JP2012097306A - Copper alloy, copper rolled product, electronic component and connector - Google Patents

Copper alloy, copper rolled product, electronic component and connector Download PDF

Info

Publication number
JP2012097306A
JP2012097306A JP2010244790A JP2010244790A JP2012097306A JP 2012097306 A JP2012097306 A JP 2012097306A JP 2010244790 A JP2010244790 A JP 2010244790A JP 2010244790 A JP2010244790 A JP 2010244790A JP 2012097306 A JP2012097306 A JP 2012097306A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
concentration
titanium
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244790A
Other languages
Japanese (ja)
Other versions
JP5226056B2 (en
Inventor
Hiroyasu Horie
弘泰 堀江
Naohiko Era
尚彦 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010244790A priority Critical patent/JP5226056B2/en
Priority to TW100136250A priority patent/TWI429765B/en
Priority to CN201110342260.3A priority patent/CN102453814B/en
Priority to KR1020110110858A priority patent/KR101365354B1/en
Publication of JP2012097306A publication Critical patent/JP2012097306A/en
Application granted granted Critical
Publication of JP5226056B2 publication Critical patent/JP5226056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy excellent in strength and bendability, a copper rolled product, an electronic component and a connector.SOLUTION: The copper alloy comprises 2.0-4.0 mass% Ti, 0-0.5 mass% in total of one or more chosen from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Mo, V, Nb, Zr, Si, B and P, as a third element, and the balance being copper and inevitable impurities. When the titanium concentration in a base phase of the copper alloy for electronic components is observed using a scanning transmission electron microscope, the amplitude Y (wt.%) of the Ti concentration in the base phase in a cross section parallel to the rolling direction of the copper alloy and the Ti concentration X (wt.%) in the copper alloy for electronic components satisfy the relation: (0.83X-0.65)<Y<(0.83X+0.50).

Description

本発明は、例えば電子部品用部材に好適なチタンを含む銅合金、この銅合金を用いた伸銅品、この銅合金を用いて作成した電子部品及びコネクタに関する。   The present invention relates to, for example, a copper alloy containing titanium suitable for a member for electronic parts, a copper-drawn article using the copper alloy, an electronic part and a connector made using the copper alloy.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と過酷な曲げ加工に耐え得る、優れた曲げ加工性が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、素材強度が要求される信号系端子用素材として古くから使用されてきた。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used must have high strength to obtain the necessary springiness and excellent bending workability that can withstand severe bending. It is done. In this respect, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics, and therefore requires a material strength. It has been used for a long time as a signal system terminal material.

チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。   Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from that state, periodic fluctuations in Ti concentration in the parent phase due to spinodal decomposition The modulation structure is developed and the strength is improved. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.

この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。   At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained.

そこで、Fe、Co、Ni、Siなどの第3元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする研究開発が従来なされてきた。   Therefore, by adding a third element such as Fe, Co, Ni, Si, etc. (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these are added to the second phase particles (Cu—Ti—). X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3) and refining crystal grains (Patent Document 4), research and development have been made to achieve both the strength and bending workability of titanium copper.

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−283142号公報JP 2006-283142 A

このように、チタン銅は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造することが一般的であり、この工程を基本として特性の改善を図ってきた。   In this way, titanium copper is generally manufactured in the order of melt casting of ingot → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. The process has been improved based on this process.

しかしながら、より優れた特性をもつチタン銅を得る上では、更なる改善の余地が残されている。そこで、本発明は、従来とは異なる観点からチタン銅の特性改善を試みることにより、優れた強度及び曲げ加工性を有する銅合金、伸銅品、電子部品及びコネクタを提供することを課題とする。   However, there is room for further improvement in obtaining titanium copper having more excellent characteristics. Then, this invention makes it a subject to provide the copper alloy which has the outstanding intensity | strength and bending workability, a copper elongation product, an electronic component, and a connector by trying the characteristic improvement of titanium copper from a viewpoint different from the past. .

従来のチタン銅の製造方法は、最終の溶体化処理によってチタンを母相に十分に固溶させた後、冷間圧延を行って強度を一定程度上昇させ、最後に時効処理でスピノーダル分解を起こして高強度チタン銅を得るというものであった。そのため、せっかく固溶したチタンの安定相が析出しかねない熱処理を冷間圧延前に実施することは考えられなかった。   In the conventional titanium copper production method, titanium is sufficiently dissolved in the matrix by the final solution treatment, followed by cold rolling to increase the strength to some extent, and finally aging treatment causes spinodal decomposition. High strength titanium copper was obtained. For this reason, it has not been considered to carry out a heat treatment before the cold rolling, in which a stable phase of titanium that has been dissolved in a solid solution may precipitate.

しかしながら、本発明者らは鋭意検討の結果、チタンの準安定相又は安定相が生成しないか又は一部生成する程度の適切な熱処理により冷間圧延前に予め一定程度スピノーダル分解を起こしておくと、その後に冷間圧延及び時効処理を行って最終的に得られるチタン銅の強度が有意に向上することを見出した。即ち、従来のチタン銅がスピノーダル分解を起こす熱処理工程を時効処理の1段階で行っていたのに対し、本発明のチタン銅の製造方法では、冷間圧延を挟んでスピノーダル分解を2段階で起こす点で大きく異なる。更に、熱処理工程を追加した上で最終の時効処理を従来に比べて低温側で行うことで、強度及び曲げ加工性のバランスが飛躍的に向上したチタン銅が得られることも分かった。   However, as a result of intensive studies, the present inventors have determined that spinodal decomposition is caused to some extent before cold rolling by appropriate heat treatment that does not generate or partially forms a metastable phase or stable phase of titanium. Then, it was found that the strength of titanium copper finally obtained by performing cold rolling and aging treatment was significantly improved. That is, while the conventional titanium copper performs a heat treatment process that causes spinodal decomposition in one stage of aging treatment, the titanium copper manufacturing method of the present invention causes spinodal decomposition in two stages with cold rolling interposed therebetween. The point is very different. Furthermore, it was also found that by adding the heat treatment step and performing the final aging treatment on the low temperature side as compared with the conventional case, it is possible to obtain titanium copper having a dramatically improved balance between strength and bending workability.

