JP2012092364A - Surface-coated member and method for manufacturing the same - Google Patents

Surface-coated member and method for manufacturing the same Download PDF

Info

Publication number
JP2012092364A
JP2012092364A JP2010238258A JP2010238258A JP2012092364A JP 2012092364 A JP2012092364 A JP 2012092364A JP 2010238258 A JP2010238258 A JP 2010238258A JP 2010238258 A JP2010238258 A JP 2010238258A JP 2012092364 A JP2012092364 A JP 2012092364A
Authority
JP
Japan
Prior art keywords
layer
nitride
coated
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010238258A
Other languages
Japanese (ja)
Inventor
Atsuo Kawana
淳雄 川名
Shinichi Okabe
信一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COATING CENTER KK
NIPPON COATING CT KK
Original Assignee
NIPPON COATING CENTER KK
NIPPON COATING CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COATING CENTER KK, NIPPON COATING CT KK filed Critical NIPPON COATING CENTER KK
Priority to JP2010238258A priority Critical patent/JP2012092364A/en
Publication of JP2012092364A publication Critical patent/JP2012092364A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated member excellent in durability and a method for manufacturing the surface-coated member.SOLUTION: The surface-coated member includes: a first layer consisting of either nitride, carbide, or carbonitride containing at least one kind or more of Ti, Zr, Hf, V, Nb, Ta, Al, and Cr coated by a PVD method on a base consisting of a steel-based member or a cemented carbide member; and a second layer of Al-Cr based nitride coated on the first layer or a second layer of Al-Cr based nitride which is a gradient layer coated on the first layer. The method for manufacturing the surface-coated member includes coating the first layer consisting of either nitride, carbide, or carbonitride containing at least one kind or more of Ti, Zr, Hf, V, Nb, Ta, Al and Cr by the PVD method on the base consisting of the steel-based member or the cemented carbide member, and coating the second layer of Al-Cr based nitride on the first layer, or the second layer of Al-Cr based nitride which is the gradient layer on the first layer.

Description

本発明は鋼系部材もしくは超硬合金部材において、PVD法により被膜を形成する技術に関わり、特にアルミニウムや銅などの凝着性の高い非鉄金属を加工する場合でも実用上満足できる表面被覆部材およびその製造方法に関する。   The present invention relates to a technique for forming a film by a PVD method in a steel-based member or a cemented carbide member, and in particular, a surface-coated member that can be practically satisfied even when processing a non-ferrous metal with high adhesion properties such as aluminum and copper, and It relates to the manufacturing method.

アルミニウム、銅などの非鉄金属の成形加工や切削加工では、工具に被加工材である非鉄金属が凝着し、工具に製品がかじったり、製品表面が荒れるなどの問題があった。この対応策として、潤滑油を使用する方法があるが、飲料缶の成形など安全・衛生上、潤滑油が使用できない分野もあり、十分ではなかった。 In forming and cutting of non-ferrous metals such as aluminum and copper, the non-ferrous metal, which is a work material, adheres to the tool, and there is a problem that the product is gnawed by the tool or the surface of the product is rough. As a countermeasure, there is a method of using a lubricating oil, but there are some fields where the lubricating oil cannot be used for safety and hygiene, such as molding of a beverage can, which is not sufficient.

無潤滑下における対策として、工具表面にDLC膜を被覆することがなされている。DLCは緻密なアモルファス構造で、結晶学的にはダイヤモンドと異なるものであるが、高硬度で優れた耐摩耗性を有し、アルミニウムなどとの反応性も低いことから非鉄金属加工用の工具に広く用いられている。   As a countermeasure under non-lubrication, a DLC film is coated on the tool surface. DLC has a dense amorphous structure and is crystallographically different from diamond, but it has high hardness, excellent wear resistance, and low reactivity with aluminum, making it a tool for processing non-ferrous metals. Widely used.

特開2004−358495JP 2004-358495 A 特開2005−22073JP 2005-22073 A 特開2007−131893JP2007-131893A

しかしながら、DLC膜においても、使用条件によっては潤滑油を併用しないと凝着してしまったり、PVD法に比べ、密着力が低いため、早期に剥離が発生するなどの問題があった。また、DLC膜の場合、500°C以上の使用環境下では、耐酸化性に劣るため、温間成形加工などには適用できなかった。 However, the DLC film also has a problem that, depending on the use conditions, it adheres unless a lubricating oil is used in combination, or the adhesion is lower than that of the PVD method, so that peeling occurs early. In addition, in the case of a DLC film, the oxidation resistance is inferior in a use environment of 500 ° C. or higher, and thus it cannot be applied to warm forming.

