of the samples 4 to 6.
As shown in FIG. 4, Sample 4 in which carburization has not occurred has a Cr concentration of about 18% and a Mo concentration of about 2%, both of which show numerical values within the component specification range. On the other hand, Samples 5 and 6 in which carburization has occurred have a Cr concentration lower than 18% and a Ni concentration lower than 2%. This is presumably because, in the X-ray fluorescence analysis, chromium and molybdenum that became carbide by carburization were not detected, and both the Cr concentration and the Mo concentration apparently decreased.

本実施形態によれば、上述の第1実施形態と同様に、蛍光X線分析法を用いて、測定対象物を破壊することなく測定を行うことができる。
また、予め取得したCr濃度及びMo濃度と浸炭深さとの関係に基づいて、測定対象物中のCr濃度及びMo濃度の測定結果から浸炭深さを求めるようにしたので、浸炭深さを定量的に把握できる。しかも、Cr濃度に加えてMo濃度という2つのパラメータを用いて浸炭深さを求めるようにしたので、浸炭深さを高精度に算出できる。
さらに、持ち運び可能なポータブル型蛍光X線分析装置を用いるため、現地でも簡易かつ迅速に測定を行うことができる。
According to the present embodiment, similarly to the first embodiment described above, measurement can be performed using a fluorescent X-ray analysis method without destroying the measurement object.
Further, since the carburization depth is obtained from the measurement result of the Cr concentration and the Mo concentration in the measurement object based on the relationship between the Cr concentration and the Mo concentration acquired in advance and the carburization depth, the carburization depth is quantitatively determined. Can grasp. In addition, since the carburization depth is obtained using two parameters of Mo concentration in addition to Cr concentration, the carburization depth can be calculated with high accuracy.
Furthermore, since a portable X-ray fluorescence analyzer that can be carried is used, measurements can be performed easily and quickly even on site.

以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。   As mentioned above, although embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to this, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation may be performed.

例えば、上述の実施形態では、Cr含有合金がニッケルクロム鋼又はクロムモリブデン鋼である例について説明したが、本発明におけるCr含有合金は、ベース金属元素に対して少なくともクロム及びクロム以外の金属元素が添加された合金であれば、特に限定されない。
また、ベース金属元素に対してクロムを含む3種類以上の金属元素が添加されたCr含有合金の場合、クロム及びクロム以外の添加量が最も多い金属元素の濃度と浸炭深さとの関係を予め求めて、浸炭深さの測定を行うことが好ましい。このように添加量が多い金属元素をパラメータとして用いることで、浸炭深さの測定精度が向上する。
For example, in the above-described embodiment, the example in which the Cr-containing alloy is nickel-chrome steel or chromium-molybdenum steel has been described, but the Cr-containing alloy in the present invention has at least a metal element other than chromium and chromium with respect to the base metal element. There is no particular limitation as long as it is an added alloy.
In addition, in the case of a Cr-containing alloy in which three or more kinds of metal elements including chromium are added to the base metal element, the relationship between the concentration of the metal element having the largest addition amount other than chromium and chromium and the carburization depth is obtained in advance. Thus, it is preferable to measure the carburization depth. By using a metal element with a large amount of addition as a parameter in this way, the measurement accuracy of carburization depth is improved.

10 近似曲線
20 近似曲線
10 approximate curve 20 approximate curve

Claims (4)

主成分であるベース金属元素に対して、少なくともクロム及びクロム以外の金属元素が添加されてなるCr含有合金の表層における浸炭深さを測定する方法であって、
浸炭深さが異なるCr含有合金の複数の試料についてポータブル型蛍光X線分析装置により分析を行って、クロム及びクロム以外の金属元素の濃度と浸炭深さとの関係を予め求めておき、
測定対象物であるCr含有合金について前記ポータブル型蛍光X線分析装置により分析を行って、該測定対象物中のクロム及びクロム以外の金属元素の濃度を測定し、
予め求めた前記関係に基づいて、前記測定対象物中のクロム及びクロム以外の金属元素の濃度の測定結果から、前記測定対象物の浸炭深さを求めることを特徴とするCr含有合金の浸炭深さ測定方法。
A method for measuring a carburization depth in a surface layer of a Cr-containing alloy in which at least chromium and a metal element other than chromium are added to a base metal element as a main component,
Analyzing a plurality of Cr-containing alloy samples having different carburizing depths with a portable X-ray fluorescence analyzer, and obtaining in advance the relationship between the concentration of chromium and metal elements other than chromium and the carburizing depth,
Analyzing the Cr-containing alloy that is the object to be measured by the portable fluorescent X-ray analyzer, and measuring the concentration of chromium and metal elements other than chromium in the object to be measured,
Based on the relationship obtained in advance, the carburization depth of the Cr-containing alloy is characterized in that the carburization depth of the measurement object is obtained from the measurement results of the concentrations of chromium and metal elements other than chromium in the measurement object. Measuring method.
前記クロム以外の金属元素がニッケル又はモリブデンであることを特徴とする請求項1に記載のCr含有合金の浸炭深さ測定方法。   2. The method for measuring a carburized depth of a Cr-containing alloy according to claim 1, wherein the metal element other than chromium is nickel or molybdenum. 前記Cr含有合金がニッケルクロム鋼であることを特徴とする請求項1又は2に記載のCr含有合金の浸炭深さ測定方法。   The said Cr containing alloy is nickel chromium steel, The carburizing depth measuring method of the Cr containing alloy of Claim 1 or 2 characterized by the above-mentioned. 前記測定対象物は、回収ボイラの伝熱管であることを特徴とする請求項1乃至3のいずれか一項に記載のCr含有合金の浸炭深さ測定方法。   The method for measuring a carburized depth of a Cr-containing alloy according to any one of claims 1 to 3, wherein the object to be measured is a heat transfer tube of a recovery boiler.
JP2010257310A 2010-11-17 2010-11-17 Method for measuring carburization depth of Cr-containing alloy Active JP5473872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010257310A JP5473872B2 (en) 2010-11-17 2010-11-17 Method for measuring carburization depth of Cr-containing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257310A JP5473872B2 (en) 2010-11-17 2010-11-17 Method for measuring carburization depth of Cr-containing alloy

