JP2012095397A - Power management system - Google Patents

Power management system Download PDF

Info

Publication number
JP2012095397A
JP2012095397A JP2010238874A JP2010238874A JP2012095397A JP 2012095397 A JP2012095397 A JP 2012095397A JP 2010238874 A JP2010238874 A JP 2010238874A JP 2010238874 A JP2010238874 A JP 2010238874A JP 2012095397 A JP2012095397 A JP 2012095397A
Authority
JP
Japan
Prior art keywords
power
amount
power supply
stored
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010238874A
Other languages
Japanese (ja)
Other versions
JP5563949B2 (en
Inventor
Rikiya Masuda
力也 増田
Kiyotaka Takehara
清隆 竹原
Yoshitaka Tezuka
義隆 手塚
Akira Baba
朗 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010238874A priority Critical patent/JP5563949B2/en
Publication of JP2012095397A publication Critical patent/JP2012095397A/en
Application granted granted Critical
Publication of JP5563949B2 publication Critical patent/JP5563949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power management system capable of identifying and controlling power charged in a storage battery for each power source of a power generation source.SOLUTION: A power management system comprises: a storage battery 1 that stores power supplied from a plurality of kinds of power supply sources 2; an input power measuring section 11 that measures each power supply amount supplied from each of the power supply sources 2 to the storage battery 1; an input power managing section 41 that manages the power supply amount to the storage battery 1 for each of the power supply sources 2 based on a measuring result by the input power measuring section 11; a discharging power measuring section 12 that measures a discharging power amount discharged from the storage battery 1; a discharging power managing section 42 that manages the discharging power amount discharged from the storage battery 1 for each of the power supply sources 2 based on a measuring result by the discharging power measuring section 12; and a storage power managing section 43 that manages a storage power amount stored in the storage battery 1 for each of the power supply sources 2 based on the power supply amount and the discharging power amount of each of the power supply sources 2 managed by the input power managing section 41 and the discharging power managing section 42.

Description

本発明は、電力管理システムに関するものである。   The present invention relates to a power management system.

近年、自然エネルギーの利用が推奨されており、一般家庭においても太陽光発電装置の普及が進みつつある。ところで、一般家庭においては太陽光発電装置で発電が行われる昼間は夕方や夜間に比べて在宅人数が少ないために電力需要が低下し、夕方や夜間になって家人が帰宅すると電力需要が増加する傾向がある。そこで、太陽光発電装置で昼間に発電された電力の余剰分を蓄電池に貯めておき、蓄電池に貯めておいた電力を、電力需要が増加する夕方から夜間に利用することが行われている(例えば特許文献1参照)。   In recent years, the use of natural energy has been recommended, and the use of solar power generation devices has been increasing in ordinary households. By the way, in ordinary households, power generation is reduced by the number of people at home during the daytime when solar power generation is performed compared to evening or nighttime, and the demand for power increases when the family returns home in the evening or nighttime. Tend. Then, the surplus of the electric power generated in the daytime by the solar power generation device is stored in a storage battery, and the power stored in the storage battery is used from the evening when the power demand increases to the night ( For example, see Patent Document 1).

特開昭59−198846号公報JP 59-198846 A

ところで、我が国においても「電気事業者による新エネルギー等の利用に関する特別措置法」(所謂RPS法)が制定され、新エネルギー等から発電される電気を一定割合以上利用することが電気事業者に義務づけられることになった。これによって、一般家庭においても太陽光発電装置で発電された電力を電気事業者に売電することが可能になった。   In Japan, the “Special Measures Law Concerning the Use of New Energy by Electric Power Companies” (so-called RPS Law) has been enacted, requiring electric power companies to use electricity generated from new energy, etc. at a certain rate or more. I was supposed to be. As a result, it has become possible to sell the electric power generated by the solar power generation device to electric utilities even in ordinary households.

しかしながら、一般家庭に設置された太陽光発電装置では、系統電圧の上昇に伴う電圧抑制の発生によって、発電した電力をすぐに電気事業者に売電できない場合があり、この場合は家庭内で発電電力を消費するか、蓄電池に貯めて後で利用することになる。   However, solar power generators installed in general households may not be able to immediately sell the generated power to electric utilities due to the occurrence of voltage suppression accompanying the rise in system voltage. Power is consumed or stored in a storage battery for later use.

ここで、複数の発電元で発電された電力が蓄電池に蓄電される場合、蓄電池に貯められた電力の発電元を識別できないと、売電電力に太陽光発電による発電電力以外の電力が含まれる可能性があるため、電気事業者側に売電することができなかった。また電気事業者側に売電できたとしても、太陽光発電による発電電力以外の電力が混ざっている可能性があるため、太陽光発電装置で発電した電力が、太陽光発電の場合の買取価格よりも安い価格でしか売電できなかった。   Here, when power generated by a plurality of power generation sources is stored in the storage battery, if the power generation source of the power stored in the storage battery cannot be identified, the power sold includes power other than the power generated by solar power generation. Because of the possibility, it was not possible to sell electricity to the electric utility. In addition, even if power can be sold to the electric power company side, there is a possibility that power other than the power generated by solar power generation may be mixed, so the power generated by the solar power generation device is the purchase price for solar power generation. It was only possible to sell electricity at a cheaper price.

本発明は上記課題に鑑みて為されたものであり、その目的とするところは、蓄電池に蓄電される電力を発電元の電源毎に識別して管理できる電力管理システムを提供することにある。   This invention is made | formed in view of the said subject, The place made into the objective is providing the electric power management system which can identify and manage the electric power accumulate | stored in a storage battery for every power source of an electric power generation source.

上記課題を解決するために、本発明の電力管理システムは、蓄電池と入力電力計測部と入力電力管理部と放出電力計測部と放出電力管理部と蓄積電力管理部とを備えることを特徴とする。蓄電池は、複数の電力供給源から供給される電力を蓄電する。入力電力計測部は、電力供給源毎に蓄電池に供給する電力供給量を計測する。入力電力管理部は、入力電力計測部の計測結果に基づいて電力供給源毎に蓄電池への電力供給量を管理する。放出電力計測部は、蓄電池から放出される電力放出量を計測する。放出電力管理部は、放出電力計測部の計測結果に基づいて電力供給源毎に電力放出量を管理する。蓄積電力管理部は、入力電力管理部及び放出電力管理部が管理する電力供給源毎の電力供給量及び電力放出量をもとに1乃至複数の電力供給源の蓄積電力量を管理する。   In order to solve the above problems, a power management system of the present invention includes a storage battery, an input power measurement unit, an input power management unit, a discharge power measurement unit, a discharge power management unit, and a stored power management unit. . The storage battery stores power supplied from a plurality of power supply sources. The input power measuring unit measures the amount of power supplied to the storage battery for each power supply source. The input power management unit manages the power supply amount to the storage battery for each power supply source based on the measurement result of the input power measurement unit. The discharged power measuring unit measures the amount of power released from the storage battery. The discharge power management unit manages the power discharge amount for each power supply source based on the measurement result of the discharge power measurement unit. The stored power management unit manages the stored power amount of one or more power supply sources based on the power supply amount and the power discharge amount for each power supply source managed by the input power management unit and the discharge power management unit.