上記製造工程を採用することにより、チタン銅の特性が向上した理由は十分解明されていない。理論によって本発明が限定されることを意図するものではないが、本発明者らは以下のように推測してきた。即ち、チタン銅では、時効処理においてチタンの変調構造が発達していくにつれ、チタンの濃度変化の振幅(濃淡)が大きくなっていくが、一定の振幅にまで達すると、ゆらぎに耐えられなくなった頂点付近のチタンがより安定なβ’相、更にはβ相へと変化する。即ち、溶体化処理によって母相に固溶したチタンは、その後に熱処理を加えることで、チタン濃度の周期的変動である変調構造が徐々に変化していき、これが準安定相であるβ’相へ変化し、最終的には安定相であるβ相へと変化するのである。ところが、最終溶体化処理後、冷間圧延前に、予めスピノーダル分解を起こすことのできる熱処理を施すと、時効処理時に、通常ではβ’相が析出するはずの振幅に達してもβ’相が析出しにくくなり、より大きな振幅を有する変調構造にまで成長したと考えられる。そして、このようなゆらぎの大きな変調構造が、チタン銅に粘りを与えたと考えられる。   The reason why the characteristics of titanium copper have been improved by adopting the above manufacturing process has not been fully elucidated. Although it is not intended that the present invention be limited by theory, the present inventors have speculated as follows. That is, with titanium copper, as the titanium modulation structure develops in aging treatment, the amplitude (shading) of titanium concentration change increases, but when it reaches a certain amplitude, it can no longer withstand fluctuations. Titanium near the apex changes to a more stable β ′ phase and further to a β phase. In other words, the titanium dissolved in the matrix phase by solution treatment gradually changes the modulation structure, which is a periodic variation of the titanium concentration, by applying a heat treatment, and this is a metastable phase β ′ phase. It eventually changes to the β phase, which is a stable phase. However, after the final solution treatment and before the cold rolling, if a heat treatment that can cause spinodal decomposition is performed in advance, the β ′ phase will not be formed even if the β ′ phase reaches an amplitude that would normally precipitate during the aging treatment. It is considered that it has become difficult to precipitate and has grown to a modulation structure having a larger amplitude. And it is thought that such a modulation structure with a large fluctuation gave the titanium copper stickiness.

更に本発明者らはその原因を詳しく調査するために、本発明に係るチタン銅を、走査型透過電子顕微鏡(STEM)を用いて観察したところ、母相中のチタン濃度の振幅の大きさに特徴点を見出した。   Furthermore, in order to investigate the cause in detail, the present inventors observed the titanium copper according to the present invention using a scanning transmission electron microscope (STEM), and found that the amplitude of the titanium concentration in the parent phase was large. A feature point was found.

上記知見に基づいて完成した本発明は一側面において、Tiを2.0〜4.0質量%、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Mo、V、Nb、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、銅合金の銅合金の圧延方向に平行な断面の母相中のチタン濃度を走査型透過電子顕微鏡を用いて線分析した結果、銅合金のTi濃度をX(wt%)、母相中のTi濃度の振幅をY(wt%)とした場合に、0.83X−0.65<Y<0.83X+0.50の関係を満たす銅合金である。   In one aspect, the present invention completed based on the above knowledge includes 2.0 to 4.0% by mass of Ti, and Mn, Fe, Mg, Co, Ni, Cr, V, Mo, V, Nb, Ti as the third element. One or two or more selected from the group consisting of Zr, Si, B and P are contained in a total of 0 to 0.5 mass%, and a copper alloy consisting of the remaining copper and inevitable impurities, As a result of linear analysis of the titanium concentration in the parent phase of the cross section parallel to the rolling direction of the copper alloy using a scanning transmission electron microscope, the Ti concentration of the copper alloy is X (wt%), and the amplitude of the Ti concentration in the parent phase. Is a copper alloy satisfying the relationship of 0.83X−0.65 <Y <0.83X + 0.50.

本発明に係る銅合金は一実施態様において、母相中のチタン濃度の波長が21nm以上である。   In one embodiment, the copper alloy according to the present invention has a wavelength of titanium concentration in the matrix phase of 21 nm or more.

本発明は別の一側面において、上記銅合金を用いた伸銅品である。   In another aspect, the present invention is a copper drawn product using the above copper alloy.

本発明は別の一側面において、上記銅合金を用いて作製した電子部品である。   In another aspect, the present invention is an electronic component manufactured using the copper alloy.

本発明は別の一側面において、上記銅合金を用いて作製したコネクタである。   In another aspect, the present invention provides a connector manufactured using the copper alloy.

本発明によれば、優れた強度及び曲げ加工性を有する銅合金、伸銅品、電子部品及びコネクタを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper alloy which has the outstanding intensity | strength and bending workability, a copper elongation product, an electronic component, and a connector can be provided.

図1は、本発明の実施の形態に係るチタン銅の母相中のチタン濃度(wt%)の周期変動の測定結果の一例を示す。FIG. 1 shows an example of a measurement result of periodic fluctuations of titanium concentration (wt%) in a parent phase of titanium copper according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るチタン銅に含まれるチタン濃度と母相の振幅との関係を表すグラフである。FIG. 2 is a graph showing the relationship between the concentration of titanium contained in titanium copper and the amplitude of the parent phase according to the embodiment of the present invention. 図3は、本発明の実施の形態に係るチタン銅の0.2%耐力(YS)と曲げ加工性(MBR/t)の関係を表すグラフである。FIG. 3 is a graph showing the relationship between 0.2% proof stress (YS) and bending workability (MBR / t) of titanium copper according to the embodiment of the present invention.

<Ti含有量>
Tiが2質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
<Ti content>
If Ti is less than 2% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of a modulation structure inherent to titanium copper, and sufficient strength cannot be obtained. Conversely, if it exceeds 4% by mass, coarse TiCu 3 precipitates. It becomes easy and there exists a tendency for intensity | strength and bending workability to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

<第3元素>
第3元素は結晶粒の微細化に寄与するため、所定の第3元素を添加することができる。具体的には、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度が向上しやすい。また、第3元素は変調構造の形成を促進する。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
Since the third element contributes to the refinement of crystal grains, a predetermined third element can be added. Specifically, even if the solution treatment is performed at a high temperature at which Ti is sufficiently dissolved, the crystal grains are easily refined and the strength is easily improved. The third element also promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Cr、V、Mo、V、Nb、Zr、Si、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Cr, V, Mo, V, Nb, Zr, Si, B and P, an effect similar to Fe can be expected, and even if added alone, the effect can be seen. The above may be added in combination.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Mo、V、Nb、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有することができ、合計で0.05〜0.5質量%含有するのが好ましい。   When these elements contain a total of 0.05% by mass or more, the effect appears. However, when the total exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Therefore, one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Mo, V, Nb, Zr, Si, B, and P as the third element group in total. It can contain 0-0.5 mass%, and it is preferable to contain 0.05-0.5 mass% in total.

これら第3元素のより好ましい範囲は、Feにおいて0.17〜0.23質量%であり、Co、Mg、Ni、Cr、Si、V、Nb、Mn、Moにおいて0.15〜0.25質量%、Zr、B、Pにおいて0.05〜0.1質量%である。   A more preferable range of these third elements is 0.17 to 0.23 mass% in Fe, and 0.15 to 0.25 mass in Co, Mg, Ni, Cr, Si, V, Nb, Mn, and Mo. %, Zr, B, and P are 0.05 to 0.1% by mass.

