JP2012092391A - Hvaf thermal spraying apparatus of center-axis powder feeding type - Google Patents

Hvaf thermal spraying apparatus of center-axis powder feeding type Download PDF

Info

Publication number
JP2012092391A
JP2012092391A JP2010240583A JP2010240583A JP2012092391A JP 2012092391 A JP2012092391 A JP 2012092391A JP 2010240583 A JP2010240583 A JP 2010240583A JP 2010240583 A JP2010240583 A JP 2010240583A JP 2012092391 A JP2012092391 A JP 2012092391A
Authority
JP
Japan
Prior art keywords
metal
combustion gas
cone portion
laval nozzle
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010240583A
Other languages
Japanese (ja)
Other versions
JP5751512B2 (en
Inventor
Koji Mitani
興司 三谷
Eiji Mitani
栄司 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSC KK
Original Assignee
SSC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSC KK filed Critical SSC KK
Priority to JP2010240583A priority Critical patent/JP5751512B2/en
Publication of JP2012092391A publication Critical patent/JP2012092391A/en
Application granted granted Critical
Publication of JP5751512B2 publication Critical patent/JP5751512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an HVAF (High Velocity Air-Fuel) thermal spraying apparatus capable of executing thermal spraying while suppressing the cost to be relatively low, suppressing any oxidation of metal or any deterioration of metal oxides, and forming a dense thermal-sprayed coating film having excellent adhesiveness to a base material.SOLUTION: When metal, ceramic or resin is fed to a powder feed passage together with inert gas and compressed air, they are discharged substantially on the center axis of a flow passage of combustion gas passing through a Laval nozzle. Since the metal, ceramic or resin passes the barrel at a relatively low temperature supersonically, oxidation or deterioration is suppressed, and a dense thermal-sprayed coating film is formed.

Description

本発明は、金属の酸化や金属酸化物等の変質を抑え、緻密な溶射皮膜を形成することができるHVAF溶射装置に関する。   The present invention relates to an HVAF thermal spraying apparatus that can form a dense thermal spray coating while suppressing deterioration of metal oxidation and metal oxide.

金属や金属酸化物を溶射することにより材料の変質を抑制した金属、セラミックス又は樹脂の皮膜を基材にコーティングする方法については、様々な方法が提案されている。例えば、減圧プラズマ溶射では、チャンバー内を不活性減圧雰囲気にして、原料の金属をプラズマジェットによって溶融して成膜する。しかし、この減圧プラズマ溶射では、皮膜の品質は優れているものの、コストが非常に高いという問題がある。   Various methods have been proposed for coating a substrate with a metal, ceramic, or resin film in which the alteration of the material is suppressed by spraying metal or metal oxide. For example, in low-pressure plasma spraying, the inside of a chamber is set to an inert low-pressure atmosphere, and a raw material metal is melted by a plasma jet to form a film. However, this low-pressure plasma spraying has a problem that the quality of the coating is excellent but the cost is very high.

また、酸素を燃焼の酸化剤(助燃剤)として使用する高速フレーム溶射(High Velocity Oxy−Fuel:HVOF)が提案されている(例えば、特許文献1参照)。しかし、フレームが高温であるため、金属が酸化されてしまう問題がある。上記問題を解決すべく、不活性ガスを混合することにより、燃焼ガス温度を制御した高速フレーム溶射が提案されている(例えば、特許文献2、3参照)。しかし、この方法では、金属の溶融温度未満での溶射が可能であるものの、燃焼の酸化剤に純酸素及びガス温度制御に窒素などの不活性ガス等を用いるため、コストが高いという問題がある。   Further, high-speed flame spraying (HVOF) using oxygen as an oxidizing agent (combustion agent) for combustion has been proposed (see, for example, Patent Document 1). However, since the frame is hot, there is a problem that the metal is oxidized. In order to solve the above problem, high-speed flame spraying in which the temperature of the combustion gas is controlled by mixing an inert gas has been proposed (see, for example, Patent Documents 2 and 3). However, although this method allows thermal spraying at a temperature lower than the melting temperature of the metal, there is a problem that the cost is high because pure oxygen and an inert gas such as nitrogen are used for controlling the gas temperature. .

さらに、低温での溶射が可能なコールドスプレーが提案されている。しかし、この方法では、アルミニウムや銅などの軟質金属では緻密な皮膜が得られるが、チタンでは作動ガスに高価なヘリウムを使わなければ、緻密な皮膜の形成は困難である。また、コールドスプレーでは、作動ガスとして、ヘリウムや窒素等の工業用ガスを大量に使用するため、コストが非常に高いという問題がある。   Furthermore, a cold spray capable of being sprayed at a low temperature has been proposed. However, with this method, a dense film can be obtained with a soft metal such as aluminum or copper, but with titanium, it is difficult to form a dense film unless expensive helium is used as the working gas. In addition, since cold spray uses a large amount of industrial gas such as helium or nitrogen as the working gas, there is a problem that the cost is very high.

金属や金属酸化物を溶射する際に、コストを比較的低く抑える方法として、圧縮空気を燃焼の酸化剤として使用するHVAF(High Velocity Air−Fuel)溶射装置があるが、HVAF溶射装置を用いた場合であっても、フレームは比較的高温であるため、金属の酸化や金属酸化物の変質が発生するという問題があった。   When spraying metal or metal oxide, there is a HVAF (High Velocity Air-Fuel) spraying device that uses compressed air as an oxidant for combustion as a method for keeping the cost relatively low, but the HVAF spraying device is used. Even in this case, since the frame is relatively hot, there is a problem in that metal oxidation and metal oxide alteration occur.

液体燃料を用いるHVAF溶射装置は安全面では気体燃料を用いる装置に勝るが、燃焼のためには液体の気化が必要であり、必然的に燃焼室は長くならざるを得ず、構造上空冷型では粉末を中心軸に供給する装置はない。   The HVAF spraying apparatus using liquid fuel is superior to the apparatus using gaseous fuel in terms of safety, but the liquid needs to be vaporized for combustion, and the combustion chamber is inevitably long. There is no device for supplying powder to the central shaft.