本発明は、アルミニウムなどの非鉄金属に対して、従来のDLC膜同等の摩擦係数を有し、DLC膜以上の密着力があるため、耐久性に優れた被膜を提供することにある。また、従来のDLC膜では対応できなかった500°C以上の使用環境においても、実用上問題にならない被膜を提供することにある。   An object of the present invention is to provide a coating film excellent in durability because it has a friction coefficient equivalent to that of a conventional DLC film and has an adhesive force higher than that of a DLC film against non-ferrous metals such as aluminum. Another object of the present invention is to provide a coating that does not cause a problem in practice even in a use environment of 500 ° C. or higher, which cannot be handled by a conventional DLC film.

上記課題を解決するために、本発明の表面被覆部材は、鋼系部材もしくは超硬合金部材からなる基部にPVD法によりTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物からなる第1層と、前記第1層上に被覆されたAl−Cr系窒化物の第2層と、または前記第1層上に被覆された傾斜層であるAl−Cr系窒化物の第2層を有することを特徴とする。 In order to solve the above-mentioned problems, the surface covering member of the present invention is made of at least one of Ti, Zr, Hf, V, Nb, Ta, Al and Cr by a PVD method on a base made of a steel-based member or a cemented carbide member. The first layer made of the above nitride, carbide or carbonitride, the second layer of Al—Cr nitride coated on the first layer, or the inclined layer coated on the first layer It has the 2nd layer of Al-Cr system nitride which is.

また、本発明の表面被覆部材の製造方法は、鋼系部材もしくは超硬合金部材からなる基部にPVD法によりTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物からなる第1層を被覆し、前記第1層上にAl−Cr系窒化物の第2層を被覆し、または前記第1層上に傾斜層であるAl−Cr系窒化物の第2層を被覆することを特徴とする。 Further, in the method for producing a surface covering member of the present invention, at least one nitriding of at least one of Ti, Zr, Hf, V, Nb, Ta, Al, and Cr is performed on a base made of a steel-based member or a cemented carbide member by a PVD method. A first layer made of a material, carbide or carbonitride, and a second layer of Al—Cr nitride on the first layer, or Al—Cr which is an inclined layer on the first layer. The second layer of the system nitride is coated.

本発明によれば、鋼系部材もしくは超硬合金部材からなる機械部品、工具、金型等の表面にPVD法により硬質膜を形成することにより、基材との密着力に優れ、耐久性に優れた被膜を提供することができる。さらに非鉄金属に対して低摩擦を示すAl−Cr系窒化物を最表面に形成することで、非鉄金属の凝着が起こりにくくなり、かじりなどの問題を低減することができる。さらにAl−Cr系窒化物は、耐酸化特性および高硬度特性を兼ね備えているため、500°C以上の高温域においても耐久性に優れ、部材寿命を大幅に延長することが可能となる。 According to the present invention, a hard film is formed by the PVD method on the surface of a mechanical part, tool, mold, or the like made of a steel-based member or a cemented carbide member, thereby achieving excellent adhesion to the substrate and durability. An excellent film can be provided. Furthermore, by forming Al—Cr-based nitride showing low friction with respect to non-ferrous metal on the outermost surface, non-ferrous metal is less likely to adhere, and problems such as galling can be reduced. Furthermore, since Al—Cr nitride has both oxidation resistance and high hardness characteristics, it has excellent durability even in a high temperature range of 500 ° C. or higher, and can greatly extend the life of the member.

本発明の機械部品、工具、金型等は、鋼系材料もしくは超硬合金を母材とするものに適用される。鋼系材料の場合、あらかじめ窒化処理などの硬化処理がなされていても良い。また、湿式メッキなどのPVD法以外の表面処理がなされていても良い。   The machine parts, tools, molds and the like of the present invention are applied to those having steel base materials or cemented carbide as a base material. In the case of a steel-based material, a hardening process such as a nitriding process may be performed in advance. Moreover, surface treatment other than PVD methods, such as wet plating, may be made.

