JP2012102394A - Method of modifying thermal and electrical properties of multi-component titanium alloy - Google Patents

Method of modifying thermal and electrical properties of multi-component titanium alloy Download PDF

Info

Publication number
JP2012102394A
JP2012102394A JP2011189256A JP2011189256A JP2012102394A JP 2012102394 A JP2012102394 A JP 2012102394A JP 2011189256 A JP2011189256 A JP 2011189256A JP 2011189256 A JP2011189256 A JP 2011189256A JP 2012102394 A JP2012102394 A JP 2012102394A
Authority
JP
Japan
Prior art keywords
titanium alloy
tib
powder
boron
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189256A
Other languages
Japanese (ja)
Inventor
Seshacharyulu Tamirisakandala
セシャチャリュール,タミリサカンダーラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMW Composite Systems Inc
Original Assignee
FMW Composite Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMW Composite Systems Inc filed Critical FMW Composite Systems Inc
Publication of JP2012102394A publication Critical patent/JP2012102394A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides

Abstract

PROBLEM TO BE SOLVED: To increase the thermal conductivity and the electrical conductivity of a titanium alloy without adversely affecting mechanical property of the titanium alloy.SOLUTION: A method includes a step of introducing 0.01-18.4% boron into a titanium alloy to produce TiB precipitates and then aligning the TiB precipitates in a direction of metal flow by hot metalworking to obtain a titanium alloy with increased thermal conductivity and electrical conductivity. The step includes: crushing molten titanium alloy containing boron by inert gas to produce an alloy powder containing acicular TiB precipitates; consolidating the alloy powder by HIP treatment; and performing the hot metalworking such as hot forging or hot extrusion.

Description

発明の詳細な説明Detailed Description of the Invention

[発明の背景]
1.発明の分野
本発明は、チタン合金の物理的特性を改善する方法に関し、より詳細にいうと、チタンベースの組成物から成る物品の熱伝導率を上昇させると共に電気抵抗率を低減させる方法に関する。
[Background of the invention]
1. The present invention relates to a method for improving the physical properties of titanium alloys, and more particularly to a method for increasing the thermal conductivity and reducing the electrical resistivity of an article comprising a titanium-based composition.

2.背景技術の説明
チタン合金は、物理的特性と機械的特性との魅力的な組み合わせを提供し、航空宇宙産業や宇宙産業などの様々な産業において、著しい軽量化を提供するものである。しかし、チタン合金の熱伝導率は、鋼およびアルミニウムといった他の構造の金属と比べて低い。チタン合金の熱伝導率が低いことは、加熱速度と、加工および熱処理の後に得られる冷却速度とに影響を与える。チタン合金の他の欠点は、電気抵抗率が、鋼およびアルミニウムと比べて高いことである。電気抵抗率が高いことは、チタン合金の導体としての使用を制限する。従って、従来のTi−6Al−4Vといったチタン合金について、機械特性、特に、引張伸びおよび金属疲労に悪影響を及ぼすことなく、熱伝導率を上昇させると共に電気抵抗率を低減する、新規且つ改善された方法が求められている。本発明の方法は、この需要を満たすものである。
2. Description of the Background Art Titanium alloys provide an attractive combination of physical and mechanical properties and provide significant weight savings in various industries such as the aerospace and space industries. However, the thermal conductivity of titanium alloys is low compared to other structural metals such as steel and aluminum. The low thermal conductivity of the titanium alloy affects the heating rate and the cooling rate obtained after processing and heat treatment. Another drawback of titanium alloys is their high electrical resistivity compared to steel and aluminum. High electrical resistivity limits the use of titanium alloys as conductors. Therefore, new and improved titanium alloys such as conventional Ti-6Al-4V that increase thermal conductivity and reduce electrical resistivity without adversely affecting mechanical properties, particularly tensile elongation and metal fatigue. There is a need for a method. The method of the present invention meets this need.