特開2009−214020号公報JP 2009-21040 A 特開2006−274326号公報JP 2006-274326 A 特開2007−29950号公報JP 2007-29950 A

本発明は、上記のような課題を解決するためになされたものであり、比較的コストを低く抑えて溶射することが可能であり、金属の酸化や金属酸化物の変質を抑え、基材との密着性に優れた、緻密な溶射皮膜を形成することができるHVAF溶射装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can be sprayed at a relatively low cost, suppresses metal oxidation and metal oxide alteration, An object of the present invention is to provide an HVAF thermal spraying apparatus that is capable of forming a dense thermal spray coating having excellent adhesion.

そこで、本発明者は、これらの課題を解決すべく鋭意検討を行った結果、HVAF溶射装置において、特殊な形状のラバルノズルを連結し、粉末状の金属、セラミックス又は樹脂(以下、金属等という)をラバルノズル内の燃焼ガスの流路上に直接供給することで上記課題を解決することを見出し、本発明を完成するに至った。   Therefore, as a result of intensive studies to solve these problems, the inventor of the present invention connected a specially shaped Laval nozzle in an HVAF thermal spraying apparatus to form a powdered metal, ceramic or resin (hereinafter referred to as a metal or the like). Has been found to solve the above problems by directly supplying the gas to the combustion gas flow path in the Laval nozzle, and the present invention has been completed.

即ち、本発明は、液体燃料を圧縮空気により燃焼させ、発生した燃焼ガスを利用して高温から低温まで幅広い温度領域を有する金属等を基材に衝突させるHVAF溶射装置であって、燃料と圧縮空気を混合し燃焼させて燃焼ガスを生成する燃焼室と、燃焼室に連結され、低温のガスを利用する場合、燃焼室で生成された燃焼ガスを冷却する冷却室と、金属等を噴射する燃焼ガス噴射方向とは逆の方向を背面方向とした場合に、冷却室の背面方向から粉末状の金属等を装置内に供給する粉末供給路と、冷却室の正面方向に連結され、粉末供給路から供給された金属等が燃焼ガスとともに通過するラバルノズルと、ラバルノズルに連結され、ラバルノズルを通過した金属等が超音速の燃焼ガスとともに通過し、且つ、通過の過程で金属等を加速させるバレルとを備えたHVAF溶射装置に関する。   That is, the present invention is an HVAF thermal spraying apparatus in which liquid fuel is combusted with compressed air, and a metal having a wide temperature range from high temperature to low temperature is collided with a base material using the generated combustion gas. Combustion chamber that mixes and burns air to generate combustion gas, and is connected to the combustion chamber, and when using low-temperature gas, a cooling chamber that cools the combustion gas generated in the combustion chamber, and metal are injected When the direction opposite to the combustion gas injection direction is the back direction, the powder supply path is connected to the powder supply path for supplying powdered metal etc. into the device from the back direction of the cooling chamber and the front direction of the cooling chamber, and the powder supply The laval nozzle through which the metal supplied from the passage passes along with the combustion gas, and the metal that passes through the Laval nozzle passes along with the supersonic combustion gas and accelerates the metal etc. in the process of passing. That on HVAF spray apparatus that includes a barrel.

本発明では、底面が冷却室に隣接して配置された略円錐台形状の短円錐部と、上面が短円錐部の上面と隣接して配置され、底面がバレルと隣接して配置された略円錐台形状の長円錐部とから構成されており、長円錐部の底面の径が短円錐部の底面の径より大きく、長円錐部の高さが短円錐部の高さより高く、短円錐部の上面の径と長円錐部の上面の径が、短円錐部及び長円錐部の両底面より小さいラバルノズルを有することが好ましい。   In the present invention, a substantially truncated cone-shaped short cone portion whose bottom surface is disposed adjacent to the cooling chamber, an upper surface is disposed adjacent to the top surface of the short cone portion, and a bottom surface is disposed adjacent to the barrel. It is composed of a truncated cone-shaped long cone portion, the diameter of the bottom surface of the long cone portion is larger than the diameter of the bottom surface of the short cone portion, the height of the long cone portion is higher than the height of the short cone portion, It is preferable to have a Laval nozzle in which the upper surface diameter and the upper cone diameter are smaller than the bottom surfaces of the short cone portion and the long cone portion.

本発明では、燃焼室と冷却室が燃焼ガス噴射方向に対して垂直方向に隣接して配置されることが好ましい。   In the present invention, the combustion chamber and the cooling chamber are preferably disposed adjacent to each other in the direction perpendicular to the combustion gas injection direction.

本発明では、粉末供給路が冷却室の背面方向から燃焼ガス噴射方向に対して水平方向に設けられ、金属等がラバルノズルを通過する燃焼ガスの流路の略中心軸上に供給されることが好ましい。   In the present invention, the powder supply path is provided in the horizontal direction from the back direction of the cooling chamber to the combustion gas injection direction, and metal or the like is supplied on the substantially central axis of the flow path of the combustion gas passing through the Laval nozzle. preferable.

本発明では、粉末供給路がラバルノズルの直前(冷却室前面の略円錐台形状の短円錐部の端部の手前)まで伸びており、金属等がラバルノズル内へ直接供給されることが好ましい。   In the present invention, it is preferable that the powder supply path extends immediately before the Laval nozzle (before the end of the substantially truncated cone-shaped short cone portion on the front surface of the cooling chamber), and metal or the like is directly supplied into the Laval nozzle.

本発明によれば、特殊な形状のラバルノズルを用いることで、金属等を超音速で噴射させることができ、比較的低温で金属等を溶射させることが可能なHVAF溶射装置を提供することができる。本発明では、比較的低温で金属等を溶射することができるため、金属の酸化や金属酸化物の変質を抑えることが可能であり、基材との密着性に優れた緻密な溶射皮膜を形成することが可能となる。また、粉末状の金属等を、ラバルノズルを通過する燃焼ガス噴射方向への燃焼ガスの流路の中心軸上に沿って供給できるため、ラバルノズル内やバレル内が汚染及び損耗されにくく、これらの耐久性が向上する。   According to the present invention, by using a specially shaped Laval nozzle, it is possible to provide an HVAF spraying apparatus that can inject metal or the like at supersonic speed and can thermally spray metal or the like at a relatively low temperature. . In the present invention, metal or the like can be thermally sprayed at a relatively low temperature, so that it is possible to suppress metal oxidation and metal oxide alteration, and form a dense sprayed coating with excellent adhesion to the substrate. It becomes possible to do. In addition, since powdered metal etc. can be supplied along the central axis of the flow path of the combustion gas in the direction of the combustion gas passing through the Laval nozzle, the inside of the Laval nozzle and the barrel are not easily contaminated and worn. Improves.