この電力管理システムにおいて、蓄積電力管理部は、蓄電池に蓄電された電力量の合計値に対する電力供給源毎の蓄積電力量の割合を求めることも好ましい。放出電力管理部は、放出電力計測部が計測した電力放出量において、上記割合にて電力供給源毎の電力放出がなされたものとして、電力供給源毎の電力放出量を求める。   In this power management system, it is also preferable that the stored power management unit obtains a ratio of the stored power amount for each power supply source to the total value of the power stored in the storage battery. The discharge power management unit obtains the power discharge amount for each power supply source on the assumption that the power discharge for each power supply source is performed at the above ratio in the power discharge amount measured by the discharge power measurement unit.

この電力管理システムにおいて、蓄電池から放電する際に各々の電力供給源による蓄電分を放電させる優先度を記憶する記憶部を備えることも好ましい。放出電力管理部は、放電前の電力供給源毎の蓄積電力量と、放出電力計測部が計測した電力放出量とに基づき、優先度の高い電力供給源の蓄電分から放出されたこととして、電力供給源毎の電力放出量を求める。   In this power management system, it is also preferable to include a storage unit that stores the priority of discharging the power stored by each power supply source when discharging from the storage battery. Based on the accumulated power amount for each power supply source before discharge and the power discharge amount measured by the discharged power measurement unit, the discharged power management unit determines that it has been released from the stored power of the power supply source with high priority. Obtain the amount of power released for each supply source.

この電力管理システムにおいて、蓄積電力管理部は、所定の電力供給源から蓄電池に電力が供給された場合、所定の有効期限がくるまでの間、この電力供給源からの電力供給量に相当する蓄積電力をこの電力供給源による蓄電分として管理することも好ましい。   In this power management system, when the power is supplied from the predetermined power supply source to the storage battery, the stored power management unit stores the power corresponding to the power supply amount from the power supply source until the predetermined expiration date comes. It is also preferable to manage the power as the amount of electricity stored by this power supply source.

上述の電力管理システムにおいて、蓄積電力管理部で管理された電力供給源毎の蓄積電力量の情報を出力する出力手段を備えることも好ましい。   In the above-described power management system, it is also preferable to include an output unit that outputs information on the amount of stored power for each power supply source managed by the stored power management unit.

上述の電力管理システムにおいて、蓄積電力管理部で管理された電力供給源毎の蓄積電力量の情報を消去するリセット手段を備えることも好ましい。   In the above-described power management system, it is preferable that the power management system further includes a reset unit that erases information on the stored power amount for each power supply source managed by the stored power management unit.

本発明によれば、蓄積電力管理部が1乃至複数の電力供給源の蓄積電力量を管理しているので、発電元の電力供給源を識別して蓄積電力量を管理することができる。   According to the present invention, since the stored power management unit manages the stored power amount of one or more power supply sources, the stored power amount can be managed by identifying the power supply source of the power generation source.

本実施形態の電力管理システムの要部を示すブロック図である。It is a block diagram which shows the principal part of the power management system of this embodiment. 同上のシステム構成図である。It is a system block diagram same as the above. (a)は蓄電時の動作を示すフローチャート、(b)は放電時の動作を示すフローチャートである。(A) is a flowchart which shows the operation | movement at the time of electrical storage, (b) is a flowchart which shows the operation | movement at the time of discharge.

本発明に係る電力管理システムの実施形態を図面に基づいて説明する。   An embodiment of a power management system according to the present invention will be described with reference to the drawings.

図2は本実施形態の電力管理システムのシステム構成図である。本システムは、蓄電池1と、電力供給源である太陽光発電装置2a、燃料電池2b及び商用交流電源2cと、電力変換ユニット10と、DC分電盤20と、AC分電盤30と、電力管理装置40と、通信インタフェース50と、表示パネル60とを備えている。   FIG. 2 is a system configuration diagram of the power management system of the present embodiment. This system includes a storage battery 1, a photovoltaic power generation device 2 a that is a power supply source, a fuel cell 2 b and a commercial AC power source 2 c, a power conversion unit 10, a DC distribution board 20, an AC distribution board 30, A management device 40, a communication interface 50, and a display panel 60 are provided.

AC分電盤30では、商用交流電源2cに接続される主幹ブレーカ31と、主幹ブレーカ31の二次側に接続された複数の分岐ブレーカ32を備え、分岐ブレーカ32を介して制御機器33に交流電源(AC100V)が供給される。また主幹ブレーカ31の二次側には燃料電池2bが接続されており、燃料電池2bで発電された交流電力は主幹ブレーカ31を介して電力変換ユニット10に出力される。   The AC distribution board 30 includes a main breaker 31 connected to the commercial AC power source 2 c and a plurality of branch breakers 32 connected to the secondary side of the main breaker 31, and AC is supplied to the control device 33 via the branch breaker 32. Power (AC100V) is supplied. A fuel cell 2 b is connected to the secondary side of the main breaker 31, and AC power generated by the fuel cell 2 b is output to the power conversion unit 10 via the main breaker 31.

DC分電盤20は、電力変換ユニット10から直流電力の供給を受けて、制御機器21に給電する。   The DC distribution board 20 receives supply of DC power from the power conversion unit 10 and supplies power to the control device 21.

電力変換ユニット10には、AC分電盤30が交流系電力線L2を介して接続されてお
り、この交流系電力線L2を介して商用交流電源2c及び燃料電池2bに接続されるとともに、直流系電力線L1を介して太陽光発電装置2aに接続されている。電力変換ユニット10は、AC分電盤30から供給される交流電力および太陽光発電装置2aから供給される直流電力を所定の直流電力に変換してDC分電盤20に出力する。ここで、太陽光発電装置2a、燃料電池2bの発電電力が直流系の負荷の電力需要を上回っていれば、発電電力に余剰分が発生するので、電力変換ユニット10は余剰分を蓄電池1に蓄電させる。また、夜間など商用交流電源2cの単価が安い時間帯に交流電力を買電して蓄電池1に蓄電しておき、単価が高い時間帯に使用することも考えられ、電力変換ユニット10では、商用交流電源2cから買電した交流電力を直流電力に変換して蓄電池に蓄電させる。また電力変換ユニット10では、例えば直流系の負荷の電力需要が発電能力を上回ると、蓄電池1に蓄電されている電力を放出させて、直流系の負荷で利用する。また電力変換ユニット10は、蓄電池1に蓄電された蓄電分のうち、太陽光発電装置2aで発電された蓄電分を放出させて交流電力に変換し、交流電源系統に売電する機能も備えている。
An AC distribution board 30 is connected to the power conversion unit 10 via an AC power line L2. The AC power distribution unit 10 is connected to the commercial AC power supply 2c and the fuel cell 2b via the AC power line L2. It is connected to the solar power generation device 2a via L1. The power conversion unit 10 converts the AC power supplied from the AC distribution board 30 and the DC power supplied from the solar power generation device 2 a into predetermined DC power and outputs the DC power to the DC distribution board 20. Here, if the generated power of the solar power generation device 2a and the fuel cell 2b exceeds the power demand of the load of the direct current system, a surplus is generated in the generated power, so the power conversion unit 10 transfers the surplus to the storage battery 1. Allow to store electricity. It is also conceivable that AC power is purchased in the time zone where the unit price of the commercial AC power supply 2c is low, such as at night, and stored in the storage battery 1, and used in a time zone where the unit price is high. AC power purchased from the AC power supply 2c is converted into DC power and stored in a storage battery. In the power conversion unit 10, for example, when the power demand of the DC load exceeds the power generation capacity, the power stored in the storage battery 1 is released and used in the DC load. In addition, the power conversion unit 10 has a function of releasing the stored power generated by the solar power generation device 2a out of the stored power stored in the storage battery 1, converting it to AC power, and selling the power to the AC power supply system. Yes.