Publications (2)

Publication Number Publication Date
JP2012108003A true JP2012108003A (en) 2012-06-07
JP5473872B2 JP5473872B2 (en) 2014-04-16

Family

ID=46493783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257310A Active JP5473872B2 (en) 2010-11-17 2010-11-17 Method for measuring carburization depth of Cr-containing alloy

Country Status (1)

Country Link
JP (1) JP5473872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232423A (en) * 2011-04-28 2012-11-29 Toyo Mach & Metal Co Ltd Method for assessing wear in molding machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113769A (en) * 1993-10-13 1995-05-02 Ishikawajima Harima Heavy Ind Co Ltd Creep life estimting method
JP2518710B2 (en) * 1989-12-28 1996-07-31 株式会社豊田中央研究所 Surface treatment method and treatment agent for iron alloy material
JPH09203713A (en) * 1996-01-24 1997-08-05 Rigaku Ind Co Portable, small-sized fluorescent x-ray analyzing device
JPH11352061A (en) * 1998-06-04 1999-12-24 Nippon Seiko Kk Method for analyzing surface layer by emission spectrochemical analysis
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2008045178A (en) * 2006-08-18 2008-02-28 Daido Steel Co Ltd Carburizing steel and carburized member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518710B2 (en) * 1989-12-28 1996-07-31 株式会社豊田中央研究所 Surface treatment method and treatment agent for iron alloy material
JPH07113769A (en) * 1993-10-13 1995-05-02 Ishikawajima Harima Heavy Ind Co Ltd Creep life estimting method
JPH09203713A (en) * 1996-01-24 1997-08-05 Rigaku Ind Co Portable, small-sized fluorescent x-ray analyzing device
JPH11352061A (en) * 1998-06-04 1999-12-24 Nippon Seiko Kk Method for analyzing surface layer by emission spectrochemical analysis
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2008045178A (en) * 2006-08-18 2008-02-28 Daido Steel Co Ltd Carburizing steel and carburized member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013064610; 駒井信好,田中康弘,外野雅彦: '"A-USCボイラ伝熱管用材料の石炭灰高温腐食特性評価"' 日本金属学会講演概要 第145回、(S9・21), 20090915, p.176, 社団法人日本金属学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232423A (en) * 2011-04-28 2012-11-29 Toyo Mach & Metal Co Ltd Method for assessing wear in molding machine

Also Published As

Publication number Publication date
JP5473872B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
Khajuria et al. Microstructural investigations on simulated intercritical heat-affected zone of boron modified P91-steel
Pillai et al. Evolution of carbides and chromium depletion profiles during oxidation of Alloy 602 CA
Rajesh et al. Microstructural and corrosion resistance study on plasma arc welded joints of AISI 304 and AISI 316
Yun et al. Effect of oxidation film on the fretting wear behavior of Alloy 690 steam generator tube mated with SUS 409
Bulajic et al. Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project
Taban et al. Effect of the purging gas on properties of 304H GTA welds
Kessal et al. Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone
Donahue et al. The interaction of corrosion fatigue and stress-corrosion cracking in a precipitation-hardened martensitic stainless steel
JP5473872B2 (en) Method for measuring carburization depth of Cr-containing alloy
Lance et al. The use of glow discharge optical emission spectroscopy to quantify internal carburization in supercritical CO2
Alipour et al. The effect of a nickel alloy coating on the corrosion of furnace wall tubes in a waste wood fired power plant
JP2008045975A (en) Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
Schmigalla et al. Corrosion behavior of electron beam welded duplex stainless steels
JP5149604B2 (en) Method and apparatus for measuring carburization depth of steel material
McNicol et al. Corrosion resistance of austenitic stainless steel welds with no-backing gas
Finšgar et al. The corrosion resistance of 2205 duplex steel in non‐inhibited methanesulphonic acid at elevated temperature
Ackermann et al. Oxide scale formation on Al containing Ni–Cr‐based high temperature alloys during application as flame tube material in recirculation oil burners
JP5740624B2 (en) Simple nondestructive discrimination method between stainless steel L and non-L materials
Najima et al. Method for identifying areas of sulfidation on water-wall tubes in coal-fired boilers
Pudovkin Application of qualimetric methods for assessing quality of complex products
JP5643023B2 (en) Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr
Balijepalli et al. Corrosion effect to the surface of stainless steel treated by two processes of low temperature carburization
Wang et al. Development of nitrogen-hydrocarbon atmospheric carburizing and process control methods
Schütze et al. Oxidation‐related life‐time assessment using the new ISO standards ISO 21608: 2012 and ISO 26146: 2012
Satake et al. Study on Ferrite Measurement Methods for Duplex Stainless Steel Welds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R151 Written notification of patent or utility model registration

Ref document number: 5473872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151