本発明の実施の形態にかかるHVAF溶射装置の全体像を表わす図である。It is a figure showing the whole image of the HVAF thermal spraying apparatus concerning embodiment of this invention. 本発明の実施の形態にかかるラバルノズル5を燃焼ガス噴射方向とは水平な面に沿って切断した断面図である。It is sectional drawing which cut | disconnected the Laval nozzle 5 concerning embodiment of this invention along the surface horizontal with a combustion gas injection direction. 実施例1にて得られる溶射皮膜表面の走査型電子顕微鏡による写真である。2 is a photograph of the surface of the thermal spray coating obtained in Example 1 by a scanning electron microscope. 実施例1にて得られる溶射皮膜断面の走査型電子顕微鏡による写真である。2 is a photograph taken by a scanning electron microscope of a cross section of a thermal spray coating obtained in Example 1. FIG.

以下、添付の図面を参照して、本発明の実施の形態の説明を行なうが、本発明の趣旨に反しない限り、本発明はこれらの実施の形態に限定されない。本発明のHVAF溶射装置では、金属等を溶射することが可能である。図1は、本発明の実施の形態にかかるHVAF溶射装置1の全体像を表わす図(HVAF溶射装置における金属等の噴射方向、及び、燃料と圧縮空気の供給方向と水平な面に沿って切断した断面図)である。HVAF溶射装置1は、燃焼室(チャンバー)2と、燃焼室2に隣接して配置された冷却室3と、冷却室3の背面方向から金属等の噴射方向に対して水平方向に配置された金属等供給路4と、冷却室3の正面方向に連結されたラバルノズル5と、ラバルノズル5に連結されたバレル6とを備えている。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to these embodiments unless it is contrary to the gist of the present invention. In the HVAF spraying apparatus of the present invention, it is possible to spray metal or the like. FIG. 1 is a diagram showing an overall image of an HVAF spraying apparatus 1 according to an embodiment of the present invention (cut along a horizontal plane with the injection direction of metal, etc., and the supply direction of fuel and compressed air in the HVAF spraying apparatus. Sectional view). The HVAF thermal spraying apparatus 1 is disposed in a horizontal direction with respect to the injection direction of metal or the like from the back direction of the cooling chamber 3, the cooling chamber 3 disposed adjacent to the combustion chamber 2, and the cooling chamber 3. A metal supply path 4, a Laval nozzle 5 connected in the front direction of the cooling chamber 3, and a barrel 6 connected to the Laval nozzle 5 are provided.

燃焼室2は、灯油等の液体燃料を導入する燃料導入口7と、圧縮空気を導入する圧縮空気導入口8が設けられている。燃料が燃料導入口7より、圧縮空気が圧縮空気導入口8より燃料室2に導入されると、燃料と圧縮空気は燃焼室2内で混合され、燃焼し、燃焼ガスが生成する。   The combustion chamber 2 is provided with a fuel inlet 7 for introducing liquid fuel such as kerosene and a compressed air inlet 8 for introducing compressed air. When fuel is introduced from the fuel introduction port 7 and compressed air is introduced into the fuel chamber 2 from the compressed air introduction port 8, the fuel and the compressed air are mixed in the combustion chamber 2 and combusted to generate combustion gas.

燃焼室2に導入される燃料の流量は、1〜10L/hourであることが好ましく、さらには2〜8L/hourであることが好ましい。1L/hourより少ないと、金属等の加熱温度が低いため、緻密な溶射皮膜が得られない傾向にあり、10L/hourより多いと、金属等の加熱温度が高すぎるため、金属等の変質や酸化が起こりやすくなる傾向にある。   The flow rate of the fuel introduced into the combustion chamber 2 is preferably 1 to 10 L / hour, and more preferably 2 to 8 L / hour. If the amount is less than 1 L / hour, the heating temperature of the metal or the like is low, and thus there is a tendency that a dense sprayed coating is not obtained. If the amount is more than 10 L / hour, the heating temperature of the metal or the like is too high. Oxidation tends to occur.

燃焼室2に導入される圧縮空気の流量は、燃焼室及び冷却室の容量、ラバルノズル及びバレル形状、接合口径などに関係するが、2〜5m/minであることが好ましく、さらには2.3〜3.3m/minであることが好ましい。2m/minより少ないと、金属等の加速が不十分となり、溶射皮膜の剥離が発生しやすく、3.5m/minより多いと、金属等の加熱温度が低いため、緻密な溶射皮膜が得られない傾向にある。 The flow rate of the compressed air introduced into the combustion chamber 2 is related to the capacity of the combustion chamber and the cooling chamber, the shape of the Laval nozzle and barrel, the joint diameter, etc., but is preferably 2 to 5 m 3 / min. It is preferable that it is 3-3.3m < 3 > / min. If it is less than 2 m 3 / min, the acceleration of the metal or the like becomes insufficient, and the sprayed coating is likely to be peeled off. If it exceeds 3.5 m 3 / min, the heating temperature of the metal or the like is low, so that a dense sprayed coating is formed. It tends not to be obtained.

燃焼室2におけるチャンバー圧力は、0.2〜0.7MPaであることが好ましく、さらには0.3〜0.6MPaであることが好ましい。0.2MPaより小さいと、金属等の加速が不十分となり、緻密な溶射皮膜が得られない傾向にあり、0.7MPaより大きいと、金属等の加速が速すぎるため、金属等が基材に衝突する際に飛散が発生してしまう傾向がある。加えて圧縮空気を供給するコンプレッサーが特殊仕様となり、コスト上昇の要因となる。   The chamber pressure in the combustion chamber 2 is preferably 0.2 to 0.7 MPa, and more preferably 0.3 to 0.6 MPa. If the pressure is less than 0.2 MPa, the acceleration of the metal or the like is insufficient, and a dense sprayed coating tends to be obtained. If the pressure is greater than 0.7 MPa, the acceleration of the metal or the like is too fast. There is a tendency for scattering to occur when the collision occurs. In addition, a compressor that supplies compressed air has a special specification, which increases costs.