図2は電力変換ユニット10および電力管理装置40のブロック図であり、電力変換ユニット10は、入力電力計測部11と放出電力計測部12と電力放出制御部13と出力部14を主要な構成として備えている。   FIG. 2 is a block diagram of the power conversion unit 10 and the power management device 40. The power conversion unit 10 includes an input power measurement unit 11, a discharge power measurement unit 12, a power discharge control unit 13, and an output unit 14 as main components. I have.

入力電力計測部11は、各々の電力供給源2について蓄電池1に供給される電力供給量をそれぞれ計測する。本実施形態では電力供給源2として太陽光発電装置2aと燃料電池2bと商用交流電源2cがある。入力電力計測部11は、太陽光発電装置2aからの入力電流および入力電圧を計測することによって、太陽光発電装置2aからの電力供給量を計測する。また入力電力計測部11は、AC分電盤30からの入力電力を計測するとともに、センサー34を用いて燃料電池2bの発電電力を読み込み、燃料電池2bからの電力供給量および商用交流電源2cからの電力供給量(買電電力)を個別に計測する。   The input power measuring unit 11 measures the amount of power supplied to the storage battery 1 for each power supply source 2. In the present embodiment, the power supply source 2 includes a solar power generation device 2a, a fuel cell 2b, and a commercial AC power source 2c. The input power measuring unit 11 measures the amount of power supplied from the solar power generation device 2a by measuring the input current and input voltage from the solar power generation device 2a. The input power measuring unit 11 measures the input power from the AC distribution board 30 and reads the generated power of the fuel cell 2b using the sensor 34, and supplies the power supply amount from the fuel cell 2b and the commercial AC power source 2c. Measure the amount of electricity supplied (purchased power) individually.

放出電力計測部12は、蓄電池1から放出される電力量(放出電力量)を計測する。   The discharged power measuring unit 12 measures the amount of power released from the storage battery 1 (discharged power amount).

電力放出制御部13は蓄電池1からの放電を制御する。蓄電池1から放電された電力は出力部14からDC分電盤20に出力されて、直流系の制御機器21で利用されるか、或いは、出力部14で交流電力に変換されてAC分電盤30に送られ、交流電源系統に売電される。   The power release control unit 13 controls the discharge from the storage battery 1. The electric power discharged from the storage battery 1 is output from the output unit 14 to the DC distribution board 20 and used by the DC system control device 21 or converted into AC power by the output unit 14 and the AC distribution board. 30 and is sold to the AC power supply system.

また電力管理装置40は、通信インタフェース(通信I/F)50を介して電力変換ユニット10との間で情報信号を授受し、蓄電池1の蓄電電力に関わる情報などを表示パネル60に表示させる。この電力管理装置40は、図1に示すように、入力電力管理部41と放出電力管理部42と蓄積電力管理部43と記憶部44とリセット部45を主要な構成として備えている。   In addition, the power management device 40 exchanges information signals with the power conversion unit 10 via the communication interface (communication I / F) 50 and causes the display panel 60 to display information related to the stored power of the storage battery 1. As shown in FIG. 1, the power management apparatus 40 includes an input power management unit 41, a discharge power management unit 42, a stored power management unit 43, a storage unit 44, and a reset unit 45 as main components.

入力電力管理部41は、通信インタフェース50を介して電力変換ユニット10から入力電力計測部11の計測結果を読み込んでおり、電力供給源2毎に蓄電池1への電力供給量を管理する。   The input power management unit 41 reads the measurement result of the input power measurement unit 11 from the power conversion unit 10 via the communication interface 50 and manages the power supply amount to the storage battery 1 for each power supply source 2.

放出電力管理部42は、通信インタフェース50を介して電力変換ユニット10から放出電力計測部12の計測結果を読み込み、全体の電力放出量をもとに、電力供給源2毎の電力放出量を管理する。   The discharge power management unit 42 reads the measurement result of the discharge power measurement unit 12 from the power conversion unit 10 via the communication interface 50, and manages the power discharge amount for each power supply source 2 based on the total power discharge amount. To do.

蓄積電力管理部43は、入力電力管理部41及び放出電力管理部42が管理する電力供給源2毎の電力供給量及び電力放出量をもとに、電力供給源2毎の蓄積電力量を管理する。   The stored power management unit 43 manages the stored power amount for each power supply source 2 based on the power supply amount and power discharge amount for each power supply source 2 managed by the input power management unit 41 and the discharge power management unit 42. To do.

記憶部44は、蓄積電力管理部43が求めた電力供給源2毎の蓄電量を記憶する。   The storage unit 44 stores the amount of power stored for each power supply source 2 obtained by the accumulated power management unit 43.

リセット部45は、ユーザの操作に応じて記憶部43に記憶された電力供給源2毎の蓄電電力の情報を消去する。   The reset unit 45 erases the stored power information for each power supply source 2 stored in the storage unit 43 in response to a user operation.

以下に、この電力管理システムの動作を図3(a)(b)のフローチャートに基づいて説明する。   The operation of this power management system will be described below based on the flowcharts of FIGS.

先ず、図3(a)のフローチャートを参照して蓄電時の動作を説明する。電力変換ユニット10は、電力供給源2である商用交流電源2cから買電された電力や、太陽光発電装置2a又は燃料電池2bで発電された電力の供給を受けると(S1)、これらの電力供給源2から供給された電力を蓄電池1に蓄積させる(S2)。この時、入力電力計測部11では、太陽光発電装置2aによる発電電力であるか、AC分電盤30から給電された電力であるかを判断する。AC分電盤30から給電されている場合、入力電力計測部11はセンサー34の出力をもとに燃料電池2bによる発電電力であるか、商用交流電源2cからの買電であるかを判断する。ここで、電力供給源が商用交流電源2cからの買電ではない場合(S3のNo)、入力電力計測部11は、センサー34の検出結果をもとに電力供給源2が太陽光発電装置2a及び燃料電池2bの何れであるかを特定して、電力供給量を計測する(S4)。また、電力供給源が商用交流電源2cからの買電である場合(S3のYes)、入力電力計測部11は、現在時刻をもとに表1のテーブルを参照して買電の種類を決定し、その電力供給量を計測する(S5)。ここで、商用交流電源2cから買電する場合、時間帯によって買電電力の単価が異なるので、各時間帯で買電量を管理している。下記の表1は時間帯と買電の種別との対応関係を示すテーブルであり、表1の例では1日を4つの時間帯に分け、時間帯毎に買電の種類を規定している。
First, the operation during power storage will be described with reference to the flowchart of FIG. When the power conversion unit 10 receives the power purchased from the commercial AC power source 2c that is the power supply source 2 or the power generated by the solar power generation device 2a or the fuel cell 2b (S1), these powers The electric power supplied from the supply source 2 is accumulated in the storage battery 1 (S2). At this time, the input power measuring unit 11 determines whether the power is generated by the solar power generation device 2 a or is supplied from the AC distribution board 30. When power is supplied from the AC distribution board 30, the input power measurement unit 11 determines whether the power is generated by the fuel cell 2 b or purchased from the commercial AC power source 2 c based on the output of the sensor 34. . Here, when the power supply source is not the power purchase from the commercial AC power supply 2c (No in S3), the input power measurement unit 11 determines that the power supply source 2 is the solar power generation device 2a based on the detection result of the sensor 34. And the fuel cell 2b is specified, and the power supply amount is measured (S4). When the power supply source is power purchase from the commercial AC power supply 2c (Yes in S3), the input power measurement unit 11 determines the type of power purchase by referring to the table in Table 1 based on the current time. Then, the power supply amount is measured (S5). Here, when purchasing power from the commercial AC power supply 2c, the unit price of the purchased power varies depending on the time zone, so the power purchase amount is managed in each time zone. Table 1 below is a table showing the correspondence between time zones and power purchase types. In the example of Table 1, one day is divided into four time zones, and the type of power purchase is specified for each time zone. .