本発明の機械部品、工具、金型等の表面処理構造について説明する。先ず、PVD法により硬さの異なる被膜であるTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物と最表層のAl−Cr系窒化物を積層構造およびTi、Zr、Hf、V、Nb、TaおよびCrの少なくとも1種の窒化物、炭化物または炭窒化物との傾斜層を介したAl−Cr系窒化物を積層構造にしたのは、最表層のAl−Cr系窒化物、炭化物または炭窒化物の受ける負荷を下層のTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物が緩衝し、結果的にTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物とAl−Cr系窒化物の密着性を改善するため、Al−Cr系窒化物、炭化物または炭窒化物の高硬度特性を十分に発揮させることが可能となる。   The surface treatment structure of the machine part, tool, mold, etc. of the present invention will be described. First, at least one nitride, carbide or carbonitride of Ti, Zr, Hf, V, Nb, Ta, Al and Cr, which are coatings having different hardness by PVD method, and Al—Cr-based nitriding of the outermost layer Al-Cr-based nitride via a layered structure and an inclined layer with at least one nitride, carbide or carbonitride of Ti, Zr, Hf, V, Nb, Ta and Cr The load applied to the outermost Al—Cr-based nitride, carbide or carbonitride is at least one of the lower Ti, Zr, Hf, V, Nb, Ta, Al and Cr nitrides, carbides or charcoal Nitride is buffered, resulting in improved adhesion between at least one of Ti, Zr, Hf, V, Nb, Ta, Al and Cr nitrides, carbides or carbonitrides and Al-Cr nitrides Al-Cr Nitride, it is possible to sufficiently exhibit the high hardness characteristics of carbides or carbonitrides.

Al−Cr系窒化物の耐酸化特性について説明する。Al−Cr系窒化物はCrのマトリックス中に置換固溶したAlがCrよりも先に外向拡散し、最表面に緻密なアルミナ層を形成し、酸化の進行である酸素の内向拡散を防ぐ保護層となる。このように形成されたアルミナ層および酸化の進行に伴い、形成されるCr酸化層の二重の保護層の効果によって、より高い耐酸化特性を示すことを確認している。以上のことから高温雰囲気中での鋼系部材からなる機械部品、工具、金型等の受ける損傷を軽減でき、部材寿命を延長させることができる。   The oxidation resistance characteristics of the Al—Cr nitride will be described. Al-Cr-based nitride is a protective solution that prevents the inward diffusion of oxygen, which is the progress of oxidation, by forming a dense alumina layer on the outermost surface by the diffusion of Al dissolved in the matrix of Cr in the matrix of Cr. Become a layer. It has been confirmed that a higher oxidation resistance is exhibited by the effect of the double protective layer of the formed Cr oxide layer as the alumina layer thus formed and oxidation progress. From the above, damage to mechanical parts, tools, molds and the like made of steel members in a high temperature atmosphere can be reduced, and the life of the members can be extended.

ここで、上記効果を発揮するためにAl−Cr系窒化物は金属成分のみの原子%がAlが25%以上50%以下、Crが50%以上75%以下が好ましい。Alが50%以上に含有されると被膜の延性が低下し始め、高負荷の加わる環境下における耐久性が得られ難くなる。   Here, in order to exhibit the above effect, the Al-Cr-based nitride preferably has an atomic percentage of only a metal component of Al of 25% to 50% and Cr of 50% to 75%. When Al is contained in an amount of 50% or more, the ductility of the coating starts to deteriorate, and it becomes difficult to obtain durability under an environment where a high load is applied.

通常これらの被膜を設けるには化学気相蒸着法(CVD法)、物理気相蒸着法(PVD法)等、種々の方法で被膜形成が可能だが、鋼系母材への処理温度の関係からくる母材の硬度低下や密着性の問題を考慮すると、PVD法の一種であるイオンプレーティング法が好ましい。   Normally, these coatings can be formed by various methods such as chemical vapor deposition (CVD) and physical vapor deposition (PVD), but due to the processing temperature of the steel base material. In consideration of the decrease in hardness of the base material and the problem of adhesion, an ion plating method which is a kind of PVD method is preferable.

