JP2012104223A - Permanent magnet type eddy current heater - Google Patents

Permanent magnet type eddy current heater Download PDF

Info

Publication number
JP2012104223A
JP2012104223A JP2009091622A JP2009091622A JP2012104223A JP 2012104223 A JP2012104223 A JP 2012104223A JP 2009091622 A JP2009091622 A JP 2009091622A JP 2009091622 A JP2009091622 A JP 2009091622A JP 2012104223 A JP2012104223 A JP 2012104223A
Authority
JP
Japan
Prior art keywords
heating
eddy current
fluid
permanent magnet
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009091622A
Other languages
Japanese (ja)
Inventor
Shinichi Kondo
信一 近藤
Fumihiko Takai
文彦 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CREW KENKYUSHO CO Ltd
Original Assignee
CREW KENKYUSHO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CREW KENKYUSHO CO Ltd filed Critical CREW KENKYUSHO CO Ltd
Priority to JP2009091622A priority Critical patent/JP2012104223A/en
Priority to PCT/JP2010/056348 priority patent/WO2010114180A1/en
Priority to JP2011507326A priority patent/JPWO2010114180A1/en
Publication of JP2012104223A publication Critical patent/JP2012104223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • F24H1/122Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply combined with storage tank
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet type eddy current heater that uses natural fluid kinetic energy, enabling heating at a low cost and with high energy utilization efficiency and capable of easily controlling heating capability.SOLUTION: In a permanent magnet type eddy current heater 2A, the rotational drive force obtained by collecting and converting natural fluid kinetic energy by prescribed drive force collection means rotates a body of rotation 21 having a pole face 21b in which a plurality of permanent magnets 213, 214 are installed at a prescribed disposition to form a magnetic field outside. This generates eddy current and joule heat in a heating body 20 having a lid 22 with a facing surface 20b facing the pole face 21b at a prescribed interval and comprising a conductive material and a fluid heating passage 210 so as to heat and transmit the fluid flowing in the fluid heating passage 210. In the permanent magnet type eddy current heater 2A, the pole face 21b is set to be plane right-angle relative to the rotation axis X on the base end side of the body of rotation 21, and the fluid heating passage 210 forms a spiral plane curve along the facing surface 20.

Description

本発明は、自然界に存在するエネルギーを熱エネルギーに変換して流体を加熱する渦電流加熱装置に関し、殊に、風力、水力、波力等の流体運動エネルギーを利用して高効率かつ低コストで水等の流体を加熱して給湯・暖房等を行うための永久磁石式渦電流加熱装置に関する。   The present invention relates to an eddy current heating device that heats a fluid by converting energy existing in nature to heat energy, and in particular, using fluid kinetic energy such as wind power, hydraulic power, and wave power at high efficiency and low cost. The present invention relates to a permanent magnet eddy current heating device for heating a fluid such as water to perform hot water supply and heating.

化石燃料の燃焼に伴う地球温暖化ガスの増加が問題となっている近年では、太陽光、風力、水力、波力等の自然エネルギーを利用する技術の開発が活発化しており、従来から行われている太陽光を利用した給湯システムや発電システムに加え、風力や水力等、自然の流体運動エネルギーを利用して発電を行う技術が多数開発されている。   In recent years, where the increase in global warming gas due to the burning of fossil fuels has become a problem, the development of technologies using natural energy such as sunlight, wind power, hydropower, wave power, etc. has become active, and has been carried out in the past. In addition to hot water supply systems and power generation systems that use sunlight, many technologies have been developed that generate power using natural fluid kinetic energy such as wind and hydropower.

しかし、給湯や暖房等の加熱を目的とする場合には、風等の流体運動エネルギーをいったん電力に変換してから電気的加熱手段で加熱することになり、また、自然由来の駆動力が不安定であることから装置の強度確保や蓄電手段も必要となるため、全体として設備コストが嵩む結果となる。また、発電〜蓄電〜加熱の各過程でロスが生じるためエネルギー利用効率も低くなり、さらに装置が複雑であるために故障・破損等の頻度が高いため、メンテナンスの手間とコストも嵩みやすくなるという問題もある。   However, in the case of heating such as hot water supply or heating, fluid kinetic energy such as wind is once converted into electric power and then heated by an electric heating means. Since it is stable, it is necessary to secure the strength of the apparatus and to store electricity, so that the overall equipment cost increases. In addition, energy use efficiency is reduced because losses occur in each process of power generation, electricity storage, and heating, and the frequency of failures and breakage is high due to the complexity of the device, so that maintenance effort and costs are likely to increase. There is also a problem.

この問題に対し、風車または水車等の駆動力採取手段により回転する円柱状のロータ外周に、極性を交互に変えて周方向に永久磁石を配置してなる磁極面を設け、その周りに所定の間隔で加熱体を対向して設け磁極面に対向する面側を磁性板で構成して、磁極面を回転させることで磁性板に渦電流を発生させながら、加熱体内側の通水室の水をジュール熱で加熱するものとして、給湯等に使用する永久磁石式の渦電流加熱装置が実登第3016066号公報に提案されている。   In order to solve this problem, a magnetic pole surface in which permanent magnets are arranged in the circumferential direction by alternately changing the polarity is provided on the outer periphery of a cylindrical rotor rotated by a driving force collecting means such as a windmill or a water turbine, The surface of the heater facing the magnetic pole surface is formed with a magnetic plate at intervals, and the magnetic plate is rotated to generate eddy currents by rotating the magnetic pole surface. A permanent magnet type eddy current heating device used for hot water supply or the like has been proposed in Japanese Utility Model No. 3016066.

このように、風力や水力等、自然由来の流体運動エネルギーで渦電流を発生させながら加熱体に直接的に熱を発生させて水を加熱するようにしたことで、流体運動エネルギーを電力に変換してから加熱する場合と比べて、簡易な構成でイニシャルコストを低廉に抑えながら自然エネルギーを従来よりも高い効率で利用することが可能となる。   In this way, fluid kinetic energy is converted into electric power by generating water directly by generating heat in the heating body while generating eddy currents with naturally derived fluid kinetic energy such as wind power and hydraulic power. Then, compared to the case of heating, it is possible to use natural energy at a higher efficiency than before while keeping the initial cost low with a simple configuration.

一方、本願発明者らは、先に特開2005−174801号公報において、図5に示すような永久磁石式の渦電流加熱装置2Cを提案している。これは、ロータ21C外周の磁極面に配置する永久磁石を、ロータ回転軸方向と直交する平面での断面形状が略長方形の第1の永久磁石214と、ロータ回転軸方向と直交する平面での断面形状がくさび形状である第2の永久磁石215とが、ロータ21Cの円周方向に1つおきに交互に並ぶように配置されながら図のような磁化方向とされ、かつ、ロータ21C外周側に設けた加熱体20Cに付設した流体通路211を、ロータ回転軸であるシャフト30と中心軸線が一致するコイル状(弦巻状)に形成した点を特徴としている。   On the other hand, the inventors of the present application have previously proposed a permanent magnet type eddy current heating device 2C as shown in FIG. 5 in Japanese Patent Application Laid-Open No. 2005-174801. This is because the permanent magnet arranged on the magnetic pole surface on the outer periphery of the rotor 21C is divided into a first permanent magnet 214 having a substantially rectangular cross-sectional shape in a plane orthogonal to the rotor rotation axis direction and a plane orthogonal to the rotor rotation axis direction. The second permanent magnets 215 whose cross-sectional shape is a wedge shape are magnetized as shown in the figure while being alternately arranged in the circumferential direction of the rotor 21C, and the outer peripheral side of the rotor 21C. The fluid passage 211 attached to the heating body 20 </ b> C provided in the above is characterized in that it is formed in a coil shape (string winding shape) whose center axis coincides with the shaft 30 that is the rotor rotation shaft.