<振幅及び波長の関係>
図1に、本実施形態に係るチタン銅の母相中のチタン濃度(wt%)の周期変動の測定結果の一例を示す。分析は、走査型透過電子顕微鏡(STEM)を用いてエネルギー分散型X線(EDX)による分析(STEM−EDX分析)を用いた例を示す。図1に示すように、STEM−EDX分析によりチタン銅の母相を線分析すると、チタン濃度が周期的に変化していることが観察できる。なお、図1に示す平均線は、線分析により測定した各測定箇所でのチタン濃度の合計値を測定箇所数で割った値(平均値)を表す。更に、図1に示すデータから、チタン濃度の波長Z、振幅Y、チタン濃度の最大値(Ti−MAX)(wt%)、最小値(Ti−MIN)(wt%)を測定する。ここで、波長Zは測定データの測定距離を周期数で割った値、振幅Yは1周期内の最大値から1周期内の最小値を引いた値の周期毎の合計を周期数で割った値、Ti−MAXは測定距離範囲内の最大値、Ti−Minは測定距離範囲内の最小値である。得られた値を、従来方法(最終溶体化処理→冷間圧延→時効処理)を用いて製造されたチタン銅に比較したところ、本実施形態に係るチタン銅は、従来方法によるチタン銅に比べて、振幅が大きくなり、波長が長くなる傾向にあることが分かった。測定結果の一例を表1に示す。
<Relationship between amplitude and wavelength>
In FIG. 1, an example of the measurement result of the period fluctuation | variation of the titanium concentration (wt%) in the parent phase of the titanium copper which concerns on this embodiment is shown. The analysis shows an example using analysis (STEM-EDX analysis) by energy dispersive X-ray (EDX) using a scanning transmission electron microscope (STEM). As shown in FIG. 1, when the titanium copper matrix is linearly analyzed by STEM-EDX analysis, it can be observed that the titanium concentration changes periodically. In addition, the average line shown in FIG. 1 represents the value (average value) which divided the total value of the titanium concentration in each measurement location measured by the line analysis by the number of measurement locations. Further, from the data shown in FIG. 1, the wavelength Z of the titanium concentration, the amplitude Y, the maximum value (Ti-MAX) (wt%) of the titanium concentration, and the minimum value (Ti-MIN) (wt%) are measured. Here, the wavelength Z is a value obtained by dividing the measurement distance of the measurement data by the number of cycles, and the amplitude Y is the sum of the values obtained by subtracting the minimum value in one cycle from the maximum value in one cycle divided by the number of cycles. The value, Ti-MAX, is the maximum value within the measurement distance range, and Ti-Min is the minimum value within the measurement distance range. When the obtained value was compared with titanium copper produced using a conventional method (final solution treatment → cold rolling → aging treatment), the titanium copper according to the present embodiment was compared with titanium copper obtained by the conventional method. As a result, the amplitude tends to increase and the wavelength tends to increase. An example of the measurement result is shown in Table 1.

Figure 2012097306
Figure 2012097306

これは、従来のチタン銅は、チタンの変調構造が発達するにつれてチタン濃度変化の振幅が大きくなり、一定の振幅にまで達すると、揺らぎに耐えられなくなった図1のグラフの頂点付近のチタンがより安定なβ’相更にはβ相へと変化することにより、振幅Yの大きさが小さくなったものと考えられる。また、表1の実施例の強度(YS)は1054MPa、比較例の強度は933MPa、表1の実施例の曲げ性(MBR/t)は1.5、比較例の曲げ性は1.0であり、実施例が比較例に比べて強度及び曲げ性のバランスに優れていたことから、本実施形態に係るチタン銅によれば、最終の溶体化処理後、冷間圧延前に予め熱処理をしておくことで、通常はβ’相が析出するはずの振幅に達してもβ’相が析出せず、より大きな振幅Yを有する変調構造にまで発達し、これがチタン銅に粘りを与え、曲げ性及び強度の向上に繋がったものと考えられる。   This is because conventional titanium copper has a larger amplitude of titanium concentration change as the titanium modulation structure develops, and when it reaches a certain amplitude, titanium near the top of the graph of FIG. It is considered that the magnitude of the amplitude Y is reduced by changing to a more stable β ′ phase and further to a β phase. The strength (YS) of the examples in Table 1 is 1054 MPa, the strength of the comparative examples is 933 MPa, the bendability (MBR / t) of the examples of Table 1 is 1.5, and the bendability of the comparative examples is 1.0. Yes, since the examples had a better balance of strength and bendability than the comparative examples, according to the titanium copper according to the present embodiment, after the final solution treatment, heat treatment was performed in advance before cold rolling. Therefore, even if the amplitude at which β ′ phase should normally precipitate is reached, β ′ phase does not precipitate, and it develops to a modulation structure having a larger amplitude Y. This gives viscosity to titanium copper and bending. It is thought that it led to improvement in property and strength.

チタン濃度の振幅Yは、チタン銅中のチタン濃度Xが高くなるにつれて大きくなる傾向にあるが、本実施形態に係るチタン銅は、銅合金に添加したTi量(Ti濃度X)と振幅Yとの間に更に一定の関係性を有することが分かった。チタン濃度Xと振幅Yの関係の一例を表すグラフを図2に示す。即ち、本実施形態に係るチタン銅は、チタン銅の圧延方向に平行な断面の母相中のチタン濃度を走査型透過電子顕微鏡を用いて線分析した結果、銅合金中のTi濃度をX(wt%)、母相中のTi濃度の振幅をY(wt%)とした場合に0.83X−0.65<Y<0.83X+0.50の関係を満たすことができ、より好ましくは0.83X−0.45<Y<0.83X+0.30、更に好ましくは0.83X−0.25<Y<0.83X+0.10の関係を満たす。チタン濃度Xと振幅Yとが上記範囲を満たさない場合は、曲げ性が劣化するか、又はスピノーダル分解の発達が不十分のために強度が不足する場合がある(図3参照)。なお、本実施形態では、析出物検出による誤差をなくすために、析出が存在しない任意の母材表面を一定の間隔毎に断続的にEDX線分析した結果を評価することとする。   The titanium concentration amplitude Y tends to increase as the titanium concentration X in the titanium copper increases, but the titanium copper according to the present embodiment has a Ti amount (Ti concentration X) and an amplitude Y added to the copper alloy. It was found that there is a certain relationship between the two. A graph showing an example of the relationship between the titanium concentration X and the amplitude Y is shown in FIG. That is, the titanium copper according to the present embodiment is a result of a line analysis of the titanium concentration in the parent phase of the cross section parallel to the rolling direction of the titanium copper using a scanning transmission electron microscope. wt%), and when the amplitude of the Ti concentration in the matrix is Y (wt%), the relationship of 0.83X−0.65 <Y <0.83X + 0.50 can be satisfied, and more preferably 0. 83X−0.45 <Y <0.83X + 0.30, more preferably 0.83X−0.25 <Y <0.83X + 0.10. When the titanium concentration X and the amplitude Y do not satisfy the above ranges, the bendability may be deteriorated, or the spinodal decomposition may not be sufficiently developed, resulting in insufficient strength (see FIG. 3). In the present embodiment, in order to eliminate errors due to the detection of precipitates, the result of intermittent EDX ray analysis of an arbitrary base material surface on which no precipitation is present at regular intervals is evaluated.