本発明の被膜の全膜厚は2〜5μmが好ましいが、特に規定するものではない。ただし、Al−Cr系窒化物の膜厚は、全膜厚の10〜50%にとどめるのが好ましい。この理由について説明する。PVD法で形成されるAl−Cr系窒化物は、面粗さが荒く、部材へ被覆後、磨き処理を行う必要がある。したがって全膜厚の10%未満の膜厚であると磨き処理によってAl−Cr系窒化物が除去され、効果が十分発揮されないことがある。逆に50%を超えてAl−Cr系窒化物を被覆すると被膜の延性が低下し、耐久性も低下する。 The total film thickness of the coating of the present invention is preferably 2 to 5 μm, but is not particularly defined. However, the film thickness of the Al—Cr nitride is preferably limited to 10 to 50% of the total film thickness. The reason for this will be described. The Al—Cr nitride formed by the PVD method has a rough surface and needs to be polished after being coated on the member. Therefore, when the film thickness is less than 10% of the total film thickness, the Al—Cr-based nitride is removed by the polishing treatment, and the effect may not be sufficiently exhibited. On the other hand, if the Al-Cr nitride is coated over 50%, the ductility of the coating is lowered and the durability is also lowered.

上記したようにAl−Cr系窒化物は面粗さが荒い。このままの状態では、物理的に非鉄金属が溶着しやすい。そのため、Raで0.02μm以下、凸側の最大高さRmaxで0.2μm以下にする。したがって基材となる鋼系材料もしくは超硬合金の表面粗さは、この粗さ以下に仕上げておく必要がある。 As described above, the Al—Cr nitride has a rough surface. In this state, non-ferrous metals are easily physically welded. Therefore, Ra is 0.02 μm or less, and the maximum height Rmax on the convex side is 0.2 μm or less. Therefore, it is necessary to finish the surface roughness of the steel material or the cemented carbide as the base material to be equal to or less than this roughness.

本発明を適用した実施例を説明する。アルミニウムを成形する超硬合金製ダイ(φ82×57Lmm)に本発明の表面処理を施し評価した。   An embodiment to which the present invention is applied will be described. A cemented carbide die (φ82 × 57 Lmm) for forming aluminum was subjected to the surface treatment of the present invention and evaluated.

先ず、ダイを有機溶剤にて脱脂洗浄後、必要部である内面をダイヤモンドペーストにて磨き処理を行い、表面粗さがRaで0.01μm、凸部側の最大高さRmaxが0.1μm以下になるまで仕上げた。その後、有機溶剤でダイヤモンドペーストを拭き取り洗浄した。   First, after degreasing and washing the die with an organic solvent, the inner surface, which is a necessary part, is polished with diamond paste, the surface roughness Ra is 0.01 μm, and the maximum height Rmax on the convex side is 0.1 μm or less. Finished until. Thereafter, the diamond paste was wiped off and washed with an organic solvent.

次に、磨き処理したダイをカソードアークイオンプレーティング装置に入れ、装置内を真空排気した。続いて600°Cに加熱したヒーターで1時間加熱し、金属イオンによるボンバードメント処理を行い、被覆基体を450°Cまで昇温した。次に金属成分の蒸発源であるCrターゲット、ならびに反応ガスであるNを導入し、被覆基体温度400°C、チャンバー内圧力3Paの条件下にて窒化クロム(以下CrNと記す)を形成する。 Next, the polished die was placed in a cathode arc ion plating apparatus, and the inside of the apparatus was evacuated. Then, it heated for 1 hour with the heater heated to 600 degreeC, the bombardment process by a metal ion was performed, and the coating base was heated up to 450 degreeC. Next, a Cr target that is an evaporation source of metal components and N 2 that is a reaction gas are introduced, and chromium nitride (hereinafter referred to as CrN) is formed under the conditions of a coated substrate temperature of 400 ° C. and a chamber internal pressure of 3 Pa. .

更に、CrNに連続して金属成分の蒸発源であるAl−Crターゲット、ならびに反応ガスであるNを導入し、被覆基体温度400°C、チャンバー内圧力3Paの条件下にてAl−Cr系窒化物を形成し、CrNと合わせて被膜の総厚が4μm、Al−Cr系窒化物の被膜が1μmになるように処理を行った。 Furthermore, an Al—Cr target that is an evaporation source of a metal component and a reaction gas, N 2, are introduced in succession to CrN, and the Al—Cr system is used under the conditions of a coated substrate temperature of 400 ° C. and a chamber pressure of 3 Pa. Nitride was formed, and the treatment was performed so that the total thickness of the film combined with CrN was 4 μm, and the Al—Cr-based nitride film was 1 μm.