永久磁石式の渦電流加熱装置において、磁極面の永久磁石を前記のような構成・配置としたことで、磁力線の立ち上がりを大きくして渦電流による加熱効率を向上させることができ、また、ロータ外周面側に設けた加熱体の流体加熱路の形状をコイル状としたことで、水を加熱する流程が長くなって効率的かつ連続的な加熱が実現されることから、さらにエネルギー効率が高く有用性の高いものとなった。   In the permanent magnet type eddy current heating device, the permanent magnet on the magnetic pole surface is configured and arranged as described above, so that the rising of the lines of magnetic force can be increased and the heating efficiency by eddy current can be improved. By making the shape of the fluid heating path of the heating element provided on the outer peripheral surface side into a coil shape, the flow of heating water becomes longer and efficient and continuous heating is realized. It became highly useful.

しかしながら、これらの渦電流加熱装置では永久磁石を配置したロータが円柱状とされており、その周りを円筒状の加熱体で覆う構成であるために、装置が全体として嵩張りやすいものとなる。これに加え、自然由来の不安定な駆動力を利用している関係で加熱能力の制御が容易ではなく、例えば風等の流体運動エネルギーが強くなりすぎた場合には、加熱体が過剰に高温化して装置の故障・破損の畏れが生じることになる。   However, in these eddy current heating devices, the rotor on which the permanent magnets are arranged is formed in a columnar shape, and the periphery thereof is covered with a cylindrical heating body, so that the device tends to be bulky as a whole. In addition to this, it is not easy to control the heating capacity because of the use of unstable driving force derived from nature. For example, if the fluid kinetic energy such as wind becomes too strong, the heating element will be excessively hot. Will result in a failure or damage of the device.

また、後者の渦電流加熱装置2Cでは、永久磁石を前述のような特殊な形状としたことにより加熱効率は高くなるものの、汎用品の磁石が使用できないためにコスト高となりやすく、また、コイル状の流体加熱路は構成が複雑であることから加熱体20Cの作成が容易ではなく、さらに、複雑な流体加熱通路の漏水や目詰まりを回避するためにメンテナンスの手間・コストが過大となりやすい。   Moreover, in the latter eddy current heating device 2C, although the permanent magnet has a special shape as described above, the heating efficiency is increased. However, since a general-purpose magnet cannot be used, the cost tends to increase. Since the structure of the fluid heating path is complicated, it is not easy to produce the heating element 20C. Further, in order to avoid water leakage and clogging in the complicated fluid heating path, the labor and cost of maintenance tend to be excessive.

実登第3016066号公報Noto 3016066 gazette 特開2005−174801号公報JP 2005-174801 A

本発明は、上記のような問題を解決しようとするものであり、自然の流体運動エネルギーを利用する永久磁石式渦電流加熱装置について、低コストでエネルギー利用効率の高い加熱を実現するとともに、加熱能力を容易に制御できるようにすることを課題とする。   The present invention is intended to solve the above-described problems. For a permanent magnet type eddy current heating device that uses natural fluid kinetic energy, it is possible to realize heating with low energy consumption and high energy utilization efficiency. It is an object to make it possible to easily control the ability.

そこで、本発明は、自然の流体運動エネルギーを所定の駆動力採取手段で採取・変換した回転駆動力により、複数の永久磁石が所定の配置で設けられて外側に磁場を形成する磁極面を備えた回転体を回転させることにより、磁極面に対し所定間隔で対向する対向面を有して導電材料及び流体加熱路を備えた加熱体に渦電流及びジュール熱を発生させ、流体加熱路中を流れる流体を加熱して送出する永久磁石式渦電流加熱装置において、その磁極面が回転体の基端側でその回転軸線に対し直角な平面とされ、流体加熱路が対向面から所定深さ位置で対向面に沿って渦巻き状の平面曲線を形成していることを特徴とするものとした。   Therefore, the present invention includes a magnetic pole surface in which a plurality of permanent magnets are provided in a predetermined arrangement and form a magnetic field outside by a rotational driving force obtained by converting and converting natural fluid kinetic energy by a predetermined driving force collecting means. Rotating the rotating body causes an eddy current and Joule heat to be generated in a heating body having a facing surface facing the magnetic pole surface at a predetermined interval and having a conductive material and a fluid heating path. In a permanent magnet eddy current heating device that heats and sends a flowing fluid, the magnetic pole surface is a plane perpendicular to the rotation axis on the base end side of the rotating body, and the fluid heating path is located at a predetermined depth from the opposing surface. A spiral plane curve is formed along the opposing surface.

このように、磁極面を回転体の回転軸線に対し直角な平面とし、流体加熱路を対向面に沿った渦巻き状の平面曲線としたことで、回転体及び流体加熱路を含む加熱体を各々平面的な構成にして全体的に嵩張らないものにすることができ、かつ、磁極面に配置する永久磁石を特別な形状にする必要がなくなって回転体を低コストで作成できることに加え、流体加熱路も平面的となり加熱体が比較的容易に作成できるため、製造コストが低廉に抑えられ簡易な構成でメンテナンスの手間・コストがかかりにくいものとなる。   In this way, the magnetic pole surface is a plane perpendicular to the rotation axis of the rotating body, and the fluid heating path is a spiral plane curve along the opposing surface, so that each heating body including the rotating body and the fluid heating path is provided. In addition to being able to create a flat structure and not to be bulky as a whole, and to eliminate the need for a special shape for the permanent magnet disposed on the magnetic pole face, it is possible to create a rotating body at low cost, and fluid heating Since the path is also flat and the heating element can be created relatively easily, the manufacturing cost can be kept low, and the labor and cost of maintenance can be reduced with a simple configuration.

この場合、その磁極面は回転体の回転軸線に対し中心が一致した円形の平面とされ、対向面がこの磁極面に対し平行な平面とされており、かつ、流体加熱路による渦巻き状の平面曲線が、回転軸線の延長線に対し直角かつ中心が一致しているものとすれば、より効率的な加熱が行えるとともに一層コンパクトなものとすることができる。   In this case, the magnetic pole surface is a circular plane whose center coincides with the rotation axis of the rotating body, the opposing surface is a plane parallel to the magnetic pole surface, and a spiral plane formed by the fluid heating path. If the curve is perpendicular to the extension line of the rotation axis and coincides with the center, more efficient heating can be achieved and the system can be made more compact.