強度と曲げ性のバランスを考慮すると、チタン銅は、波長が短く振幅が長いものが好ましい。しかし、溶体化後の熱処理によってスピノーダル分解を発達させるとチタンの濃淡がより明確になることで振幅は長くなり、それに伴い波長も長くなってしまう。波長が短すぎるとスピノーダル分解による変調構造の発達が不十分であるため強度が不足し、反対に波長が長すぎるとゆらぎに耐えられなくなった一部の安定相が析出・成長し曲げ性が劣化する場合がある。本実施形態に係るチタン銅は、走査型透過電子顕微鏡(STEM)を用いてエネルギー分散型X線(EDX)による分析(STEM−EDX分析)を用いて線分析した場合に、圧延方向に平行な断面の母相中のチタン濃度の波長Zが21nm以上であるのが好ましく、より好ましくは21〜31nm、更に好ましくは21〜28nmである。   Considering the balance between strength and bendability, titanium copper is preferably one having a short wavelength and a long amplitude. However, when spinodal decomposition is developed by heat treatment after solution treatment, the density of titanium becomes clearer and the amplitude becomes longer, and the wavelength becomes longer accordingly. If the wavelength is too short, the intensity of the modulation structure due to spinodal decomposition will be insufficient, and the strength will be insufficient. Conversely, if the wavelength is too long, some stable phases that cannot withstand fluctuations will precipitate and grow, resulting in poor bending properties. There is a case. Titanium copper according to the present embodiment is parallel to the rolling direction when line analysis is performed using an analysis by energy dispersive X-ray (EDX) (STEM-EDX analysis) using a scanning transmission electron microscope (STEM). The wavelength Z of the titanium concentration in the mother phase of the cross section is preferably 21 nm or more, more preferably 21 to 31 nm, still more preferably 21 to 28 nm.

<用途>
本実施形態に係る銅合金は種々の伸銅品、例えば板、条、箔、管、棒及び線として提供されることができる。本実施形態に係る銅合金を加工することにより、例えばスイッチ、コネクタ、ジャック、端子、リレー等の電子部品が得られる。
<Application>
The copper alloy according to this embodiment can be provided as various copper products, for example, plates, strips, foils, tubes, bars, and wires. By processing the copper alloy according to this embodiment, electronic components such as switches, connectors, jacks, terminals, and relays can be obtained.

<製造方法>
本実施形態に係る銅合金は、先述した特許文献1〜4に記載されているような公知のチタン銅の製造方法に所定の改変を加えることで製造可能である。すなわち、最終溶体化処理の後、冷間圧延前に予めスピノーダル分解を起こすことのできる適切な熱処理を行うことである。
<Manufacturing method>
The copper alloy according to the present embodiment can be manufactured by making a predetermined modification to a known titanium copper manufacturing method as described in Patent Documents 1 to 4 described above. That is, after the final solution treatment, an appropriate heat treatment that can cause spinodal decomposition in advance is performed before cold rolling.

従来のチタン銅の製造方法は、最終の溶体化処理によってチタンを母相に十分に固溶させた後、冷間圧延を行って強度を一定程度上昇させ、最後に時効処理でスピノーダル分解を起こして高強度チタン銅を得るものである。ここでは、最後の時効処理が重要で、最終の溶体化処理によってチタン銅を母相に十分に固溶させ、時効処理において適正な温度と時間で最大限のスピノーダル分解を起こさせることがポイントとなっていた。温度が低く時間が短くなりすぎると、時効処理においてスピノーダル分解によって生じる変調構造の発達が不十分となりやすく、温度を高く、時間を長くすることでスピノーダル分解によって生じる変調構造の成長により適度な曲げ加工性を維持しつつ、強度が上昇していく。しかしながら、材料の温度が高く、時間が長くなりすぎると、強度にそれほど寄与しないβ’相や曲げ加工性を悪化させるβ相の析出がしやすくなり、強度上昇が見られないまま、あるいは強度が減少しつつ、曲げ加工性が悪化する。   In the conventional titanium copper production method, titanium is sufficiently dissolved in the matrix by the final solution treatment, followed by cold rolling to increase the strength to some extent, and finally aging treatment causes spinodal decomposition. Thus, high strength titanium copper is obtained. Here, the final aging treatment is important, and the point is that the final solution treatment allows titanium copper to be sufficiently solid-solved in the parent phase and causes maximum spinodal decomposition at an appropriate temperature and time in the aging treatment. It was. When the temperature is too low and the time is too short, the development of the modulation structure caused by spinodal decomposition tends to be insufficient in the aging treatment, and moderate bending due to the growth of the modulation structure caused by spinodal decomposition by increasing the temperature and lengthening the time. The strength increases while maintaining the sex. However, if the temperature of the material is high and the time is too long, the β ′ phase that does not contribute to the strength and the β phase that deteriorates the bending workability are likely to precipitate, and the strength is not increased or the strength is increased. The bending workability deteriorates while decreasing.

一方、本発明では、最終の溶体化処理に熱処理(亜時効処理)を入れ、予めスピノーダル分解を起こし、その後に、従来レベルの冷間圧延、従来レベルの時効処理あるいはそれより低温・短時間の時効処理を行うことでチタン銅の高強度化を図る。   On the other hand, in the present invention, heat treatment (sub-aging treatment) is added to the final solution treatment, spinodal decomposition is caused in advance, and then, cold rolling at a conventional level, aging treatment at a conventional level, or a lower temperature / shorter time than that. Strengthening titanium copper by aging treatment.

溶体化処理後のチタン銅を熱処理すると、スピノーダル分解の進行に伴い導電率が上昇するので、本発明では、適切な熱処理の度合いを熱処理の前後での導電率の変化を指標として規定することとした。本発明者らの研究によれば、ここでの熱処理は、処理後のチタン銅の硬さが最大硬さになるような、いわゆるピーク時効に近い時効処理を行うのではなく、導電率を0.5〜8%IACS、好ましくは1〜4%IACS上昇させるような条件で行うのが望ましい。即ち、ピーク硬度に対して90%よりも小さくなるような熱処理を行うのが好ましい。このような導電率の上昇に対応する具体的な熱処理条件は、材料温度300℃以上700℃未満として0.001〜12時間加熱する条件である。   When the titanium copper after solution treatment is heat treated, the conductivity increases with the progress of spinodal decomposition, so in the present invention, the appropriate degree of heat treatment is defined as an index of the change in conductivity before and after the heat treatment. did. According to the study by the present inventors, the heat treatment here does not perform an aging treatment close to the so-called peak aging so that the hardness of titanium copper after the treatment becomes the maximum hardness, but the conductivity is reduced to 0. It is desirable to carry out under the condition of increasing 5-8% IACS, preferably 1-4% IACS. That is, it is preferable to perform heat treatment so that the peak hardness is less than 90%. Specific heat treatment conditions corresponding to such an increase in conductivity are conditions for heating for 0.001 to 12 hours at a material temperature of 300 ° C. or higher and lower than 700 ° C.

より具体的には、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(1)を満たすことができる。
0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)・・・(1)
上記(1)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を0.5〜11%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を0.5〜8%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を0.5〜4%IACS上昇させるような条件で行うのが望ましい。
More specifically, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the conductivity increase value C (% IACS) satisfies the following relational expression (1). Can do.
0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14) (1)
According to the above formula (1), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 0.5 to 11% IACS, and the Ti concentration is 3.0% by mass. In this case, it is desirable that the conductivity be increased by 0.5 to 8% IACS. When the Ti concentration is 4.0% by mass, the conductivity is increased by 0.5 to 4% IACS. It is desirable to carry out under conditions.

より好ましくは、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(2)を満たすことである。
1.0≦C≦(0.25 [Ti]2−3.75[Ti]+13)・・・(2)
上記(2)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を1.0〜6.5%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を1.0〜4%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を1.0〜2%IACS上昇させるような条件で行うのが望ましい。
More preferably, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the increase C in conductivity (% IACS) satisfies the following relational expression (2). .
1.0 ≦ C ≦ (0.25 [Ti] 2 −3.75 [Ti] +13) (2)
According to the above formula (2), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 1.0 to 6.5% IACS, and the Ti concentration is 3.0%. In the case of mass%, it is desirable to carry out under conditions that increase the conductivity by 1.0 to 4% IACS, and in the case of Ti concentration of 4.0 mass%, the conductivity is increased by 1.0 to 2% IACS. It is desirable to carry out under such conditions.