Figure 2012095397
Figure 2012095397

入力電力計測部11は、上記の処理を行って、蓄電池1に蓄電される電力の供給元を特定するとともに、その供給電力量を計測すると、蓄電電力の電力供給源および供給電力量の計測結果を電力管理装置40の入力電力管理部41へ出力する。   When the input power measuring unit 11 performs the above-described processing to identify the supply source of the power stored in the storage battery 1 and measures the amount of supplied power, the measurement result of the power supply source of the stored power and the supplied power amount Is output to the input power management unit 41 of the power management apparatus 40.

電力管理装置40の入力電力管理部41は、入力電力計測部11から蓄積電力の電力供給源及び供給電力量の計測結果が入力されると、記憶部44から電力供給量管理テーブル(表2参照)を読み込む。この電力供給量管理テーブルには、電力供給源毎の蓄積電力量とその合計値、並びに、蓄積電力量の合計値に対する電力供給源毎の蓄積電力量の割合が記憶されている。   When the input power management unit 41 of the power management apparatus 40 receives the power supply source of the accumulated power and the measurement result of the supply power amount from the input power measurement unit 11, the power supply amount management table (see Table 2) is stored from the storage unit 44. ). This power supply amount management table stores the stored power amount for each power supply source, its total value, and the ratio of the stored power amount for each power supply source to the total value of the stored power amount.

Figure 2012095397
Figure 2012095397

入力電力管理部41は、電力供給源毎の蓄積電力量を電力供給量管理テーブルから読み出し、供給元の電力供給源2の蓄積電力量に今回の計測結果を加算して蓄積電力量を更新し、記憶部44に記憶させる(S6)。また電力供給量管理テーブルが更新されると、蓄積電力管理部43は、電力供給量管理テーブルから各電力供給源2の蓄積電力量を読み出して蓄積電力量を合計し、この合計値に対する各電力供給源2の蓄積電力量の割合を求めて、電力供給量管理テーブルに記憶させる(S7)。   The input power management unit 41 reads the stored power amount for each power supply source from the power supply amount management table, adds the current measurement result to the stored power amount of the power supply source 2 of the supply source, and updates the stored power amount. Then, it is stored in the storage unit 44 (S6). When the power supply amount management table is updated, the accumulated power management unit 43 reads the accumulated power amount of each power supply source 2 from the power supply amount management table and sums the accumulated power amounts, and each power corresponding to this total value The ratio of the stored power amount of the supply source 2 is obtained and stored in the power supply amount management table (S7).

次に、図3(b)のフローチャートを参照して放電時の動作を説明する。電力変換ユニット10の電力放出制御部13によって蓄電池1に蓄電された電力が放出されると、蓄電池1から放出された電力は、直流系の制御機器21で利用されるか、交流電力に変換されて交流電源系統に売電される(S11)。この時、蓄電池1から放出された電力量は放出電力計測部12によって計測され、放出電力量の計測結果が放出電力計測部12から通信インタフェース50を介して電力管理装置40へ出力される。電力管理装置40では、放出電力管理部42が放出電力量の計測結果を取り込み、この放出電力量(全体)においてS7で求めた割合で電力供給源2毎に電力放出がなされたものとして、電力供給源2毎の放出電力量を求める(S12)。すなわち、全体の放出電力量をA(kWh)、ある電力供給源2の蓄積電力量が全体に占める割合をxとすると、この電力供給源2による蓄電分から放出された電力は、A×x(kWh)として求められる。   Next, the operation during discharging will be described with reference to the flowchart of FIG. When the power stored in the storage battery 1 is released by the power release control unit 13 of the power conversion unit 10, the power released from the storage battery 1 is used by the DC control device 21 or converted into AC power. The power is sold to the AC power supply system (S11). At this time, the amount of power released from the storage battery 1 is measured by the emitted power measuring unit 12, and the measurement result of the amount of emitted power is output from the emitted power measuring unit 12 to the power management apparatus 40 via the communication interface 50. In the power management device 40, it is assumed that the discharge power management unit 42 captures the measurement result of the discharge power amount, and the power discharge is performed for each power supply source 2 at the ratio obtained in S 7 in this discharge power amount (whole). The amount of electric power discharged for each supply source 2 is obtained (S12). That is, assuming that the total amount of discharged power is A (kWh) and the ratio of the accumulated power amount of a certain power supply source 2 to the whole is x, the power released from the power stored by this power supply source 2 is A × x ( kWh).

例えば表3に示すように、4つの電力供給源(太陽光発電P1、買電(昼)P2、買電(夜)P3、燃料電池P4)によって蓄電池1に蓄電されている状態で、時刻T1→T2→T3と電源毎の蓄積電力量が変化したとする。ここで、放電前の時刻T3において、各電源の蓄積電力量P1,P2,P3,P4がそれぞれ18Wh、12Wh、12Wh、18Whであったとすると、電源毎の蓄積電力量の比率はP1:P2:P3:P4=3:2:2:3となる。その後、蓄電池1に蓄電されていた電力が15Wh使用された場合、放出電力管理部42は、放電前に求めた電源毎の比率を用いて、電力供給源毎に放出電力量を配分する。例えば太陽光発電装置2aであれば、太陽光発電装置2aによる蓄電分の全体に対する比率は3/10であるので、太陽光発電装置2aによる蓄電分から放出された電力量は15×3/10=4.5(Wh)と求められる。他の電力供給源2についても同様の計算を行って放出電力量を求めることができ、放電後の時刻T4における蓄積電力量は下表の通りになり、放電前後で電力供給源2毎の蓄積電力量の比率は同じ値となる。   For example, as shown in Table 3, in a state where power is stored in the storage battery 1 by four power supply sources (solar power generation P1, purchased power (daytime) P2, purchased power (night) P3, fuel cell P4), the time T1 It is assumed that the stored power amount for each power source changes from T2 to T3. Here, assuming that the accumulated power amounts P1, P2, P3, and P4 of each power source are 18 Wh, 12 Wh, 12 Wh, and 18 Wh, respectively, at time T3 before discharge, the ratio of the accumulated power amount for each power source is P1: P2: P3: P4 = 3: 2: 2: 3. Thereafter, when the power stored in the storage battery 1 is used for 15 Wh, the discharged power management unit 42 distributes the amount of discharged power for each power supply source using the ratio for each power source obtained before discharging. For example, in the case of the solar power generation device 2a, the ratio of the total amount of electricity stored by the solar power generation device 2a is 3/10. Therefore, the amount of power released from the amount of power stored by the solar power generation device 2a is 15 × 3/10 = 4.5 (Wh) is required. The same calculation can be performed for the other power supply sources 2 to obtain the amount of emitted power, and the stored power amount at time T4 after discharge is as shown in the table below. The ratio of the electric energy is the same value.

