JP2012096488A - Method of forecasting hot warpage deformation of liquid crystal polymer injection molding - Google Patents

Method of forecasting hot warpage deformation of liquid crystal polymer injection molding Download PDF

Info

Publication number
JP2012096488A
JP2012096488A JP2010247530A JP2010247530A JP2012096488A JP 2012096488 A JP2012096488 A JP 2012096488A JP 2010247530 A JP2010247530 A JP 2010247530A JP 2010247530 A JP2010247530 A JP 2010247530A JP 2012096488 A JP2012096488 A JP 2012096488A
Authority
JP
Japan
Prior art keywords
molded product
injection
liquid crystal
crystal polymer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010247530A
Other languages
Japanese (ja)
Inventor
Toshio Sugita
寿夫 杉田
Naoto Ikegawa
直人 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010247530A priority Critical patent/JP2012096488A/en
Publication of JP2012096488A publication Critical patent/JP2012096488A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To forecast the hot warpage deformation of a liquid crystal polymer injection molding.SOLUTION: The warpage deformation occurring in an object part of the injection molding is forecasted by executing: a first process of obtaining the relation between the integrated value of shearing stress by the flow and solidification in molding, a molecular orientation state and the anisotropy of linear expansion coefficient as a material characteristic data; a second process of obtaining the data of orientation and shearing stress occurring in the object part in the flow and solidification of the injection molding; a third process of converting the linear expansion coefficient anisotropy data of the object part from the material characteristic data and the data of the integrated value of the orientation and the shearing stress in the object part of the injection molding; a forth process of mapping the expansion and contraction of converted linear expansion coefficient anisotropy data with a finite element method model of injection molding; and a fifth process of computing the expansion and the contraction occurring with the change of the temperature by performing the structural analysis of the finite element method model.

Description

本発明は、液晶ポリマーにより形成された射出成形品において、成形後に加熱・冷却された際に射出成形品に生じる熱間反り変形を予測する方法に関する。   The present invention relates to a method for predicting hot warpage deformation occurring in an injection molded product when it is heated and cooled after molding in an injection molded product formed of a liquid crystal polymer.

従来、射出成形品の成形材料として、液晶ポリマー(LCP)が用いられている。液晶ポリマーは、薄肉であっても高剛性かつ高流動性という特徴を有しており、さらに低収縮率かつ高耐熱という特徴も有している。このような特徴により、液晶ポリマーは、高い寸法精度が要求される微細形状の成形に適しており、例えば、微細形状を有する電子部品やコネクタなどの成形品に利用されている。また、液晶ポリマーの有する高耐熱性により、このような電子部品やコネクタを基板上にリフロー実装することもできる。   Conventionally, a liquid crystal polymer (LCP) has been used as a molding material for injection molded products. Even if the liquid crystal polymer is thin, it has characteristics of high rigidity and high fluidity, and further has characteristics of low shrinkage and high heat resistance. Due to such characteristics, the liquid crystal polymer is suitable for molding a fine shape that requires high dimensional accuracy, and is used, for example, in a molded product such as an electronic component or a connector having a fine shape. Further, due to the high heat resistance of the liquid crystal polymer, such electronic components and connectors can be reflow mounted on the substrate.

しかしながら、液晶ポリマーは射出成形時の流動方向に強く依存するという物性(すなわち強い異方性)を有している。そのため、微細形状を有する成形品の形状や成形条件によっては、加熱(例えばリフロー実装)が行われる際に、成形品に生じる反り変形の挙動が大きく変化し、成形後の加熱により生じる反り変形を予測することが難しいという課題がある。   However, liquid crystal polymers have physical properties (that is, strong anisotropy) that strongly depend on the flow direction during injection molding. Therefore, depending on the shape and molding conditions of a molded product having a fine shape, the behavior of warpage deformation that occurs in the molded product changes greatly when heating (for example, reflow mounting) is performed. There is a problem that it is difficult to predict.

一方、近年、コネクタ等に代表されるような液晶ポリマー射出成形品では、さらなる寸法の高精度化や形状の微細化が求められており、このような仕様の成形品では、成形後の加熱により生じる成形品の反り変形についてもできる限り抑える必要がある。   On the other hand, in recent years, liquid crystal polymer injection molded products represented by connectors and the like have been required to have higher dimensional precision and shape miniaturization. It is necessary to suppress the warping deformation of the formed product as much as possible.

従って、本発明の目的は、上記課題を解決することにあって、液晶ポリマーにより形成された射出成形品において、成形後の加熱により成形品に生じる反り変形を予測して、このような反り変形を抑制することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems, and in an injection molded product formed of a liquid crystal polymer, predicting the warp deformation that occurs in the molded product by heating after molding, such warp deformation It is to suppress.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の第1態様によれば、射出成形材料として使用される液晶ポリマー(LCP)により形成された材料特性データ取得用射出成形品を用いて、データ取得対象部位の成形時の流動・固化によるせん断応力の積分値および分子配向状態と、データ取得対象部位の線膨張係数の異方性との関係を、材料特性データとして取得する第1工程と、
反り変形を予測したい射出成形品の流動・固化時に対象部位に生じる配向とせん断応力のデータを取得する第2工程と、
第1工程にて取得された材料特性データを用いて、第2工程にて取得された射出成形品の対象部位における配向とせん断応力の積分値のデータから、対象部位の線膨張係数異方性データを換算する第3工程と、
射出成形品の構造解析用有限要素法モデルにおいて、射出成形品の対象部位に相当する要素に、第3工程にて換算された線膨張係数異方性データをマッピングする第4工程と、
構造解析用有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に要素に生じる膨張・収縮を計算する第5工程と、
を含み、射出成形品の対象部位に生じる反り変形を予測する液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。
According to the first aspect of the present invention, by using an injection molded product for acquiring material property data formed of a liquid crystal polymer (LCP) used as an injection molding material, by flow and solidification at the time of molding of a data acquisition target portion A first step of acquiring, as material property data, the relationship between the integral value of shear stress and the molecular orientation state and the anisotropy of the linear expansion coefficient of the data acquisition target site;
A second step of acquiring orientation and shear stress data generated in the target part at the time of fluidization and solidification of an injection molded product for which warpage deformation is to be predicted;
Using the material property data acquired in the first step, the linear expansion coefficient anisotropy of the target portion is obtained from the integrated value of the orientation and shear stress in the target portion of the injection molded product acquired in the second step. A third step of converting data;
A fourth step of mapping the linear expansion coefficient anisotropy data converted in the third step to an element corresponding to a target portion of the injection molded product in a finite element method model for structural analysis of an injection molded product;
A fifth step of calculating expansion / contraction generated in the element when the temperature of the injection molded product is changed by performing structural analysis using a finite element method model for structural analysis;
And a method for predicting the warp deformation of a liquid crystal polymer injection-molded product that predicts warp deformation occurring in a target part of the injection-molded product.

本発明の第2態様によれば、材料特性データ取得用射出成形品の複数のデータ取得対象部位について、液晶ポリマーの流動方向およびせん断応力の積分値を流動解析CAEにより計算するとともに、これらのデータ所得対象部位における流動方向とその直交方向についての線膨張係数を、TMA(熱機械分析)により実測評価して、材料特性データを取得する、第1態様に記載の液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。   According to the second aspect of the present invention, the flow direction of the liquid crystal polymer and the integrated value of the shear stress are calculated by the flow analysis CAE for a plurality of data acquisition target portions of the injection molded product for material property data acquisition, and these data are obtained. The thermal expansion of the liquid crystal polymer injection-molded product according to the first aspect, in which the material expansion data is obtained by actually measuring and evaluating the linear expansion coefficient of the flow direction and the orthogonal direction in the income target part by TMA (thermomechanical analysis). A warpage deformation prediction method is provided.