なお、最終の溶体化処理後の熱処理に銅合金の硬度がピークとなる時効を行った場合、導電率の差は、例えばTi濃度2.0質量%で13%IACS、Ti濃度3.0%で10%IACS、Ti濃度4.0%で5%IACS程度上昇することになる。即ち、本実施形態に係る最終溶体化処理後の熱処理は、硬度がピークとなる時効よりも、銅合金に与える熱量が非常に小さい。   In addition, when the aging at which the hardness of the copper alloy reaches a peak is performed in the heat treatment after the final solution treatment, the difference in conductivity is, for example, 13% IACS and Ti concentration of 3.0% at a Ti concentration of 2.0% by mass. Thus, 10% IACS and Ti concentration of 4.0% increase by about 5% IACS. That is, in the heat treatment after the final solution treatment according to the present embodiment, the amount of heat given to the copper alloy is much smaller than the aging at which the hardness reaches a peak.

熱処理は以下の何れかの条件で行うのが好ましい。
・材料温度300℃以上400℃未満として0.5〜3時間加熱
・材料温度400℃以上500℃未満として0.01〜0.5時間加熱
・材料温度500℃以上600℃未満として0.001〜0.01時間加熱
・材料温度600℃以上700℃未満として0.001〜0.005時間加熱
The heat treatment is preferably performed under any of the following conditions.
-Heating at a material temperature of 300 ° C or more and less than 400 ° C for 0.5 to 3 hours · Heating at a material temperature of 400 ° C or more and less than 500 ° C for 0.01 to 0.5 hours · Material temperature of 500 ° C or more and less than 600 ° C as 0.001 Heating for 0.01 hours-Heating for 0.001 to 0.005 hours with material temperature of 600 ° C or higher and lower than 700 ° C

また、熱処理は以下の何れかの条件で行うのがより好ましい。
・材料温度350℃以上400℃未満として1〜3時間加熱
・材料温度400℃以上450℃未満として0.2〜0.5時間加熱
・材料温度500℃以上550℃未満として0.005〜0.01時間加熱
・材料温度550℃以上600℃未満として0.001〜0.005時間加熱
・材料温度600℃以上650℃未満として0.0025〜0.005時間加熱
The heat treatment is more preferably performed under any of the following conditions.
-Heating for 1 to 3 hours at a material temperature of 350 ° C to less than 400 ° C · Heating for 0.2 to 0.5 hour at a material temperature of 400 ° C to less than 450 ° C · 0.005 to 0.005 as a material temperature of 500 ° C to less than 550 ° C Heating for 01 hours-Heating at a material temperature of 550 ° C or more and less than 600 ° C for 0.001 to 0.005 hours · Heating at a material temperature of 600 ° C or more and less than 650 ° C for 0.0025 to 0.005 hours

以下、工程毎に好ましい実施形態を説明する。
1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから十分に攪拌したうで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.50質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造する。
Hereinafter, a preferred embodiment will be described for each process.
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to hold high-melting-point additive elements such as Fe and Cr for a certain period of time after being added and sufficiently stirred. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It adds so that it may contain 50 mass%, and then adds Ti so that it may contain 2.0-4.0 mass%, and manufactures an ingot.

2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とするのが好ましい。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because, in the subsequent solution treatment, the precipitation of the second phase particles is finely and uniformly dispersed, which is effective in preventing mixed grains. After the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, the temperature is preferably 960 ° C. or less before and during hot rolling.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、第二相粒子が析出しないようにするのが好ましい。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. It is preferable to increase the heating rate and cooling rate at that time as much as possible so that the second phase particles do not precipitate.

4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス整形性を害することがある。従って、中間圧延の加工度は好ましくは70〜99%ある。加工度は{(圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. However, if the final solution treatment is performed with a too high degree of processing, a recrystallized texture develops and plastic anisotropy occurs, which may impair the press formability. Therefore, the processing degree of intermediate rolling is preferably 70 to 99%. The degree of work is defined by {(thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終溶体化処理前の銅合金素材中には鋳造又中間圧延過程で生成された析出物が存在する。この析出物は、曲げ性及び時効後の機械的特性増加を妨げる場合があるため、最終の溶体化処理では、銅合金素材中の析出物を完全に固溶させる温度に銅合金素材を加熱することが望ましい。しかしながら、析出物を完全に無くすまで高温に加熱すると、析出物による粒界のピン止め効果が無くなり、結晶粒が急激に粗大化する。結晶粒が急激に粗大化すると強度が低下する傾向にある。
5) Final solution treatment In the copper alloy material before the final solution treatment, there are precipitates generated during the casting or intermediate rolling process. Since this precipitate may hinder bendability and increase in mechanical properties after aging, in the final solution treatment, the copper alloy material is heated to a temperature at which the precipitate in the copper alloy material is completely dissolved. It is desirable. However, if the precipitate is heated to a high temperature until it is completely eliminated, the grain boundary pinning effect due to the precipitate disappears, and the crystal grains become coarser rapidly. When crystal grains become coarser, the strength tends to decrease.

このため、加熱温度としては、溶体化前の銅合金素材が、第二相粒子組成の固溶限付近の温度になるまで加熱することが好ましい。Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度(本発明では「固溶限温度」という。)は550〜1000℃程度であり、例えばTiの添加量が3.0質量%では800℃程度である。限定的ではないが、溶体化前の銅合金素材が、550〜1000℃のTiの固溶限温度、より典型的には550〜1000℃のTiの固溶限温度に比べて0〜20℃高い温度、好ましくは0〜10℃高い温度になるまで加熱することができる。   For this reason, as a heating temperature, it is preferable to heat until the copper alloy raw material before solution forming becomes the temperature of the solid solution limit of the second phase particle composition. The temperature at which the solid solubility limit of Ti becomes equal to the addition amount when the addition amount of Ti is in the range of 2.0 to 4.0% by mass (referred to as “solid solubility limit temperature” in the present invention) is about 550 to 1000 ° C. For example, when the addition amount of Ti is 3.0 mass%, it is about 800 degreeC. Although it is not limited, the copper alloy material before solution is 0 to 20 ° C. compared to the Ti solid solution limit temperature of 550 to 1000 ° C., more typically compared to the Ti solid solution limit temperature of 550 to 1000 ° C. It can be heated to a high temperature, preferably 0-10 ° C.

最終溶体化処理における粗大な第二相粒子の発生を抑制するために、銅合金素材の加熱及び冷却は出来るだけ急速に行うのが好ましい。具体的には、第二相粒子組成の固溶限付近の温度よりも50〜500℃程度、好ましくは150〜500℃程度高くした雰囲気中に銅合金素材を配置することにより急速加熱を行える。冷却は例えば水冷等により行われる。   In order to suppress the generation of coarse second-phase particles in the final solution treatment, it is preferable to heat and cool the copper alloy material as quickly as possible. Specifically, rapid heating can be performed by placing the copper alloy material in an atmosphere that is about 50 to 500 ° C., preferably about 150 to 500 ° C. higher than the temperature near the solid solubility limit of the second phase particle composition. Cooling is performed by, for example, water cooling.