Figure 2012095397
Figure 2012095397

このようにして電力供給源毎に放出電力量が分配されると、蓄積電力管理部43は、記憶部44から電力供給量管理テーブルを読み出し、各電力供給源2の蓄積電力量から放出電力量を減算することによって、蓄積電力量の値を更新する(S13)。また蓄積電力管理部43は、電力供給量管理テーブルから蓄積電力量の合計値を読み出し、この合計値から全放出電力量を減算して、蓄積電力量の値を更新し(S14)、更新後の電力供給量管理テーブルを記憶部44に記憶させる。   When the amount of discharged power is distributed for each power supply source in this way, the stored power management unit 43 reads the power supply amount management table from the storage unit 44 and releases the amount of discharged power from the stored power amount of each power supply source 2. Is subtracted to update the value of the stored electric energy (S13). Further, the stored power management unit 43 reads the total value of the stored power amount from the power supply amount management table, subtracts the total released power amount from this total value, and updates the value of the stored power amount (S14). Are stored in the storage unit 44.

したがって、記憶部44に記憶された電力供給量管理テーブルには、蓄電池1に蓄電されている蓄積電力量が、電力供給源毎に分類して記憶されるから、各々の電力供給源2による蓄電分を個別に管理することができる。   Therefore, in the power supply amount management table stored in the storage unit 44, the stored power amount stored in the storage battery 1 is classified and stored for each power supply source. Minutes can be managed individually.

ここで、蓄電池1に蓄電された電力を売電する場合、蓄積電力管理部43は、記憶部44に記憶された電力供給量管理テーブルを参照して、太陽光発電装置2aによる蓄電分を抽出することにより、売電可能な電力量を求めている。そして、蓄積電力管理部43では、電力変換ユニット10の電力放出制御部13に、太陽光発電装置2aによる蓄電分の範囲内で売電を指示すると、蓄電池1に蓄電された電力が出力部14から放出され、電源系統側に売電される。   Here, when selling the power stored in the storage battery 1, the stored power management unit 43 refers to the power supply amount management table stored in the storage unit 44 and extracts the stored power by the solar power generation device 2 a. By doing so, the amount of power that can be sold is obtained. When the stored power management unit 43 instructs the power release control unit 13 of the power conversion unit 10 to sell power within the range of power stored by the solar power generation device 2a, the power stored in the storage battery 1 is output to the output unit 14. The power is released from the power supply system.

上述のように電力管理装置40は、蓄電池1に蓄電されている電力のうち、太陽光発電装置2aによる発電分がどれだけあるかを把握しているから、蓄電池1に蓄電された電力であっても、太陽光発電装置2aによる発電分として売電することができる。したがって、発電時以外でも所望のタイミングで太陽光発電装置2aによる発電電力を売電することができ、買取価格が高い時間帯を狙って売電できる。また、蓄電池1に蓄電された電力を電力供給源2毎に識別して管理しているので、太陽光発電以外の電源による電力が含まれていない太陽光発電の発電分として売電できるから、他の電源よりも高めに設定された太陽光発電の買取価格で売電することができる。   As described above, the power management device 40 knows how much of the power stored in the storage battery 1 is generated by the solar power generation device 2a. However, it is possible to sell power as a power generation by the solar power generation device 2a. Therefore, it is possible to sell the power generated by the solar power generation device 2a at a desired timing even during power generation, and it is possible to sell power aiming at a time zone where the purchase price is high. Moreover, since the electric power stored in the storage battery 1 is identified and managed for each power supply source 2, it can be sold as a power generation of solar power generation that does not include power from a power source other than solar power generation. It is possible to sell electricity at a purchase price of photovoltaic power generation set higher than other power sources.

このように本実施形態では電力供給源毎の蓄電分の割合(比率)を求め、この割合にしたがって各電力供給源の蓄電分が放出されたと判断しており、放電前後で電力供給源毎の蓄電分の比率が変化しないものとして、電源毎の放出電力量を求めることができる。   As described above, in this embodiment, the ratio (ratio) of the electricity storage for each power supply source is obtained, and it is determined that the electricity storage of each power supply source is released according to this ratio. Assuming that the ratio of stored electricity does not change, it is possible to determine the amount of electric power released for each power source.

ところで本実施形態では放電直前に蓄電池1に蓄積された各電力供給源2による蓄積電力量の割合を求め、この割合にしたがって各電力供給源2の蓄電分が放電したものとみなして、放電後の各電力供給源2による蓄積電力量を求めているが、蓄電池1からの電力放出量を各電力供給源2に配分する方法は上記の方法に限定されるものではない。   By the way, in this embodiment, the ratio of the amount of stored power by each power supply source 2 stored in the storage battery 1 immediately before the discharge is obtained, and the stored amount of each power supply source 2 is regarded as discharged according to this ratio. However, the method of allocating the amount of power released from the storage battery 1 to each power supply source 2 is not limited to the above method.

例えば、上述した電力供給量管理テーブルに電源毎の蓄積電力量の割合を記憶させる代わりに、蓄電池1から放電する際に各電力供給源2による蓄電分を放電させる優先度を記憶させておき、この優先度を用いて電力放出量を各電力供給源2に配分してもよい。   For example, instead of storing the ratio of the stored power amount for each power source in the above-described power supply amount management table, the priority for discharging the power stored by each power supply source 2 when discharging from the storage battery 1 is stored, The power discharge amount may be distributed to each power supply source 2 using this priority.

ここで、蓄電池1の蓄積電力を負荷で利用するために蓄電池1から放電させた場合、その放出電力量が放出電力計測部12で計測されて、放出電力管理部42に出力される。放出電力管理部42は、記憶部44から電力供給量管理テーブルを読み出し、各電力供給源2に割り当てられた優先度を読み込む。ここで、放出電力管理部42は、蓄電池1が放電する際に、優先度の高い電力供給源2の蓄電分から順番に放出されたものとして、電力供給源毎に蓄電分からの放出電力量を決定する。   Here, when the storage battery 1 is discharged from the storage battery 1 in order to use it with a load, the amount of discharged power is measured by the discharged power measuring unit 12 and output to the discharged power management unit 42. The discharged power management unit 42 reads the power supply amount management table from the storage unit 44 and reads the priority assigned to each power supply source 2. Here, when the storage battery 1 discharges, the discharged power management unit 42 determines the amount of discharged power from the stored power for each power supply source, assuming that the power stored in the power supply source 2 with high priority is sequentially discharged. To do.