また、Al−Cr系窒化物傾斜膜を作製するためには、第1層(被膜)の成膜の後に、CrターゲットとAl−Crターゲットを同時に使用し、反応ガスであるNを導入し、被覆基体温度400℃、チャンバー内圧力3Paの条件下にて、第2層を形成する成膜時間の最初の25%ではCrターゲットとAl−Crターゲット蒸発速度を50%に設定し、Al−CrNを形成する。 In order to produce an Al—Cr nitride gradient film, a Cr target and an Al—Cr target are simultaneously used after the first layer (film) is formed, and N 2 which is a reactive gas is introduced. In the first 25% of the film formation time for forming the second layer under the conditions of the coated substrate temperature of 400 ° C. and the internal pressure of the chamber of 3 Pa, the Cr target and the Al—Cr target evaporation rate were set to 50%. CrN is formed.

成膜時間の50%となったときにCrターゲットとAl−Crターゲット蒸発速度比を25%:75%とし、さらに成膜時間の75%でAl−Crターゲットのみによる成膜を行い、Al濃度が表面になるに従って増加するAl−Cr系窒化物傾斜層を形成した。なお、ここで、表1〜6において、CrAl(25−50)NはAl−Cr系窒化物傾斜膜において、Alの濃度が25%から50%に段階的に変化することを表すものである。 When the film formation time reaches 50%, the Cr target and Al—Cr target evaporation rate ratio is set to 25%: 75%, and film formation is performed only with the Al—Cr target in 75% of the film formation time. As a result, an Al—Cr nitride gradient layer that increases as the surface is formed. Here, in Tables 1 to 6, CrAl (25-50) N represents that the Al concentration gradually changes from 25% to 50% in the Al—Cr nitride gradient film. .

被覆後のダイ内面の表面粗さは、Raで0.08μm、凸部側の最大高さRmaxは1.93μmであった。同バッチで処理した同ダイをダイヤモンドペーストで磨き、Raで0.02μm、凸部側の最大高さRmaxは0.12μmに仕上げた。   The surface roughness of the die inner surface after coating was 0.08 μm in Ra, and the maximum height Rmax on the convex side was 1.93 μm. The same die treated in the same batch was polished with diamond paste, finished with Ra of 0.02 μm and the maximum height Rmax on the convex side of 0.12 μm.

比較の為、同ダイにイオン化蒸着法にてDLC膜を1μm形成した。 For comparison, a DLC film having a thickness of 1 μm was formed on the same die by ionized vapor deposition.

DLC被覆後の金型の表面粗さは、Raで0.02μm、凸部側の最大高さRmaxは0.1μmであった。 The surface roughness of the mold after DLC coating was 0.02 μm in Ra, and the maximum height Rmax on the convex side was 0.1 μm.

上記したダイにてアルミニウムの成形を行った。被覆後、磨き処理を行わなかったダイでは500ショットにてアルミニウムが溶着した。一方、被覆後、磨き処理を行ったダイは、200万ショット後もアルミニウムの溶着は見られなかった。継続使用後、約500万ショット時にアルミニウムの溶着がわずかに観察されたため、#2000サンドペーパーにて溶着物を除去し、その後、さらに1,000万ショットまで使用することができた。DLCを被覆したダイは、2,000ショットでアルミニウムの溶着が見られ、溶着物を除去する為に#2000サンドペーパーで磨いたところ、DLC膜が剥離し、使用不可となった。   Aluminum was formed with the above-described die. After coating, aluminum was deposited after 500 shots on the die that was not polished. On the other hand, after the coating, the die subjected to the polishing treatment did not show aluminum welding even after 2 million shots. After continuous use, a slight amount of aluminum was observed after about 5 million shots. Therefore, the welded material was removed with # 2000 sandpaper, and then up to 10 million shots could be used. The die coated with DLC showed aluminum welding in 2,000 shots, and when polished with # 2000 sandpaper to remove the deposit, the DLC film peeled off and became unusable.

最表層のAl−Cr系窒化物のAl濃度別(表中におけるAlの前の数字はAlの原子%を示しており、Cr−25AlNであればAl原子%が25であることを示す)の各組み合わせにおける各表面処理について、上記アルミニウム成型試験後の表面状態を表1〜3にまとめた。   According to the Al concentration of the Al—Cr-based nitride of the outermost layer (the number before Al in the table indicates the atomic% of Al, and if it is Cr-25AlN, the Al atomic% is 25). About each surface treatment in each combination, the surface state after the said aluminum shaping | molding test was put together in Tables 1-3.