6)熱処理(亜時効処理)
最終の溶体化処理の後、熱処理を行う。熱処理の条件は先述した通りである。
6) Heat treatment (sub-aging treatment)
Heat treatment is performed after the final solution treatment. The conditions for the heat treatment are as described above.

7)最終の冷間圧延
上記熱処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この際、加工度が10%未満では充分な効果が得られないので加工度を10%以上とするのが好ましい。但し、加工度が高すぎると粒内析出による格子歪よりも結晶粒の扁平による加工歪が大きくなり、曲げ加工性が劣化する。さらに必要に応じて実施する時効処理や歪取焼鈍で粒界析出が起こり易いので、加工度を50%以下、より好ましくは25%以下とする。
7) Final cold rolling After the heat treatment, final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. At this time, if the degree of work is less than 10%, a sufficient effect cannot be obtained, so that the degree of work is preferably 10% or more. However, if the working degree is too high, the working strain due to the flattening of crystal grains becomes larger than the lattice strain caused by intragranular precipitation, and the bending workability deteriorates. Furthermore, since grain boundary precipitation is likely to occur during aging treatment or strain relief annealing performed as necessary, the workability is set to 50% or less, more preferably 25% or less.

8)時効処理
最終の冷間圧延の後、更に時効処理を行う。時効処理の条件は慣用の条件でもよいが、時効処理を従来に比べてと軽めに行うと、強度と曲げ加工性のバランスが更に向上する。具体的には、時効処理は材料温度300〜400℃で3〜12時間加熱の条件で行うのが好ましい。なお、時効処理を行わない場合、時効処理時間が短い(2時間未満)場合、又は時効処理温度が低い(290℃未満)場合には、強度および導電率が低下する場合がある。また、時効時間が長い場合(13時間以上)又は時効温度が高い場合(450℃以上)には、導電率は高くなるが、強度が低下する場合がある。
8) Aging treatment An aging treatment is further performed after the final cold rolling. The conditions for the aging treatment may be conventional conditions, but if the aging treatment is performed lighter than in the prior art, the balance between strength and bending workability is further improved. Specifically, the aging treatment is preferably performed under the conditions of heating at a material temperature of 300 to 400 ° C. for 3 to 12 hours. Note that when the aging treatment is not performed, when the aging treatment time is short (less than 2 hours), or when the aging treatment temperature is low (less than 290 ° C.), the strength and the conductivity may be lowered. In addition, when the aging time is long (13 hours or longer) or when the aging temperature is high (450 ° C. or higher), the electrical conductivity increases, but the strength may decrease.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。   When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Mo、V、Nb、Zr、Si、B及びPを表2に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, after adding Mn, Fe, Mg, Co, Ni, Cr, V, Mo, V, Nb, Zr, Si, B, and P to Cu in the compositions shown in Table 2, respectively, Ti was added respectively. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

Figure 2012097306
Figure 2012097306

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で10分間加熱とした。次いで、中間の冷間圧延では最終板厚が0.10mmとなるように中間の板厚を調整して冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。なお、最終の溶体化処理の材料の加熱温度はTiの添加量が1.5質量%の場合は680℃、Tiの添加量が2.0質量%の場合は730℃、Tiの添加量が3.0質量%の場合は800℃、Tiの添加量が4.0質量%の場合は840℃、Tiの添加量が4.5質量%の場合は860℃とし、最終の溶体化処理の加熱時間は1.5分間とした。次いで、表3の条件で熱処理を行った。酸洗による脱スケール後、冷間圧延して板厚0.075mmとし、表3に記載の各加熱条件で不活性ガス雰囲気中で時効処理を行って、実施例及び比較例の試験片とした。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, it hot-rolled at 900-950 degreeC, and obtained the hot-rolled sheet of 10 mm in thickness. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2.0 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes. Next, in intermediate cold rolling, the intermediate plate thickness is adjusted so that the final plate thickness is 0.10 mm, cold rolling, and then inserted into an annealing furnace capable of rapid heating, and the final solution treatment is performed. And then water cooled. The heating temperature of the material for the final solution treatment is 680 ° C. when the addition amount of Ti is 1.5% by mass, 730 ° C. when the addition amount of Ti is 2.0% by mass, and the addition amount of Ti is In the case of 3.0% by mass, 800 ° C., in the case where the addition amount of Ti is 4.0% by mass, 840 ° C., and in the case where the addition amount of Ti is 4.5% by mass, the temperature is 860 ° C. The heating time was 1.5 minutes. Next, heat treatment was performed under the conditions shown in Table 3. After descaling by pickling, it was cold-rolled to a plate thickness of 0.075 mm, and subjected to aging treatment in an inert gas atmosphere under each heating condition shown in Table 3, to obtain test pieces of Examples and Comparative Examples. .

得られた各試験片について、以下の条件で特性評価を行った。結果を表3に示す。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
<STEM−EDX分析>
各試験片について、圧延方向に平行な断面を収束イオンビーム(FIB)にて切断することで断面を露出した後、その断面を観察した。観察は走査型透過電子顕微鏡(日本電子株式会社 型式:JEM−2100F)を用いて、検出器はエネルギー分散型検出器(EDX)を用い、試料傾斜角度0°、加速電圧200kV、電子線のスポット径0.2nmで行なった。そして、母相の測定距離:150nmとし、母相の測定距離150nm当たりの測定箇所数:60箇所、母相の測定箇所の間隔:2.5nmとすることによりEDX線分析を行った。析出物の影響による測定誤差を防ぐため、母相の測定位置は、析出物が存在しない任意の位置を選択した。
測定結果から濃度分布データ(例えば図1参照)を計算し、母材中のチタン濃度の波長Z、振幅Yを求めた。波長Zは測定距離を濃度分布データ内の周期数で割った値、振幅Yは1周期内の最大値から1周期内の最小値を引いた値の周期毎の合計を周期数で割った値とした。同様の分析を6回繰り返し、その平均を算出した。
About each obtained test piece, characteristic evaluation was performed on the following conditions. The results are shown in Table 3.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
In accordance with JIS H 3130, a W-bending test of Badway (the bending axis is the same direction as the rolling direction) was performed to measure the MBR / t value, which is the ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t).
<STEM-EDX analysis>
About each test piece, after exposing a cross section by cut | disconnecting a cross section parallel to a rolling direction with a focused ion beam (FIB), the cross section was observed. Observation is using a scanning transmission electron microscope (JEOL Ltd. model: JEM-2100F), the detector is an energy dispersive detector (EDX), the sample tilt angle is 0 °, the acceleration voltage is 200 kV, and the electron beam spot The diameter was 0.2 nm. Then, the EDX ray analysis was performed by setting the measurement distance of the mother phase to 150 nm, the number of measurement points per measurement distance of 150 nm of the mother phase: 60, and the interval between the measurement points of the mother phase: 2.5 nm. In order to prevent measurement errors due to the influence of precipitates, the measurement position of the parent phase was selected as an arbitrary position where no precipitate was present.
Concentration distribution data (see, for example, FIG. 1) was calculated from the measurement results, and the wavelength Z and amplitude Y of the titanium concentration in the base material were determined. Wavelength Z is the value obtained by dividing the measurement distance by the number of periods in the concentration distribution data, and amplitude Y is the value obtained by subtracting the minimum value in one period from the maximum value in one period divided by the number of periods. It was. The same analysis was repeated 6 times, and the average was calculated.