[発明の概要]
本発明の新規且つ改善された方法によれば、ホウ化チタン(TiB)沈殿物をチタン合金の中に混入し、その後、チタン合金を制御しながら変形させて、TiB沈殿物を任意の方向に方向付け、熱特性および電気特性の改善を実現する。チタン合金を制御しながら変形させてTiB沈殿物を方向付けることは、高温金属加工によって行われる。
[Summary of Invention]
According to the new and improved method of the present invention, titanium boride (TiB) precipitate is mixed into the titanium alloy, and then the titanium alloy is controlled and deformed to make the TiB precipitate in an arbitrary direction. Improve orientation, thermal and electrical properties. Directing the TiB precipitate by deforming while controlling the titanium alloy is performed by high temperature metal working.

鋳造法、鋳造および鍛錬処理、並びに、ガスアトマイズ法および素粉末混合法(blended elemental approach)などの粉末冶金技術といった任意の好適な方法によって、チタン合金組成物の中にホウ素を導入して、TiB沈殿物を生成する。TiB沈殿物を金属流の方向に沿って整列させることは、鍛造、圧延、および押出といった高温金属加工作業を用いて実現可能である。   TiB precipitation by introducing boron into the titanium alloy composition by any suitable method such as casting, casting and forging, and powder metallurgy techniques such as gas atomization and blended elemental approach. Produce things. Aligning the TiB precipitate along the direction of the metal flow can be achieved using high temperature metal working operations such as forging, rolling, and extrusion.

具体的な一実施例として、本発明の方法を用いて、Ti−6Al−4V(Ti−64)およびTi−6Al−2Sn−4Zr−2Mo(Ti−6242)といった多成分チタン合金の熱伝導率を上昇させると共に電気抵抗率を低減させることが可能である。   As a specific example, the thermal conductivity of multicomponent titanium alloys such as Ti-6Al-4V (Ti-64) and Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) using the method of the present invention. And the electrical resistivity can be reduced.

[図面の簡単な説明]
図1は、TiBが混入されたチタン合金物品を製造するための、プレアロイ粉末冶金プロセスのフローチャートである。
[Brief description of drawings]
FIG. 1 is a flow chart of a pre-alloy powder metallurgy process for producing a titanium alloy article mixed with TiB.

図2aは、Ti−6Al−4V−1Bの微細構造を示す図であり、粉砕された(アトマイズされた)状態のプレアロイ粉粒子の断面を示している。   FIG. 2a is a diagram showing the microstructure of Ti-6Al-4V-1B, showing a cross section of the prealloyed powder particles in a pulverized (atomized) state.

図2bは、高温静水圧プレス処理による粉体圧密化の後の、Ti−6Al−4V−1Bの微細構造を示す図である。   FIG. 2b shows the microstructure of Ti-6Al-4V-1B after powder consolidation by high temperature isostatic pressing.

図3は、Ti−6Al−4V−1B鍛造物品の様々な位置における、微細構造を示す図である。   FIG. 3 is a diagram showing the microstructure at various positions of the Ti-6Al-4V-1B forged article.

図4aは、Ti−6A1−4V−1Bのプレアロイ粉から成る押出物品の微細構造を示す図であり、押出軸に沿って整列したTiB沈殿物(暗段階)が示されている。   FIG. 4a shows the microstructure of an extruded article composed of a prealloyed powder of Ti-6A1-4V-1B, showing TiB precipitates (dark stage) aligned along the extrusion axis.

図4bは、図4aを横方向から見た顕微鏡写真であり、TiB沈殿物の六角形の断面が示されている。   FIG. 4b is a photomicrograph of FIG. 4a viewed from the side, showing a hexagonal cross section of the TiB precipitate.

図5は、(ナノTi−64と表示される)Ti−6A1−4V−1B鍛造物品および押出物品の熱伝導率と、Ti−6A1−4V物品の熱伝導率とを比較したグラフである。   FIG. 5 is a graph comparing the thermal conductivity of Ti-6A1-4V-1B forged and extruded articles (indicated as nano-Ti-64) and the thermal conductivity of Ti-6A1-4V articles.