本発明の第3態様によれば、第2工程において、反り変形予測したい射出成形品に相当する流動解析用モデルを用いて、射出成形品の流動・固化時に対象部位に生じる配向とせん断応力のデータを、流動解析CAEにより取得する、第1態様に記載の液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。   According to the third aspect of the present invention, in the second step, using the model for flow analysis corresponding to the injection molded product for which warpage deformation is desired to be predicted, the orientation and shear stress generated in the target part at the time of fluidization and solidification of the injection molded product. A method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to the first aspect, in which data is acquired by flow analysis CAE, is provided.

本発明の第4態様によれば、第1工程において、材料特性データ取得用射出成形品を複数の層に分割して、分割されたそれぞれの層毎に液晶ポリマーの配向および分子配向度、ならびに線膨張係数の異方性の関係を測定することにより、材料特性データを取得する、第1態様に記載の液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。   According to the fourth aspect of the present invention, in the first step, the injection molded product for obtaining material property data is divided into a plurality of layers, and the orientation and molecular orientation of the liquid crystal polymer for each of the divided layers, and A method for predicting the hot warpage deformation of a liquid crystal polymer injection-molded article according to the first aspect, which obtains material property data by measuring the anisotropy relationship of the linear expansion coefficient.

本発明の第5態様によれば、第2工程において、反り変形予測したい射出成形品と同等もしくは近似する形状を有し、液晶ポリマーにより形成された配向解析用射出成形品を用いて、対象部位に相当する部位に生じた配向を測定することにより、射出成形品の流動・固化時に対象部位に生じた配向状態のデータを取得する、第1態様に記載の液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。   According to the fifth aspect of the present invention, in the second step, the target part is formed using an injection molded product for orientation analysis which has a shape equivalent to or close to that of an injection molded product to be warped and is predicted. The hot warpage of the liquid crystal polymer injection-molded product according to the first aspect is obtained by measuring the orientation produced in the portion corresponding to the above, and obtaining data on the orientation state produced in the target portion during the flow and solidification of the injection-molded product. A deformation prediction method is provided.

本発明の第6態様によれば、材料特性データは、液晶ポリマーの流動方向と流動方向に直交する方向におけるせん断応力と線膨張係数との関係を含むデータである、第1態様から第5態様のいずれか1つに記載の液晶ポリマー射出成形品の熱間反り変形予測方法を提供する。   According to the sixth aspect of the present invention, the material property data is data including the relationship between the flow direction of the liquid crystal polymer and the shear stress and the linear expansion coefficient in the direction orthogonal to the flow direction. A method for predicting hot warpage deformation of a liquid crystal polymer injection molded product according to any one of the above.

本発明によれば、液晶ポリマーの射出成形品についての成形時の流動・固化によるせん断応力の積分値および配向状態と、線膨張係数の異方性との関係を材料特性データとして取得し、この材料特性データを用いて、反り変形を予測したい射出成形品の流動・固化時に生じる対象部位の配向とせん断応力の積分値のデータから、対象部位の線膨張異方性データを換算することができる。さらに、この換算された対象部位の線膨張異方性データを、射出成形品の構造解析用有限要素法モデルにマッピングして構造解析を行うことにより、射出成形品の温度を変化させた際に生じる膨張・収縮を計算することができる。したがって、液晶ポリマー射出成形品の対象部位に生じる熱による反り変形を予測することができる。   According to the present invention, the relationship between the integral value and orientation state of shear stress due to flow / solidification during molding of an injection molded product of a liquid crystal polymer, and the anisotropy of the linear expansion coefficient are obtained as material property data. Using the material property data, the linear expansion anisotropy data of the target part can be converted from the data of the integrated value of the orientation and shear stress of the target part that occurs during flow and solidification of the injection molded product for which warpage deformation is to be predicted. . Furthermore, when the converted linear expansion anisotropy data of the target part is mapped to the finite element method model for structural analysis of the injection molded product and the structural analysis is performed, the temperature of the injection molded product is changed. The resulting expansion / contraction can be calculated. Therefore, it is possible to predict warpage deformation due to heat generated in the target portion of the liquid crystal polymer injection molded product.

液晶ポリマー射出成形品の熱間反り変形の挙動例を示す模式図Schematic diagram showing an example of hot warp deformation behavior of liquid crystal polymer injection molded products 液晶ポリマー射出成形品の流動方向の熱膨張挙動を示す図Diagram showing thermal expansion behavior in the flow direction of liquid crystal polymer injection molded products 液晶ポリマー射出成形品の流動直交方向の熱膨張挙動を示す図Diagram showing thermal expansion behavior of liquid crystal polymer injection molded product in flow orthogonal direction 本発明の実施の形態1にかかる液晶ポリマー射出成形品の熱間反り変形予測方法の主要な処理手順を示すフローチャートThe flowchart which shows the main process sequence of the hot warp deformation | transformation prediction method of the liquid crystal polymer injection molded product concerning Embodiment 1 of this invention. 材料特性データ取得用射出成形品およびその分割形態を示す図The figure which shows the injection molding for material characteristic data acquisition, and its division form 材料特性データ取得用射出成形品(表層)における測定領域を示す図The figure which shows the measurement field in the injection molded product (surface layer) for material property data acquisition 実施の形態1の材料特性データの例を示す図The figure which shows the example of the material characteristic data of Embodiment 1 コネクタの外観図External view of connector 配向解析用射出成形品の形態を示す図Diagram showing the form of injection molded product for orientation analysis 図9の配向解析用射出成形品におけるA−A線断面図AA line sectional view in the injection molded product for orientation analysis of FIG. 本発明の実施の形態2にかかる液晶ポリマー射出成形品の熱間反り変形予測方法の主要な処理手順を示すフローチャートThe flowchart which shows the main process sequence of the hot warp deformation | transformation prediction method of the liquid crystal polymer injection molded product concerning Embodiment 2 of this invention. 実施の形態2の材料特性データの例を示す図The figure which shows the example of the material characteristic data of Embodiment 2 構造解析用有限要素法モデルのメッシュの一部を示す模式説明図Schematic explanatory diagram showing part of the mesh of a finite element method model for structural analysis 本発明の実施例における評価用平板成形品の形態を示す図The figure which shows the form of the flat plate molded article for evaluation in the Example of this invention 実施例:射出成形条件を示す表Example: Table showing injection molding conditions 実施例:各射出速度条件で成形された成形品各層における分子配向度の測定結果を示すグラフExample: Graph showing the measurement results of the degree of molecular orientation in each layer of a molded product molded under each injection speed condition 実施例:マイクロ波分子配向計とX線回折による分子配向測定結果の関係を示すグラフExample: A graph showing the relationship between a molecular orientation meter and a result of molecular orientation measurement by X-ray diffraction 実施例:X線回折により求めた分子配向度と流動方向(配向方向)MDおよび流動直交方向(配向直交方向)TDの線膨張係数の関係を示すグラフExample: A graph showing the relationship between the degree of molecular orientation determined by X-ray diffraction and the linear expansion coefficient in the flow direction (orientation direction) MD and flow orthogonal direction (orientation orthogonal direction) TD.

本発明の実施の形態を説明するにあたって、液晶ポリマー(LCP)の線膨張係数の異方性と、液晶ポリマーにより形成される射出成形品に対して、熱が付与された場合の反り変形の挙動とについて説明する。   In describing embodiments of the present invention, the anisotropy of the linear expansion coefficient of a liquid crystal polymer (LCP) and the behavior of warpage deformation when heat is applied to an injection molded product formed of the liquid crystal polymer. And will be described.

図1に液晶ポリマー射出成形品に対して熱が付与された場合に生じる反り変形の挙動の例を示す。なお、図1では、縦軸に射出成形品の温度、横軸に時間を示している。また、このような射出成形品としてコネクタ等の部品を例として、このような部品が基板上にはんだを介してリフロー実装される際に、部品(射出成形品)に生じる反り変形の挙動を例として説明する。   FIG. 1 shows an example of the behavior of warpage deformation that occurs when heat is applied to a liquid crystal polymer injection molded product. In FIG. 1, the vertical axis represents the temperature of the injection molded product, and the horizontal axis represents time. Also, as an example of such an injection molded product, a component such as a connector, an example of the behavior of warpage deformation that occurs in a component (injection molded product) when such a component is reflow-mounted on a substrate via solder. Will be described.