Figure 2012097306
Figure 2012097306

<考察>
実施例1〜3は、最終溶体化処理後の熱処理及び時効処理を適切な条件で行った場合の例である。母相中のチタン濃度は振幅及び波長ともに長くなり、強度と曲げ性のバランスにも優れている。
実施例4は最終溶体化処理後の熱処理温度を実施例1〜3よりも高くした場合、実施例5は最終溶体化処理後の熱処理温度を実施例1〜3よりも低くした場合の例である。いずれも熱処理時間を調整することで適切な熱処理が行われているため、チタン濃度は振幅及び波長ともに長くなり、強度と曲げ性のバランスにも優れている。
実施例6〜10は、Ti濃度を実施例1〜5よりも高くした場合の例を示す。実施例6〜10においてもチタン濃度は振幅及び波長ともに長くなり、強度と曲げ性のバランスにも優れている。
実施例11〜15は、Ti濃度を実施例1〜5よりも低くした場合の例を示す。実施例1〜10に比べて、Ti濃度が低くなることにより、チタン濃度の振幅が小さくなっているが、強度及び曲げ性においてバランスに優れた合金が得られている。
実施例16〜19は、添加元素を加えた場合の例を示す。実施例16〜19のいずれも母相中のチタン濃度は振幅及び波長ともに長くなり、強度と曲げ性のバランスにも優れている。
一方、比較例1〜9は、最終溶体化処理後に熱処理を行わない従来例である。比較例1〜9によれば、時効処理条件を調整しても振幅、波長ともに実施例1〜10に比べて小さくなり、強度が低くなっていることが分かる。
比較例10、11、14、15、18、19は、最終溶体化処理後の熱処理の更に後の時効処理条件が適切でない場合を示す。比較例10、14、18では、時効処理が強すぎて過時効となった結果、振幅は長くなったがゆらぎに耐えられなくなった一部の安定相が析出・成長したため曲げ性が劣化した。比較例11、15、19では、時効処理が弱すぎて亜時効となった結果、変調構造が未発達のため振幅は短くなり強度が低下した。
比較例12、13、16、17、20、21は、最終溶体化処理後の熱処理の処理温度が適切でない場合を示す。比較例12、16、20では、熱処理温度が高すぎた結果、振幅は長くなったがゆらぎに耐えられなくなった一部の安定相が析出・成長したため曲げ性が劣化した。比較例13、17、21では、熱処理温度が低すぎた結果、変調構造が未発達のため振幅は短くなり強度が低下した。
比較例22、23は、Ti濃度が適正な範囲にない場合を示す。比較例22では曲げ性が悪くなり、比較例23では強度が悪化し、曲げ性及び強度のバランスのよい合金は得られていない。
比較例24は、熱処理をチタン銅の硬度がピークとなる条件で行い、時効処理の時間を短くした場合を示す。熱処理時間が長すぎた結果、振幅は長くなったがゆらぎに耐えられなくなった一部の安定相が析出・成長したため曲げ性が劣化した。
<Discussion>
Examples 1 to 3 are examples in which the heat treatment and aging treatment after the final solution treatment are performed under appropriate conditions. The titanium concentration in the matrix phase increases in both amplitude and wavelength, and is excellent in balance between strength and bendability.
Example 4 is an example in which the heat treatment temperature after the final solution treatment is higher than those in Examples 1 to 3, and Example 5 is an example in which the heat treatment temperature after the final solution treatment is lower than those in Examples 1 to 3. is there. In any case, since appropriate heat treatment is performed by adjusting the heat treatment time, the titanium concentration becomes longer in both amplitude and wavelength, and the balance between strength and bendability is excellent.
Examples 6 to 10 show examples when the Ti concentration is higher than those of Examples 1 to 5. In Examples 6 to 10, the titanium concentration increases in both amplitude and wavelength, and is excellent in balance between strength and bendability.
Examples 11 to 15 show examples when the Ti concentration is lower than those of Examples 1 to 5. Compared with Examples 1-10, the amplitude of titanium concentration is reduced by lowering the Ti concentration, but an alloy having an excellent balance in strength and bendability is obtained.
Examples 16 to 19 show examples where an additive element is added. In any of Examples 16 to 19, the titanium concentration in the matrix is long in both amplitude and wavelength, and is excellent in balance between strength and bendability.
On the other hand, Comparative Examples 1 to 9 are conventional examples in which heat treatment is not performed after the final solution treatment. According to Comparative Examples 1 to 9, it can be seen that even when the aging treatment conditions are adjusted, both the amplitude and the wavelength are smaller than those in Examples 1 to 10 and the strength is low.
Comparative Examples 10, 11, 14, 15, 18, and 19 show cases where the aging treatment conditions after the heat treatment after the final solution treatment are not appropriate. In Comparative Examples 10, 14, and 18, as a result of overaging due to excessive aging treatment, the bendability deteriorated because a part of the stable phase that had increased in amplitude but could not withstand fluctuations was precipitated and grown. In Comparative Examples 11, 15, and 19, the aging treatment was too weak and the sub-aging was performed. As a result, the amplitude was shortened and the strength was lowered because the modulation structure was not developed.
Comparative Examples 12, 13, 16, 17, 20, and 21 show cases where the heat treatment temperature after the final solution treatment is not appropriate. In Comparative Examples 12, 16, and 20, as a result of the heat treatment temperature being too high, the bendability deteriorated because some of the stable phases that had increased in amplitude but could not withstand fluctuations were precipitated and grown. In Comparative Examples 13, 17, and 21, the heat treatment temperature was too low. As a result, the amplitude was shortened and the strength was lowered because the modulation structure was not developed.
Comparative Examples 22 and 23 show cases where the Ti concentration is not in the proper range. In Comparative Example 22, the bendability is deteriorated, and in Comparative Example 23, the strength is deteriorated, and an alloy having a good balance between bendability and strength is not obtained.
Comparative Example 24 shows a case where the heat treatment is performed under the condition that the hardness of titanium copper reaches a peak, and the aging treatment time is shortened. As a result of the heat treatment time being too long, the bendability deteriorated due to the precipitation and growth of a portion of the stable phase that became longer in amplitude but could not withstand fluctuations.