燃焼室2における燃焼温度は、1700〜2300Kであることが好ましく、さらには1800〜2300Kであることが好ましい。1700Kより低いと、燃焼室圧力が低下し燃焼ガスの速度も低下するので緻密な溶射皮膜が得られない傾向にある。   The combustion temperature in the combustion chamber 2 is preferably 1700-2300K, more preferably 1800-2300K. If it is lower than 1700K, the combustion chamber pressure is lowered and the velocity of the combustion gas is also lowered, so that a dense sprayed coating tends not to be obtained.

燃焼室2において、生成した燃焼ガスは、冷却室3において空冷された後、ラバルノズル5内に供給される。冷却室3には、冷却ガス導入管9から空気等の冷却ガスが導入される。金属等供給路4は、冷却室3の背面から粉末状の金属等を供給することが可能であり、粉末状の金属等が圧縮空気不活性ガスとともに金属等供給路4へ供給されると、冷却室3を通過し、ラバルノズル5の直前(後述する短円錐部の底面側の端部の近傍)に金属等が排出される。金属等供給路4は、燃焼ガス噴射方向に水平で、且つ金属等がバレルから噴射される際のバレル6の噴射口の略中心軸上、すなわち、ラバルノズル5を構成する円錐部略中心軸上(すなわち、円錐台の上面と底面の円の中心を通る軸、ここでは、軸Xという)に沿って設置されている。金属等供給路4を通過して、ラバルノズル5内に直接供給された金属等は、金属等供給路4の先端にある金属等排出口4bから軸X上に排出され、ラバルノズル5内の燃焼ガスの流れに乗って噴射される。その結果、金属等の粒子に付与される運動エネルギーが、燃焼ガス噴射方向とは異なる他の方向へ分散されることがなくなり、また、ラバルノズル5やバレル6の内壁の汚染及び損耗を防ぐことができる。また、金属等供給路4において、金属等は圧縮空気または不活性ガスとともに供給されるため、金属等の酸化や変質を防ぐことができる。   In the combustion chamber 2, the generated combustion gas is air-cooled in the cooling chamber 3 and then supplied into the Laval nozzle 5. A cooling gas such as air is introduced into the cooling chamber 3 from the cooling gas introduction pipe 9. The metal supply path 4 can supply powdered metal or the like from the back surface of the cooling chamber 3, and when powdered metal or the like is supplied to the metal supply path 4 together with the compressed air inert gas, The metal passes through the cooling chamber 3 and is discharged just before the Laval nozzle 5 (in the vicinity of the end portion on the bottom side of the short cone portion described later). The metal supply path 4 is horizontal in the combustion gas injection direction, and is substantially on the central axis of the injection port of the barrel 6 when metal or the like is injected from the barrel, that is, on the substantially central axis of the conical portion constituting the Laval nozzle 5. (That is, an axis passing through the center of the circle on the top and bottom surfaces of the truncated cone, here referred to as axis X). The metal or the like directly supplied into the Laval nozzle 5 through the metal supply path 4 is discharged onto the axis X from the metal discharge port 4b at the tip of the metal supply path 4, and the combustion gas in the Laval nozzle 5 It is injected on the flow. As a result, kinetic energy imparted to particles such as metal is not dispersed in a direction different from the combustion gas injection direction, and contamination and wear of the inner wall of the Laval nozzle 5 and the barrel 6 can be prevented. it can. Further, in the supply path 4 for metals and the like, the metals and the like are supplied together with the compressed air or the inert gas, so that oxidation or alteration of the metals or the like can be prevented.

超音速の燃焼ガスとともにラバルノズル5を通過した金属等は、バレル6内を通過することでさらに加速され、基材に向かって排出される。このような過程を経て、金属等が基材に衝突し、堆積することにより溶射皮膜が形成される。冷却室3は、燃焼室2と金属等の噴射方向に対して垂直方向に隣接して配置されており、空冷により、燃焼室2で生成された燃焼ガスを冷却する。なお、金属等供給路4を冷却室3の背面方向から燃焼ガス噴射方向に対して水平方向に設けて、金属等がラバルノズルを通過する燃焼ガスの流路の略中心軸上に供給されるようにするため、燃焼室2は冷却室3に対して、燃焼ガス噴射方向とは垂直に隣接して配置されることが好ましい。   The metal or the like that has passed through the Laval nozzle 5 together with the supersonic combustion gas is further accelerated by passing through the barrel 6 and is discharged toward the substrate. Through such a process, a metal or the like collides with the substrate and deposits to form a sprayed coating. The cooling chamber 3 is disposed adjacent to the combustion chamber 2 in the direction perpendicular to the injection direction of metal or the like, and cools the combustion gas generated in the combustion chamber 2 by air cooling. The metal supply passage 4 is provided in the horizontal direction from the back direction of the cooling chamber 3 with respect to the combustion gas injection direction so that the metal or the like is supplied on the substantially central axis of the flow path of the combustion gas passing through the Laval nozzle. Therefore, the combustion chamber 2 is preferably disposed adjacent to the cooling chamber 3 perpendicular to the combustion gas injection direction.

本発明で用いられる金属等の金属等供給路4からの供給量は、10〜100g/minであることが好ましく、さらには20〜80g/minであることが好ましい。10g/minより少ないと、高速成膜のメリットが少なくなる。   The supply amount from the metal or the like supply channel 4 used in the present invention is preferably 10 to 100 g / min, and more preferably 20 to 80 g / min. When it is less than 10 g / min, the merit of high-speed film formation is reduced.

次に、本発明の実施の形態にかかるラバルノズル5について、図2を用いて説明する。図2は、本発明の実施の形態にかかるラバルノズル5を燃焼ガス噴射方向とは水平な面に沿って切断した断面図である。ラバルノズル5は、底面が冷却室3に隣接して配置された略円錐台形状の短円錐部10、底面がバレル6と隣接して配置された略円錐台形状の長円錐部11から構成される。   Next, a Laval nozzle 5 according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view of the Laval nozzle 5 according to the embodiment of the present invention cut along a plane horizontal to the combustion gas injection direction. The Laval nozzle 5 includes a substantially truncated cone-shaped short cone portion 10 whose bottom surface is disposed adjacent to the cooling chamber 3, and a generally truncated cone-shaped long cone portion 11 whose bottom surface is disposed adjacent to the barrel 6. .

図2において、金属等の噴射方向に対して水平方向である短円錐部10の高さをa、金属等の噴射方向に対して水平方向である長円錐部11の高さをbと定義した場合、a<bであることが好ましい。 In FIG. 2, the height of the short cone portion 10 that is horizontal to the injection direction of metal or the like is a 1 , and the height of the long cone portion 11 that is horizontal to the injection direction of metal or the like is b 1 . When defined, a 1 <b 1 is preferable.

また、短円錐部10の高さaと長円錐部11の高さbの比は、a/b=1/1.2〜1/5であることが好ましく、さらに、a/b=1/1.5〜1/3であることが好ましい。 The ratio of the height b 1 of the height a 1 and length conical portion 11 of the short conical portion 10 is preferably a 1 / b 1 = 1 / 1.2~1 / 5, further, a 1 It is preferable that / b 1 = 1 / 1.5 to 1/3.

ここで、図2において、短円錐部10の底面の径をa、長円錐部11の底面の径をb、短円錐部10の上面と長円錐部11の上面との接合部をcと定義する。すなわち、金属等の噴射方向に対して垂直方向である、短円錐部10の上面の径、及び金属等の噴射方向に対して垂直方向である、長円錐部11の上面の径はcとなる。このように定義した場合、C<a≦bとなることが好ましい。このような形状とすることで、ラバルノズル5を通過する燃焼ガスの流路の略中心軸(図1における軸X)上に供給された金属等は、超音速となりラバルノズル5を通過する。また、金属排出路4は、ラバルノズル5の直前まで水平方向に伸びており、好ましくは、ラバルノズルの入口部分である短円錐部10の底面の直前まで伸びていることが好ましい。金属等が金属等供給口4aから供給されると、ラバルノズル5を通過する燃焼ガスの流路の略中心軸上に供給されるため、ラバルノズル5の内壁は金属等で汚染及び損耗されにくく、ラバルノズル5の耐久性が向上する。 Here, in FIG. 2, the diameter of the bottom surface of the short cone portion 10 is a 2 , the diameter of the bottom surface of the long cone portion 11 is b 2 , and the joint portion between the upper surface of the short cone portion 10 and the upper surface of the long cone portion 11 is c. It is defined as That is, the diameter of the upper surface of the short cone portion 10 that is perpendicular to the injection direction of metal or the like, and the diameter of the upper surface of the long cone portion 11 that is perpendicular to the injection direction of metal or the like is c. . When defined in this way, it is preferable that C <a 2 ≦ b 2 . By adopting such a shape, the metal or the like supplied on the substantially central axis (axis X in FIG. 1) of the flow path of the combustion gas passing through the Laval nozzle 5 becomes supersonic and passes through the Laval nozzle 5. Further, the metal discharge path 4 extends in the horizontal direction until just before the Laval nozzle 5, and preferably extends just before the bottom surface of the short cone portion 10 that is the inlet portion of the Laval nozzle. When metal or the like is supplied from the metal or the like supply port 4a, it is supplied on the substantially central axis of the flow path of the combustion gas passing through the Laval nozzle 5, so that the inner wall of the Laval nozzle 5 is not easily contaminated or worn by metal or the like. The durability of 5 is improved.

バレル6は、略円柱形状に成形されており、ラバルノズル5を通過した金属等が超音速燃焼ガスとともに通過し、基材に向かって排出される。バレル6の周囲は、冷却水が循環しており、バレル6を通過する超音速ガス及び飛行粒子の速度減少及び温度上昇を防ぐ働きをする。さらに、金属等は、バレルを通過する燃焼ガスの流路の略中心軸上に供給されるため、バレル6内は金属等で汚染及び損耗されにくく、バレル6の耐久性も向上する。   The barrel 6 is formed in a substantially cylindrical shape, and the metal or the like that has passed through the Laval nozzle 5 passes along with the supersonic combustion gas and is discharged toward the base material. Cooling water circulates around the barrel 6 and serves to prevent a decrease in the speed and temperature rise of supersonic gas and flying particles passing through the barrel 6. Further, since the metal or the like is supplied on the substantially central axis of the flow path of the combustion gas passing through the barrel, the inside of the barrel 6 is hardly contaminated and worn by the metal or the like, and the durability of the barrel 6 is improved.

バレル6の先端から基材までの溶射距離は、適宜調整されることが好ましい。溶射距離が短くなると、燃焼ガスの影響により基材の過熱が生じるなど悪影響を及ぼし、溶射距離が長くなると、金属等の基材に対する衝突速度が不十分となり、溶射皮膜の剥離が発生しやすい傾向にある。   The spraying distance from the tip of the barrel 6 to the base material is preferably adjusted as appropriate. When the spraying distance is shortened, the base material is overheated due to the influence of combustion gas, and when the spraying distance is long, the collision speed against the base material such as metal tends to be insufficient, and the thermal spray coating tends to peel off. It is in.

本発明で用いられる金属としては、特に限定されないが、例えば、亜鉛、アルミニウム、チタン、銅、ニッケル、モリブデン、タングステンなどの金属、アルミニウム亜鉛、ニッケルアルミ、ニッケルクロムなどの合金などがあげられる。本発明で用いられるセラミックスとしては、例えば、アルミナ、ジルコニア、チタニア(酸化チタン)等の金属酸化物、炭化ケイ素、窒化ケイ素等があげられる。酸化チタンを通常の方法で溶射した場合はルチル型の結晶構造を有する溶射皮膜となるが、本発明では、比較的低温で溶射することが可能となることで、アナターゼ型の結晶構造を有した溶射皮膜(すなわち、光触媒活性を有した溶射皮膜)が得られる。また、これらセラミックスを溶射することで、タイル等の建築資材とすることも可能である。本発明で用いられる樹脂としては、ポリカーボネート、ポリアミド、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート等のエンジニアリングプラスチックがあげられる。   Although it does not specifically limit as a metal used by this invention, For example, alloys, such as metals, such as zinc, aluminum, titanium, copper, nickel, molybdenum, tungsten, aluminum zinc, nickel aluminum, nickel chrome, etc. are mention | raise | lifted. Examples of the ceramic used in the present invention include metal oxides such as alumina, zirconia, and titania (titanium oxide), silicon carbide, silicon nitride, and the like. When titanium oxide is sprayed by a normal method, it becomes a sprayed coating having a rutile-type crystal structure, but in the present invention, it can be sprayed at a relatively low temperature, thereby having an anatase-type crystal structure. A sprayed coating (that is, a sprayed coating having photocatalytic activity) is obtained. Moreover, it can also be set as building materials, such as a tile, by spraying these ceramics. Examples of the resin used in the present invention include engineering plastics such as polycarbonate, polyamide, polyacetal, polyphenylene ether, and polybutylene terephthalate.

本発明で用いられる基材としては、例えば、アルミニウム、鉄、ステンレスなどが挙げられる。また、本発明で用いられる基材は、アンダーコート処理やブラスト処理などの前処理を行っても良い。基材の厚さは必要に応じて、適宜調整することが好ましく、基材の厚さが薄くなると、溶射をした後に基材に歪みが生じてしまう傾向にある。   Examples of the substrate used in the present invention include aluminum, iron, and stainless steel. In addition, the base material used in the present invention may be subjected to a pretreatment such as an undercoat treatment or a blast treatment. The thickness of the base material is preferably adjusted as necessary. When the thickness of the base material becomes thin, the base material tends to be distorted after spraying.

本発明で用いられるHVAF溶射装置のトラバース速度は、100〜10000mm/min材料により大幅に変化するが、500〜80000mm/minであることが好ましく、さらには1000〜6000mm/minであることが好ましい。80000mm/min以上であると、均一な溶射皮膜が得られない傾向にあり、1000mm/minより遅いと、基材に衝突した金属等の温度が低減しにくく、金属等の変質や酸化が進む傾向にある。   The traverse speed of the HVAF spraying apparatus used in the present invention varies greatly depending on the material of 100 to 10000 mm / min, but is preferably 500 to 80000 mm / min, and more preferably 1000 to 6000 mm / min. When it is 80000 mm / min or more, there is a tendency that a uniform sprayed coating cannot be obtained. When it is slower than 1000 mm / min, the temperature of the metal or the like colliding with the substrate is difficult to reduce, and the deterioration or oxidation of the metal or the like tends to proceed. It is in.

以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

(HVAF溶射装置)
HVAF溶射装置を図1に示すように構成したものを用いた。ノズル長さ、末広部長さ、スロート内径、バレル長さ、バレル内径については、以下の条件のものを用いた。
ノズル長さ :25mm
末広部長さ :15mm
スロート内径:14.3mm及び10.1mm
バレル長さ :123mm
バレル内径 :19mm
(HVAF spraying equipment)
An HVAF spraying apparatus configured as shown in FIG. 1 was used. Nozzle length, divergent section length, throat inner diameter, barrel length, and barrel inner diameter were the following conditions.
Nozzle length: 25mm
Suehiro length: 15mm
Throat inner diameter: 14.3 mm and 10.1 mm
Barrel length: 123mm
Barrel inner diameter: 19 mm

(実施例1)
灯油と酸素の燃焼炎を熱源とする上記のHVAF溶射装置を用い、表1に示す溶射条件で、酸化チタン(平均粒径10μm)をアルミニウム基材の表面に溶射し、溶射皮膜−1を得た。
Example 1
Using the above HVAF spraying apparatus using kerosene and oxygen combustion flame as heat sources, titanium oxide (average particle size 10 μm) was sprayed onto the surface of the aluminum substrate under the spraying conditions shown in Table 1 to obtain sprayed coating-1 It was.

(実施例2)
溶射条件を表1に示す条件とし、酸化チタン(平均粒径17μm)に変更してアルミニウム基材の表面に溶射し、溶射皮膜−2を得た。
(Example 2)
The thermal spraying conditions were changed to those shown in Table 1, and changed to titanium oxide (average particle size 17 μm) and sprayed onto the surface of the aluminum substrate to obtain thermal spray coating-2.

Figure 2012092391
Figure 2012092391

(比較例1)
溶射条件を表1に示す条件とし、粉末中心軸供給式HVAF溶射装置でなく、通常のHVAFにラバルノズルを装着した装置で実施例1の粉末を溶射したところ、ガス温度が高温のためにアルミニウム基材が溶融し皮膜作製は出来なかった。
(Comparative Example 1)
The thermal spraying conditions were as shown in Table 1, and the powder of Example 1 was sprayed with a normal HVAF equipped with a Laval nozzle instead of the powder central axis supply type HVAF thermal spraying apparatus. The material melted and the film could not be produced.

(溶射皮膜の定性評価)
得られた溶射皮膜について、X線回折装置(株式会社島津製作所製、装置名XRD−7000)により、皮膜の結晶状態の定性評価を行い、溶射前の酸化チタンの結晶状態と比較した。溶射皮膜−1、及び2では、溶射前の酸化チタンと同じアナターゼ相のみのピークを示し、ルチル相は確認されなかった。結果を表2に示す。
(Qualitative evaluation of thermal spray coating)
The obtained thermal spray coating was subjected to qualitative evaluation of the crystal state of the coating by an X-ray diffractometer (manufactured by Shimadzu Corporation, device name XRD-7000), and compared with the crystal state of titanium oxide before thermal spraying. In the thermal spray coatings 1 and 2, the same peak of anatase phase as that of titanium oxide before thermal spraying was shown, and the rutile phase was not confirmed. The results are shown in Table 2.

(溶射皮膜の観察)
得られた溶射皮膜について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、装置名S−4100)により、表面の観察を行った。皮膜表面において、酸化チタンの粒子の溶融は観察されず、断面から緻密な皮膜であることが判明した。図3に実施例1にて得られる溶射皮膜表面の写真を示す。また、図4に実施例1にて得られる溶射皮膜断面の写真を示す。
(Observation of sprayed coating)
About the obtained thermal spray coating, the surface was observed with the scanning electron microscope (The Hitachi High-Technologies Corporation make, apparatus name S-4100). On the surface of the film, melting of the titanium oxide particles was not observed, and it was found that the film was dense from the cross section. FIG. 3 shows a photograph of the surface of the thermal spray coating obtained in Example 1. Moreover, the photograph of the sprayed coating cross section obtained in Example 1 is shown in FIG.

(溶射皮膜の光触媒特性評価)
湿式メチレンブルー分解性能試験を実施して光触媒特性の評価を行った。酸化チタン溶射皮膜をメチレンブルー水溶液に浸漬させ、紫外線光を照射することにより発生するメチレンブルー水溶液濃度の変化を測定することで評価を行う。ここで示す分解活性指数はメチレンブルー水溶液を単位時間当たりに分解させるモル濃度であり、この指数が高いほど活性が高い。実施例1、2に対して試験を行った。自記可視紫外分光光度計(日本分光株式会社製、装置名V−560)により、メチレンブルーの吸収波長ピーク(約664nm)を測定した。
(Photocatalytic property evaluation of thermal spray coating)
Wet methylene blue decomposition performance test was conducted to evaluate the photocatalytic properties. Evaluation is performed by immersing the titanium oxide sprayed coating in a methylene blue aqueous solution and measuring changes in the concentration of the methylene blue aqueous solution generated by irradiation with ultraviolet light. The decomposition activity index shown here is a molar concentration for decomposing a methylene blue aqueous solution per unit time, and the higher the index, the higher the activity. Tests were performed on Examples 1 and 2. The absorption wavelength peak (about 664 nm) of methylene blue was measured with a self-recording visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, device name V-560).

予めメチレンブルーを飽和吸着させた酸化チタン皮膜をメチレンブルー水溶液(10μmol/L、10mL)に浸漬させ、ブラックライトを使用して中心波長約350nmの紫外線(1.2mW/cm)を照射させ、吸光度の時間変化から分解活性指数を求めた。結果を表3に示す。実施例1よりも実施例2の方が皮膜表面の均一性に優れていること及び膜厚が厚いためと推測する。 A titanium oxide film on which methylene blue has been saturated and adsorbed in advance is immersed in an aqueous methylene blue solution (10 μmol / L, 10 mL), and irradiated with ultraviolet light (1.2 mW / cm 2 ) having a central wavelength of about 350 nm using a black light. The degradation activity index was determined from the change over time. The results are shown in Table 3. It is presumed that Example 2 is superior to Example 1 in that the film surface is more uniform and the film thickness is thicker.

Figure 2012092391
Figure 2012092391

Figure 2012092391
Figure 2012092391

実施例1、2で得られた溶射皮膜は、いずれも緻密な皮膜であり、溶射前の酸化チタンと比較して、相変態は認められなかった。従って、本発明のHVAF溶射装置を用いることにより、金属の酸化を抑え、若しくは加熱による相変態が発生しない緻密な溶射皮膜を形成することができる。   The thermal spray coatings obtained in Examples 1 and 2 were both dense coatings, and no phase transformation was observed compared to titanium oxide before thermal spraying. Therefore, by using the HVAF thermal spraying apparatus of the present invention, it is possible to form a dense thermal sprayed coating that suppresses metal oxidation or does not cause phase transformation due to heating.

1 溶射装置
2 燃焼室
3 冷却室
4 金属等供給路
4a 金属等供給口
4b 金属等排出口
5 ラバルノズル
6 バレル
7 燃料導入口
8 圧縮空気導入口
9 冷却ガス導入管
10 短円錐部(convergent部)
11 長円錐部(divergent部)
DESCRIPTION OF SYMBOLS 1 Thermal spray apparatus 2 Combustion chamber 3 Cooling chamber 4 Metal supply path 4a Metal supply port 4b Metal discharge port 5 Laval nozzle 6 Barrel 7 Fuel introduction port 8 Compressed air introduction port 9 Cooling gas introduction tube 10 Short conical part
11 Long cone (divergent part)

Claims (5)

液体燃料を圧縮空気により燃焼させ、発生した燃焼ガスを利用して高温の金属、セラミックス又は樹脂を基材に衝突させるHVAF溶射装置であって、
燃料と圧縮空気を混合し燃焼させて燃焼ガスを生成する燃焼室と、
燃焼室に連結され、燃焼室で生成された燃焼ガスを冷却する冷却室と、
金属、セラミックス又は樹脂を噴射する燃焼ガス噴射方向とは逆の方向を背面方向とした場合に、冷却室の背面方向から粉末状の金属、セラミックス又は樹脂を装置内に供給する粉末供給路と、
冷却室の正面方向に連結され、粉末供給路から供給された金属、セラミックス又は樹脂が燃焼ガスとともに通過するラバルノズルと、
ラバルノズルに連結され、ラバルノズルを通過した金属、セラミックス又は樹脂が超音速の燃焼ガスとともに通過し、且つ、通過の過程で金属、セラミックス又は樹脂を加速させるバレルとを備えたHVAF溶射装置。
An HVAF spraying apparatus that burns liquid fuel with compressed air and uses a generated combustion gas to collide a high-temperature metal, ceramics, or resin with a substrate,
A combustion chamber in which fuel and compressed air are mixed and burned to generate combustion gas;
A cooling chamber connected to the combustion chamber for cooling the combustion gas generated in the combustion chamber;
A powder supply path for supplying powdered metal, ceramics or resin into the apparatus from the back direction of the cooling chamber, when the direction opposite to the combustion gas injection direction for injecting metal, ceramics or resin is the back direction;
A Laval nozzle connected in the front direction of the cooling chamber, through which the metal, ceramics or resin supplied from the powder supply path passes along with the combustion gas;
An HVAF thermal spraying apparatus, which is connected to a Laval nozzle and includes a barrel through which the metal, ceramics or resin passing through the Laval nozzle passes along with the supersonic combustion gas and accelerates the metal, ceramics or resin in the course of passage.
底面が冷却室に隣接して配置された略円錐台形状の短円錐部と、
上面が短円錐部の上面と隣接して配置され、底面がバレルと隣接して配置された略円錐台形状の長円錐部とから構成されており、
長円錐部の底面の径が短円錐部の底面の径より大きく、長円錐部の高さが短円錐部の高さより高く、短円錐部と長円錐部の上面の径が、短円錐部及び長円錐部の両底面より小さいラバルノズルを有する請求項1記載のHVAF溶射装置。
A substantially truncated cone-shaped short cone portion whose bottom surface is disposed adjacent to the cooling chamber;
The upper surface is arranged adjacent to the upper surface of the short cone portion, and the bottom surface is composed of a substantially truncated cone shaped long cone portion arranged adjacent to the barrel,
The diameter of the bottom surface of the long cone portion is larger than the diameter of the bottom surface of the short cone portion, the height of the long cone portion is higher than the height of the short cone portion, and the diameters of the upper surfaces of the short cone portion and the long cone portion are The HVAF thermal spraying device according to claim 1, further comprising a Laval nozzle smaller than both bottom surfaces of the long cone portion.
燃焼室と冷却室が燃焼ガス噴射方向に対して垂直方向に隣接して配置されることを特徴とする請求項1又は2記載のHVAF溶射装置。 The HVAF thermal spraying apparatus according to claim 1 or 2, wherein the combustion chamber and the cooling chamber are arranged adjacent to each other in a direction perpendicular to the combustion gas injection direction. 粉末供給路が冷却室の背面方向から燃焼ガス噴射方向に対して水平方向に設けられ、金属、セラミックス又は樹脂がラバルノズル及びバレルを通過する燃焼ガスの流路の略中心軸上に供給されることを特徴とする請求項1、2又は3記載のHVAF溶射装置。 A powder supply path is provided in the horizontal direction from the back direction of the cooling chamber to the combustion gas injection direction, and metal, ceramics, or resin is supplied on the substantially central axis of the flow path of the combustion gas passing through the Laval nozzle and the barrel. The HVAF thermal spraying apparatus according to claim 1, 2, or 3. 粉末供給路がラバルノズルの直前まで伸びており、金属、セラミックス又は樹脂がラバルノズル内へ直接供給されることを特徴とする請求項1、2、3又は4記載のHVAF溶射装置。 The HVAF thermal spraying apparatus according to claim 1, 2, 3 or 4, wherein the powder supply path extends to immediately before the Laval nozzle, and metal, ceramics or resin is directly supplied into the Laval nozzle.
JP2010240583A 2010-10-27 2010-10-27 Powder center axis supply type HVAF spraying equipment Active JP5751512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240583A JP5751512B2 (en) 2010-10-27 2010-10-27 Powder center axis supply type HVAF spraying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240583A JP5751512B2 (en) 2010-10-27 2010-10-27 Powder center axis supply type HVAF spraying equipment