高負荷の加わる成型加工において、Cr−75AlNのようにAl濃度が高いものは被膜の延性の低下が顕著になり、高負荷の加わる環境下における耐久性が得られにくいことがわかった。   It has been found that in high-load molding, when the Al concentration is high such as Cr-75AlN, the ductility of the coating is significantly reduced, and it is difficult to obtain durability in an environment with a high load.

またAl濃度が25原子%であるCr−25AlNのようなAl濃度が低くなると被膜硬度が低下するので、加工時の負荷により被膜が損傷し、凝着が発生すると思われる。   Further, when the Al concentration is low, such as Cr-25AlN having an Al concentration of 25 atomic%, the coating hardness is lowered. Therefore, it is considered that the coating is damaged due to a load during processing and adhesion occurs.

銅を成形するSKD61製押出し金型(φ66×960Lmm)に本発明の表面処理を施し評価した。 The SKD61 extrusion mold (φ66 × 960 Lmm) for forming copper was subjected to the surface treatment of the present invention and evaluated.

先ず、金型表面に窒化層を形成した。処理はラジカル窒化を適用し、窒化層40μm形成した。   First, a nitride layer was formed on the mold surface. For the treatment, radical nitridation was applied to form a nitride layer of 40 μm.

次に窒化層を形成した金型をカソードアークイオンプレーティング装置に入れ、装置内を真空排気した。続いて700°Cに加熱したヒーターで1時間加熱し、金属イオンによるボンバードメント処理を行い、被覆基体を450°Cまで昇温した。次に金属成分の蒸発源であるTiAlターゲット、ならびに反応ガスであるNを導入し、被覆基体温度450°C、チャンバー内圧力2Paの条件下にて窒化チタンアルミ(以下TiAlNと記す)を形成する。 Next, the mold with the nitride layer formed was placed in a cathode arc ion plating apparatus, and the inside of the apparatus was evacuated. Then, it heated with the heater heated at 700 degreeC for 1 hour, the bombardment process by a metal ion was performed, and the coating base was heated up to 450 degreeC. Then TiAl target is a vapor source of the metal component, and the N 2 is the reaction gas is introduced, forming a coated substrate temperature 450 ° C, titanium nitride under conditions of chamber pressure 2Pa aluminum (hereinafter referred to as TiAlN) To do.

更に、TiAlNに連続して金属成分の蒸発源であるAl−Crターゲット、ならびに反応ガスであるNを導入し、被覆基体温度300°C、チャンバー内圧力3Paの条件下にてAl−Cr系窒化物を形成し、TiAlNと合わせて被膜の総厚が5μm、Al−Cr系窒化物の被膜が2μmになるように処理を行った。 Further, an Al—Cr target that is an evaporation source of a metal component and a reaction gas N 2 are introduced continuously to TiAlN, and the Al—Cr system is used under the conditions of a coated substrate temperature of 300 ° C. and a chamber internal pressure of 3 Pa. Nitride was formed and treated with TiAlN so that the total thickness of the film was 5 μm and the Al—Cr-based nitride film was 2 μm.

また、Al−Cr系窒化物傾斜膜を作製するためには、第1層(被膜)の成膜の後に、CrターゲットとAl−Crターゲットを同時に使用し、反応ガスであるNを導入し、被覆基体温度400℃、チャンバー内圧力3Paの条件下にて、第2層を形成する成膜時間の最初の25%ではCrターゲットとAl−Crターゲット蒸発速度を50%に設定し、Al−CrNを形成する。 In order to produce an Al—Cr nitride gradient film, a Cr target and an Al—Cr target are simultaneously used after the first layer (film) is formed, and N 2 which is a reactive gas is introduced. In the first 25% of the film formation time for forming the second layer under the conditions of the coated substrate temperature of 400 ° C. and the internal pressure of the chamber of 3 Pa, the Cr target and the Al—Cr target evaporation rate were set to 50%. CrN is formed.

成膜時間の50%となったときにCrターゲットとAl−Crターゲット蒸発速度比を25%:75%とし、さらに成膜時間の75%でAl−Crターゲットのみによる成膜を行い、Al濃度が表面になるに従って増加するAl−Cr系窒化物傾斜層を形成した。なお、ここで、表1〜6において、CrAl(25−50)NはAl−Cr系窒化物傾斜膜において、Alの濃度が25%から50%に段階的に変化することを表すものである。 When the film formation time reaches 50%, the Cr target and Al—Cr target evaporation rate ratio is set to 25%: 75%, and film formation is performed only with the Al—Cr target in 75% of the film formation time. As a result, an Al—Cr nitride gradient layer that increases as the surface is formed. Here, in Tables 1 to 6, CrAl (25-50) N represents that the Al concentration gradually changes from 25% to 50% in the Al—Cr nitride gradient film. .

被覆後の金型の表面粗さは、Raで0.1μm、凸部側の最大高さRmaxは2.34μmであった。同バッチで処理した同金型をダイヤモンドペーストで磨き、Raで0.02μm、凸部側の最大高さRmaxは0.18μmに仕上げた。   The surface roughness of the mold after coating was 0.1 μm in Ra, and the maximum height Rmax on the convex side was 2.34 μm. The same mold treated in the same batch was polished with diamond paste, finished with Ra of 0.02 μm and the maximum height Rmax of the convex part side of 0.18 μm.

比較の為、窒化層を形成した金型をイオン化蒸着装置にてDLC膜を1μm形成した。 For comparison, a DLC film having a thickness of 1 μm was formed on a mold having a nitride layer formed thereon by an ionization vapor deposition apparatus.

DLC被覆後の金型の表面粗さは、Raで0.02μm、凸部側の最大高さRmaxは0.1μmであった。 The surface roughness of the mold after DLC coating was 0.02 μm in Ra, and the maximum height Rmax on the convex side was 0.1 μm.

それぞれの金型にて、700°Cに加熱した銅の押出し成形を行った。DLCを被覆した金型は、わずか3ショットで剥離が発生し、銅が溶着した。一方、本発明の処理を施した金型は、100ショット後も被膜の剥離は見られず、溶着も見られなかった。 Each mold was extruded with copper heated to 700 ° C. The mold coated with DLC peeled off in only 3 shots, and copper was deposited. On the other hand, the mold subjected to the treatment of the present invention showed no peeling of the film and no welding even after 100 shots.

最表層のAl−Cr系窒化物のAl濃度別の各組み合わせにおける各表面処理について、上記銅の押し出し成型試験後の表面状態を表4〜6にまとめた。   About each surface treatment in each combination according to Al concentration of the outermost Al—Cr-based nitride, the surface states after the copper extrusion test are summarized in Tables 4 to 6.

高負荷の加わる成型加工において、Cr−75AlNのようにAl濃度が高いものは被膜の延性の低下が顕著になり、高負荷の加わる環境下における耐久性が得られにくいことがわかった。   It has been found that in high-load molding, when the Al concentration is high such as Cr-75AlN, the ductility of the coating is significantly reduced, and it is difficult to obtain durability in an environment with a high load.

またAl濃度が25原子%であるCr−25AlNのようなAl濃度が低くなると被膜硬度が低下するので、加工時の負荷により被膜が損傷し、剥がれが発生すると思われる。   Further, when the Al concentration is low, such as Cr-25AlN having an Al concentration of 25 atomic%, the coating hardness is lowered. Therefore, it is considered that the coating is damaged due to a load during processing and peeling occurs.






Claims (6)

鋼系部材もしくは超硬合金部材からなる基部にPVD法によりTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物からなる第1層と、前記第1層上に被覆されたAl−Cr系窒化物の第2層と、または前記第1層上に被覆された傾斜層であるAl−Cr系窒化物の第2層を有することを特徴とする表面被覆部材。 A first layer made of at least one of Ti, Zr, Hf, V, Nb, Ta, Al, and Cr, a carbide, or a carbonitride formed on a base made of a steel member or a cemented carbide member by a PVD method; And a second layer of Al—Cr nitride that is coated on the first layer, or a second layer of Al—Cr nitride that is an inclined layer coated on the first layer. The surface covering member characterized. 請求項1記載の表面被覆部材において、前記Al−Cr系窒化物はAlの濃度が25%以上75%以下であり、Crが25%以上75%以下であることを特徴とする表面被覆部材。 2. The surface covering member according to claim 1, wherein the Al—Cr nitride has an Al concentration of 25% to 75% and Cr is 25% to 75%. 請求項1記載の表面被覆部材において、前記傾斜層であるAl−Cr系窒化物はAlの濃度が25%から50%に段階的に変化するものであることを特徴とする表面被覆部材。   2. The surface covering member according to claim 1, wherein the Al—Cr-based nitride which is the inclined layer has an Al concentration gradually changing from 25% to 50%. 鋼系部材もしくは超硬合金部材からなる基部にPVD法によりTi、Zr、Hf、V、Nb、Ta、AlおよびCrの少なくとも1種以上の窒化物、炭化物または炭窒化物からなる第1層を被覆し、前記第1層上にAl−Cr系窒化物の第2層を被覆し、または前記第1層上に傾斜層であるAl−Cr系窒化物の第2層を被覆することを特徴とする表面被覆部材の製造方法。 A first layer made of at least one nitride, carbide or carbonitride of Ti, Zr, Hf, V, Nb, Ta, Al and Cr is formed on a base made of a steel-based member or a cemented carbide member by a PVD method. And covering the first layer with a second layer of Al—Cr nitride, or covering the first layer with a second layer of Al—Cr nitride that is an inclined layer. A method for producing a surface covering member. 請求項4記載の表面被覆部材の製造方法において、前記Al−Cr系窒化物はAlの濃度が25%以上75%以下であり、Crが25%以上75%以下であることを特徴とする表面被覆部材の製造方法。 5. The surface-coated member manufacturing method according to claim 4, wherein the Al—Cr-based nitride has an Al concentration of 25% to 75% and Cr of 25% to 75%. A manufacturing method of a covering member. 請求項4記載の表面被覆部材の製造方法において、前記傾斜層であるAl−Cr系窒化物はAlの濃度が25%から50%に段階的に変化するものであることを特徴とする表面被覆部材の製造方法。
5. The method of manufacturing a surface covering member according to claim 4, wherein the Al—Cr-based nitride as the inclined layer has a stepwise change in Al concentration from 25% to 50%. Manufacturing method of member.
JP2010238258A 2010-10-25 2010-10-25 Surface-coated member and method for manufacturing the same Withdrawn JP2012092364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238258A JP2012092364A (en) 2010-10-25 2010-10-25 Surface-coated member and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238258A JP2012092364A (en) 2010-10-25 2010-10-25 Surface-coated member and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012092364A true JP2012092364A (en) 2012-05-17

Family

ID=46386043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238258A Withdrawn JP2012092364A (en) 2010-10-25 2010-10-25 Surface-coated member and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012092364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106467A (en) * 2019-06-25 2019-08-09 中国核动力研究设计院 A kind of used by nuclear reactor efficiently combines clad and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106467A (en) * 2019-06-25 2019-08-09 中国核动力研究设计院 A kind of used by nuclear reactor efficiently combines clad and preparation method thereof

Similar Documents

Publication Publication Date Title
US20140044944A1 (en) Coating material for aluminum die casting mold and method of manufacturing the coating material
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
CN106702331B (en) A kind of high-temperature wearable CrAlSiON base nano-composite coatings and its preparation method and application
KR20170129876A (en) Cloth mold and manufacturing method thereof
JP2005042146A (en) Coating with high abrasion resistance and high hardness
JP4771223B2 (en) Durable hard material coated mold for plastic working
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP5625000B2 (en) COATING SYSTEM AND COATING METHOD FOR PRODUCING COATING SYSTEM
CN110343993A (en) A kind of carbide surface processing method and application
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
JP2015180764A (en) Hard film, formation method thereof, and mold for steel plate hot molding
JP2018039045A (en) Covering cold metal mold
JP2012092364A (en) Surface-coated member and method for manufacturing the same
KR101798359B1 (en) Manufacturing method of super roller and the same using therefor
US8722180B2 (en) Coated article and method for making said article
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
JP2014172091A (en) Cold-forging mold
JP4718382B2 (en) Hard coating
JP5326131B2 (en) Film forming method and hard coating member
JP2022534753A (en) Coated forming tools for improved performance and service life
JP2010168638A (en) Hard film-coated member and fixing tool for molding
TWI490351B (en) Coated article and method for making the same
KR20060119380A (en) Coating method for complex layers with ceramics layer and a diamond-like carbon layer
TWI471450B (en) Coated article and method for making the same
JP2021025132A (en) Coated member and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107