図6は、Ti−6A1−2Sn−4Zr−2Mo−1B鍛造物品の熱伝導率と、ベースラインTi−6A1−2Sn−4Zr−2Mo物品の熱伝導率とを比較したグラフである。   FIG. 6 is a graph comparing the thermal conductivity of the Ti-6A1-2Sn-4Zr-2Mo-1B forged article with the thermal conductivity of the baseline Ti-6A1-2Sn-4Zr-2Mo article.

図7は、(ナノTi−64と表示される)Ti−6A1−4V−1B鍛造物品の電気抵抗率と、Ti−6A1−4V物品の電気抵抗率とを比較したグラフである。   FIG. 7 is a graph comparing the electrical resistivity of a Ti-6A1-4V-1B forged article (indicated as nano Ti-64) and the electrical resistivity of a Ti-6A1-4V article.

図8は、Ti−6A1−2Sn−4Zr−2Mo−1B鍛造物品の電気抵抗率と、ベースラインTi−6A1−2Sn−4Zr−2Mo物品の電気抵抗率とを比較したグラフである。   FIG. 8 is a graph comparing the electrical resistivity of the Ti-6A1-2Sn-4Zr-2Mo-1B forged article and the electrical resistivity of the baseline Ti-6A1-2Sn-4Zr-2Mo article.

[発明の詳細な説明]
以下に、Ti−6Al−4V(Ti−64)およびTi−6Al−2Sn−4Zr−2Mo(Ti−6242)などの多成分チタン合金の熱伝導率を上昇させると共に、電気抵抗率を低減する方法を記載する。これらの方法は、二つの重要な要素、すなわち、
1) チタン合金マトリクスの中にTiB沈殿物を混入する工程、および、
2) 高温金属加工によって、TiB沈殿物を任意の方向に整列させる工程を含む。
Detailed Description of the Invention
The following is a method for increasing the thermal conductivity of multi-component titanium alloys such as Ti-6Al-4V (Ti-64) and Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) and reducing the electrical resistivity. Is described. These methods have two important elements:
1) mixing a TiB precipitate in the titanium alloy matrix; and
2) It includes the step of aligning the TiB precipitate in any direction by high temperature metalworking.

チタン合金組成物の中にホウ素を導入してTiB沈殿物を生成することは、異なる幾つかの方法、例えば、鋳造、鋳造および鍛錬処理、粉末冶金技術(ガスアトマイズ法および素粉末混合法)によって、実現可能である。ホウ素は、液体状態で、チタン合金に加えてよく、この場合、ホウ素は、液状チタン合金中に完全に溶解する。粉末冶金技術を用いる場合には、ホウ素は、固形の粉末を混合することによって、チタン合金に加えることが可能である。ホウ素をチタン合金に加えるために用いるプロセスとは無関係に、ホウ素を、元素状態で存在するホウ素であるTiBとして、または、任意の好適なマスター合金を含有するホウ素として、加えてもよい。ホウ素は、0.01重量%〜18.4重量%の範囲の量で加えてよい。より好ましくは、ホウ素は、チタン合金組成物に応じて、0.01重量%〜2重量%の範囲の量でチタン合金に加えてよい。 Introducing boron into a titanium alloy composition to produce a TiB precipitate can be accomplished by several different methods, such as casting, casting and forging processes, powder metallurgy techniques (gas atomization and powder mixing). It is feasible. Boron may be added to the titanium alloy in the liquid state, in which case the boron is completely dissolved in the liquid titanium alloy. When using powder metallurgy techniques, boron can be added to the titanium alloy by mixing solid powders. Boron regardless of the process used to apply the titanium alloy, boron, as TiB 2 is boron present in elemental or as boron containing any suitable master alloys may be added. Boron may be added in amounts ranging from 0.01% to 18.4% by weight. More preferably, boron may be added to the titanium alloy in an amount ranging from 0.01% to 2% by weight, depending on the titanium alloy composition.