Publications (2)

Publication Number Publication Date
JP2012092391A true JP2012092391A (en) 2012-05-17
JP5751512B2 JP5751512B2 (en) 2015-07-22

Family

ID=46386068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240583A Active JP5751512B2 (en) 2010-10-27 2010-10-27 Powder center axis supply type HVAF spraying equipment

Country Status (1)

Country Link
JP (1) JP5751512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008394A (en) * 2015-06-24 2017-01-12 有限会社エスエスシー Hvaf spray coating device for low temperature spray coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus
JP2005529747A (en) * 2002-06-20 2005-10-06 ゼネラル・エレクトリック・カンパニイ High temperature powder welding apparatus and method using feedback control
JP2007191780A (en) * 2006-01-23 2007-08-02 Toshiba Corp Thermal spray apparatus and method therefor
JP2009001891A (en) * 2007-06-25 2009-01-08 Plasma Giken Kogyo Kk Nozzle for cold spray, and cold spray device using nozzle for cold spray

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus
JP2005529747A (en) * 2002-06-20 2005-10-06 ゼネラル・エレクトリック・カンパニイ High temperature powder welding apparatus and method using feedback control
JP2007191780A (en) * 2006-01-23 2007-08-02 Toshiba Corp Thermal spray apparatus and method therefor
JP2009001891A (en) * 2007-06-25 2009-01-08 Plasma Giken Kogyo Kk Nozzle for cold spray, and cold spray device using nozzle for cold spray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008394A (en) * 2015-06-24 2017-01-12 有限会社エスエスシー Hvaf spray coating device for low temperature spray coating

Also Published As

Publication number Publication date
JP5751512B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
EP1880034B1 (en) Method and apparatus for fine particle liquid suspension feed for thermal spray system and coatings formed therefrom
JP4966288B2 (en) Method and apparatus for producing metal ultrafine powder, and apparatus for producing metal ultrafine powder
CA2830431C (en) Axial feed plasma spraying device
KR102057014B1 (en) Conical ribbon mixing and drying device comprising tungsten carbide thermal sprayed- layer
JP2008055414A (en) Plasma spraying device and method for introducing liquid precursor in plasma gas stream
WO2004033747A1 (en) Method of forming metal coating with hvof spray gun and thermal spray apparatus
JP3612568B2 (en) Metal film forming method and spraying apparatus by HVOF spray gun
WO2009155702A1 (en) Low-temperature oxy-fuel spray system and method for depositing layers using same
EP2791381B1 (en) Reactive gas shroud or flame sheath for suspension plasma spray processes
JP2008248280A (en) Coating material, manufacturing method thereof, coating method, and moving blade with shroud
JP5751512B2 (en) Powder center axis supply type HVAF spraying equipment
JP5284774B2 (en) Plasma spraying device with particle acceleration nozzle and plasma spraying method
JP6014606B2 (en) Amorphous film forming apparatus and method
JP2009161800A (en) Gadolinium oxide thermally sprayed film, and method for manufacturing the same
RU2525948C2 (en) Device and method of production of amorphous cover film
JP2017008394A (en) Hvaf spray coating device for low temperature spray coating
JP2007169703A (en) Member having spray deposit, rotary machine having the member, and method and apparatus for depositing spray deposit
JP2897650B2 (en) Metal fine powder production equipment
WO2016181939A1 (en) High velocity oxy-fuel spraying device
JP2018199855A (en) Manufacturing method of thermal spray material, thermal spray material, thermal spray method and thermal spray product
JP6715694B2 (en) Plasma spraying equipment
JP5720043B2 (en) Powder material for cermet thermal spraying excellent in corrosion resistance and plasma erosion resistance and method for producing the same
JP5669759B2 (en) Thermal spray material and method for forming thermal spray coating
JP7056927B2 (en) Combustion mechanism that enables ignition and stable flame in HVAF thermal spraying equipment
Boulos et al. Combustion Spraying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5751512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150