図1に示すように、まず、射出成型用金型において液晶ポリマーが温度T1にて充填されて、成形品が金型より取り出され、その後、温度T3まで自然冷却される。この際、成形品に生じる反り変形量は比較的少ないが、熱収縮とともにひずみが成形品内部に蓄積される(区間1)。   As shown in FIG. 1, first, a liquid crystal polymer is filled at a temperature T1 in an injection mold, the molded product is taken out from the mold, and then naturally cooled to a temperature T3. At this time, the amount of warp deformation generated in the molded product is relatively small, but strain is accumulated inside the molded product as the heat shrinks (section 1).

その後、はんだを介して基板上に成形品が配置されて温度T2まで加熱が行われ、1回目のリフロー(昇温)が行われる(区間2)。この加熱の際、熱膨張により成形品に例えば山反り変形が生じる。なお、この加熱の際に成形品に蓄積されていたひずみは緩和される。   Thereafter, the molded product is placed on the substrate via the solder, heated to the temperature T2, and the first reflow (temperature increase) is performed (section 2). During this heating, for example, a warp deformation occurs in the molded product due to thermal expansion. Note that the strain accumulated in the molded product during this heating is alleviated.

その後、温度T2から温度T3まで成形品が冷却されて、1回目のリフローが完了する(区間3)。この冷却による熱収縮により、熱膨張時とは逆の挙動として成形品に例えば谷反り変形が生じる。   Thereafter, the molded product is cooled from the temperature T2 to the temperature T3, and the first reflow is completed (section 3). Due to the thermal contraction due to this cooling, for example, valley warping deformation occurs in the molded product as a behavior opposite to that during thermal expansion.

次に、区間4にて、再び成形品に対して加熱が行われると(2回目のリフロー)、成形品に山反り変形が生じ、その後、区間5にて冷却が行われると(2回目のリフロー完了)、成形品の谷反り変形が生じる。   Next, when the molded product is heated again in the section 4 (second reflow), the molded product is warped and then cooled in the section 5 (second time). Completion of reflow), the warped deformation of the molded product occurs.

ここで、成形品における液晶ポリマーの流動方向(MD)の熱膨張挙動を図2に示し、流動直交方向(TD)の熱膨張挙動を図3に示す。なお、図2および図3では、縦軸に熱膨張の伸び量(μm)、横軸に温度(℃)を示している。   Here, the thermal expansion behavior in the flow direction (MD) of the liquid crystal polymer in the molded product is shown in FIG. 2, and the thermal expansion behavior in the flow orthogonal direction (TD) is shown in FIG. 2 and 3, the vertical axis indicates the amount of thermal expansion (μm), and the horizontal axis indicates the temperature (° C.).

図2および図3におけるグラフの傾きが線膨張係数となり、液晶ポリマーの流動方向(MD)の線膨張係数と、流動直交方向(TD)の線膨張係数とは、明らかに相違している。これが液晶ポリマーの射出成形品における線膨張係数の異方性である。   2 and 3 is the linear expansion coefficient, and the linear expansion coefficient in the flow direction (MD) of the liquid crystal polymer and the linear expansion coefficient in the flow orthogonal direction (TD) are clearly different. This is the anisotropy of the linear expansion coefficient in the liquid crystal polymer injection-molded product.

このように液晶ポリマーの射出成形品では線膨張係数異方性を有しているため、成形後に加熱が行われた際に、液晶ポリマーの流動方向(MD)では、流動直交方向(TD)よりも熱膨張・収縮量が大きいという特徴を有する。   Thus, since the liquid crystal polymer injection-molded article has anisotropy of linear expansion coefficient, when heated after molding, the flow direction (MD) of the liquid crystal polymer is more than the flow orthogonal direction (TD). Has a feature of large thermal expansion / contraction.

なお、図2および図3に示すように、区間1にて成形品内部に蓄積されたひずみが、1回目のリフロー加熱が行われる際に(区間2)緩和されるため、区間3以降の熱膨張挙動はほぼ一定した挙動を取ることになる。   As shown in FIGS. 2 and 3, since the strain accumulated in the molded product in the section 1 is relieved when the first reflow heating is performed (section 2), the heat after the section 3 is reduced. The expansion behavior is almost constant.

本発明では、線膨張係数異方性を有する液晶ポリマーの射出成形品に対して、熱が付与された際に生じる反り変形の挙動を予測するものであり、特に、反り変形の挙動がほぼ一定となる1回目の昇温(リフロー加熱)以降の挙動を予測するものである。   The present invention predicts the behavior of warpage deformation that occurs when heat is applied to an injection molded product of a liquid crystal polymer having linear expansion coefficient anisotropy, and in particular, the behavior of warpage deformation is almost constant. The behavior after the first temperature increase (reflow heating) is predicted.

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
本発明の実施の形態1にかかる液晶ポリマー射出成形品の熱間反り変形予測方法について、図4に示すフローチャートに基づいて説明する。
(Embodiment 1)
A method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to Embodiment 1 of the present invention will be described based on the flowchart shown in FIG.

まず、図4のフローチャートのステップS1にて、射出成形が行われた液晶ポリマーの材料特性データを取得する。   First, in step S1 of the flowchart of FIG. 4, material characteristic data of the liquid crystal polymer subjected to injection molding is acquired.

具体的には、液晶ポリマーにより形成された材料特性データ取得用射出成形品において、複数のデータ取得対象部位にて液晶ポリマーの分子配向状態(すなわち、分子配向および分子配向度)および線膨張係数の異方性の関係を測定する。   Specifically, in an injection molded product for acquiring material property data formed of a liquid crystal polymer, the molecular orientation state (ie, molecular orientation and degree of molecular orientation) of the liquid crystal polymer and the linear expansion coefficient at a plurality of data acquisition target sites. Measure the anisotropy relationship.

材料特性データ取得用射出成形品として、図5に示すように、例えば平板状の液晶ポリマー射出成形品11を用い、この平板状成形品を複数の層に分割して、分割されたそれぞれの層毎に設定されたデータ取得対象部位にて液晶ポリマーの分子配向および分子配向度を測定する。平板状成形品11の表面側に配置される表層11aと、内部に配置されるコア層11bとでは、樹脂の流動状態が相違する場合がある。そのため、複数の層11a、11b毎にデータ取得対象部位を設けて測定を行うことが好ましく、表層11aとコア層11bとの間の中間層11cにデータ取得対象部位を設けても良い。   As the injection molded product for obtaining material property data, as shown in FIG. 5, for example, a flat liquid crystal polymer injection molded product 11 is used, and the flat molded product is divided into a plurality of layers, and each divided layer is divided. The molecular orientation and the degree of molecular orientation of the liquid crystal polymer are measured at the data acquisition target site set for each time. There are cases where the resin flow state differs between the surface layer 11a arranged on the surface side of the flat molded product 11 and the core layer 11b arranged inside. Therefore, it is preferable to perform measurement by providing a data acquisition target portion for each of the plurality of layers 11a and 11b, and the data acquisition target portion may be provided in the intermediate layer 11c between the surface layer 11a and the core layer 11b.

また、このような材料特性データ取得用射出成形品11としては、できるだけ樹脂の流動が揃うような形状(例えば平板状)の成形品を用いることが好ましい。   Moreover, as such an injection molded product 11 for acquiring material property data, it is preferable to use a molded product having a shape (for example, a flat plate shape) in which the flow of the resin is as uniform as possible.

分子配向状態の測定は、図6に示す表層11a(コア層11bあるいは中間層11c)における円形の領域である分子配向状態測定領域12(データ取得対象部位)にて行われる。また、この測定には、例えばマイクロ波式分子配向計等を用いることができる。また、射出速度の異なる複数の平板状成形品を用いて測定を行うことにより、様々な分子配向状態についてデータを測定することが好ましい。なお、このような分子配向状態の測定は、X線回折による測定を用いて行うこともできる。さらにマイクロ波式分子配向計による測定結果とX線回折による測定結果とを相関評価を行っても良い。   The measurement of the molecular orientation state is performed in the molecular orientation state measurement region 12 (data acquisition target portion) which is a circular region in the surface layer 11a (core layer 11b or intermediate layer 11c) shown in FIG. For this measurement, for example, a microwave molecular orientation meter or the like can be used. Moreover, it is preferable to measure data about various molecular orientation states by performing measurement using a plurality of flat plate-shaped molded products having different injection speeds. In addition, the measurement of such a molecular orientation state can also be performed using the measurement by X-ray diffraction. Furthermore, correlation evaluation may be performed between the measurement result by the microwave molecular orientation meter and the measurement result by X-ray diffraction.

射出成形時の液晶ポリマーの流動・固化の際にせん断応力が生じ、これにより分子が引き伸ばされて分子配向が生じる。本実施の形態1では、せん断応力の向きを分子配向として測定しており、分子配向度については実測するか、あるいはせん断応力と分子配向度との関係について別途評価を行った後に、せん断応力から変換した分子配向度を用いても良い。   Shear stress is generated during the flow and solidification of the liquid crystal polymer during the injection molding, whereby the molecules are stretched to cause molecular orientation. In the first embodiment, the direction of shear stress is measured as molecular orientation, and the degree of molecular orientation is actually measured, or after separately evaluating the relationship between the shear stress and the degree of molecular orientation, You may use the converted degree of molecular orientation.

また、この平板状成形品におけるデータ取得対象部位において、例えばTMA(熱機械分析)装置等を用いて、配向方向(MD)および配向直交方向(TD)についての線膨張係数を測定する。この線膨張係数の測定は、図6に示すように、表層11aにおける線膨張係数測定領域13(データ取得対象部位)にて行われる。   Moreover, in the data acquisition object site | part in this flat molded product, the linear expansion coefficient about an orientation direction (MD) and an orientation orthogonal direction (TD) is measured using a TMA (thermomechanical analysis) apparatus etc., for example. As shown in FIG. 6, the measurement of the linear expansion coefficient is performed in the linear expansion coefficient measurement region 13 (data acquisition target portion) in the surface layer 11a.

これらの測定結果により、液晶ポリマーの射出成形品において、配向方向と配向直交方向のそれぞれにおける配向度と線膨張係数との関係、すなわち、線膨張係数の異方性の関係が材料特性データとして取得される。図7は、この線膨張係数の異方性の関係の一例である。   Based on these measurement results, the relationship between the degree of orientation and the linear expansion coefficient in the alignment direction and the direction orthogonal to the orientation, that is, the relationship between the linear expansion coefficient anisotropy, is obtained as material property data in liquid crystal polymer injection-molded products. Is done. FIG. 7 is an example of the relationship of anisotropy of the linear expansion coefficient.

次に、反り変形を予測したい射出成形品と同等もしくは近似する形状を有する液晶ポリマーにより形成された配向解析用射出成形品を用いて、対象部位に生じる分子配向状態のデータを取得する(ステップS2)。   Next, using the injection molded product for orientation analysis formed by a liquid crystal polymer having a shape equivalent to or close to that of the injection molded product for which warpage deformation is to be predicted, data on the molecular orientation state generated at the target site is acquired (step S2). ).

例えば、反り変形を予測したい射出成形品が、図8に示すような形態のコネクタ15であるような場合には、このコネクタ15における液晶ポリマーにて形成されている部分に近似する形状を有する配向解析用射出成形品16(図9参照)を用いて測定を行う。このような形状の近似化にあたっては、成形時の樹脂流動に大きな影響を与えない範囲にて行うことが好ましい。   For example, when the injection molded product for which warpage deformation is to be predicted is the connector 15 having the form as shown in FIG. 8, the orientation having a shape that approximates the portion formed of the liquid crystal polymer in the connector 15 Measurement is performed using the analysis injection molded product 16 (see FIG. 9). Such approximation of the shape is preferably performed within a range that does not significantly affect the resin flow during molding.

具体的には、図9の配向解析用射出成形品16の断面(図10参照)において、例えば側面部分および平面部分に対象部位P1、P2、P3およびP4を設定し、それぞれの対象部位P1〜P4に生じる分子配向状態のデータを取得する。   Specifically, in the cross section (see FIG. 10) of the orientation analysis injection-molded product 16 in FIG. 9, for example, target portions P1, P2, P3, and P4 are set in the side surface portion and the plane portion, and the target portions P1 to P1 are set. Data on the molecular orientation state generated in P4 is acquired.

この分子配向状態(配向および配向度)の測定としては、測定範囲の局所化(小スポット化)が可能なX線回折による測定を用いることが好ましい。なお、この測定により、反り変形を予測したい射出成形品の対象部位において、分子配向と分子配向度(せん断応力の積分値に相応)とが測定される。   As the measurement of the molecular orientation state (orientation and orientation degree), it is preferable to use measurement by X-ray diffraction capable of localizing the measurement range (small spot formation). By this measurement, the molecular orientation and the degree of molecular orientation (corresponding to the integral value of the shear stress) are measured at the target site of the injection molded product for which warpage deformation is to be predicted.

次に、ステップS1にて取得された材料特性データを用いて、ステップS2にて取得された射出成形品の対象部位における分子配向状態のデータから、それぞれの対象部位P1〜P4の線膨張係数異方性データを換算する(ステップS3)。これにより、それぞれの対象部位P1〜P4に分子配向状態に応じた線膨張係数異方性データが関係付けられる。   Next, using the material property data acquired in step S1, the linear expansion coefficient difference of each target part P1 to P4 is obtained from the data of the molecular orientation state in the target part of the injection molded product acquired in step S2. The directionality data is converted (step S3). Thereby, the linear expansion coefficient anisotropy data according to the molecular orientation state is related to each of the target portions P1 to P4.

次に、反り変形を予測したい射出成形品の構造解析用有限要素法モデルにおいて、射出成形品の対象部位に相当するそれぞれの要素に、ステップS3にて換算された線膨張係数異方性データをマッピングする(ステップS4)。   Next, in the finite element method model for structural analysis of an injection molded product for which warpage deformation is to be predicted, the linear expansion coefficient anisotropy data converted in step S3 is applied to each element corresponding to the target part of the injection molded product. Mapping is performed (step S4).

このようなマッピング処理は、有限要素法モデルにおいて、反り変形予測を行いたい対象部位に線膨張係数異方性データを含む構造解析のための各種物性条件および境界条件を入力して、変換手段等を用いて、これらのデータおよび条件をモデルにおける要素に割り当てることにより行われる。   Such a mapping process is performed by inputting various physical property conditions and boundary conditions for structural analysis including linear expansion coefficient anisotropy data in a target region to be warped and deformed in a finite element method model, converting means, etc. Is used to assign these data and conditions to elements in the model.

その後、構造解析用有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際にそれぞれの要素に生じる膨張・収縮を計算する(ステップS5)。   Thereafter, the structural analysis is performed using the structural analysis finite element method model to calculate the expansion / contraction generated in each element when the temperature of the injection molded product is changed (step S5).

これらの要素に生じる膨張・収縮の計算結果に基づいて、例えば、図1に示すリフロー中およびリフロー後に射出成形品の対象部位に生じるような反り変形を予測することができる。   Based on the calculation results of expansion / contraction generated in these elements, for example, warpage deformation that occurs in the target portion of the injection molded product during and after the reflow shown in FIG. 1 can be predicted.

本実施の形態1の液晶ポリマー射出成形品の熱間反り変形予測方法によれば、材料特性データ取得用射出成形品において複数のデータ取得対象部位にて、分子配向状態および線膨張係数の関係である材料特性データを測定して、実際の射出成形品に実質的に相当する形状を有する配向解析用射出成形品の対象部位にて分子配向状態を測定して、材料特性データと関係付けることにより、反り変形を予測したい対象部位における線膨張係数異方性データを換算することができる。そして、このように換算された線膨張係数異方性データを用いて、構造解析用有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に要素、すなわち対象部位に生じる膨張・収縮を計算することができる。したがって、線膨張係数の異方性を有するため、熱付与による反り変形の挙動予測が難しいという特徴を有する液晶ポリマーの射出成形品において、本実施の形態1に方法を用いることにより、成形後の熱付与による反り変形の挙動を予測することができる。   According to the method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to the first embodiment, the relationship between the molecular orientation state and the linear expansion coefficient at a plurality of data acquisition target portions in the injection-molded product for acquiring material property data. By measuring certain material property data, measuring the molecular orientation state at the target part of the orientation analysis injection molded product having a shape substantially corresponding to the actual injection molded product, and relating it to the material property data In addition, the linear expansion coefficient anisotropy data in the target portion where warpage deformation is to be predicted can be converted. Then, using the linear expansion coefficient anisotropy data converted in this way, by performing the structural analysis using the structural analysis finite element method model, when changing the temperature of the injection molded product, that is, The expansion / contraction generated in the target region can be calculated. Therefore, in the injection molded product of the liquid crystal polymer having the characteristic that it is difficult to predict the behavior of warpage deformation due to heat application because of the anisotropy of the linear expansion coefficient, by using the method in the first embodiment, The behavior of warpage deformation due to heat application can be predicted.

また、このような反り変形の予測結果に基づいて、液晶ポリマーの材料、成形品の形状、および成形条件のいずれかを変えて、再度反り変形の予測を行うことにより、反り変形が少なくなるような最適条件を見出すような設計手法を実現できる。   Further, based on the prediction result of the warp deformation, the warp deformation is predicted again by changing any of the material of the liquid crystal polymer, the shape of the molded product, and the molding conditions, so that the warp deformation is reduced. A design method that finds optimal conditions can be realized.

また、材料特性データとして、複数種類の液晶ポリマーについて個別に材料特性データを取得しておき、射出成形品に使用される液晶ポリマーの種類に応じて材料特性データを選択して使用するようにしても良い。   Moreover, as material property data, material property data is individually acquired for a plurality of types of liquid crystal polymers, and material property data is selected and used in accordance with the type of liquid crystal polymer used in an injection molded product. Also good.

(実施の形態2)
なお、本発明は上記実施の形態1に限定されるものではなく、その他種々の態様で実施できる。例えば、本発明の実施の形態2にかかる液晶ポリマー射出成形品の熱間反り変形予測方法について、図11のフローチャートを用いて説明する。
(Embodiment 2)
In addition, this invention is not limited to the said Embodiment 1, It can implement in another various aspect. For example, a hot warpage deformation prediction method for a liquid crystal polymer injection-molded product according to Embodiment 2 of the present invention will be described with reference to the flowchart of FIG.

上記実施の形態1では、射出成形品における分子配向状態を実測により取得する方法であるのに対して、本実施の形態2では、流動解析CAEを活用して、分子配向状態に相当するデータである流動方向(配向)およびせん断応力の積分値(配向度)を取得する方法である。   In the first embodiment, the molecular orientation state in the injection-molded product is obtained by actual measurement, whereas in the second embodiment, the flow analysis CAE is used to obtain data corresponding to the molecular orientation state. This is a method for obtaining a certain flow direction (orientation) and an integral value (orientation degree) of shear stress.

まず、図11のフローチャートのステップS11において、材料特性データを取得する。具体的には、材料特性データ取得用射出成形品の複数のデータ取得対象部位について、成形時の液晶ポリマーの流動・固化における流動方向およびせん断応力の積分値を、流動解析CAEにより計算する。   First, material characteristic data is acquired in step S11 of the flowchart of FIG. Specifically, for a plurality of data acquisition target portions of the injection molding product for acquiring material property data, the flow direction and the integrated value of the shear stress in the flow and solidification of the liquid crystal polymer at the time of molding are calculated by flow analysis CAE.

また、材料特性データ取得用射出成形品を用いて、データ取得対象部位における流動方向とその直交方向についての線膨張係数を、TMA(熱機械分析)装置を用いて実測する。これらの解析および実測結果を用いて、成形時の流動・固化によるせん断応力の積分値および分子配向状態と、線膨張係数の異方性との関係を、材料特性データとして取得する。このように取得された材料特性データの例を図12に示す。   In addition, using the injection molded product for acquiring material property data, the flow direction and the linear expansion coefficient in the direction orthogonal to the data acquisition target part are measured using a TMA (thermomechanical analysis) apparatus. Using these analyzes and actual measurement results, the relationship between the integrated value of shear stress due to flow and solidification during molding and the molecular orientation state and the anisotropy of the linear expansion coefficient is obtained as material property data. An example of the material property data acquired in this way is shown in FIG.

次に、反り変形を予測したい射出成形品に相当する流動解析用モデルを用いて、射出成形品の流動・固化時に対象部位に生じる分子配向(すなわち、流動方向)とせん断応力の積分値のデータを、流動解析CAEにより計算して取得する(ステップS12)。   Next, using the model for flow analysis corresponding to the injection molded product for which warpage deformation is to be predicted, data on the integrated value of molecular orientation (ie, flow direction) and shear stress generated at the target site during flow and solidification of the injection molded product Is calculated and acquired by flow analysis CAE (step S12).

次に、ステップS11にて取得された材料特性データを用いて、ステップS12にて取得された射出成形品の対象部位における分子配向とせん断応力の積分値のデータから、それぞれの対象部位の線膨張係数異方性データを換算する(ステップS13)。これにより、それぞれの対象部位に個別に線膨張係数異方性データが関係付けられる。   Next, using the material property data acquired in step S11, the linear expansion of each target part is obtained from the data of the integrated value of the molecular orientation and shear stress in the target part of the injection molded product acquired in step S12. The coefficient anisotropy data is converted (step S13). As a result, the linear expansion coefficient anisotropy data is individually associated with each target part.

次に、反り変形を予測したい射出成形品の構造解析用有限要素法モデルにおいて、射出成形品の対象部位に相当する要素に、ステップS13にて換算された線膨張係数異方性データをマッピングする(ステップS14)。   Next, in the finite element method model for structural analysis of an injection molded product for which warpage deformation is to be predicted, the linear expansion coefficient anisotropy data converted in step S13 is mapped to the element corresponding to the target part of the injection molded product. (Step S14).

例えば、3次元流動解析ソフトによる流動解析結果および線膨張係数異方性データを含む物性および境界条件を、変換手段を用いて、有限要素法モデルの各要素の集まりであるメッシュに割当てることにより、構造解析CAEの入力情報が作成される。   For example, by assigning physical properties and boundary conditions including flow analysis results and linear expansion coefficient anisotropy data by three-dimensional flow analysis software to a mesh that is a collection of each element of the finite element method model using a conversion means, Input information for the structural analysis CAE is created.

図13は、構造解析用有限要素法モデル21におけるメッシュの一部の模式説明図である。図13に示すように、メッシュにおける個々の要素では流動方向(MD)が算出されており、この流動方向(MD)に関係付けられた線膨張係数異方性データ22が個別に割り当てられた入力情報が作成される。   FIG. 13 is a schematic explanatory diagram of a part of the mesh in the structural analysis finite element method model 21. As shown in FIG. 13, the flow direction (MD) is calculated for each element in the mesh, and the linear expansion coefficient anisotropy data 22 related to the flow direction (MD) is individually assigned. Information is created.

このような入力情報に基づいて、構造解析CAEを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に各要素に生じる膨張・収縮量を計算することができる(ステップS15)。   Based on such input information, the structural analysis is performed using the structural analysis CAE, whereby the expansion / contraction amount generated in each element when the temperature of the injection molded product is changed can be calculated (step S15). ).

本実施の形態2では、流動解析CAEを用いているため、分子配向状態などを解析により取得できる。実測して取得する場合と比して、データ取得対象部位の点数を多く設定することができる。   In Embodiment 2, since flow analysis CAE is used, the molecular orientation state and the like can be obtained by analysis. The number of data acquisition target parts can be set larger than in the case of acquiring by actual measurement.

また、流動解析用モデルを用いて、射出成形品の流動・固化時に生じる配向およびせん断応力の積分値のデータを取得しているため、反り変形を予測する対象部位を多く設定することができる。例えば、構造解析用有限要素法モデルにおける全ての要素において、反り予測を行うことも可能となり、綿密な反り変形予測を行うことができる。   Moreover, since the data of the integrated value of the orientation and the shear stress generated during the flow and solidification of the injection-molded product are acquired using the flow analysis model, it is possible to set many target portions for predicting the warp deformation. For example, it is possible to perform warpage prediction for all elements in the finite element method model for structural analysis, and to perform detailed warpage deformation prediction.

特に、本実施の形態2の予測方法を採用することにより、実際の射出成形品を成形する前に、その成形品に対する熱付与により生じる反り変形を予測することができるため、設計段階にて反り変形を抑制できる条件を容易に見出すことが可能となる。したがって、反り変形が少なくなるような条件を見出してから金型を製作すればよく、金型等の製作コストを抑制することができる。   In particular, by adopting the prediction method of the second embodiment, it is possible to predict the warpage deformation caused by the application of heat to the molded product before molding the actual injection molded product. It becomes possible to easily find a condition that can suppress deformation. Therefore, it is only necessary to manufacture the mold after finding the condition that warp deformation is reduced, and the manufacturing cost of the mold or the like can be suppressed.

次に、本発明の実施例について説明する。本実施例は、上記実施の形態1の反り予測方法を用いたものである。   Next, examples of the present invention will be described. In this example, the warpage prediction method of the first embodiment is used.

本実施例では、液晶ポリマー射出成形品の線膨張係数分布を把握するために必要な局所分子配向測定へのX線回折の適用性を評価するとともに、局所分子配向と線膨張係数の関係を評価したものである。   In this example, the applicability of X-ray diffraction to the local molecular orientation measurement necessary for grasping the linear expansion coefficient distribution of the liquid crystal polymer injection-molded product is evaluated, and the relationship between the local molecular orientation and the linear expansion coefficient is evaluated. It is a thing.

(実験方法)
(試料作製)
図14に評価用平板成形品(材料特性データ取得用射出成形品に相当)51の外観図を示す。なお、図14(A)が側面図、(B)が正面図である。図11に示すように、評価用平板成形品51は、幅50×長さ100×厚さ0.5[mm]の平板部52と、流動方向を揃えるファンゲート53とを有する。液晶ポリマー成形材料としてはポリプラスチックス株式会社製ベクトラS475を用いた。成形はプランジャ径40mm、最大型締力1764kNのインライン式射出成形機(Si−180III、東洋機械金属株式会社製)を用いて、図15の表に示す成形条件にて行った。成形品51の平板部52を研削(配向状態が摩擦熱により変化しないように、冷却水を十分に与えて加工した)により厚み方向に0.1mmずつ5分割し、表面から3層を順に表層54a(裏面0.4mm研削)、中間層54b(表面0.1mm、裏面0.3mm研削)、コア層54c(表面0.2mm、裏面0.2mm研削)として分子配向評価部分54としてそれぞれの試料を作成した(図14(C)および(D)参照)。
(experimental method)
(Sample preparation)
FIG. 14 shows an external view of an evaluation flat plate molded product (corresponding to an injection molded product for obtaining material property data) 51. 14A is a side view and FIG. 14B is a front view. As shown in FIG. 11, the flat plate molded product 51 for evaluation has a flat plate portion 52 of width 50 × length 100 × thickness 0.5 [mm] and a fan gate 53 that aligns the flow direction. Vectra S475 manufactured by Polyplastics Co., Ltd. was used as the liquid crystal polymer molding material. The molding was performed using an in-line injection molding machine (Si-180III, manufactured by Toyo Machine Metal Co., Ltd.) having a plunger diameter of 40 mm and a maximum clamping force of 1764 kN under the molding conditions shown in the table of FIG. The flat plate portion 52 of the molded product 51 is divided into five by 0.1 mm in the thickness direction by grinding (processed with sufficient cooling water so that the orientation state does not change due to frictional heat), and the three layers from the surface are sequentially surfaced. 54a (back surface 0.4mm grinding), intermediate layer 54b (front surface 0.1mm, back surface 0.3mm grinding), core layer 54c (front surface 0.2mm, back surface 0.2mm grinding), each sample as a molecular orientation evaluation portion 54 (See FIGS. 14C and 14D).

(分子配向および線膨張係数の評価)
次に、株式会社リガク製RINT−RAPIDを用いて測定径300μmの透過式広角X線回折により分子配向を測定して定量化を行った。
(Evaluation of molecular orientation and linear expansion coefficient)
Next, the molecular orientation was measured by transmission wide-angle X-ray diffraction with a measurement diameter of 300 μm using RINT-RAPID manufactured by Rigaku Corporation, and quantified.

分子配向度は、得られたデバイ環からピークが現れた2θ=19.8°の強度プロファイルを求め、そのピーク強度の半値幅により算出した。比較対象として、王子計測機器株式会社製マイクロ波分子配向計MOA−3012Aでも測定を行った。   The degree of molecular orientation was calculated from the half-value width of the peak intensity obtained by obtaining an intensity profile of 2θ = 19.8 ° where a peak appeared from the obtained Debye ring. As a comparison object, measurement was also performed with a microwave molecular orientation meter MOA-3012A manufactured by Oji Scientific Instruments.

図14に示す分子配向評価部分54から、流動・固化時における液晶ポリマーの流動方向(MD)と流動直交方向(TD)の試験片を切り出した後、熱機械分析装置(TMA−50、株式会社島津製作所製)を用いて熱ひずみ量を測定し、JIS K7197に基づき線膨張係数を算出した。   After cutting out test pieces in the flow direction (MD) and flow orthogonal direction (TD) of the liquid crystal polymer during flow / solidification from the molecular orientation evaluation portion 54 shown in FIG. 14, a thermomechanical analyzer (TMA-50, Inc. The amount of thermal strain was measured using Shimadzu Corporation, and the linear expansion coefficient was calculated based on JIS K7197.

(測定結果・考察)
(分子配向度)
各射出速度条件で成形された成形品各層における分子配向度の測定結果を図16に示す。射出速度50mm/sおよび100mm/sでは,表層、中間層、コア層の順に分子配向度は小さくなり、金型表面に近いほど、大きなせん断ひずみが発生していると推察される。しかしながら、射出速度25mm/sの条件では、表層に比べ中間層の分子配向度が高い。このような傾向は、液晶ポリマーの固化層が中間層付近まで成長した結果、固液界面(固化層表面)における局所流速が高まることと、分子配向は固化直前の分子が受けるせん断ひずみに依存することにより、中間層の分子配向度が表層よりも高くなるためである。
(Measurement results and discussion)
(Molecular orientation)
FIG. 16 shows the measurement results of the degree of molecular orientation in each layer of the molded product molded under each injection speed condition. At injection speeds of 50 mm / s and 100 mm / s, the degree of molecular orientation decreases in the order of the surface layer, the intermediate layer, and the core layer, and it is assumed that the closer to the mold surface, the greater the shear strain. However, when the injection speed is 25 mm / s, the molecular orientation of the intermediate layer is higher than that of the surface layer. This tendency is due to the fact that the solidified layer of the liquid crystal polymer grows to the vicinity of the intermediate layer. As a result, the local flow velocity at the solid-liquid interface (solidified layer surface) increases, and the molecular orientation depends on the shear strain experienced by the molecules immediately before solidification. This is because the molecular orientation degree of the intermediate layer is higher than that of the surface layer.

次にマイクロ波分子配向計およびX線回折の分子配向度の測定結果から両者の相関性を評価した。図17にマイクロ波分子配向計とX線回折による分子配向測定結果の関係を示す。両者の相関係数の2乗、すなわちR=0.7478となり、おおよその相関関係があると考えられる。なお、マイクロ波分子配向計の測定範囲内で局所の分子配向度に分布がないか、X線回折の測定点数を増やして評価することで、ばらつきの原因を考察することもできる。 Next, the correlation between the two was evaluated from the measurement result of the molecular orientation degree of the microwave molecular orientation meter and X-ray diffraction. FIG. 17 shows the relationship between the microwave molecular orientation meter and the results of molecular orientation measurement by X-ray diffraction. The square of the correlation coefficient between them, that is, R 2 = 0.7478, which is considered to have an approximate correlation. In addition, the cause of the variation can be considered by increasing the number of measurement points of X-ray diffraction to evaluate whether there is a distribution in the degree of local molecular orientation within the measurement range of the microwave molecular orientation meter.

(線膨張係数)
図18にX線回折により求めた分子配向度と流動方向(配向方向)MDおよび流動直交方向(配向直交方向)TDの線膨張係数の関係を示す。各分子配向度において流動直交方向TDの線膨張係数が流動方向MDの線膨張係数より大きく、明確な異方性が見られた。また、分子配向度が大きくなるにつれて、流動直交方向TDの線膨張係数は大きく、流動方向MDの線膨張係数は小さくなり、異方性が強くなる傾向が確認された。流動直交方向TDおよび流動方向MDともにその傾向は分子配向度との相関が見られるため、この関係を材料特性データとして蓄積しておけば、X線回折により成形品の線膨張係数の異方性分布を把握することが可能であると考えられる。
(Linear expansion coefficient)
FIG. 18 shows the relationship between the degree of molecular orientation determined by X-ray diffraction and the linear expansion coefficient in the flow direction (orientation direction) MD and the flow orthogonal direction (orientation orthogonal direction) TD. In each molecular orientation degree, the linear expansion coefficient in the flow orthogonal direction TD was larger than the linear expansion coefficient in the flow direction MD, and clear anisotropy was observed. Further, it was confirmed that as the degree of molecular orientation increases, the linear expansion coefficient in the flow orthogonal direction TD increases, the linear expansion coefficient in the flow direction MD decreases, and the anisotropy tends to increase. Since the tendency of both the flow orthogonal direction TD and the flow direction MD has a correlation with the degree of molecular orientation, if this relationship is accumulated as material property data, the anisotropy of the linear expansion coefficient of the molded product by X-ray diffraction It is considered possible to grasp the distribution.

ただし、射出速度25mm/sの流動方向MD(表層、中間層の測定データ)では、分子配向度が高いにもかかわらず、大きな線膨張係数を示した。そのため、固化層成長の影響やスプルランナの固化が評価部分の成形性に影響していないか検討しておく必要がある。一般的に、液晶ポリマーは高速射出で成形される場合が多いため、このような影響は小さいと考えられるが、射出速度が十分でなく、充填中に固化層の成長が顕著な場合の材料特性データについても十分に蓄積しておくことが望ましい。   However, in the flow direction MD (measurement data of the surface layer and intermediate layer) at an injection speed of 25 mm / s, a large linear expansion coefficient was exhibited despite the high degree of molecular orientation. Therefore, it is necessary to examine whether the influence of solidified layer growth or solidification of the sprue runner affects the moldability of the evaluation part. In general, liquid crystal polymers are often molded by high-speed injection, so this effect is considered to be small, but the material properties when the injection speed is not sufficient and solidified layer growth is significant during filling It is desirable to accumulate enough data.

本実施例より、液晶ポリマー平板射出成形品の層毎の分子配向度と線膨張係数異方性の関係を示す材料特性データを得ることができた。   From this example, material property data showing the relationship between the degree of molecular orientation and the linear expansion coefficient anisotropy for each layer of the liquid crystal polymer flat plate injection molded product could be obtained.

また、このようにして取得した材料特性データを用いることで、反り変形を予測したい液晶ポリマー射出成形品における分子配向度から、線膨張係数分布を推定することができる。このように推定された射出成形品における線膨張係数分布のデータを用いることで、射出成形品に対して熱が付与された場合に生じる膨張・収縮を構造解析により計算することができ、液晶ポリマー射出成形品の熱間反り変形を予測することが可能となる。   Further, by using the material characteristic data acquired in this way, the linear expansion coefficient distribution can be estimated from the degree of molecular orientation in the liquid crystal polymer injection molded product for which warpage deformation is to be predicted. By using the data of the linear expansion coefficient distribution in the injection molded product thus estimated, the expansion / contraction caused when heat is applied to the injection molded product can be calculated by structural analysis. It is possible to predict hot warpage deformation of an injection molded product.

また、本実施例からは、X線回折を用いたスポット径300μmの分子配向測定とマイクロ波分子配向測定には相関があることが判った。そのため、測定対象に応じて、適切な測定方法を採用することができる。   In addition, it was found from this example that there is a correlation between the molecular orientation measurement with a spot diameter of 300 μm using X-ray diffraction and the microwave molecular orientation measurement. Therefore, an appropriate measurement method can be adopted depending on the measurement object.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

11 材料特性データ取得用射出成形品(平板状成形品)
11a 表層
11b コア層
11c 中間層
12 分子配向状態測定領域
13 線膨張係数測定領域
15 コネクタ
16 配向解析用射出成形品
21 構造解析用有限要素法モデル
22 線膨張係数異方性データ
51 評価用平板成形品
52 平板部
53 ファンゲート
54 分子配向評価部分(試料)
P1〜P4 対象部位
11 Injection-molded product for acquiring material property data (flat plate-shaped product)
11a Surface layer 11b Core layer 11c Intermediate layer 12 Molecular orientation state measurement region 13 Linear expansion coefficient measurement region 15 Connector 16 Orientation analysis injection molded product 21 Structural analysis finite element method model 22 Linear expansion coefficient anisotropic data 51 Evaluation flat plate molding Product 52 Flat plate part 53 Fan gate 54 Molecular orientation evaluation part (sample)
P1-P4 Target site

Claims (6)

射出成形材料として使用される液晶ポリマーにより形成された材料特性データ取得用射出成形品を用いて、データ取得対象部位の成形時の流動・固化によるせん断応力の積分値および分子配向状態と、データ取得対象部位の線膨張係数の異方性との関係を、材料特性データとして取得する第1工程と、
反り変形を予測したい射出成形品の流動・固化時に対象部位に生じる配向とせん断応力のデータを取得する第2工程と、
第1工程にて取得された材料特性データを用いて、第2工程にて取得された射出成形品の対象部位における配向とせん断応力の積分値のデータから、対象部位の線膨張係数異方性データを換算する第3工程と、
射出成形品の構造解析用有限要素法モデルにおいて、射出成形品の対象部位に相当する要素に、第3工程にて換算された線膨張係数異方性データをマッピングする第4工程と、
構造解析用有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に要素に生じる膨張・収縮を計算する第5工程と、
を含み、射出成形品の対象部位に生じる反り変形を予測する液晶ポリマー射出成形品の熱間反り変形予測方法。
Using an injection-molded product for material property data acquisition made of liquid crystal polymer used as an injection molding material, the integrated value of shear stress and molecular orientation due to flow and solidification during molding of the data acquisition target part, and data acquisition A first step of acquiring the relationship with the anisotropy of the linear expansion coefficient of the target part as material property data;
A second step of acquiring orientation and shear stress data generated in the target part at the time of fluidization and solidification of an injection molded product for which warpage deformation is to be predicted;
Using the material property data acquired in the first step, the linear expansion coefficient anisotropy of the target portion is obtained from the integrated value of the orientation and shear stress in the target portion of the injection molded product acquired in the second step. A third step of converting data;
A fourth step of mapping the linear expansion coefficient anisotropy data converted in the third step to an element corresponding to a target portion of the injection molded product in a finite element method model for structural analysis of an injection molded product;
A fifth step of calculating expansion / contraction generated in the element when the temperature of the injection molded product is changed by performing structural analysis using a finite element method model for structural analysis;
A method for predicting the warp deformation of a liquid crystal polymer injection-molded product that predicts the warp deformation that occurs in the target part of the injection-molded product.
材料特性データ取得用射出成形品の複数のデータ取得対象部位について、液晶ポリマーの流動方向およびせん断応力の積分値を流動解析CAEにより計算するとともに、これらのデータ所得対象部位における流動方向とその直交方向についての線膨張係数を、TMA(熱機械分析)により実測評価して、材料特性データを取得する、請求項1に記載の液晶ポリマー射出成形品の熱間反り変形予測方法。   The flow direction of the liquid crystal polymer and the integrated value of the shear stress are calculated by flow analysis CAE for a plurality of data acquisition target parts of the injection molded product for material property data acquisition. The method for predicting the hot warpage deformation of a liquid crystal polymer injection-molded product according to claim 1, wherein the linear expansion coefficient is measured and evaluated by TMA (thermomechanical analysis) to obtain material property data. 第2工程において、反り変形予測したい射出成形品に相当する流動解析用モデルを用いて、射出成形品の流動・固化時に対象部位に生じる配向とせん断応力のデータを、流動解析CAEにより取得する、請求項1に記載の液晶ポリマー射出成形品の熱間反り変形予測方法。   In the second step, using the flow analysis model corresponding to the injection molded product for which warpage deformation is to be predicted, the flow analysis CAE acquires the orientation and shear stress data generated in the target part during the flow and solidification of the injection molded product. The method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to claim 1. 第1工程において、材料特性データ取得用射出成形品を複数の層に分割して、分割されたそれぞれの層毎に液晶ポリマーの配向および分子配向度、ならびに線膨張係数の異方性の関係を測定することにより、材料特性データを取得する、請求項1に記載の液晶ポリマー射出成形品の熱間反り変形予測方法。   In the first step, the injection molded product for obtaining material property data is divided into a plurality of layers, and the relationship between the orientation and molecular orientation of the liquid crystal polymer and the anisotropy of the linear expansion coefficient is determined for each of the divided layers. The method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to claim 1, wherein material characteristic data is obtained by measurement. 第2工程において、反り変形予測したい射出成形品と同等もしくは近似する形状を有し、液晶ポリマーにより形成された配向解析用射出成形品を用いて、対象部位に相当する部位に生じた配向を測定することにより、射出成形品の流動・固化時に対象部位に生じた配向状態のデータを取得する、請求項1に記載の液晶ポリマー射出成形品の熱間反り変形予測方法。   In the second step, the orientation produced in the part corresponding to the target part is measured using an injection molded part for orientation analysis that has the same or approximate shape as the injection-molded part for which warpage deformation is to be predicted. The method for predicting hot warpage deformation of a liquid crystal polymer injection-molded product according to claim 1, wherein data on an orientation state generated in a target portion during flow / solidification of the injection-molded product is acquired. 材料特性データは、液晶ポリマーの流動方向と流動方向に直交する方向におけるせん断応力と線膨張係数との関係を含むデータである、請求項1から5のいずれか1つに記載の液晶ポリマー射出成形品の熱間反り変形予測方法。   6. The liquid crystal polymer injection molding according to claim 1, wherein the material property data is data including a relationship between a flow direction of the liquid crystal polymer and a shear stress and a linear expansion coefficient in a direction orthogonal to the flow direction. Prediction method for hot warpage deformation of products.
JP2010247530A 2010-11-04 2010-11-04 Method of forecasting hot warpage deformation of liquid crystal polymer injection molding Ceased JP2012096488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247530A JP2012096488A (en) 2010-11-04 2010-11-04 Method of forecasting hot warpage deformation of liquid crystal polymer injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247530A JP2012096488A (en) 2010-11-04 2010-11-04 Method of forecasting hot warpage deformation of liquid crystal polymer injection molding

Publications (1)

Publication Number Publication Date
JP2012096488A true JP2012096488A (en) 2012-05-24

Family

ID=46388975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247530A Ceased JP2012096488A (en) 2010-11-04 2010-11-04 Method of forecasting hot warpage deformation of liquid crystal polymer injection molding

Country Status (1)

Country Link
JP (1) JP2012096488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100879A (en) * 2012-11-21 2014-06-05 Panasonic Corp Hot warpage analysis method for a liquid crystal polymer injection-molded article
JP2014221513A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Hot warpage analysis method for liquid crystal polymer injection-molded article
JP2015189117A (en) * 2014-03-28 2015-11-02 パナソニック株式会社 Method of analyzing flow solidification behavior of resin
CN116167640A (en) * 2022-12-08 2023-05-26 南京贝迪新材料科技股份有限公司 LCP film production quality detection data analysis method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100879A (en) * 2012-11-21 2014-06-05 Panasonic Corp Hot warpage analysis method for a liquid crystal polymer injection-molded article
JP2014221513A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Hot warpage analysis method for liquid crystal polymer injection-molded article
JP2015189117A (en) * 2014-03-28 2015-11-02 パナソニック株式会社 Method of analyzing flow solidification behavior of resin
CN116167640A (en) * 2022-12-08 2023-05-26 南京贝迪新材料科技股份有限公司 LCP film production quality detection data analysis method and system
CN116167640B (en) * 2022-12-08 2024-04-09 南京贝迪新材料科技股份有限公司 LCP film production quality detection data analysis method and system

Similar Documents

Publication Publication Date Title
Domingo-Espin et al. Influence of building parameters on the dynamic mechanical properties of polycarbonate fused deposition modeling parts
Mohamed et al. Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment
Guevara-Morales et al. Residual stresses in injection molded products
Kusić et al. The impact of process parameters on test specimen deviations and their correlation with AE signals captured during the injection moulding cycle
JP2012096488A (en) Method of forecasting hot warpage deformation of liquid crystal polymer injection molding
Li et al. A quantitative investigation of distortion of polylactic acid/PLA) part in FDM from the point of interface residual stress
Sun et al. The application of modified PVT data on the warpage prediction of injection molded part
CN105934104A (en) Circuit Board And Method Of Manufacturing Same
Slonov et al. The influence of the 3D-printing technology on the physical and mechanical properties of polyphenylene sulfone
Shaikh et al. Finite element-based simulation of metal fused filament fabrication process: Distortion prediction and experimental verification
Broughton et al. Influence of coupling agents on material behaviour of glass flake reinforced polypropylene
Shuaib et al. Warpage factors effectiveness of a thin shallow injection-molded part using Taguchi method
JP2020087446A (en) Resin molding analysis method, program, and recording medium
JP5574896B2 (en) Raw material composition or manufacturing condition determination method
JP5505014B2 (en) Strength prediction method and strength control method for hot press molded products
Kim et al. Relationship between the crystallization behavior and the warpage of film‐insert‐molded parts
JP3994884B2 (en) Evaluation method of film stress and identification method of elastic modulus and linear expansion coefficient of thin film
JP6283550B2 (en) Analysis method of fluidization and solidification behavior of resin
Altan et al. Optimization of residual stresses in the surface regions of injection moldings
Zhang et al. Modeling and experimental investigation of polymer micropart demolding from a Zr‐based bulk metallic glass mold
JP3897628B2 (en) Method of predicting deformation of molded product in resin molding process, prediction system, and method of manufacturing molded product
Roth et al. Isotropy of mechanical properties and environmental stress crack sensitivity in injection‐and injection‐compression molding of polystyrene with different mold temperature
Zhang et al. Micro-bending of metallic crystalline foils by non-local dislocation density based crystal plasticity finite element model
JP2014100879A (en) Hot warpage analysis method for a liquid crystal polymer injection-molded article
Gershon et al. Thermoplastic polymer shrinkage in emerging molding processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140729