鍛造、圧延、および押出などの高温金属加工作業を用いて、TiB沈殿物を、金属流の方向に沿って整列させることを実現することが可能である。   Using high temperature metal working operations such as forging, rolling, and extrusion, it is possible to achieve alignment of the TiB precipitate along the direction of the metal flow.

本方法は、図1に示されるガスアトマイズ粉末冶金プロセスのフローチャートによって実施可能である。ホウ素を、溶融したチタン合金に加え、溶融した液体を、不活性ガスによって粉砕し(不活性ガスアトマイズし)、チタン合金粉末を得る。各粉粒子は、均一に且つランダムな方向に分布された針状のTiB沈殿物を含む。6体積%のTiB(暗い相)を含有するTi−6Al−4V−1B粉粒子断面の典型的な微細構造が、図2aに示されている。チタン合金粉末を、高温静水圧プレス処理(HIP)などの従来の技術を用いて、圧密して、十分に高密度の圧縮粉を得る。圧縮された状態では、TiB沈殿物は、チタン合金マトリクスにおいて、依然としてランダムな方向に、均一に分布されている。HIP後のTi−6Al−4V−1B粉の典型的な微細構造が、図2bに示されている。   The method can be implemented by the gas atomization powder metallurgy process flowchart shown in FIG. Boron is added to the molten titanium alloy, and the molten liquid is pulverized with an inert gas (inert gas atomization) to obtain a titanium alloy powder. Each powder particle contains acicular TiB precipitates distributed uniformly and randomly. A typical microstructure of a cross section of Ti-6Al-4V-1B powder particles containing 6% by volume TiB (dark phase) is shown in FIG. 2a. The titanium alloy powder is compacted using a conventional technique such as high temperature isostatic pressing (HIP) to obtain a sufficiently high density compressed powder. In the compressed state, the TiB precipitate is still uniformly distributed in the random direction in the titanium alloy matrix. A typical microstructure of Ti-6Al-4V-1B powder after HIP is shown in FIG. 2b.

その後、圧縮粉に、鍛造、圧延、または押出といった金属加工作業を施す。チタン合金物品を生成するために一般的に用いられる高温加工パラメータにより、金属流の方向に沿ってTiB沈殿物を所望の通り整列できることが分かった。具体的な一実施例として、高温加工パラメータは次の通りである。   Thereafter, the compressed powder is subjected to a metal processing operation such as forging, rolling, or extrusion. It has been found that the high temperature processing parameters commonly used to produce titanium alloy articles can align TiB precipitates as desired along the direction of metal flow. As a specific example, the high temperature processing parameters are as follows.

温度範囲1750〜2200°Fおよびラム速度40インチ/分において、高さ16インチ×直径3.5インチの圧縮粉を、高さ3インチ×直径8インチのディスクに鍛造することによって形成されたTi−6Al−4V−1B物品の異なる箇所における顕微鏡写真が、図3に示されている。図3では、鍛造の後に、TiB針状の沈殿物(暗い相)が径方向に沿って整列していることが明らかである。2000°Fおよびラム速度100インチ/分において、直径3インチの圧縮粉を直径0.75インチの棒に押出するプロセスによって生成されたTi−6Al−4V−1B物品の別の典型的な微細構造が、図4に示されている。図4は、TiB沈殿物(暗い相)が押出軸に沿って整列していることを示している。   Ti formed by forging compacted powder 16 inches high x 3.5 inches in diameter into 3 inches high x 8 inches in diameter at a temperature range of 1750-2200 ° F and a ram speed of 40 inches / minute. Photomicrographs at different locations of the -6Al-4V-1B article are shown in FIG. In FIG. 3, it is clear that after forging, TiB needle-like precipitates (dark phase) are aligned along the radial direction. Another exemplary microstructure of a Ti-6Al-4V-1B article produced by the process of extruding 3 inch diameter compacted powder into a 0.75 inch diameter bar at 2000 ° F. and a ram speed of 100 inches / minute Is shown in FIG. FIG. 4 shows that the TiB precipitate (dark phase) is aligned along the extrusion axis.