Claims (5)

Tiを2.0〜4.0質量%、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Mo、V、Nb、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、
前記銅合金の圧延方向に平行な断面の母相中のチタン濃度を走査型透過電子顕微鏡を用いて線分析した結果、前記銅合金のTi濃度をX(wt%)、前記母相中のTi濃度の振幅をY(wt%)とした場合に、
0.83X−0.65<Y<0.83X+0.50
の関係を満たすことを特徴とする銅合金。
Ti is 2.0 to 4.0% by mass, and the third element is selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Mo, V, Nb, Zr, Si, B, and P. 1 type or 2 types or more are contained in a total of 0 to 0.5% by mass, and a copper alloy composed of the remaining copper and inevitable impurities,
As a result of linear analysis of the titanium concentration in the parent phase having a cross section parallel to the rolling direction of the copper alloy using a scanning transmission electron microscope, the Ti concentration in the copper alloy was X (wt%), and the Ti concentration in the parent phase was When the amplitude of concentration is Y (wt%),
0.83X-0.65 <Y <0.83X + 0.50
A copper alloy characterized by satisfying the above relationship.
前記母相中のチタン濃度の波長が21nm以上である請求項1に記載の銅合金。   The copper alloy according to claim 1, wherein a wavelength of titanium concentration in the matrix is 21 nm or more. 請求項1又は2のいずれか1項に記載の銅合金を用いた伸銅品。   A copper-stretched article using the copper alloy according to claim 1. 請求項1又は2のいずれか1項に記載の銅合金を用いて作製した電子部品。   The electronic component produced using the copper alloy of any one of Claim 1 or 2. 請求項1又は2のいずれか1項に記載の銅合金を用いて作製したコネクタ。   The connector produced using the copper alloy of any one of Claim 1 or 2.
JP2010244790A 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors Active JP5226056B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010244790A JP5226056B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors
TW100136250A TWI429765B (en) 2010-10-29 2011-10-06 Copper alloy, copper products, electronic parts and connectors
CN201110342260.3A CN102453814B (en) 2010-10-29 2011-10-28 Copper alloy, forged copper, electronic component and connector
KR1020110110858A KR101365354B1 (en) 2010-10-29 2011-10-28 Copper alloy and wrought article, electric parts, and connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244790A JP5226056B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors

Publications (2)

Publication Number Publication Date
JP2012097306A true JP2012097306A (en) 2012-05-24
JP5226056B2 JP5226056B2 (en) 2013-07-03

Family

ID=46037503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244790A Active JP5226056B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors

Country Status (4)

Country Link
JP (1) JP5226056B2 (en)
KR (1) KR101365354B1 (en)
CN (1) CN102453814B (en)
TW (1) TWI429765B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098187A (en) * 2012-11-14 2014-05-29 Tohoku Univ Copper-titanium-hydrogen alloy and method for producing the same
KR20140116810A (en) * 2013-03-25 2014-10-06 도와 메탈테크 가부시키가이샤 Cu-ti based copper alloy sheet material and method for producing the same, and electric current carrying component
JP2015096642A (en) * 2013-11-15 2015-05-21 Jx日鉱日石金属株式会社 Titanium copper for electronic component
JP2015096643A (en) * 2013-11-15 2015-05-21 Jx日鉱日石金属株式会社 Titanium copper for electronic component
WO2015098201A1 (en) 2013-12-27 2015-07-02 Jx日鉱日石金属株式会社 Copper-titanium alloy for electronic component
JP2015127438A (en) * 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 Titanium copper for electronic component
JP2015127440A (en) * 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 Titanium copper for electronic component
KR20160075690A (en) 2013-11-18 2016-06-29 제이엑스금속주식회사 Copper-titanium alloy for electronic component
WO2020095508A1 (en) * 2018-11-09 2020-05-14 Jx金属株式会社 Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346993B1 (en) * 2019-12-24 2022-01-05 한국재료연구원 Cu-Ti alloy with high strength and high electrical conductivity and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
JP2010126777A (en) * 2008-11-28 2010-06-10 Dowa Metaltech Kk Copper alloy sheet, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05002640A (en) * 2002-09-13 2005-07-19 Olin Corp Age-hardening copper-base alloy and processing.
JP3740474B2 (en) 2003-03-20 2006-02-01 日鉱金属加工株式会社 Titanium copper excellent in conductivity and method for producing the same
JP2010070825A (en) 2008-09-19 2010-04-02 Tohoku Univ Titanium copper for electronic component, and electronic component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP2010126777A (en) * 2008-11-28 2010-06-10 Dowa Metaltech Kk Copper alloy sheet, and method for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098187A (en) * 2012-11-14 2014-05-29 Tohoku Univ Copper-titanium-hydrogen alloy and method for producing the same
KR20140116810A (en) * 2013-03-25 2014-10-06 도와 메탈테크 가부시키가이샤 Cu-ti based copper alloy sheet material and method for producing the same, and electric current carrying component
KR102215159B1 (en) 2013-03-25 2021-02-16 도와 메탈테크 가부시키가이샤 Cu-ti based copper alloy sheet material and method for producing the same, and electric current carrying component
JP2015096642A (en) * 2013-11-15 2015-05-21 Jx日鉱日石金属株式会社 Titanium copper for electronic component
JP2015096643A (en) * 2013-11-15 2015-05-21 Jx日鉱日石金属株式会社 Titanium copper for electronic component
US10100387B2 (en) 2013-11-18 2018-10-16 Jx Nippon Mining & Metals Corporation Copper-titanium alloy for electronic component
KR101808469B1 (en) * 2013-11-18 2017-12-12 제이엑스금속주식회사 Copper-titanium alloy for electronic component
KR20160075690A (en) 2013-11-18 2016-06-29 제이엑스금속주식회사 Copper-titanium alloy for electronic component
KR20160096696A (en) 2013-12-27 2016-08-16 제이엑스금속주식회사 Copper-titanium alloy for electronic component
EP3088541A4 (en) * 2013-12-27 2017-06-28 JX Nippon Mining & Metals Corporation Copper-titanium alloy for electronic component
JP2015127440A (en) * 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 Titanium copper for electronic component
JP2015127438A (en) * 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 Titanium copper for electronic component
US10351932B2 (en) 2013-12-27 2019-07-16 Jx Nippon Mining & Metals Corporation Copper-titanium alloy for electronic component
WO2015098201A1 (en) 2013-12-27 2015-07-02 Jx日鉱日石金属株式会社 Copper-titanium alloy for electronic component
WO2020095508A1 (en) * 2018-11-09 2020-05-14 Jx金属株式会社 Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
US11739397B2 (en) 2018-11-09 2023-08-29 Jx Nippon Mining & Metals Corporation Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module

Also Published As

Publication number Publication date
KR101365354B1 (en) 2014-02-19
JP5226056B2 (en) 2013-07-03
CN102453814A (en) 2012-05-16
TWI429765B (en) 2014-03-11
TW201229255A (en) 2012-07-16
KR20120046050A (en) 2012-05-09
CN102453814B (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP4889801B2 (en) Manufacturing method of titanium copper for electronic parts
TWI426141B (en) Copper alloy, copper products, electronic parts and connectors
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP5718443B1 (en) Titanium copper for electronic parts
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5718436B1 (en) Titanium copper for electronic parts
JP6125409B2 (en) Titanium copper for electronic parts
JP6080823B2 (en) Titanium copper for electronic parts
JP2015127438A (en) Titanium copper for electronic component
JP2015096643A (en) Titanium copper for electronic component
JP4961049B2 (en) Titanium copper for electronic parts
JP2015127440A (en) Titanium copper for electronic component
JP2012097305A (en) Titanium-copper for electronic component
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP5378286B2 (en) Titanium copper and method for producing the same
JP2012188680A (en) Titanium copper for electronic component
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP6310131B1 (en) Titanium copper for electronic parts
JP2016117951A (en) Titanium copper for electronic component
JP2016117952A (en) Titanium copper for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R150 Certificate of patent or registration of utility model

Ref document number: 5226056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250