例えば下記の表4に示すように、4つの電力供給源(太陽光発電P1、買電(昼)P2、買電(夜)P3、燃料電池P4)によって蓄電池1に蓄電されている状態で、時刻T1→T2→T3と電源毎の蓄積電力量が変化したとする。尚、4つの電力供給源P1〜P4の優先度は、太陽光発電装置P1が最も低く、太陽光発電装置P1<買電(昼)P2<買電(夜)P3<燃料電池P4の順番で優先度が高くなっている。ここで、放電前の時刻T3において、各電源の蓄積電力量がそれぞれP1=18Wh、P2=12Wh、P3=12Wh、P4=18Whであり、その後、蓄電池1に蓄電されていた電力が20Wh使用されたとする。放出電力管理部42は、優先度が高い電力供給源2の蓄電分から順番に放出されたものと見なしており、先ず優先度が最も高い燃料電池P4の蓄積電力量(=18Wh)と放出電力量(=20Wh)とを比較する。この場合、燃料電池P4による蓄積電力量よりも放出電力量の方が多いので、放出電力管理部42では、燃料電池P4による蓄電分が全量放出され、且つ、放出電力量から燃料電池P4の蓄電分を差し引いた残りは、次に優先度が高い買電(夜)P3の蓄電分から放電されたと判断する。而して、放出電力管理部42では、燃料電池による蓄電分18Whと、買電(夜)の蓄電分2Whが放電されたと判断する。そして、蓄積電力管理部43では、放電前の電源毎の蓄積電力量と、電源毎の放出電力量とに基づいて、放電後の時刻T4における電源毎の蓄積電力量を、太陽光発電:18Wh、買電(昼):12Wh、買電(夜):10Wh、燃料電池:0Whと
決定する。
For example, as shown in Table 4 below, in a state where power is stored in the storage battery 1 by four power supply sources (solar power generation P1, purchased power (daytime) P2, purchased power (night) P3, fuel cell P4), Assume that the accumulated power amount for each power source changes from time T1 to T2 to T3. The priority of the four power supply sources P1 to P4 is the lowest in the photovoltaic power generation device P1, and the photovoltaic power generation device P1 <the power purchase (daytime) P2 <the power purchase (night) P3 <the fuel cell P4. The priority is high. Here, at time T3 before discharging, the stored power amount of each power source is P1 = 18 Wh, P2 = 12 Wh, P3 = 12 Wh, P4 = 18 Wh, and then the power stored in the storage battery 1 is used for 20 Wh. Suppose. The discharged power management unit 42 considers that the power stored in the power supply source 2 having a high priority is discharged in order, and first, the stored power amount (= 18 Wh) and the discharged power amount of the fuel cell P4 having the highest priority. (= 20 Wh). In this case, since the amount of electric power released is larger than the amount of electric power stored by the fuel cell P4, the amount of electric power stored by the fuel cell P4 is released in the electric power emission management unit 42, and the electric power stored in the fuel cell P4 is calculated from the electric power released. The remainder after subtracting the minutes is determined to have been discharged from the stored electricity of the next highest priority power purchase (night) P3. Thus, the discharged power management unit 42 determines that the charged amount 18 Wh by the fuel cell and the charged amount 2 Wh of purchased power (night) are discharged. Then, in the stored power management unit 43, based on the stored power amount for each power source before discharge and the released power amount for each power source, the stored power amount for each power source at time T4 after discharge is calculated as photovoltaic power generation: 18 Wh. Power purchase (daytime): 12 Wh, Power purchase (night): 10 Wh, Fuel cell: 0 Wh

Figure 2012095397
Figure 2012095397

このように、電源毎に優先度を予め設定しておけば、優先度が低めに設定された電源の蓄電分を、できるだけ残しておくことができ、例えば売電が可能な太陽光発電装置2aの優先度を低めに設定することで、売電可能な蓄積電力量をより多く残すことができる。   In this way, if the priority is set in advance for each power source, it is possible to leave as much as possible the power stored in the power source set to a lower priority. For example, the solar power generation device 2a capable of selling power By setting the priority of the lower, it is possible to leave more stored power that can be sold.

なお、本実施形態では全ての電力供給源に優先度を設定しているが、全ての電力供給源に優先度を設定する必要はなく、優先度が高めに設定される1乃至複数の電力供給源のみに優先度を設定してもよい。また優先度が高低2段階に設定される場合は、優先度が高い電力供給源のみに優先度が設定されればよい。   In this embodiment, priority is set for all power supply sources, but it is not necessary to set priority for all power supply sources, and one or more power supplies whose priority is set higher. A priority may be set only for the source. Further, when the priority is set to two levels, the priority may be set only for the power supply source having a high priority.

また、上述の実施形態では電力供給源毎に蓄電池1への電力供給量と放出電力量を求め、これらの値を用いて電力供給源毎の蓄積電力量を求めているが、蓄積電力管理部43では、ある電力供給源2から蓄電池1に電力が供給された場合に、所定の有効期限が来るまでの間、この電力供給源2からの電力供給量に相当する蓄電電力を、この電力供給源2に
よる蓄電分として管理してもよい。
In the above-described embodiment, the power supply amount and the discharge power amount to the storage battery 1 are obtained for each power supply source, and the stored power amount for each power supply source is obtained using these values. In 43, when power is supplied to the storage battery 1 from a certain power supply source 2, the stored power corresponding to the power supply amount from the power supply source 2 is supplied to the power supply until a predetermined expiration date comes. You may manage as the electrical storage by the source 2. FIG.

例えば、蓄積電力管理部43では、太陽光発電装置2aによる発電の終了時(例えば18時)から所定の有効期限がくるまでの間、発電終了時までに太陽光発電装置2aから蓄電池1に供給された電力供給量に相当する蓄電電力を、太陽光発電装置2aによる蓄電分とみなして管理する。   For example, the stored power management unit 43 supplies the storage battery 1 from the solar power generation device 2a until the end of power generation from the end of power generation by the solar power generation device 2a (for example, 18:00) until the predetermined expiration date comes. The stored electric power corresponding to the supplied amount of electric power is managed by regarding the stored electric power by the solar power generation device 2a.

下記の表5は、4つの電力供給源(太陽光発電P1、買電(昼)P2、買電(夜)P3、燃料電池P4)で蓄電池1に蓄電される場合を示し、太陽光発電装置2aによる発電終了時までに、太陽光発電装置2aによって3Whの電力が発電されたものとする。ここで、蓄積電力管理部43が、太陽光発電装置2aによる蓄電分の有効期限を当日の24時までと設定すると、蓄電池1の蓄電分を売電しない限り、その日の24時が来るまでの間、蓄電池1の蓄積電力量が変動したとしても、太陽光発電装置2aによる蓄電分を3Whとして管理する。よって、当日の24時がくるまでの間は、蓄電池1に蓄電された電力のうち、3Whを太陽光発電装置2aによる発電分として売電することができる。尚、上記の有効期限は一例であって、所定の電力供給源2から蓄電池1に電力が供給された時点より一定期間が経過するまでを有効期限としてもよい。例えば太陽光発電装置2aによる発電終了時から3日間は、その日に太陽光発電装置2aで発電された電力量の1/3に相当する蓄積電力を、太陽光発電装置2aによる蓄電分として管理してもよい。尚、太陽光発電装置2aによる蓄電分を売電した場合は、有効期限内であっても、太陽光発電装置2aの蓄積分から売電電力を差し引いた電力を、太陽光発電装置2aによる蓄電分として管理する。   Table 5 below shows a case where the storage battery 1 is charged with four power supply sources (solar power generation P1, purchased power (daytime) P2, purchased power (nighttime) P3, fuel cell P4). It is assumed that 3 Wh of power is generated by the solar power generation device 2a by the end of power generation by 2a. Here, if the stored power management unit 43 sets the expiration date for the amount of power stored by the solar power generation device 2a to 24:00 on that day, unless the power stored in the storage battery 1 is sold, the time until 24:00 on that day comes During this time, even if the amount of stored power in the storage battery 1 fluctuates, the amount of power stored by the solar power generation device 2a is managed as 3 Wh. Therefore, until 24:00 of the day comes, 3 Wh of the electric power stored in the storage battery 1 can be sold as power generated by the solar power generation device 2a. Note that the above-described expiration date is an example, and the expiration date may be a period from when the power is supplied from the predetermined power supply source 2 to the storage battery 1 until a certain period elapses. For example, for 3 days from the end of power generation by the solar power generation device 2a, the accumulated power corresponding to 1/3 of the amount of power generated by the solar power generation device 2a on that day is managed as the amount of electricity stored by the solar power generation device 2a. May be. In addition, when the electricity stored by the solar power generation device 2a is sold, the power obtained by subtracting the power sale power from the accumulated amount of the solar power generation device 2a is used as the power storage by the solar power generation device 2a even within the expiration date. Manage as.