また、上述した永久磁石式渦電流加熱装置において、その加熱体には対向面と磁極面の間隔を変更させるための間隔変更手段が付設されているものとすれば、自然由来の回転駆動力の変動状況に応じて間隔を適宜変更することで渦電流の発生量を変更し加熱能力を容易に調整できるものとなって、効率的かつ安全な流体の加熱が行えるものとなり、この場合、その永久磁石式渦電流加熱装置には加熱体による加熱能力の変動を連続的に検知する電子的制御手段が設けられており、この電子的制御手段が間隔変更手段を駆動操作して加熱能力を自動制御することを特徴としたものとすれば、自動的に加熱能力が調整されて安全かつ効率的に流体の加熱を行えるものとなる。   Further, in the permanent magnet type eddy current heating device described above, if the heating body is provided with an interval changing means for changing the interval between the opposing surface and the magnetic pole surface, By appropriately changing the interval according to the fluctuation situation, the amount of eddy current generated can be changed and the heating capacity can be easily adjusted, and the fluid can be heated efficiently and safely. The magnet-type eddy current heating device is equipped with electronic control means for continuously detecting fluctuations in the heating capacity due to the heating element, and this electronic control means automatically controls the heating capacity by driving the interval changing means. In this case, the heating capacity is automatically adjusted and the fluid can be heated safely and efficiently.

さらに、上述した永久磁石式渦電流加熱装置において、その加熱体は、これを構成する加熱体本体部の流体加熱路形成面から所定深さで溝を彫って渦巻き状の平面曲線を形成するとともに、その溝を設けた流体加熱路形成面に導電材料からなる蓋板を密着状態で被せて溝の開放面側を塞いでなるものとすれば、比較的簡易な手順で容易に流体加熱路が形成されるとともに、そのメンテナンスが容易なものとなり、この場合、その流体加熱路は、渦巻き状の平面曲線外周側から流体を導入し、加熱された流体を中心側から送出するものとすれば、渦巻き状の流体加熱路では外周側が中心側よりも加熱力が高くなるのに対し、中心側で過剰な加熱されることを回避しながら効率的な加熱を行いやすいものとなる。   Furthermore, in the above-described permanent magnet type eddy current heating device, the heating body forms a spiral plane curve by carving a groove at a predetermined depth from the fluid heating path forming surface of the heating body main body constituting the heating body. If a cover plate made of a conductive material is put in close contact with the fluid heating path forming surface provided with the groove to close the open surface side of the groove, the fluid heating path can be easily formed by a relatively simple procedure. In this case, if the fluid heating path introduces the fluid from the spiral plane curve outer periphery side and delivers the heated fluid from the center side, In the spiral fluid heating path, the outer peripheral side has a higher heating power than the central side, whereas efficient heating can be easily performed while avoiding excessive heating on the central side.

さらにまた、上述した永久磁石式渦電流加熱装置において、その磁極面に配置された複数の永久磁石は、その露出した端面側が磁極面の回転方向に沿って交互に異なる極性とされながら複数の同心円を形成するように配置されたものとすれば、渦電流がより発生しやすくなり一層効率的な加熱を行えるものとなる。   Furthermore, in the above-described permanent magnet type eddy current heating device, the plurality of permanent magnets arranged on the magnetic pole face have a plurality of concentric circles with the exposed end faces being alternately different in polarity along the rotation direction of the magnetic pole face. If it is arranged so as to form the eddy current, eddy currents are more likely to be generated and more efficient heating can be performed.

加えて、上述した永久磁石式渦電流加熱装置において、その駆動力採取手段と回転体を接続している動力伝達経路の途中に、蓄電手段に電気的に接続された発電機兼電動モータが機械的に接続可能な状態で配設されており、所定の接続切替手段により、駆動力採取手段と回転体が直結した状態、駆動力採取手段と発電機としての発電機兼電動モータが接続した状態、回転体と電動モータとしての発電機兼電動モータが接続した状態、の間で切替え可能とされていることを特徴としたものとすれば、回転駆動力の大きさに応じて動力伝達経路を切替えることで、自然の流体運動エネルギーが不安定であっても安定的な流体の加熱を行いやすいものとなる。   In addition, in the above-described permanent magnet type eddy current heating apparatus, a generator / electric motor electrically connected to the power storage means is provided in the middle of the power transmission path connecting the driving force collecting means and the rotating body. In a state in which the driving force collecting means and the rotating body are directly connected by a predetermined connection switching means, the driving force collecting means and a generator / electric motor as a generator are connected by a predetermined connection switching means. If the rotating body and the generator / electric motor as an electric motor are connected, the power transmission path can be changed according to the magnitude of the rotational driving force. By switching, even if natural fluid kinetic energy is unstable, it becomes easy to perform stable fluid heating.

また加えて、上述した永久磁石式渦電流加熱装置は、その加熱対象である流体が水であって、給湯用または暖房用または冷暖房用として使用されることを特徴としたものとすれば、少ないコストと手間で安定的な給湯機能または暖房機能または冷暖房機能を発揮するものとなり、或いは、その加熱対象である流体が空気であって暖房用として使用されることを特徴としたものとした場合でも、少ないコストと手間で優れた暖房機能を発揮できるものとなる。   In addition, the above-described permanent magnet type eddy current heating device has few if the fluid to be heated is water and is used for hot water supply, heating, or cooling / heating. Even when the hot water supply function or heating function or air conditioning function that is stable in terms of cost and labor is exhibited, or even when the fluid to be heated is air and used for heating It will be possible to demonstrate an excellent heating function with less cost and effort.

回転体の磁極面を回転軸線に直角な平面とし、磁極面に対向する対向面に沿って渦巻き状の平面曲線を形成してなる流体加熱路を設けた本発明によると、低コストでエネルギー利用効率の高い加熱を実現するとともに、加熱能力を容易に制御することができるものである。   According to the present invention, the magnetic pole surface of the rotating body is a plane perpendicular to the rotation axis, and a fluid heating path is formed by forming a spiral plane curve along the opposing surface facing the magnetic pole surface. While realizing highly efficient heating, the heating capacity can be easily controlled.

本発明における第1の実施の形態の永久磁石式渦電流加熱装置を配設した給湯システムの配置図。1 is a layout view of a hot water supply system in which a permanent magnet eddy current heating device according to a first embodiment of the present invention is disposed. 図1の永久磁石式渦電流加熱装置の詳細を示す側面図。The side view which shows the detail of the permanent magnet type eddy current heating apparatus of FIG. 本発明における第2の実施の形態の永久磁石式渦電流加熱装置を配設した給湯システムの配置図。The layout of the hot-water supply system which has arrange | positioned the permanent-magnet-type eddy current heating apparatus of 2nd Embodiment in this invention. (A),(B),(C)は、本発明の永久磁石式渦電流加熱装置に接続される駆動力採取手段の例を示す斜視図。(A), (B), (C) is a perspective view which shows the example of the driving force collection | recovery means connected to the permanent magnet type eddy current heating apparatus of this invention. 従来例の永久磁石式渦電流加熱装置を示す縦断面図。The longitudinal cross-sectional view which shows the permanent-magnet-type eddy current heating apparatus of a prior art example.

以下に、図面を参照しながら本発明を実施するための形態を説明する。尚、本発明においては、永久磁石式渦電流加熱装置のシャフトの回転軸線の方向を基準として駆動力採取手段側を先端側とし、その反対側(加熱体側)を基端側とする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present invention, the driving force collecting means side is the distal end side and the opposite side (heating body side) is the proximal end side with reference to the direction of the rotation axis of the shaft of the permanent magnet eddy current heating device.

図1は、本発明における第1の実施の形態である永久磁石式の渦電流加熱装置2Aを配設した給湯システム1Aの配置図を示している。この渦電流加熱装置2Aは、自然の流体運動エネルギーの一つである風力を利用するものであり、駆動力採取手段としてプロペラ(風車)5Aを用いながら、その回転駆動力で磁極面21bを備えた回転体21を回転させることにより、磁極面21bに近接配置した加熱体20の対向面20b側に渦電流及びジュール熱を発生させて流体加熱路210内を流れる水を加熱して送出するものである。   FIG. 1 shows a layout diagram of a hot water supply system 1A provided with a permanent magnet type eddy current heating device 2A according to a first embodiment of the present invention. This eddy current heating device 2A uses wind power, which is one of natural fluid kinetic energy, and includes a magnetic pole surface 21b with its rotational driving force while using a propeller (windmill) 5A as driving force collecting means. Rotating the rotating body 21 to generate eddy currents and Joule heat on the opposite surface 20b side of the heating body 20 disposed close to the magnetic pole surface 21b to heat and send water flowing in the fluid heating path 210 It is.

また、この給湯システム1Aでは、渦電流加熱装置2Aで加熱した水(温水)を送出管7bで送ってタンク3にいったん貯留してから給湯管7cで送出して給湯に使用するようになっており、タンク3の底部側で温度が低下した水は導入管7aにより渦電流加熱装置2Aに導入され、給湯に使用されて水位が下がった分だけタンク3に給水されるようになっている。   Further, in this hot water supply system 1A, water (hot water) heated by the eddy current heating device 2A is sent through the delivery pipe 7b, temporarily stored in the tank 3, and then sent out through the hot water supply pipe 7c to be used for hot water supply. The water whose temperature has dropped on the bottom side of the tank 3 is introduced into the eddy current heating device 2A through the introduction pipe 7a and is used for hot water supply so that the water is supplied to the tank 3 as much as the water level is lowered.

駆動力採取手段であるプロペラ5Aと回転体21を連結しているシャフト25の途中には、発電機26Aが配設されており、シャフト25が回転駆動することにより発電して、後述する電子制御ユニット10A、回転体21との間隔を変更するために加熱体20に付設した間隔変更手段であるスライダ24、温水をタンク3に圧送するポンプ4に電力を供給するようになっている。   A generator 26A is arranged in the middle of the shaft 25 that connects the propeller 5A, which is a driving force collecting means, and the rotating body 21, and generates electric power when the shaft 25 is driven to rotate, and will be described later. Electric power is supplied to the slider 24, which is an interval changing means attached to the heating body 20 in order to change the interval between the unit 10 </ b> A and the rotating body 21, and the pump 4 that pumps hot water to the tank 3.

渦電流加熱装置2Aの回転体21は、プロペラ5A中心から延設したシャフト25の中心軸線に一致する回転軸線Xに対し、直角かつ中心軸線の一致した円盤状とされ、その基端側が平面状の磁極面21bを形成している。一方、加熱体20も回転軸線Xの延長線に対し直角かつ中心軸線の一致した円盤状とされ、その先端側が回転体21の磁極面21bに対し平行な平面となっている点を特徴としている。   The rotating body 21 of the eddy current heating device 2A has a disk shape that is perpendicular to the rotation axis X that coincides with the center axis of the shaft 25 extending from the center of the propeller 5A, and that has a base end that is planar. The magnetic pole surface 21b is formed. On the other hand, the heating body 20 is also formed in a disk shape that is perpendicular to the extension line of the rotation axis X and coincides with the center axis line, and has a feature that the tip side is a plane parallel to the magnetic pole surface 21b of the rotation body 21. .

このように、回転軸線X(その延長線を含む)に対し、円盤状の回転体21と加熱体20とが、中心軸線を一致させながら互いに対向する面を直角にして配置されたことにより、従来例において回転体が外周側を磁極面とした円柱状のロータとされ流体加熱路を備えた加熱体がロータを囲む筒状とされて、装置が全体として嵩張っていたのに対し、本実施の形態では図示したように比較的簡易な構成で全体として嵩張らない状態で実施できるようになっている。   Thus, with respect to the rotation axis X (including its extension line), the disk-shaped rotation body 21 and the heating body 20 are arranged with the surfaces facing each other at right angles while matching the center axis, In the conventional example, the rotating body is a cylindrical rotor having a magnetic pole surface on the outer peripheral side, and the heating body having a fluid heating path is formed in a cylindrical shape surrounding the rotor. In the embodiment, as shown in the drawing, it can be implemented with a relatively simple configuration and without being bulky as a whole.

図2は、図1の渦電流加熱装置2Aの詳細を説明するための側面図を示しており、回転体21基端側の磁極面21bの正面図、及びこれに対向する対向面20bを構成する導電材料からなる蓋板22を外した状態とした流体加熱路210を設けた流体加熱路形成面200aの正面図を、各々引き出し矢印で指し示している。   FIG. 2 is a side view for explaining the details of the eddy current heating device 2A of FIG. 1, and constitutes a front view of the magnetic pole surface 21b on the base end side of the rotating body 21 and a facing surface 20b opposite thereto. Front views of the fluid heating path forming surface 200a provided with the fluid heating path 210 in a state where the cover plate 22 made of the conductive material is removed are respectively indicated by pulling arrows.

円形状の平面とされた磁極面21bは、円柱状でその高さ方向に磁化され露出面側がS極となる複数の永久磁石212と露出面側がN極となる複数の永久磁石213を、回転体21の回転方向に沿って交互に異なる極性となるように並べながら複数の同心円を構成するように埋設して平面状としたものである。   The magnetic pole surface 21b formed into a circular plane rotates a plurality of permanent magnets 212 which are cylindrical and are magnetized in the height direction and have an S pole on the exposed surface side and a plurality of permanent magnets 213 on the exposed surface side which are N poles. A plurality of concentric circles are embedded in a planar shape while being arranged so as to have different polarities alternately along the rotation direction of the body 21.

一方、流体加熱路210は、円盤状部材である加熱体本体部20aの蓋板22を密着させる平面状の流体加熱路形成面200aに、磁極面21bに対し平行になるように回転軸線Xの延長線に対し直角かつ中心の一致した渦巻き状(蚊取り線香状)の平面曲線を形成するように溝を彫ってなるものである。   On the other hand, the fluid heating path 210 has a rotation axis X that is parallel to the magnetic pole face 21b on a planar fluid heating path forming surface 200a that closely contacts the lid plate 22 of the heating body main body 20a that is a disk-shaped member. A groove is carved so as to form a spiral (mosquito-repellent incense-like) plane curve that is perpendicular to the extension line and coincides with the center.

このように、比較的簡易な構成で従来例ほど嵩張らない本実施の形態の渦電流加熱装置2Aは、自然の流体運動エネルギーを受けたプロペラ5Aでシャフト25を回転駆動させて、円盤状の回転体21をその中心軸線を回転軸線にして回転させ、その基端側の磁極面21bがレコード盤のように回転することにより、これと所定距離を置いて対向配置された加熱体20の対向面20bを構成する導電材料製の蓋板22に渦電流を発生させるとともにジュール熱を生じさせ、これに付設している平面的な渦巻き状とされた流体加熱路210中を流れる水を効率的に加熱するものである。   As described above, the eddy current heating device 2A of the present embodiment, which has a relatively simple configuration and is not as bulky as the conventional example, rotates the shaft 25 with the propeller 5A that receives natural fluid kinetic energy, and rotates in a disk shape. The body 21 is rotated with its central axis as the rotation axis, and the base end side magnetic pole surface 21b rotates like a record board, so that the opposing surface of the heating body 20 disposed opposite to this by a predetermined distance. An electric current is generated in the cover plate 22 made of a conductive material that constitutes 20b and Joule heat is generated, and water flowing in the fluid heating path 210 formed in a plane spiral attached thereto is efficiently discharged. It is for heating.

また、本実施の形態の渦電流加熱装置2Aにおいては、円盤状の加熱体20の対向面20bと磁極面21bとの距離(間隔)は、加熱体20に付設した間隔変更手段であるスライダ24を操作することにより変更可能となっている。このスライダ24は、渦電流加熱装置電子2Aに付設されている電子制御ユニット10Aで駆動操作されるステップモータ24aと、このステップモータ24aから延出されたボルト状の回動軸24bと、この回動軸24bの回動によりナット状の部材を介して上下動する支持アーム24cと、この支持アーム24cを挿通してその動作を上下方向にガイドするガイドバー24dとからなる。   Further, in the eddy current heating apparatus 2A of the present embodiment, the distance (interval) between the opposing surface 20b of the disc-shaped heating body 20 and the magnetic pole surface 21b is a slider 24 that is an interval changing means attached to the heating body 20. It can be changed by operating. The slider 24 includes a step motor 24a that is driven and operated by an electronic control unit 10A attached to the eddy current heating device electronics 2A, a bolt-shaped rotating shaft 24b that extends from the step motor 24a, and a rotating motor 24a. A support arm 24c that moves up and down via a nut-like member by the rotation of the moving shaft 24b, and a guide bar 24d that passes through the support arm 24c and guides its operation in the vertical direction.

そして、温度センサ11,12でタンク3内の水温と加熱直後の水温を検知するとともにシャフト25の途中に設けた発電機26Aの発電量を検知している電子制御ユニット10Aが、これらの検知データを基に、風力の強さに基づく加熱能力及び現在の水温状態に応じて、スライダ24を駆動操作しながら磁極面21bと対向面20bとの距離を自動的に調整し、最適な加熱能力となるように自動制御を行っており、渦電流による効率的な加熱を実現可能としている。   Then, the electronic control unit 10A that detects the water temperature in the tank 3 and the water temperature immediately after the heating with the temperature sensors 11 and 12 and detects the power generation amount of the generator 26A provided in the middle of the shaft 25 is detected data. Based on the above, the distance between the magnetic pole surface 21b and the opposing surface 20b is automatically adjusted while driving the slider 24 according to the heating capacity based on the strength of the wind force and the current water temperature state, and the optimum heating capacity Automatic control is performed so that efficient heating by eddy current can be realized.

また、流体加熱路210は、上述したように円盤状の部材からなる加熱体本体部20a先端側の平滑な流体加熱路形成面200aに、表面から所定深さで溝を彫り込んで外径が磁極面21bの外径とほぼ一致した渦巻き状の平面曲線を形成する流路となるように設けた後、その上から導電材料からなる蓋板22を密着・固定して溝の開放面側を内外液密的に塞ぐことにより形成されている。   Further, the fluid heating path 210 is formed by engraving a groove at a predetermined depth from the surface of the smooth fluid heating path forming surface 200a on the distal end side of the heating body main body 20a made of a disk-shaped member as described above, so that the outer diameter is a magnetic pole. After providing a flow path that forms a spiral plane curve that substantially coincides with the outer diameter of the surface 21b, a cover plate 22 made of a conductive material is closely attached and fixed thereon, and the open surface side of the groove is set on the inner and outer sides. It is formed by liquid-tightly closing.

従って、図5に示した従来例のようにロータ21Cの外周側に弦巻状に流体加熱路211を設ける場合と比べて、加熱体20を極めて容易に製作可能として製作コストを低廉なものとしている。また、流体加熱路210を前述のように簡易な平面的な構成としたことにより、腐食等による漏水の畏れも最小限に抑えられ、蓋板22をボルト等で着脱可能な状態とすることにより、蓋板22を外せば流体加熱路210を容易に清掃できるため、例えば湯垢の堆積が問題となりやすい24時間風呂の湯温維持等にも適したものとなる。さらに、この流体加熱路210では、対向する磁極面21bの回転速度が外周側は速く中心側は遅くなる関係で、その加熱能力が外周側は高く中心側は低くなるため、その外周側から水を導入して中心側からタンク3に送るようにしてあり、中心側で過剰に水温が上昇するのを回避しながら効率的な加熱を行いやすいものとしている。   Therefore, as compared with the case where the fluid heating path 211 is provided in a string form on the outer peripheral side of the rotor 21C as in the conventional example shown in FIG. 5, the heating element 20 can be manufactured very easily and the manufacturing cost is reduced. . In addition, since the fluid heating path 210 has a simple planar configuration as described above, leakage of water due to corrosion or the like can be minimized, and the lid plate 22 can be attached and detached with bolts or the like. Since the fluid heating path 210 can be easily cleaned by removing the cover plate 22, for example, it is suitable for maintaining the hot water temperature in a 24-hour bath, for example, where accumulation of scale is likely to be a problem. Further, in this fluid heating path 210, the rotation speed of the opposing magnetic pole surface 21b is high on the outer peripheral side and slows on the central side, and the heating capacity is high on the outer peripheral side and lower on the central side. Is introduced into the tank 3 from the center side, and efficient heating is facilitated while avoiding an excessive rise in water temperature on the center side.

尚、温水を貯留するタンク3を内外断熱性に優れた素材で作成して、最適な湯温が長時間に亘って維持されるようにすれば、風が強く大きな回転駆動力・加熱能力が得られる時間帯でタンク3内貯留水量の量・温度を充分に上げておくことにより、風が弱く充分な回転駆動力が得られない時間帯においても、良好な給湯機能を発揮するものとなる。   In addition, if the tank 3 for storing hot water is made of a material excellent in internal and external heat insulation so that the optimum hot water temperature is maintained for a long time, the wind is strong and the rotational driving force and heating capacity are large. By sufficiently raising the amount and temperature of the amount of water stored in the tank 3 in the obtained time zone, a good hot water supply function is exhibited even in a time zone where the wind is weak and sufficient rotational driving force cannot be obtained. .

図3は、本発明における第2の実施の形態である、渦電流加熱装置2Bを配設した給湯システム1Bの配置図を示している。本実施の形態も前述の給湯システム1Aと基本構成がほぼ共通しているが、その渦電流加熱装置2Bは、発電機兼電動モータ26Bが、回転体21に回転駆動力を伝達するシャフト25に対し接続切替手段としてのギヤボックス28を介して動力の接続状態と非接続状態との間で切替可能に設けられており、かつ、蓄電手段としてのバッテリ29が設けられて、これに発電機兼電動モータ26Bが電気的に接続されている点を特徴としている。   FIG. 3 shows a layout view of a hot water supply system 1B provided with an eddy current heating device 2B according to the second embodiment of the present invention. The basic configuration of the present embodiment is substantially the same as that of the hot water supply system 1A described above, but the eddy current heating device 2B includes a generator / electric motor 26B on a shaft 25 that transmits a rotational driving force to the rotating body 21. On the other hand, it is provided so that it can be switched between a connected state and a disconnected state of power via a gear box 28 as a connection switching means, and a battery 29 as a power storage means is provided. It is characterized in that the electric motor 26B is electrically connected.

即ち、ギヤボックス28及び発電機兼電動モータ26Bは、渦電流加熱装置2Bに付設された電子制御ユニット10Bにより制御されて、プロペラ5A側と回転体21が接続した状態、プロペラ5A側と発電機としての発電機兼電動モータ26Bが接続した状態、回転体21側と電動モータとしての発電機兼電動モータ26Bが接続した状態、との間で自動的に切替えられるようになっている。   That is, the gear box 28 and the generator / electric motor 26B are controlled by the electronic control unit 10B attached to the eddy current heating device 2B, and the propeller 5A side and the rotating body 21 are connected, the propeller 5A side and the generator. Are automatically switched between the state where the generator / electric motor 26B is connected and the state where the rotating body 21 side is connected to the generator / electric motor 26B as the electric motor.

これにより、例えばタンク3に充分な温度・量の温水が溜まっている状況で豊富な風力が得られる場合には、プロペラ5Aによる回転駆動力は回転体21に伝えずに発電機としての発電機兼電動モータ26Bに接続してバッテリ29を充電し、タンク3に充分な温度・量の温水が溜まっていない状況で充分な風力が得られない場合には、電動モータとしての電機兼電動モータ26Bを回転体21に接続して、バッテリ29に蓄えた電力で電機兼電動モータ26Bを駆動させて必要な加熱を行うことができる。   Thus, for example, when abundant wind power can be obtained in a situation where sufficient temperature and amount of hot water is accumulated in the tank 3, the rotational driving force by the propeller 5A is not transmitted to the rotating body 21, and the generator as a generator is generated. When the battery 29 is charged by connecting to the electric motor 26B and sufficient wind power cannot be obtained in a situation where sufficient temperature / amount of hot water is not accumulated in the tank 3, the electric electric motor 26B as an electric motor is obtained. Can be connected to the rotator 21 and the electric motor 26B can be driven by the electric power stored in the battery 29 to perform the necessary heating.

一方、適度な風力が得られる状況でバッテリ29の蓄電量が充分な場合において加熱が必要なケースでは、プロペラ5Aと回転体21を直結させて加熱を行うこともできる。このように、自然力に依存して不安定となりやすい回転駆動力の状況に応じて、動力伝達経路を適宜切替えることにより、風力がめまぐるしく変動するような場合であっても、安全且つ安定的な加熱を行いながら良好な給湯機能が維持されやすいものとなる。   On the other hand, in a situation where moderate wind power is obtained and the battery 29 has a sufficient amount of electricity stored, heating is necessary, and the propeller 5A and the rotating body 21 can be directly connected to perform heating. In this way, safe and stable heating is possible even when wind power fluctuates rapidly by appropriately switching the power transmission path according to the situation of the rotational driving force that tends to be unstable depending on the natural force. A good hot water supply function is easily maintained while performing.

尚、タンク3に充分な温度・量の温水が溜まっている状況で豊富な風力が得られる場合において、バッテリ29も充分に充電されている場合は、発電機としての発電機兼電動モータ26Bを駆動させて発電した電力を電力会社に売電するか、或いは、回転体21は回転させるが加熱体20との距離を離して加熱させないように、適宜電子制御ユニット10Bが制御を行うようにすればよい。   In the case where abundant wind power can be obtained in a situation where sufficient temperature and quantity of hot water is accumulated in the tank 3, if the battery 29 is also sufficiently charged, the generator / electric motor 26B as a generator is installed. The electric power generated by driving is sold to an electric power company, or the electronic control unit 10B appropriately controls so that the rotating body 21 is rotated but is not heated away from the heating body 20. That's fine.

図4(A),(B),(C)は、上述した第1の実施の形態と第2の実施の形態の渦電流加熱装置2A,2Bに共通して、そのシャフト25に装着する駆動力採取手段の変更例を示すものである。図(A)は、垂直軸風車5Bであり、前述したプロペラ5Aが風向きの変化に対応しにくかったのに対し、そのままでも総ての方角から吹く風に対応できる点を特徴としている。   4 (A), (B), and (C) are common to the eddy current heating devices 2A and 2B of the first embodiment and the second embodiment described above, and are mounted on the shaft 25. The example of a change of a force collection means is shown. FIG. (A) shows a vertical axis wind turbine 5B, which is characterized in that the propeller 5A described above is difficult to cope with changes in the direction of the wind, but can cope with winds blowing from all directions.

また、図(B)は、回転駆動軸に対し直角方向の水流で回転する水車5Cであり、図(C)は回転駆動軸に沿った水流で回転するスクリュー5Dを示しているが、これらは渦電流加熱装置が川や用水路等の水流に近い位置にある場合にその水力を利用するものであって、風力と比べて比較的安定した回転駆動力が得られる点を特徴としており、複数本のシャフトをユニバーサルジョイント250のような接続手段で角度を変えながら接続して使用することで、水流の位置・方向に合わせながら駆動力を採取することができる。   Further, FIG. (B) shows a water wheel 5C that rotates with a water flow in a direction perpendicular to the rotation drive shaft, and FIG. (C) shows a screw 5D that rotates with a water flow along the rotation drive shaft. When the eddy current heating device is located close to the water flow such as a river or irrigation canal, its hydropower is used, and it features a relatively stable rotational driving force compared to wind power. By connecting and using the shaft with a connecting means such as the universal joint 250 while changing the angle, the driving force can be collected while matching the position and direction of the water flow.

尚、上述した実施の形態においては、水を加熱して給湯に使用する場合を説明したが、本発明はこの目的に限定されるものではなく、例えば水を加熱することで暖房に使用することもでき、温水を使用して冷房を行うこともできる。また、同様の構成で水の代わりに空気を加熱して、屋内や温室の暖房にも使用することも可能である。   In the above-described embodiment, the case where water is heated and used for hot water supply has been described. However, the present invention is not limited to this purpose. For example, the water can be used for heating by heating water. It can also be cooled using warm water. Moreover, it is also possible to heat the air instead of water with the same configuration and use it for heating indoors or greenhouses.

以上、述べたように、自然の流体運動エネルギーを利用する永久磁石式渦電流加熱装置について、本発明により、低コストでエネルギー利用効率の高い加熱を実現できるとともに、加熱能力を容易に制御できるようになった。   As described above, the permanent magnet type eddy current heating device that uses natural fluid kinetic energy can realize heating with high energy utilization efficiency at low cost and easily control the heating capacity. Became.

1A,1B 給湯システム、2A,2B 渦電流加熱装置、3 タンク、4 ポンプ、5A プロペラ、5B 垂直軸風車、5C 水車、5D スクリュー、7a 導入管、7b 送出管、7c 給湯管、10A,10B 電子制御ユニット、11,12 温度センサ、20 加熱体、20a 加熱体本体部、20b 対向面、21 回転体、21a 回転体本体部、21b 磁極面、22 蓋板、24 スライダ、25 シャフト、26A 発電機、26B 発電機兼電動モータ、28 ギヤボックス、29 バッテリ、200a 流体加熱路形成面、210 流体加熱路、212,213 永久磁石   1A, 1B hot water supply system, 2A, 2B eddy current heating device, 3 tank, 4 pump, 5A propeller, 5B vertical axis windmill, 5C water turbine, 5D screw, 7a introduction pipe, 7b delivery pipe, 7c hot water supply pipe, 10A, 10B electron Control unit, 11, 12 Temperature sensor, 20 Heating body, 20a Heating body main body, 20b Opposing surface, 21 Rotating body, 21a Rotating body main body, 21b Magnetic pole surface, 22 Cover plate, 24 Slider, 25 Shaft, 26A Generator , 26B generator / electric motor, 28 gear box, 29 battery, 200a fluid heating path forming surface, 210 fluid heating path, 212, 213 permanent magnet

Claims (10)

自然の流体運動エネルギーを所定の駆動力採取手段で採取・変換した回転駆動力により、複数の永久磁石が所定の配置で設けられて外側に磁場を形成する磁極面を備えた回転体を回転させることにより、前記磁極面に対し所定間隔で対向する対向面を有して導電材料及び流体加熱路を備えた加熱体に渦電流及びジュール熱を発生させ、前記流体加熱路中を流れる流体を加熱して送出する永久磁石式渦電流加熱装置において、前記磁極面が前記回転体の基端側で該回転体の回転軸線に対し直角な平面とされ、前記流体加熱路が前記対向面から所定深さ位置で該対向面に沿った渦巻き状の平面曲線を形成している、ことを特徴とする永久磁石式渦電流加熱装置。   A rotary driving force obtained by collecting and converting natural fluid kinetic energy by a predetermined driving force collecting means rotates a rotating body provided with a plurality of permanent magnets in a predetermined arrangement and having a magnetic pole surface that forms a magnetic field on the outside. Thus, an eddy current and Joule heat are generated in a heating body having a facing surface facing the magnetic pole surface at a predetermined interval and provided with a conductive material and a fluid heating path, thereby heating the fluid flowing in the fluid heating path. In the permanent magnet type eddy current heating device to be sent out, the magnetic pole surface is a plane perpendicular to the rotation axis of the rotating body on the base end side of the rotating body, and the fluid heating path is formed at a predetermined depth from the facing surface. A permanent magnet type eddy current heating apparatus, characterized in that a spiral plane curve is formed along the facing surface at a position. 前記磁極面は、前記回転体の回転軸線に対し中心が一致した円形の平面とされ、前記対向面が前記磁極面に対し平行な平面とされており、かつ、前記流体加熱路による渦巻き状の平面曲線が、前記回転軸線の延長線に対し直角かつ中心が一致している、ことを特徴とする請求項1に記載した永久磁石式渦電流加熱装置。   The magnetic pole surface is a circular plane whose center coincides with the rotational axis of the rotating body, the opposing surface is a plane parallel to the magnetic pole surface, and a spiral shape formed by the fluid heating path. The permanent magnet type eddy current heating device according to claim 1, wherein the plane curve is perpendicular to the extension line of the rotation axis and coincides with the center. 前記加熱体に前記対向面と前記磁極面の間隔を変更させるための間隔変更手段が付設されている、ことを特徴とした請求項1または2に記載した永久磁石式渦電流加熱装置。   The permanent magnet type eddy current heating device according to claim 1 or 2, wherein an interval changing means for changing an interval between the facing surface and the magnetic pole surface is attached to the heating body. 前記加熱体による加熱能力の変動を連続的に検知する電子的制御手段を有し、該電子制御手段が前記間隔変更手段を駆動操作して加熱能力を自動制御する、ことを特徴とする請求項3に記載した永久磁石式渦電流加熱装置。   The electronic control means for continuously detecting fluctuations in the heating capacity due to the heating body, wherein the electronic control means automatically controls the heating capacity by driving the interval changing means. 3. The permanent magnet type eddy current heating device described in 3. 前記加熱体は、該加熱体を構成する加熱体本体部の流体加熱路形成面から所定深さで溝を彫って渦巻き状の平面曲線を形成するとともに、前記溝を設けた前記流体加熱路形成面に前記導電材料からなる蓋板を密着状態で被せて前記溝の開放面側を塞いでなる、ことを特徴とする請求項1,2,3または4に記載した永久磁石式渦電流加熱装置。   The heating body forms a spiral plane curve by carving a groove at a predetermined depth from the fluid heating path forming surface of the heating body main body constituting the heating body, and forming the fluid heating path provided with the groove The permanent magnet eddy current heating device according to claim 1, 2, 3, or 4, wherein a cover plate made of the conductive material is covered on the surface in a close contact state to close the open surface side of the groove. . 前記流体加熱路は、前記渦巻き状の平面曲線外周側から流体を導入し、加熱された前記流体を中心側から送出することを特徴とする、請求項5に記載した永久磁石式渦電流加熱装置。   6. The permanent magnet eddy current heating device according to claim 5, wherein the fluid heating path introduces a fluid from an outer peripheral side of the spiral planar curve and sends the heated fluid from a center side. . 前記磁極面に配置された複数の永久磁石は、その露出した端側が前記磁極面の回転方向に沿って交互に異なる極性とされながら複数の同心円を形成するように配置されている、ことを特徴とする請求項1,2,3,4,5または6に記載した永久磁石式渦電流加熱装置。   The plurality of permanent magnets arranged on the magnetic pole surface are arranged so as to form a plurality of concentric circles with the exposed end sides alternately having different polarities along the rotation direction of the magnetic pole surface. The permanent magnet type eddy current heating device according to claim 1, 2, 3, 4, 5, or 6. 前記駆動力採取手段と前記回転体を接続している動力伝達経路の途中に、蓄電手段に電気的に接続された発電機兼電動モータが機械的に接続可能な状態で配設されており、所定の接続切替手段により、前記駆動力採取手段と前記回転体が直結した状態、前記駆動力採取手段と発電機としての前記発電機兼電動モータが接続した状態、前記回転体と電動モータとしての前記発電機兼電動モータが接続した状態、の間で切替え可能とされていることを特徴とする、請求項1,2,3,4,5,6または7に記載した永久磁石式渦電流加熱装置。   In the middle of the power transmission path connecting the driving force collecting means and the rotating body, a generator / electric motor electrically connected to the power storage means is disposed in a mechanically connectable state, With the predetermined connection switching means, the driving force collecting means and the rotating body are directly connected, the driving force collecting means and the generator / electric motor as a generator are connected, the rotating body and the electric motor as The permanent magnet eddy current heating according to claim 1, 2, 3, 4, 5, 6 or 7, characterized in that it can be switched between a state where the generator / electric motor is connected. apparatus. 加熱対象である前記流体が水であって給湯用または暖房用または冷暖房用として使用される、ことを特徴とする請求項1,2,3,4,5,6,7または8に記載した永久磁石式渦電流加熱装置。   The permanent fluid according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the fluid to be heated is water and is used for hot water supply, heating, or air conditioning. Magnet eddy current heating device. 加熱対象である前記流体が空気であって暖房用として使用される、ことを特徴とする請求項1,2,3,4,5,6,7または8に記載した永久磁石式渦電流加熱装置。   The permanent magnet type eddy current heating device according to claim 1, wherein the fluid to be heated is air and is used for heating. .
JP2009091622A 2009-04-04 2009-04-04 Permanent magnet type eddy current heater Pending JP2012104223A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009091622A JP2012104223A (en) 2009-04-04 2009-04-04 Permanent magnet type eddy current heater
PCT/JP2010/056348 WO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet eddy current heating device
JP2011507326A JPWO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet type eddy current heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091622A JP2012104223A (en) 2009-04-04 2009-04-04 Permanent magnet type eddy current heater

Publications (1)

Publication Number Publication Date
JP2012104223A true JP2012104223A (en) 2012-05-31

Family

ID=42828457

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009091622A Pending JP2012104223A (en) 2009-04-04 2009-04-04 Permanent magnet type eddy current heater
JP2011507326A Withdrawn JPWO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet type eddy current heating device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011507326A Withdrawn JPWO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet type eddy current heating device

Country Status (2)

Country Link
JP (2) JP2012104223A (en)
WO (1) WO2010114180A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533534B1 (en) * 2014-08-06 2015-07-02 김원용 A round shape plate type eddy current induction heating equipment
WO2016203801A1 (en) * 2015-06-18 2016-12-22 住友電気工業株式会社 Induction heating device, and power generation system
WO2019221185A1 (en) * 2018-05-18 2019-11-21 Tsk株式会社 Electromagnetic induction heating device
WO2019240014A1 (en) * 2018-06-14 2019-12-19 Tsk株式会社 Object to be heated for electromagnetic induction heating device, method for heating object to be heated, and method for manufacturing aluminum foil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883488A (en) * 2012-09-18 2013-01-16 苏州仲暄通讯技术有限公司 Magnetic heating equipment
EP3217521B1 (en) 2014-11-06 2021-08-11 Nippon Steel Corporation Eddy current type heating device
US10196885B2 (en) 2015-02-12 2019-02-05 Board Of Regents Of The University Of Texas System Downhole induction heater for oil and gas wells
US10125589B2 (en) 2016-05-27 2018-11-13 Board Of Regents Of The University Of Texas System Downhole induction heater and coupling system for oil and gas wells
WO2018139004A1 (en) * 2017-01-24 2018-08-02 住友電気工業株式会社 Energy storage system and system for stably using fluctuating power

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237138A (en) * 1998-02-20 1999-08-31 Solar System Kk Generating method of energy employing wind power type stirling heat pump and device therefor
JP2000123962A (en) * 1998-10-19 2000-04-28 Usui Internatl Ind Co Ltd Magnet type heater
US7339144B2 (en) * 2001-07-24 2008-03-04 Magtec Llc Magnetic heat generation
JP2003203751A (en) * 2001-10-29 2003-07-18 Fuji Electric Co Ltd Electromagnetic induction heating type instantaneous steam generator
JP3955888B2 (en) * 2003-12-12 2007-08-08 トック・エンジニアリング株式会社 Permanent magnet type eddy current heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533534B1 (en) * 2014-08-06 2015-07-02 김원용 A round shape plate type eddy current induction heating equipment
WO2016203801A1 (en) * 2015-06-18 2016-12-22 住友電気工業株式会社 Induction heating device, and power generation system
JP2017010697A (en) * 2015-06-18 2017-01-12 住友電気工業株式会社 Induction heating apparatus and power generation system
WO2019221185A1 (en) * 2018-05-18 2019-11-21 Tsk株式会社 Electromagnetic induction heating device
JP2019200966A (en) * 2018-05-18 2019-11-21 Tsk株式会社 Electromagnetic induction heating device
WO2019240014A1 (en) * 2018-06-14 2019-12-19 Tsk株式会社 Object to be heated for electromagnetic induction heating device, method for heating object to be heated, and method for manufacturing aluminum foil

Also Published As

Publication number Publication date
JPWO2010114180A1 (en) 2012-10-11
WO2010114180A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP2012104223A (en) Permanent magnet type eddy current heater
JP3955888B2 (en) Permanent magnet type eddy current heating device
CN202835891U (en) Centrifugal permanent magnet heating device
CN102242961B (en) Wind-magnetism pyrogenic water heater
US8803353B2 (en) Turbine-generator driven by compressed air and magnet motor
CN201972856U (en) Wind power generating set
CN103401474B (en) Magneto-calorific system
CN202835745U (en) Water heater equipment
US8026622B2 (en) Generator with falling stator
WO2013169943A1 (en) Wind turbine generator and coupling
CN102720626A (en) Wave power generation device used in shallow water area
CN103759409A (en) Novel wind-power water heater and control method thereof
JP2018538783A (en) Method and apparatus for generating energy from renewable energy sources
JP2010525217A (en) Fluid power energy generator
JP2011210656A (en) Permanent magnet type heating and hybrid device for power generation
WO2012173757A2 (en) Turbine-generator driven by compressed air and magnet motor
KR100522616B1 (en) Power generation device using solar energy, magnetic force and wind force
CN103414385B (en) Magnetic-heating device
CN103206332B (en) A kind of tubular turbine automatic cleaning apparatus
CN104989606A (en) Bus pedal electricity generating device
US20120080882A1 (en) Electric generator utilizing high pressure fluid spray to rotate power generating
CN100440094C (en) Natural force power generator capable of monitoring rotation speed
CN104180513A (en) Flywheel permanent magnet water heater for heating water in domestic water box
CN204141833U (en) The fly-wheel type permanent magnet water heater of heating water supply tank water
JP5975760B2 (en) Water-circulating hydroelectric generator