TiBが混入された幾つかのチタン合金物品(表1に示される化合物)の熱特性および電気特性を評価した。比較のために、TiB沈殿物を有さないチタン合金に同じ試験を行った。熱伝導率の試験を、標準試験方法であるASTM E1461に従って行い、電気抵抗率を、標準的方法であるASTM B84によって測定した。   The thermal and electrical properties of several titanium alloy articles (compounds shown in Table 1) mixed with TiB were evaluated. For comparison, the same test was performed on a titanium alloy without TiB precipitate. The thermal conductivity test was performed according to standard test method ASTM E1461, and the electrical resistivity was measured by standard method ASTM B84.

Figure 2012102394
Figure 2012102394

図5では、(ナノTi−64と表示される)Ti−64−1B鍛造物品および押出物品の熱伝導率が、Ti−64物品の熱伝導率と比較されている。温度範囲70〜1250°Fにおいて、ナノTi−64鍛造品の径方向における熱伝導率、および、ナノTi−64押出品の軸方向における熱伝導率が、ベースラインTi−64よりも高いことが明らかである。   In FIG. 5, the thermal conductivity of Ti-64-1B forged and extruded articles (labeled nano-Ti-64) is compared to the thermal conductivity of Ti-64 articles. In the temperature range 70-1250 ° F., the thermal conductivity in the radial direction of the nano-Ti-64 forged product and the thermal conductivity in the axial direction of the nano-Ti-64 extrudate may be higher than the baseline Ti-64. it is obvious.

図6では、Ti−6242−1B鍛造物品の熱伝導率データが、ベースラインTi−6242物品の熱伝導率データと比較されている。この材料システムでも、熱伝導率は、ベースラインよりも高いことが明らかである。最大35%の熱伝導率の上昇が、試験方向に沿って整列したTiB沈殿物を有する物品において、記録されている。   In FIG. 6, the thermal conductivity data for the Ti-6242-1B forged article is compared to the thermal conductivity data for the baseline Ti-6242 article. Even with this material system, it is clear that the thermal conductivity is higher than the baseline. An increase in thermal conductivity of up to 35% has been recorded in articles with TiB precipitates aligned along the test direction.

図7では、(ナノTi−64と表示される)Ti−64−1B鍛造物品の電気抵抗率が、Ti−64物品の電気抵抗率と比較されている。温度範囲70〜1500°Fにおいて、ナノTi−64鍛造品の径方向における電気抵抗率が、ベースラインTi−64よりも低いことが明らかである。図8では、Ti−6242−1B鍛造物品の電気抵抗率データが、ベースラインTi−6242物品の電気抵抗率データと比較されている。この材料システムでも、電気抵抗率は、ベースラインよりも低いことが明らかである。最大20%の熱伝導率の低減が、試験方向に沿って整列したTiB沈殿物を有する物品において、記録されている。   In FIG. 7, the electrical resistivity of the Ti-64-1B forged article (indicated as nano Ti-64) is compared to the electrical resistivity of the Ti-64 article. It is apparent that the electrical resistivity in the radial direction of the nano Ti-64 forged product is lower than that of the baseline Ti-64 in the temperature range of 70-1500 ° F. In FIG. 8, the electrical resistivity data for the Ti-6242-1B forged article is compared to the electrical resistivity data for the baseline Ti-6242 article. It is clear that even in this material system, the electrical resistivity is lower than the baseline. A reduction in thermal conductivity of up to 20% has been recorded in articles with TiB precipitates aligned along the test direction.

熱特性および電気特性の改善に加えて、TiBが混入されたチタン合金は、延性および金属疲労に悪影響することなく、機械特性に幾つかの利点を提供する。例えば、表2において、(ナノバージョンと称される)ホウ素修飾されたチタン合金物品の室温引張特性が、ベースラインチタン合金の室温引張特性と比較されている。ナノチタン合金において、引張耐力および引張極限強さは25%高く、弾性率は20%高いが、引張伸びは、そのベースラインチタン合金と等しい状態を維持している。   In addition to improving thermal and electrical properties, TiB-incorporated titanium alloys offer several advantages in mechanical properties without adversely affecting ductility and metal fatigue. For example, in Table 2, the room temperature tensile properties of boron-modified titanium alloy articles (referred to as nanoversions) are compared to the room temperature tensile properties of baseline titanium alloys. In the nanotitanium alloy, the tensile strength and ultimate tensile strength are 25% higher and the elastic modulus is 20% higher, but the tensile elongation remains the same as the baseline titanium alloy.

Figure 2012102394
Figure 2012102394

本発明を、現在、最も典型的および好ましい実施形態と見なされるものに関連して、説明してきたが、本発明は、開示された実施形態に限定されるべきではなく、逆に、本発明の原理および添付の特許請求の範囲内に含まれる様々な変形および同様の構成を網羅することを意図するものと理解されるべきである。   Although the present invention has been described in connection with what is presently considered to be the most typical and preferred embodiments, the present invention should not be limited to the disclosed embodiments, but vice versa. It should be understood that it is intended to cover various modifications and similar arrangements included within the principles and appended claims.

TiBが混入されたチタン合金物品を製造するための、プレアロイ粉末冶金プロセスのフローチャートである。It is a flowchart of the pre-alloy powder metallurgy process for manufacturing the titanium alloy article mixed with TiB. Ti−6Al−4V−1Bの微細構造を示す図であり、粉砕された(アトマイズされた)状態のプレアロイ粉粒子の断面を示している。It is a figure which shows the fine structure of Ti-6Al-4V-1B, and has shown the cross section of the pre-alloy powder particle | grains of the grind | pulverized (atomized) state. 高温静水圧プレス処理による粉体圧密化の後の、Ti−6Al−4V−1Bの微細構造を示す図である。It is a figure which shows the microstructure of Ti-6Al-4V-1B after the powder compaction by a high temperature isostatic pressing process. Ti−6Al−4V−1B鍛造物品の様々な位置における、微細構造を示す図である。It is a figure which shows the microstructure in various positions of a Ti-6Al-4V-1B forging article. Ti−6A1−4V−1Bのプレアロイ粉から成る押出物品の微細構造を示す図であり、押出軸に沿って整列したTiB沈殿物(暗い相)が示されている。FIG. 4 shows the microstructure of an extruded article composed of Ti-6A1-4V-1B prealloyed powder, showing TiB precipitates (dark phase) aligned along the extrusion axis. 図4aを横方向から見た顕微鏡写真であり、TiB沈殿物の六角形の断面が示されている。FIG. 4b is a photomicrograph of FIG. 4a viewed from the side, showing a hexagonal cross section of the TiB precipitate. (ナノTi−64と表示される)Ti−6A1−4V−1B鍛造物品および押出物品の熱伝導率と、Ti−6A1−4V物品の熱伝導率とを比較したグラフである。FIG. 4 is a graph comparing the thermal conductivity of Ti-6A1-4V-1B forged and extruded articles (indicated as nano-Ti-64) and the thermal conductivity of Ti-6A1-4V articles. Ti−6A1−2Sn−4Zr−2Mo−1B鍛造物品の熱伝導率と、ベースラインTi−6A1−2Sn−4Zr−2Mo物品の熱伝導率とを比較したグラフである。It is the graph which compared the thermal conductivity of the Ti-6A1-2Sn-4Zr-2Mo-1B forged article, and the thermal conductivity of the baseline Ti-6A1-2Sn-4Zr-2Mo article. (ナノTi−64と表示される)Ti−6A1−4V−1B鍛造物品の電気抵抗率と、Ti−6A1−4V物品の電気抵抗率とを比較したグラフである。It is the graph which compared the electrical resistivity of a Ti-6A1-4V-1B forged article (displayed as nano Ti-64) and the electrical resistivity of a Ti-6A1-4V article. Ti−6A1−2Sn−4Zr−2Mo−1B鍛造物品の電気抵抗率と、ベースラインTi−6A1−2Sn−4Zr−2Mo物品の電気抵抗率とを比較したグラフである。It is the graph which compared the electrical resistivity of the Ti-6A1-2Sn-4Zr-2Mo-1B forged article, and the electrical resistivity of the baseline Ti-6A1-2Sn-4Zr-2Mo article.

Claims (10)

チタン合金の熱伝導率を上昇させると共に電気抵抗率を低減させる方法であって、
上記チタン合金の中にホウ素を導入して、TiB沈殿物を生成する工程と、
上記TiB沈殿物を、高温金属加工によって、金属流の方向に整列させる工程とを含む、方法。
A method for increasing the thermal conductivity of a titanium alloy and reducing the electrical resistivity,
Introducing boron into the titanium alloy to produce a TiB precipitate;
Aligning the TiB precipitate in the direction of metal flow by high temperature metalworking.
上記TiB沈殿物を、鋳造、鋳造および鍛錬処理、または粉末冶金技術によって生成する、請求項1に記載の方法。   The method of claim 1, wherein the TiB precipitate is produced by casting, casting and forging processes, or powder metallurgy techniques. 上記高温金属加工は、鍛造、圧延、または押出である、請求項1に記載の方法。   The method according to claim 1, wherein the high temperature metal working is forging, rolling, or extrusion. 上記チタン合金は、Ti−6Al−4VまたはTi−6Al−2Sn−4Zr−2Moといった多成分材料である、請求項1に記載の方法。   The method according to claim 1, wherein the titanium alloy is a multi-component material such as Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo. 上記ホウ素は、上記チタン合金の重量の約0.01%〜18.4%である、請求項1に記載の方法。   The method of claim 1, wherein the boron is about 0.01% to 18.4% of the weight of the titanium alloy. 上記ホウ素を、溶融したチタン合金に加え、結果として生じる溶融した液体を、不活性ガスによって粉砕して、均一に且つ不揃いな方向に分布された針状のTiB沈殿物を含むチタン合金粉末を生成する、請求項1に記載の方法。   The boron is added to the molten titanium alloy, and the resulting molten liquid is crushed with an inert gas to produce a titanium alloy powder containing needle-like TiB precipitates that are uniformly and unevenly distributed. The method of claim 1. 上記チタン合金粉末を、高温静水圧プレス処理によって圧密する、請求項6に記載の方法。   The method according to claim 6, wherein the titanium alloy powder is consolidated by a high temperature isostatic pressing process. 上記高温金属加工は、約1750〜2000°Fの温度および約40インチ/分のラム速度における、圧縮粉の鍛造である、請求項3に記載の方法。   4. The method of claim 3, wherein the hot metalworking is forging of compacted powder at a temperature of about 1750-2000 [deg.] F. and a ram speed of about 40 inches / minute. 上記高温金属加工は、約2000°Fの温度および約100インチ/分のラム速度における、圧縮粉の押出プロセスである、請求項3に記載の方法。   4. The method of claim 3, wherein the hot metalworking is a compressed powder extrusion process at a temperature of about 2000 ° F. and a ram speed of about 100 inches / minute. 上記チタン合金は、延性が低下しない、または金属疲労しない、請求項1に記載の方法。   The method of claim 1, wherein the titanium alloy does not decrease ductility or metal fatigue.
JP2011189256A 2010-11-12 2011-08-31 Method of modifying thermal and electrical properties of multi-component titanium alloy Withdrawn JP2012102394A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/923,056 2010-11-12
US12/923,056 US20120118433A1 (en) 2010-11-12 2010-11-12 Method of modifying thermal and electrical properties of multi-component titanium alloys

Publications (1)

Publication Number Publication Date
JP2012102394A true JP2012102394A (en) 2012-05-31

Family

ID=44645482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189256A Withdrawn JP2012102394A (en) 2010-11-12 2011-08-31 Method of modifying thermal and electrical properties of multi-component titanium alloy

Country Status (5)

Country Link
US (1) US20120118433A1 (en)
EP (1) EP2453029A1 (en)
JP (1) JP2012102394A (en)
KR (1) KR20120051572A (en)
CN (1) CN102465217A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109722564A (en) * 2019-01-10 2019-05-07 青海聚能钛金属材料技术研究有限公司 Ti-6242 titanium alloy and preparation method thereof
CN109722565A (en) * 2019-01-10 2019-05-07 青海聚能钛金属材料技术研究有限公司 High temperature resistant titanium alloy and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128692T2 (en) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanium alloy made of sintered powder and process for its production
WO2005060631A2 (en) * 2003-12-11 2005-07-07 Ohio University Titanium alloy microstructural refinement method and high temperature, high strain rate superplastic forming of titanium alloys
US20060016521A1 (en) * 2004-07-22 2006-01-26 Hanusiak William M Method for manufacturing titanium alloy wire with enhanced properties
US7879286B2 (en) * 2006-06-07 2011-02-01 Miracle Daniel B Method of producing high strength, high stiffness and high ductility titanium alloys

Also Published As

Publication number Publication date
CN102465217A (en) 2012-05-23
EP2453029A1 (en) 2012-05-16
KR20120051572A (en) 2012-05-22
US20120118433A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Kim et al. Microstructure and mechanical properties of hot isostatically pressed Ti–6Al–4V alloy
US7785530B2 (en) Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
Romero et al. Fatigue and fracture properties of Ti alloys from powder-based processes–a review
JP5837407B2 (en) Titanium alloy and manufacturing method thereof
Tong et al. Fabrication of micro-fine spherical high Nb containing TiAl alloy powder based on reaction synthesis and RF plasma spheroidization
JP7278704B2 (en) Powder titanium alloy composition and articles formed therefrom
WO2013080390A1 (en) α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
CN104759830A (en) Method for production of performance enhanced metallic materials
Bao et al. High strength conductive bulk Cu-based alloy/metallic glass composites fabricated by spark plasma sintering
Zhang et al. Evolution of inhomogeneous reinforced structure in TiBw/Ti-6AL-4V composite prepared by pre-sintering and canned β extrusion
US11421303B2 (en) Titanium alloy products and methods of making the same
Ogunmefun et al. A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques
Alshammari et al. Effect of particle size and manufacturing technique on the properties of the PM Ti-5Fe alloy
Qian et al. Sintering of titanium and its alloys
Song et al. Nearly dense Ti–6Al–4V/TiB composites manufactured via hydrogen assisted BEPM
Alshammari et al. Behaviour of novel low-cost blended elemental Ti–5Fe-xAl alloys fabricated via powder metallurgy
Liu et al. High-quality spherical zirconium alloy powders prepared by thermal plasma treatment for additive manufacturing
JP5837406B2 (en) Titanium alloy and manufacturing method thereof
JP2012102394A (en) Method of modifying thermal and electrical properties of multi-component titanium alloy
Zhao et al. Superior strength-ductility balance in hot pressed swarf-Ti-6Al–4V alloy
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
JP2005281768A (en) Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor
Su et al. Dense layer, microstructure, and mechanical performances of Ti–6Al–4V alloy prepared by metal injection molding
JP6669471B2 (en) Method for producing nitrogen solid solution titanium sintered body
Gabbitas et al. Cost effective forging of titanium alloy parts and their mechanical properties

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104