Figure 2012095397
Figure 2012095397

ところで、上述した電力管理システムでは、電力管理装置40で管理された電力供給源毎の蓄積電力量の情報を表示パネル60に表示させることができ、表示パネル60の表示内容を確認することで、電源毎の蓄積電力量の情報を視覚的に把握することができる。尚、本実施形態では出力手段として例えば液晶ディスプレイからなる表示パネル60を備えているが、音声や紙出力で電力供給源毎の蓄積電力量の情報を出力するものでもよい。   By the way, in the above-described power management system, information on the stored power amount for each power supply source managed by the power management device 40 can be displayed on the display panel 60, and by confirming the display content of the display panel 60, Information on the amount of stored power for each power supply can be visually grasped. In this embodiment, a display panel 60 made of, for example, a liquid crystal display is provided as output means. However, information on the amount of stored power for each power supply source may be output by voice or paper output.

また、電力管理装置40はリセット部45を備え、ユーザがリセット部45を操作することによって、記憶部44に記憶された蓄積電力量の情報を消去できるので、蓄電池1の蓄電分を売電できない制度になった場合には、不要な情報を廃棄することができる。尚、リセット手段は、ユーザが操作するようなリセット部45に限定されるものではなく、例えば所定の時刻が来ると記憶部44に記憶された情報を消去するようなタイマでリセット手段を構成してもよい。   In addition, the power management device 40 includes a reset unit 45, and the user can operate the reset unit 45 to erase the stored power amount information stored in the storage unit 44, so the power stored in the storage battery 1 cannot be sold. When it becomes a system, unnecessary information can be discarded. The reset unit is not limited to the reset unit 45 operated by the user. For example, the reset unit is configured by a timer that erases information stored in the storage unit 44 when a predetermined time comes. May be.

1 蓄電池
2 電力供給源
2a 太陽光発電装置
2b 燃料電池
2c 商用交流電源
10 電力変換ユニット
11 入力電力計測部
12 放出電力計測部
40 電力管理装置
41 入力電力管理部
42 放出電力管理部
43 蓄積電力管理部
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Power supply source 2a Solar power generation device 2b Fuel cell 2c Commercial alternating current power supply 10 Power conversion unit 11 Input power measurement part 12 Discharge power measurement part 40 Power management apparatus 41 Input power management part 42 Discharge power management part 43 Accumulated power management Part

Claims (6)

複数の電力供給源から供給される電力を蓄電する蓄電池と、
前記電力供給源毎に前記蓄電池に供給する電力供給量を計測する入力電力計測部と、
前記入力電力計測部の計測結果に基づいて前記電力供給源毎に前記蓄電池への電力供給量を管理する入力電力管理部と、
前記蓄電池から放出される電力放出量を計測する放出電力計測部と、
前記放出電力計測部の計測結果に基づいて前記電力供給源毎に電力放出量を管理する放出電力管理部と、
前記入力電力管理部及び前記放出電力管理部が管理する前記電力供給源毎の電力供給量及び電力放出量をもとに1乃至複数の前記電力供給源の蓄積電力量を管理する蓄積電力管理部とを備えたことを特徴とする電力管理システム。
A storage battery for storing electric power supplied from a plurality of power supply sources;
An input power measuring unit that measures the amount of power supplied to the storage battery for each power supply source; and
An input power management unit that manages a power supply amount to the storage battery for each power supply source based on a measurement result of the input power measurement unit;
A discharge power measuring unit that measures the amount of power discharged from the storage battery; and
A discharge power management unit that manages a power discharge amount for each power supply source based on a measurement result of the discharge power measurement unit;
An accumulated power management unit that manages an accumulated power amount of one or more of the power supply sources based on a power supply amount and a power discharge amount for each of the power supply sources managed by the input power management unit and the emitted power management unit And a power management system.
前記蓄積電力管理部は、前記蓄電池に蓄電された電力量の合計値に対する前記電力供給源毎の蓄積電力量の割合を求め、
前記放出電力管理部は、前記放出電力計測部が計測した電力放出量において、前記割合にて前記電力供給源毎の電力放出がなされたものとして、前記電力供給源毎の電力放出量を求めることを特徴とする請求項1記載の電力管理システム。
The stored power management unit obtains the ratio of the stored power amount for each power supply source with respect to the total amount of power stored in the storage battery,
The discharge power management unit obtains the power discharge amount for each power supply source on the assumption that the power discharge for each power supply source is performed at the ratio in the power discharge amount measured by the discharge power measurement unit. The power management system according to claim 1.
前記蓄電池から放電する際に各々の前記電力供給源による蓄電分を放電させる優先度を記憶する記憶部を備え、
前記放出電力管理部は、放電前の前記電力供給源毎の蓄積電力量と、前記放出電力計測部が計測した電力放出量とに基づき、前記優先度の高い前記電力供給源の蓄電分から放出されたこととして、前記電力供給源毎の電力放出量を求めることを特徴とする請求項1記載の電力管理システム。
A storage unit for storing a priority for discharging the electricity stored by each of the power supply sources when discharging from the storage battery;
The discharged power management unit is discharged from the stored power of the power supply source having a high priority based on the accumulated power amount for each power supply source before discharging and the power discharge amount measured by the discharged power measurement unit. The power management system according to claim 1, wherein a power discharge amount for each power supply source is obtained.
前記蓄積電力管理部は、所定の前記電力供給源から前記蓄電池に電力が供給された場合、所定の有効期限がくるまでの間、この電力供給源からの電力供給量に相当する蓄積電力をこの電力供給源による蓄電分として管理することを特徴とする請求項1記載の電力管理システム。   When the power is supplied from the predetermined power supply source to the storage battery, the stored power management unit stores the stored power corresponding to the amount of power supplied from the power supply source until the predetermined expiration date comes. The power management system according to claim 1, wherein the power management system manages the amount of electricity stored by the power supply source. 前記蓄積電力管理部で管理された前記電力供給源毎の蓄積電力量の情報を出力する出力手段を備えたことを特徴とする請求項1乃至4の何れか1項に記載の電力管理システム。   5. The power management system according to claim 1, further comprising an output unit configured to output information on a stored power amount for each of the power supply sources managed by the stored power management unit. 前記蓄積電力管理部で管理された前記電力供給源毎の蓄積電力量の情報を消去するリセット手段を備えたことを特徴とする請求項1乃至5の何れか1項に記載の電力管理システム。   6. The power management system according to claim 1, further comprising a reset unit that deletes information on a stored power amount for each power supply source managed by the stored power management unit.
JP2010238874A 2010-10-25 2010-10-25 Power management system Expired - Fee Related JP5563949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238874A JP5563949B2 (en) 2010-10-25 2010-10-25 Power management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238874A JP5563949B2 (en) 2010-10-25 2010-10-25 Power management system

Publications (2)

Publication Number Publication Date
JP2012095397A true JP2012095397A (en) 2012-05-17
JP5563949B2 JP5563949B2 (en) 2014-07-30

Family

ID=46388143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238874A Expired - Fee Related JP5563949B2 (en) 2010-10-25 2010-10-25 Power management system

Country Status (1)

Country Link
JP (1) JP5563949B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247843A (en) * 2012-05-29 2013-12-09 Kyocera Corp Electric power system, control device, and control method
WO2014115218A1 (en) * 2013-01-25 2014-07-31 日本電気株式会社 Electric power network system, electric power identification method, and electric power router
JP2014142189A (en) * 2013-01-22 2014-08-07 Mitsubishi Electric Corp Monitoring device, monitoring method, and program
WO2015015770A1 (en) * 2013-08-01 2015-02-05 日本電気株式会社 Control device, power management system, and electricity storage device management method
JP2015035917A (en) * 2013-08-09 2015-02-19 パナソニックIpマネジメント株式会社 Electric power regulator, electric power regulating method, and program
WO2016017016A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Data processing device, energy management system, data processing method, and program
JP2016077079A (en) * 2014-10-06 2016-05-12 シャープ株式会社 Power management device, power management system, power management method, program, display device, and utterance device
JP6017715B1 (en) * 2016-01-29 2016-11-02 株式会社A−スタイル Solar power system
JP2018133870A (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Information output controller, energy accumulation system, energy accumulation method, and program
WO2019044708A1 (en) * 2017-08-30 2019-03-07 京セラ株式会社 Power system, electrical storage device, and control method for power system
JP2021058051A (en) * 2019-10-01 2021-04-08 株式会社Gsユアサ Charging device, operating method, charging system, and charge/discharge control method
WO2021084659A1 (en) * 2019-10-30 2021-05-06 日本電信電話株式会社 Control device, control method, and program
CN113841314A (en) * 2019-05-20 2021-12-24 株式会社东芝 Storage power source management device, method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185083A (en) * 2005-12-06 2007-07-19 Toyota Motor Corp Charging system and electric vehicle
JP2009232670A (en) * 2008-02-29 2009-10-08 Osaka Gas Co Ltd Energy supplying system
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2010051117A (en) * 2008-08-22 2010-03-04 Japan Wind Development Co Ltd Wind power generation system
JP2011055589A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Power supply system
JP2012029414A (en) * 2010-07-21 2012-02-09 Toshiba Corp Power system interconnection monitoring device
WO2012032947A1 (en) * 2010-09-08 2012-03-15 三洋電機株式会社 Method for power visualization and device for power visualization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185083A (en) * 2005-12-06 2007-07-19 Toyota Motor Corp Charging system and electric vehicle
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2009232670A (en) * 2008-02-29 2009-10-08 Osaka Gas Co Ltd Energy supplying system
JP2010051117A (en) * 2008-08-22 2010-03-04 Japan Wind Development Co Ltd Wind power generation system
JP2011055589A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Power supply system
JP2012029414A (en) * 2010-07-21 2012-02-09 Toshiba Corp Power system interconnection monitoring device
WO2012032947A1 (en) * 2010-09-08 2012-03-15 三洋電機株式会社 Method for power visualization and device for power visualization

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247843A (en) * 2012-05-29 2013-12-09 Kyocera Corp Electric power system, control device, and control method
JP2014142189A (en) * 2013-01-22 2014-08-07 Mitsubishi Electric Corp Monitoring device, monitoring method, and program
US10168728B2 (en) 2013-01-25 2019-01-01 Nec Corporation Power network system, power identification method, and power router
WO2014115218A1 (en) * 2013-01-25 2014-07-31 日本電気株式会社 Electric power network system, electric power identification method, and electric power router
JPWO2014115218A1 (en) * 2013-01-25 2017-01-19 日本電気株式会社 Power network system, power identification method, and power router
WO2015015770A1 (en) * 2013-08-01 2015-02-05 日本電気株式会社 Control device, power management system, and electricity storage device management method
JP2015035917A (en) * 2013-08-09 2015-02-19 パナソニックIpマネジメント株式会社 Electric power regulator, electric power regulating method, and program
US10339602B2 (en) 2013-08-09 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Power adjustment system, power adjustment method, and computer program
WO2016017016A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Data processing device, energy management system, data processing method, and program
JPWO2016017016A1 (en) * 2014-07-31 2017-04-27 三菱電機株式会社 Data processing apparatus, energy management system, data processing method and program
JP2016077079A (en) * 2014-10-06 2016-05-12 シャープ株式会社 Power management device, power management system, power management method, program, display device, and utterance device
JP2017135920A (en) * 2016-01-29 2017-08-03 株式会社A−スタイル Photovoltaic power generation system
JP6017715B1 (en) * 2016-01-29 2016-11-02 株式会社A−スタイル Solar power system
JP2021108536A (en) * 2017-02-14 2021-07-29 三菱電機株式会社 Information output control device, energy storage method and program
JP2018133870A (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Information output controller, energy accumulation system, energy accumulation method, and program
WO2019044708A1 (en) * 2017-08-30 2019-03-07 京セラ株式会社 Power system, electrical storage device, and control method for power system
JPWO2019044708A1 (en) * 2017-08-30 2020-08-06 京セラ株式会社 Power system, power storage device, and method of controlling power system
JP7136785B2 (en) 2017-08-30 2022-09-13 京セラ株式会社 POWER SYSTEM, POWER STORAGE DEVICE, CONTROL METHOD OF POWER SYSTEM, AND MOVING OBJECT
CN113841314A (en) * 2019-05-20 2021-12-24 株式会社东芝 Storage power source management device, method and program
EP3975366A4 (en) * 2019-05-20 2023-08-02 Kabushiki Kaisha Toshiba Stored power origin management device, method and program
JP2021058051A (en) * 2019-10-01 2021-04-08 株式会社Gsユアサ Charging device, operating method, charging system, and charge/discharge control method
JP7415406B2 (en) 2019-10-01 2024-01-17 株式会社Gsユアサ Charging device, operating method, charging system, and charge/discharge control method
JPWO2021084659A1 (en) * 2019-10-30 2021-05-06
WO2021084659A1 (en) * 2019-10-30 2021-05-06 日本電信電話株式会社 Control device, control method, and program
JP7226581B2 (en) 2019-10-30 2023-02-21 日本電信電話株式会社 Control device, control method and program
US11977426B2 (en) 2019-10-30 2024-05-07 Nippon Telegraph And Telephone Corporation Control apparatus, control method and program

Also Published As

Publication number Publication date
JP5563949B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5563949B2 (en) Power management system
JP5530314B2 (en) Regional power interchange system
JP5807201B2 (en) Power control device
JP5799228B2 (en) Power supply system
JP5580183B2 (en) Power control apparatus and power control system using the same
KR101522858B1 (en) Energy management system having maximum power saving control and method thereof
JP5891386B2 (en) Power control apparatus and power supply system using the same
JP2011083058A (en) Device for monitoring source of electric power supplied to storage battery in power supply system
JP2008182851A (en) Power storage apparatus and system
JP2011066968A (en) Power distribution system
JP2011182555A (en) Power supply system
JP5497594B2 (en) Ancillary service providing device using power storage device
JP2011130649A (en) Electric power supply system
JP5576218B2 (en) Regional power interchange system
JP2012095424A (en) Power managing system
KR20140084917A (en) System for managementing electric power
JPWO2012057119A1 (en) Power supply system
JP2016073003A (en) Power control system, method, and breaking controller
JP6135019B2 (en) Storage battery management device, storage battery management method, program
JP4192131B2 (en) Power generation planning method and power generation planning apparatus using secondary battery
JPWO2015015528A1 (en) Power supply control device
JP2016157438A (en) Electricity charge management device, electricity charge management method and program
US8666831B2 (en) Power generation leveling system and power generation leveling method
JP2011145076A (en) Power monitor
JP6183758B2 (en) Power control apparatus, power supply system using the same, and power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R151 Written notification of patent or utility model registration

Ref document number: 5563949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees