JP2012087718A - Engine air supply cooling device and engine equipped with the same - Google Patents

Engine air supply cooling device and engine equipped with the same Download PDF

Info

Publication number
JP2012087718A
JP2012087718A JP2010236365A JP2010236365A JP2012087718A JP 2012087718 A JP2012087718 A JP 2012087718A JP 2010236365 A JP2010236365 A JP 2010236365A JP 2010236365 A JP2010236365 A JP 2010236365A JP 2012087718 A JP2012087718 A JP 2012087718A
Authority
JP
Japan
Prior art keywords
heat transfer
air supply
transfer tube
cooling water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010236365A
Other languages
Japanese (ja)
Inventor
Kengo Tanaka
健吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010236365A priority Critical patent/JP2012087718A/en
Publication of JP2012087718A publication Critical patent/JP2012087718A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To promptly remove condensed water that has occurred with a simple and low-cost configuration, with respect to an air cooler provided in an air supply passage, so as to prevent damage to an air supply valve and corrosion of components provided on EGR passage or air supply passage, thereby ensuring the reliability of an engine.SOLUTION: With the air supply passage (as) being sandwiched by a lower header 12 provided downward thereof and an upper header 14 provided upward thereof, a row of heat transfer pipes 24a to 24e is constructed in a gravity direction (vertical direction) between the upper and lower headers. The cooling water is passed from a cooling water flow-in pipe 20 via the lower header 12 into a group 44 of heat transfer pipes, while it is subjected to heat exchange with supplied air at the group 44 of heat transfer pipes, after which it is discharged from a cooling water outflow pipe 22 via the upper header 14. The supplied air is cooled while the condensed water, which is the product of steam contained in the supplied air being condensed, runs down along the surface of the heat transfer pipes 44, to be promptly discharged from a drainage port 26. The heat transfer pipes 44 of the respective rows of heat transfer pipes are arranged in a zigzag alignment, so that condensed water can be easily captured at downstream side rows of heat transfer pipes.

Description

本発明は、発生する凝縮水を給気から確実に除去し、給気弁の損傷や、EGR管、給気管に設けられた部品類の腐食を抑制できるようにしたエンジン給気冷却装置に関する。   The present invention relates to an engine air supply / cooling apparatus that reliably removes generated condensate water from an air supply and suppresses damage to an air supply valve and corrosion of components provided in an EGR pipe and an air supply pipe.

ガソリンエンジンやディーゼルエンジンには、過給機が設けられ、過給機のコンプレッサで圧縮された空気を冷却し、気体密度を増して圧縮比を向上させ、エンジン出力を向上させるために、エアクーラが設けられている。図6は、過給機及びEGR(排気ガス再循環)機能を備えたディーゼルエンジンの一般的な給排気系統を示す。   Gasoline and diesel engines are equipped with a turbocharger, which cools the air compressed by the turbocharger compressor, increases the gas density, improves the compression ratio, and improves the engine output. Is provided. FIG. 6 shows a general supply and exhaust system of a diesel engine having a supercharger and an EGR (exhaust gas recirculation) function.

図6において、エンジン100の排気通路102に過給機106のタービン106aが設けられ、給気供給通路104に、過給機106のコンプレッサ106bが設けられている。排気通路102からEGR通路108が分岐し、EGR通路108は給気供給通路104に接続されている。EGR通路108は、主として排気ガス中のNOを低減するため、排気ガスの一部をエンジン100に再循環させる。給気供給通路104には、給気を冷却するためのエアクーラ110と、給気量を制御するための絞り弁112が設けられている。EGR通路108には、EGRガスを冷却して、圧縮比を向上させ、NO低減するためのEGRクーラ114と、EGRガスの流量を制御するEGR弁116が設けられている。 In FIG. 6, the turbine 106 a of the supercharger 106 is provided in the exhaust passage 102 of the engine 100, and the compressor 106 b of the supercharger 106 is provided in the supply air supply passage 104. An EGR passage 108 branches from the exhaust passage 102, and the EGR passage 108 is connected to the air supply passage 104. The EGR passage 108 recirculates a part of the exhaust gas to the engine 100 in order to mainly reduce NO X in the exhaust gas. The air supply passage 104 is provided with an air cooler 110 for cooling the air supply and a throttle valve 112 for controlling the air supply amount. The EGR passage 108 the EGR gas is cooled, the compression ratio is improved, the EGR cooler 114 to reduce NO X, EGR valve 116 for controlling the flow rate of EGR gas.

特許文献1(特開平8−144731号公報)には、内燃機関に設けられて、冷却水やオイルあるいはエアを冷却するための冷却装置が開示されている。また、特許文献2(特開2004−100508号公報)には、前述のようなディーゼルエンジンの給排気系統が開示されている。   Patent Document 1 (Japanese Patent Laid-Open No. 8-144731) discloses a cooling device that is provided in an internal combustion engine and cools cooling water, oil, or air. Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-100508) discloses a diesel engine supply / exhaust system as described above.

エアクーラ110では、給気冷却時に発生した凝縮水がエンジン100の給気ポートに流れ込むと、給気弁が急激に冷却されるため、熱収縮等により給気弁が損傷する場合がある。また、EGR機能を備えたエンジンの場合、EGRガスを冷却するため、EGRクーラ114を備えているが、EGRガス冷却時に発生した凝縮水が給気ポートに流れ込むと、給気弁が急激に冷却されることで、給気弁が損傷する場合がある。また、燃料中に硫黄分が存在する場合、硫黄分が凝縮水と反応し、硫化水素水となってEGR通路108及び給気供給通路104の部品を腐食させるという問題がある。   In the air cooler 110, when the condensed water generated at the time of air supply cooling flows into the air supply port of the engine 100, the air supply valve is rapidly cooled, so that the air supply valve may be damaged due to thermal contraction or the like. In addition, in the case of an engine having an EGR function, an EGR cooler 114 is provided to cool the EGR gas. However, when the condensed water generated during the EGR gas cooling flows into the supply port, the supply valve is rapidly cooled. As a result, the supply valve may be damaged. Further, when a sulfur content is present in the fuel, there is a problem that the sulfur content reacts with the condensed water and becomes hydrogen sulfide water, which corrodes the parts of the EGR passage 108 and the air supply passage 104.

特開平8−144731号公報Japanese Patent Laid-Open No. 8-144473 特開2004−100508号公報JP 2004-100508 A

特許文献1に開示されたエアクーラも含めて、従来のエアクーラは、伝熱管の表面に発生した凝縮水が下方に落ちにくい構造になっている。図7にこのようなエアクーラの構成を示す。図7において、従来のエアクーラ120は、給気流路aを挟んで左右に入口ヘッダ122と出口ヘッダ124とが向かい合わせに配置され、入口ヘッダ122に冷却水流入管126が接続され、出口ヘッダ124に冷却水流出管128が接続されている。   The conventional air cooler including the air cooler disclosed in Patent Document 1 has a structure in which the condensed water generated on the surface of the heat transfer tube does not easily fall downward. FIG. 7 shows the configuration of such an air cooler. In FIG. 7, the conventional air cooler 120 has an inlet header 122 and an outlet header 124 facing each other on both sides of the air supply channel a, and a cooling water inflow pipe 126 is connected to the inlet header 122. A cooling water outflow pipe 128 is connected.

入口ヘッダ122と出口ヘッダ124との間には、多数の伝熱管130が重力方向と交差する水平方向に架設され、伝熱管130には熱交換促進用のフィン132が装着されている。伝熱管130の間に給気流路asが形成され、給気は紙面の手前から奥に向かって流れている。冷却水流入管126から入口ヘッダ122に冷却水wが供給され、冷却水wは入口ヘッダ122から各伝熱管130を経て出口ヘッダ124に入り、その後冷却水流出管128から排出される。   A large number of heat transfer tubes 130 are installed between the inlet header 122 and the outlet header 124 in the horizontal direction intersecting the direction of gravity, and the heat transfer tubes 130 are provided with fins 132 for promoting heat exchange. An air supply flow path as is formed between the heat transfer tubes 130, and the air supply flows from the front side of the paper toward the back. Cooling water w is supplied from the cooling water inflow pipe 126 to the inlet header 122, and the cooling water w enters the outlet header 124 through the heat transfer pipes 130 from the inlet header 122, and is then discharged from the cooling water outflow pipe 128.

給気に含まれる水蒸気は、伝熱管130と接触して凝縮し、伝熱管130の表面に凝縮水となって付着するが、従来のエアクーラ120では、凝縮水が落下しにくい構造となっている。特に、伝熱管130にフィン132などが装着されていると、伝熱管130の表面に発生した凝縮水がフィン132に妨げられて、さらに流れにくい構造になっている。そのため、凝縮水が伝熱管130の表面に長く滞留し、伝熱管130を腐食させるおそれがあると共に、伝熱管130に付着した凝縮水が蒸発して給気に再混入するおそれがある。
これを防止するため、凝縮水を別途除去するミストセパレータを設けた場合には、その分設備コストが高価になる。
The water vapor contained in the supply air condenses in contact with the heat transfer tube 130 and adheres to the surface of the heat transfer tube 130 as condensed water, but the conventional air cooler 120 has a structure in which the condensed water does not easily fall. . In particular, when fins 132 or the like are attached to the heat transfer tube 130, the condensed water generated on the surface of the heat transfer tube 130 is blocked by the fins 132, and the structure is more difficult to flow. Therefore, the condensed water stays on the surface of the heat transfer tube 130 for a long time, and the heat transfer tube 130 may be corroded, and the condensed water attached to the heat transfer tube 130 may evaporate and be mixed into the supply air.
In order to prevent this, when a mist separator for separately removing condensed water is provided, the equipment cost is increased accordingly.

本発明は、かかる従来技術の課題に鑑み、給気通路に設けられたエアクーラにおいて、簡素かつ低コストな構成で発生した凝縮水を速やかに除去し、給気弁の損傷や、EGR通路又は給気通路に設けられた部品類の腐食を防止し、エンジンの信頼性を確保することを目的とする。   In view of the problems of the prior art, the present invention quickly removes condensed water generated in a simple and low-cost configuration in an air cooler provided in an air supply passage, and damages to an air supply valve, an EGR passage, or an air supply passage. The purpose is to prevent the corrosion of the parts provided in the air passage and to ensure the reliability of the engine.

かかる目的を達成するため、本発明のエンジン給気冷却装置は、エンジンに給気する給気管に設けられ、給気を冷却水によって冷却するエンジン給気冷却装置において、給気流路を挟んで上下に対向配置された上部ヘッダ及び下部ヘッダと、下部ヘッダに設けられた冷却水流入管及び上部ヘッダに設けられた冷却水流出管と、上下ヘッダ間に互いに間隔をおいて重力方向に並設され、給気流れ方向に沿って複数列の伝熱管列を構成するように配置された伝熱管と、を備え、給気流路に面した前記下部ヘッダの上面を給気流れ方向下流側に向かって下方に傾斜した傾斜面とし、該傾斜面の下流側に排水口を設けているものである。   In order to achieve this object, an engine air supply and cooling device according to the present invention is provided in an air supply pipe for supplying air to an engine, and is an engine air supply and cooling device that cools supply air using cooling water. The upper header and the lower header arranged opposite to each other, the cooling water inflow pipe provided in the lower header and the cooling water outflow pipe provided in the upper header, and arranged in parallel in the direction of gravity with a space between the upper and lower headers, A heat transfer tube arranged so as to constitute a plurality of rows of heat transfer tubes along the supply air flow direction, and the upper surface of the lower header facing the supply air flow path is directed downward toward the downstream side in the supply air flow direction And a drain outlet is provided on the downstream side of the inclined surface.

エアクーラで給気は伝熱管と衝突し、冷却され、露点温度以下となったとき、凝縮水が発生する。発生した凝縮水は伝熱管の表面に捕捉される。本発明装置では、伝熱管を重力方向(主として上下方向)に設けているので、伝熱管の表面に付着した凝縮水をスムーズに下方へ落下させることができる。なお、伝熱管の表面には、凝縮水の落下を妨げる構造物を装着しないようにする。例えば、伝熱管表面に熱交換促進用フィンを装着する場合でも、凝縮水の落下を妨げない構造とする。   In the air cooler, the supply air collides with the heat transfer tube, and when it is cooled and becomes below the dew point temperature, condensed water is generated. The generated condensed water is captured on the surface of the heat transfer tube. In this invention apparatus, since the heat exchanger tube is provided in the gravitational direction (mainly up-down direction), the condensed water adhering to the surface of the heat exchanger tube can be smoothly dropped below. Note that a structure that prevents the condensed water from falling is not attached to the surface of the heat transfer tube. For example, even when heat exchange promoting fins are attached to the surface of the heat transfer tube, the structure does not hinder the fall of condensed water.

また、下部ヘッダに冷却水流入管が設けられ、上下ヘッダに冷却水排出管が設けられているので、冷却水が伝熱管に下方から流入する。そのため、伝熱管内での冷却水の滞留時間を十分確保できるので、給気と冷却水との熱交換量を増大できる。
また、下部ヘッダの上面を給気流れ方向下流側に向かって下方に傾斜した傾斜面とし、該傾斜面の下流側に排水口を設けているので、下方に落下した凝縮水は、傾斜面上をつたって速やかに給気流れ方向下流側に流れ、排水口から外部に流出させることができる。
Further, since the cooling water inflow pipe is provided in the lower header and the cooling water discharge pipe is provided in the upper and lower headers, the cooling water flows into the heat transfer pipe from below. For this reason, a sufficient residence time of the cooling water in the heat transfer tube can be secured, so that the amount of heat exchange between the supply air and the cooling water can be increased.
In addition, since the upper surface of the lower header is an inclined surface that is inclined downward toward the downstream side in the air supply flow direction, and a drain outlet is provided on the downstream side of the inclined surface, the condensed water that has dropped down Can flow quickly to the downstream side in the air supply flow direction, and flow out to the outside through the drain port.

そのため、給気冷却により発生した凝縮水が確実に給気冷却装置の外部に排出されるので、凝縮水による給気弁等の損傷や、EGR通路又は給気通路に設けられた部品類の腐食を防止し、エンジンの信頼性を確保することができる。
また、凝縮水が伝熱管から速やかに除去されるので、凝縮水が伝熱管を腐食させるおそれがなくなると共に、伝熱管の表面に付着した凝縮水が再蒸発して給気に再混入するおそれがなくなる。
Therefore, the condensed water generated by the supply air cooling is surely discharged to the outside of the supply air cooling device, so that damage to the supply valve or the like due to the condensed water, or corrosion of parts provided in the EGR passage or the supply passage. Can be prevented, and the reliability of the engine can be ensured.
In addition, since the condensed water is quickly removed from the heat transfer tube, there is no possibility that the condensed water corrodes the heat transfer tube, and there is a risk that the condensed water adhering to the surface of the heat transfer tube will re-evaporate and be mixed into the supply air. Disappear.

本発明装置において、伝熱管が給気流れ方向に沿って千鳥足状に配置されているとよい。伝熱管がこのように配置されているため、給気が伝熱管と接触する確率が高くなり、給気中の湿分が上流側の伝熱管で捕捉されないときでも、下流側の伝熱管で捕捉できる確率が高くなる。そのため、伝熱管による給気中の湿分の捕捉効果を向上できる。   In the device of the present invention, the heat transfer tubes may be arranged in a staggered pattern along the air supply flow direction. Since the heat transfer tubes are arranged in this way, there is a high probability that the supply air will come into contact with the heat transfer tubes, and even when moisture in the supply air is not captured by the upstream heat transfer tubes, it is captured by the downstream heat transfer tubes. Probability increases. For this reason, it is possible to improve the effect of capturing moisture in the air supply by the heat transfer tube.

本発明装置において、給気流れ方向上流側に配置された伝熱管列の各伝熱管の給気との熱交換量が、給気流れ方向下流側に配置された伝熱管列の各伝熱管より大きくなるように構成されているとよい。これによって、給気を露点温度以下に冷却する場合において、上流側伝熱管で凝縮水の発生が活発となり、相対的に下流側に配置された伝熱管で凝縮水の発生が抑制される。このように、上流側伝熱管で凝縮水をより多く発生させ、上流側伝熱管で発生した凝縮水は下流側伝熱管に捕捉可能にしたので、凝縮水は上流側で発生するほど、伝熱管に捕捉される確率が高くなる。
これにより、給気上流側から下流側に亘って冷却効果を一定した場合と比べて、全体として、伝熱管による凝縮水の捕捉効果を向上できる。
In the apparatus of the present invention, the amount of heat exchange with the supply air of each heat transfer tube of the heat transfer tube array arranged on the upstream side in the supply air flow direction is from each heat transfer tube of the heat transfer tube array arranged on the downstream side in the supply air flow direction. It is good to be comprised so that it may become large. As a result, when the supply air is cooled below the dew point temperature, the generation of condensed water becomes active in the upstream heat transfer tube, and the generation of condensed water is suppressed relatively in the heat transfer tube arranged on the downstream side. In this way, more condensed water is generated in the upstream heat transfer tube, and the condensed water generated in the upstream heat transfer tube can be trapped in the downstream heat transfer tube. The probability that it will be captured is increased.
Thereby, compared with the case where the cooling effect is fixed from the supply air upstream side to the downstream side, the trapping effect of the condensed water by the heat transfer tube can be improved as a whole.

上流側伝熱管で下流側伝熱管より熱交換量を多くする手段として、例えば、上流側伝熱管の冷却水の流速を下流側より大きくするとよい。この手段は、比較的簡素でかつ冷却効果の調整が容易になる。冷却水の流速を大きくするためには、例えば、伝熱管に設けたオリフィス径を大きくする等の手段がある。   As a means for increasing the amount of heat exchange in the upstream side heat transfer tube as compared with the downstream side heat transfer tube, for example, the flow rate of the cooling water in the upstream side heat transfer tube may be larger than that on the downstream side. This means is relatively simple and the adjustment of the cooling effect is easy. In order to increase the flow rate of the cooling water, for example, there are means such as increasing the orifice diameter provided in the heat transfer tube.

別な手段として、上流側伝熱管の内面又は外面を、下流側伝熱管と比べて粗くするとよい。伝熱管の内面又は外面を粗くすることで、冷却水又は給気の流れを乱すことができ、これによって、上流側伝熱管の冷却効果を相対的に大きくできる。
さらに、別な手段として、上流側伝熱管の流路面積を下流側伝熱管と比べて相対的に大きくするとよい。これによって、上流側伝熱管を流れる冷却水の温度上昇が小さくなり、上流側伝熱管の冷却効果を相対的に大きくできる。
As another means, the inner surface or outer surface of the upstream heat transfer tube may be made rougher than the downstream heat transfer tube. By roughening the inner surface or outer surface of the heat transfer tube, the flow of cooling water or supply air can be disturbed, and the cooling effect of the upstream heat transfer tube can be relatively increased.
Furthermore, as another means, the flow passage area of the upstream heat transfer tube may be relatively larger than that of the downstream heat transfer tube. Thereby, the temperature rise of the cooling water flowing through the upstream heat transfer tube is reduced, and the cooling effect of the upstream heat transfer tube can be relatively increased.

さらに別な手段として、上流側伝熱管を流れる冷却水の温度を下流側伝熱管と比べて、相対的に低温にするとよい。これによって、上流側伝熱管の冷却効果を相対的に大きくできる。冷却水の温度調整は比較的容易であるので、この手段により比較的容易に冷却効果を調整できるという長所がある。このため、例えば、上流側伝熱管と下流側伝熱管とを直列に接続し、上流側伝熱管で給気と熱交換した冷却水を、次に下流側伝熱管に供給するようにするとよい。これによって、簡単な配管構成で、上流側伝熱管の冷却水を下流側伝熱管より低温にできる。   As another means, the temperature of the cooling water flowing through the upstream heat transfer tube may be relatively low compared to the downstream heat transfer tube. Thereby, the cooling effect of the upstream heat transfer tube can be relatively increased. Since the temperature adjustment of the cooling water is relatively easy, there is an advantage that the cooling effect can be adjusted relatively easily by this means. For this reason, for example, the upstream side heat transfer tube and the downstream side heat transfer tube are connected in series, and the cooling water heat-exchanged with the supply air in the upstream side heat transfer tube is then supplied to the downstream side heat transfer tube. Thereby, the cooling water of the upstream heat transfer tube can be made lower in temperature than the downstream heat transfer tube with a simple piping configuration.

さらに、別な手段として、上流側に配置される伝熱管の本数を下流側伝熱管より相対的に多くし、上流側伝熱管の合計熱交換面積を下流側伝熱管より相対的に増やすようにしてもよい。これによって、上流側伝熱管の冷却効果を増大できる。   Further, as another means, the number of heat transfer tubes arranged on the upstream side is relatively larger than that of the downstream heat transfer tubes, and the total heat exchange area of the upstream heat transfer tubes is relatively increased compared to that of the downstream heat transfer tubes. May be. Thereby, the cooling effect of the upstream heat transfer tube can be increased.

さらに、別な手段として、上流側伝熱管に凝縮水の落下を阻害しない構造のフィンを付設して、上流側伝熱管の熱交換量を増大させ、冷却効果を高めるようにしてもよい。これに適用可能なフィンとして、例えば、フィンを螺旋状の円盤形状とし、かつ伝熱管の軸線方向に対するフィンの巻き付け数を減らし、伝熱管軸線に対するフィンの取付角を鋭角にするとよい。なお、フィンを設けることによって、凝縮水の捕捉効果も向上する。   Further, as another means, fins having a structure that does not inhibit the fall of the condensed water may be attached to the upstream heat transfer tube to increase the heat exchange amount of the upstream heat transfer tube and enhance the cooling effect. As fins applicable to this, for example, the fins may be formed into a spiral disk shape, the number of windings of the fins in the axial direction of the heat transfer tube may be reduced, and the mounting angle of the fins with respect to the heat transfer tube axis may be acute. In addition, the capture effect of condensed water improves by providing a fin.

また、本発明装置において、前記構成に加えて、冷却水流入管が下部ヘッダの給気流れ方向上流域に接続され、冷却水流出管が上部ヘッダの給気流れ方向下流側域に接続されているとよい。冷却水流入管が下部ヘッダの給気流れ方向上流域に接続されていると、冷却水流入管から給気流れ方向上流側伝熱管列までの流路長さを短くでき、下流側伝熱管列に流入する冷却水と比べて、低温の冷却水を上流側伝熱管列に供給できる。   Further, in the device according to the present invention, in addition to the above configuration, the cooling water inflow pipe is connected to the upstream region of the lower header in the air supply flow direction, and the cooling water outflow pipe is connected to the downstream region of the upper header in the air supply flow direction. Good. When the cooling water inflow pipe is connected to the upstream area of the lower header in the supply air flow direction, the flow path length from the cooling water inflow pipe to the upstream heat transfer pipe row in the supply air flow direction can be shortened, and the flow into the downstream heat transfer tube row Compared to the cooling water to be cooled, low-temperature cooling water can be supplied to the upstream heat transfer tube row.

これによって、冷却水流入管の下部ヘッダへの接続位置を選定するだけの簡単な手段で、上流側伝熱管列の給気との熱交換量を増大できる。また、冷却水流出管を上部ヘッダの給気流れ方向下流側域に接続したことで、冷却水流入管の配置との関係で、冷却水の給気冷却装置での流れ全般を円滑にできる。   Thereby, the amount of heat exchange with the supply air of the upstream heat transfer tube row can be increased by simple means of simply selecting the connection position of the cooling water inflow tube to the lower header. In addition, by connecting the cooling water outflow pipe to the downstream side area of the upper header in the air supply flow direction, the overall flow of the cooling water in the air supply / cooling apparatus can be made smooth in relation to the arrangement of the cooling water inflow pipe.

本発明装置の一具体例として、下部ヘッダの内部断面積が給気流れ方向上流側から下流側に向かって漸減され、全伝熱管の管径が同一であって、下部ヘッダの内部断面積の変化に対応させて給気流れ方向上流側伝熱管列の伝熱管数を下流側伝熱管列の伝熱管数より多くし、全伝熱管の1本当りの冷却水流量を同一に構成するとよい。   As one specific example of the apparatus of the present invention, the internal cross-sectional area of the lower header is gradually reduced from the upstream side to the downstream side in the air supply flow direction, the tube diameters of all the heat transfer tubes are the same, and the internal cross-sectional area of the lower header is Corresponding to the change, the number of heat transfer tubes in the upstream heat transfer tube row in the supply air flow direction may be made larger than the number of heat transfer tubes in the downstream heat transfer tube row, and the cooling water flow rate per one heat transfer tube may be configured to be the same.

これによって、上流側伝熱管列の給気と冷却水との熱交換量を下流側伝熱管列と比べて増大させながら、全伝熱管の1本当りの熱交換量を同一とすることができるので、全伝熱管の熱変形を略均一化できる。そのため、エアクーラ内で偏った熱変形が生じないので、伝熱管を含めたエアクーラの耐久性を向上できる。   Thereby, the heat exchange amount per one of all the heat transfer tubes can be made the same while increasing the heat exchange amount between the supply air and the cooling water of the upstream heat transfer tube row as compared with the downstream heat transfer tube row. Therefore, the thermal deformation of all the heat transfer tubes can be made substantially uniform. For this reason, uneven thermal deformation does not occur in the air cooler, so that the durability of the air cooler including the heat transfer tube can be improved.

本発明装置の別な具体例として、給気流れ方向上流側伝熱管列の各伝熱管は下流側伝熱管列の各伝熱管より本数を増やし、かつ下流側伝熱管列の伝熱管の管径を上流側伝熱管列より大きく構成するとよい。これによって、下流側伝熱管列の伝熱管では、伝熱管内面と冷却水との接触面積を低減できる。そのため、下流側伝熱管を流れる冷却水の圧損を低減でき、給気冷却装置の冷却水ポンプの駆動馬力を低減できる。   As another specific example of the apparatus of the present invention, each heat transfer tube of the upstream heat transfer tube array in the supply air flow direction has a larger number than each heat transfer tube of the downstream heat transfer tube array, and the diameter of the heat transfer tube of the downstream heat transfer tube array May be configured larger than the upstream heat transfer tube row. Thereby, in the heat transfer tube of the downstream heat transfer tube row, the contact area between the heat transfer tube inner surface and the cooling water can be reduced. Therefore, the pressure loss of the cooling water flowing through the downstream heat transfer pipe can be reduced, and the driving horsepower of the cooling water pump of the supply air cooling device can be reduced.

また、本発明のエンジンは、前記本発明の給気冷却装置を備えているので、本発明の給気冷却装置によって得られる作用効果を享受できる。そのため、給気弁の損傷や、EGR通路及び給気通路の構成部品の腐食を未然に防止でき、エンジンの信頼性を確保できる。   Moreover, since the engine of this invention is provided with the air supply cooling device of the said invention, it can enjoy the effect obtained by the air supply cooling device of this invention. Therefore, damage to the air supply valve and corrosion of the components of the EGR passage and the air supply passage can be prevented in advance, and the reliability of the engine can be ensured.

本発明のエンジン給気冷却装置によれば、エンジンに給気する給気管に設けられ、給気を冷却水によって冷却するエンジン給気冷却装置において、給気流路を挟んで上下に対向配置された上部ヘッダ及び下部ヘッダと、下部ヘッダに設けられた冷却水流入管及び上部ヘッダに設けられた冷却水流出管と、上下ヘッダ間に互いに間隔をおいて重力方向に並設され、給気流れ方向に沿って複数列の伝熱管列を構成するように配置された伝熱管と、を備え、給気流路に面した前記下部ヘッダの上面を給気流れ方向下流側に向かって下方に傾斜した傾斜面とし、該傾斜面の下流側に排水口を設けているので、伝熱管の表面に付着した凝縮水を速やかに下方へ落下させることができ、かつ下方に落下した凝縮水は、排水口から速やかに外部へ排出できる。そのため、給気弁の損傷や、EGR通路及び給気通路の構成部品の腐食を抑制でき、エンジンの信頼性を確保できる。   According to the engine air supply and cooling device of the present invention, the engine air supply and cooling device that is provided in the air supply pipe that supplies air to the engine and that cools the air supply with cooling water is disposed so as to face the upper and lower sides across the air supply passage. The upper header and the lower header, the cooling water inflow pipe provided in the lower header and the cooling water outflow pipe provided in the upper header, and the upper and lower headers are arranged in parallel in the gravitational direction, in the air supply flow direction. And a heat transfer tube arranged to form a plurality of rows of heat transfer tubes, and an inclined surface inclined downward on the upper surface of the lower header facing the air supply channel toward the downstream side in the air supply flow direction Since the drain outlet is provided on the downstream side of the inclined surface, the condensed water adhering to the surface of the heat transfer tube can be quickly dropped downward, and the condensed water falling downward can be quickly discharged from the drain outlet. Can be discharged outsideTherefore, damage to the air supply valve and corrosion of the components of the EGR passage and the air supply passage can be suppressed, and the reliability of the engine can be ensured.

また、前記本発明のエンジンは、前記本発明の給気冷却装置を備えているので、本発明の給気冷却装置と同様の作用効果を得ることができる。   Moreover, since the engine of the present invention includes the air supply cooling device of the present invention, the same effects as the air supply cooling device of the present invention can be obtained.

本発明装置の第1実施形態に係る給気冷却装置の正面視断面図である。It is a front view sectional view of the charge air cooling device concerning a 1st embodiment of the present invention device. 前記給気冷却装置の側面視断面図である。It is side view sectional drawing of the said air supply cooling device. 前記給気冷却装置の平面視断面図である。It is a top view sectional view of the above-mentioned air supply cooling device. 本発明装置の第2実施形態に係る給気冷却装置の斜視図である。It is a perspective view of the air supply cooling device which concerns on 2nd Embodiment of this invention apparatus. 本発明装置の第3実施形態に係る給気冷却装置の斜視図である。It is a perspective view of the air supply cooling device which concerns on 3rd Embodiment of this invention apparatus. 過給機付きディーゼルエンジンの一般的な給排気系統を示す系統図である。It is a systematic diagram showing a general supply and exhaust system of a diesel engine with a supercharger. 従来のエンジン給気冷却装置を示す正面視断面図である。It is front view sectional drawing which shows the conventional engine air supply cooling device.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(実施形態1)
本発明装置の第1実施形態を図1〜図3に基づいて説明する。図1〜図3において、本実施形態に係るエンジンのエアクーラ10は、重力方向上下位置に下部ヘッダ12と上部ヘッダ14とが対面するように配設され、これらヘッダ間及び側壁16及び18間に、給気流路asが形成されている。給気は紙面の手前から奥方向に流れる。下部ヘッダ12の給気流れ方向上流側域に冷却水流入管20が接続され、上部ヘッダ14の給気流れ方向下流側域に冷却水流出管22が接続されている。上下ヘッダ間には多数の伝熱管24が架設され、全伝熱管は同径であり、かつ各伝熱管は互いに平行に配置されている。
(Embodiment 1)
1st Embodiment of this invention apparatus is described based on FIGS. 1-3. 1 to 3, the air cooler 10 of the engine according to the present embodiment is disposed so that the lower header 12 and the upper header 14 face each other at the vertical position in the gravity direction, and between these headers and between the side walls 16 and 18. The air supply flow path as is formed. The air supply flows from the front of the page to the back. A cooling water inflow pipe 20 is connected to the upstream side area of the lower header 12 in the air supply flow direction, and a cooling water outflow pipe 22 is connected to the downstream area of the upper header 14 in the air supply flow direction. A large number of heat transfer tubes 24 are installed between the upper and lower headers, all the heat transfer tubes have the same diameter, and the heat transfer tubes are arranged in parallel to each other.

冷却水は矢印b方向に流れ、冷却水は冷却水流入管20から下部ヘッダ12に流入し、伝熱管24内を下から上へ流れ、上部ヘッダ14に到達し、その後冷却水流出管22から排出される。一方、給気は矢印a方向に流れ、エアクーラ10内の給気流路asを通る。給気が給気流路asを通るとき、伝熱管24と接触し冷却されて、図示省略の給気通路を経てエンジンの給気ポートに供給される。   The cooling water flows in the direction of the arrow b, and the cooling water flows from the cooling water inflow pipe 20 into the lower header 12, flows from the bottom to the top in the heat transfer pipe 24, reaches the upper header 14, and then is discharged from the cooling water outflow pipe 22. Is done. On the other hand, the air supply flows in the direction of arrow a and passes through the air supply flow path as in the air cooler 10. When the supply air passes through the supply air passage as, it is cooled by contacting the heat transfer tube 24 and supplied to the supply port of the engine through an unillustrated supply passage.

図2に示すように、下部ヘッダ12の上面12a及び上部ヘッダ14の下面14aは、給気流路asに面している。上部ヘッダ14の下面14aは、水平方向に配置され、下部ヘッダ12の上面12aは給気流れ方向下流側に向かって下方に傾斜している。エアクーラ10の給気流れ方向下流側には給気ボリューム25が形成されている。上面12aの下流側端付近に、排水口26が設けられ、排水口26には排水管28が接続されている。図3に示すように、排水口26は、給気流路asの全幅に亘って設けられている。   As shown in FIG. 2, the upper surface 12a of the lower header 12 and the lower surface 14a of the upper header 14 face the air supply flow path as. The lower surface 14a of the upper header 14 is disposed in the horizontal direction, and the upper surface 12a of the lower header 12 is inclined downward toward the downstream side in the air supply flow direction. An air supply volume 25 is formed on the downstream side of the air cooler 10 in the air supply flow direction. A drain outlet 26 is provided near the downstream end of the upper surface 12 a, and a drain pipe 28 is connected to the drain outlet 26. As shown in FIG. 3, the drain port 26 is provided over the entire width of the air supply channel as.

図3に示すように、伝熱管24は、給気流れ方向に沿って配置された5列の伝熱管列24a〜24eで構成されている。各伝熱管列において、伝熱管24は等間隔に配置されている。給気流れ方向上流側から視て、下流側伝熱管が上流側伝熱管の間に配置され、所謂「千鳥足状」に配置されている。本実施形態の伝熱管24には熱交換量促進用のフィンは装着されていない。   As shown in FIG. 3, the heat transfer tube 24 is composed of five rows of heat transfer tube rows 24 a to 24 e arranged along the supply air flow direction. In each heat transfer tube row, the heat transfer tubes 24 are arranged at equal intervals. When viewed from the upstream side in the air supply flow direction, the downstream heat transfer tubes are arranged between the upstream heat transfer tubes, and are arranged in a so-called “staggered” shape. The heat transfer tubes 24 of this embodiment are not equipped with fins for promoting heat exchange.

給気が給気流路asを通るとき、伝熱管24と接触して冷却される。給気が露点温度以下に冷却されたとき、凝縮水が発生する。凝縮水は伝熱管24の表面に付着し、伝熱管の表面に沿って下方に流れ落ちる。下部ヘッダ12の上面12aに落下した凝縮水は、傾斜した上面12aをつたって給気流れ方向下流側に流れ、排水口26から排水管28に排出される。   When the supply air passes through the supply air flow path as, it is cooled in contact with the heat transfer tube 24. Condensed water is generated when the supply air is cooled below the dew point temperature. The condensed water adheres to the surface of the heat transfer tube 24 and flows down along the surface of the heat transfer tube. The condensed water falling on the upper surface 12a of the lower header 12 flows on the inclined upper surface 12a downstream in the air supply flow direction, and is discharged from the drain port 26 to the drain pipe 28.

本実施形態によれば、すべての伝熱管24を重力方向、即ち上下方向に設けているので、伝熱管24の表面に付着した凝縮水は、下方へ(図3に示した矢印c方向へ)スムーズに落下させることができる。また、下部ヘッダ12の上面12aに落下した冷却水は、傾斜した上面12aをつたって速やかに排水口26に到達し、排水管28から外部へ排出できる。   According to this embodiment, since all the heat transfer tubes 24 are provided in the direction of gravity, that is, the vertical direction, the condensed water adhering to the surface of the heat transfer tubes 24 is downward (in the direction of arrow c shown in FIG. 3). It can be dropped smoothly. Further, the cooling water that has dropped onto the upper surface 12a of the lower header 12 reaches the drain port 26 quickly through the inclined upper surface 12a and can be discharged from the drain pipe 28 to the outside.

また、下部ヘッダ12に冷却水流入管20が設けられ、上部ヘッダ14に冷却水流出管22が設けられているので、冷却水が伝熱管24に下方から流入する。そのため、伝熱管内で冷却水が滞留する時間を十分確保できるので、給気と冷却水との熱交換量を増大できる。そのため、給気中の水蒸気の凝縮効果を高めることができると共に、発生した凝縮水を確実にエアクーラ10の外部に排出できるので、凝縮水による給気弁等の損傷や、EGR通路及び給気通路の構成部品の腐食を抑制でき、エンジンの信頼性を確保できる。   Further, since the cooling water inflow pipe 20 is provided in the lower header 12 and the cooling water outflow pipe 22 is provided in the upper header 14, the cooling water flows into the heat transfer pipe 24 from below. Therefore, a sufficient time for the cooling water to stay in the heat transfer tube can be secured, so that the heat exchange amount between the supply air and the cooling water can be increased. Therefore, the condensation effect of water vapor in the supply air can be enhanced, and the generated condensed water can be reliably discharged to the outside of the air cooler 10, so that damage to the supply valve or the like due to the condensed water, the EGR passage, and the supply passage The corrosion of the component parts of the engine can be suppressed, and the reliability of the engine can be secured.

また、凝縮水が伝熱管24の表面から速やかに除去されるので、凝縮水が伝熱管を腐食させるおそれがなくなると共に、凝縮水が再蒸発して給気に再混入するおそれもなくなる。
また、各伝熱管列の関係において、各伝熱管24の配置が所謂「千鳥足状」に配置されているので、給気中で凝縮した湿分が上流側の伝熱管で捕捉されないときでも、下流側の伝熱管で捕捉できる確率が高くなる。そのため、伝熱管による給気中の湿分の捕捉効果を向上できる。
Further, since the condensed water is quickly removed from the surface of the heat transfer tube 24, there is no possibility that the condensed water will corrode the heat transfer tube, and there is no possibility that the condensed water will re-evaporate and be mixed into the supply air.
In addition, in the relationship between the heat transfer tube rows, the heat transfer tubes 24 are arranged in a so-called “staggered” shape, so that even when moisture condensed in the supply air is not captured by the upstream heat transfer tubes, The probability that it can be captured by the heat transfer tube on the side increases. For this reason, it is possible to improve the effect of capturing moisture in the air supply by the heat transfer tube.

(実施形態2)
次に、本発明装置の第2実施形態を図4により説明する。図4において、本実施形態のエアクーラ30は、下部ヘッダ32の内部断面積が、給気流れ方向上流側から下流側に向かって漸減されている。上部ヘッダ34の断面積は、前記第1実施形態と同様に、給気流れ方向上流側から下流側に向かって同一に構成されている。冷却水流入管40は下部ヘッダ32の給気流れ方向上流側に接続され、冷却水流出管42は上部ヘッダ34の給気流れ方向下流側に接続されている。
(Embodiment 2)
Next, a second embodiment of the device of the present invention will be described with reference to FIG. 4, in the air cooler 30 of the present embodiment, the internal cross-sectional area of the lower header 32 is gradually reduced from the upstream side toward the downstream side in the air supply flow direction. Similar to the first embodiment, the cross-sectional area of the upper header 34 is configured to be the same from the upstream side toward the downstream side in the air supply flow direction. The cooling water inflow pipe 40 is connected to the upstream side of the lower header 32 in the air supply flow direction, and the cooling water outflow pipe 42 is connected to the upstream side of the upper header 34 in the air supply flow direction.

第1実施形態と同様に、給気流路asに面した下部ヘッダ32の上面32aは給気流れ方向下流側に向かって下方に傾斜した傾斜面を形成し、上部ヘッダ34の下面34aは、水平方向に配置されている。また、給気流路asを区画する両側壁36及び38も給気流れ方向に沿って平行に配置されている。また、第1実施形態と同様に、傾斜した上面32aの下流側端付近に、給気流路asの全幅に亘って排水口46が設けられ、排水口46の中央に排水管48が接続されている。   Similar to the first embodiment, the upper surface 32a of the lower header 32 facing the air supply flow path as forms an inclined surface inclined downward toward the downstream side in the air supply flow direction, and the lower surface 34a of the upper header 34 is horizontal. Arranged in the direction. Further, both side walls 36 and 38 that define the air supply flow path as are also arranged in parallel along the air supply flow direction. Similarly to the first embodiment, a drain port 46 is provided over the entire width of the air supply channel as near the downstream end of the inclined upper surface 32a, and a drain pipe 48 is connected to the center of the drain port 46. Yes.

本実施形態の伝熱管44は、4列の伝熱管列24a〜24dで構成されている。また、各伝熱管列の配置関係は、前記第1実施形態と同様に、千鳥足状に配置され、全伝熱管は同一径で構成されている。そして、給気流れ方向上流側の伝熱管列の本数を多くして、各伝熱管列毎に上流側ほど伝熱面積を大きくかつ冷却水量が多くなるようにしている。また、上流側伝熱管列ほど多い冷却水量を流入させるため、冷却水流入管40を下部ヘッダ32の給気流れ方向上流側に接続すると共に、下部ヘッダ32の流路断面積を下流側に向かって漸減している。これによって、各伝熱管列毎に上流側ほど給気と冷却水との熱交換量が多くなるようにしている。   The heat transfer tube 44 of the present embodiment is composed of four rows of heat transfer tube rows 24a to 24d. Moreover, the arrangement | positioning relationship of each heat exchanger tube row | line | column is arrange | positioned in zigzag form like the said 1st Embodiment, and all the heat exchanger tubes are comprised by the same diameter. Then, the number of heat transfer tube rows on the upstream side in the supply air flow direction is increased so that the heat transfer area increases and the amount of cooling water increases on the upstream side for each heat transfer tube row. Further, in order to allow a larger amount of cooling water to flow into the upstream side heat transfer tube row, the cooling water inflow tube 40 is connected to the upstream side in the air supply flow direction of the lower header 32 and the flow path cross-sectional area of the lower header 32 is directed toward the downstream side. It is gradually decreasing. Thus, the heat exchange amount between the supply air and the cooling water is increased toward the upstream side for each heat transfer tube row.

本実施形態によれば、第1実施形態で得られる作用効果に加えて、上流側の伝熱管列ほど給気と冷却水との熱交換量が多くなるように構成しているので、上流側伝熱管列で多くの凝縮水が発生する。相対的に下流側伝熱管列で発生する凝縮水は少なくなり、かつ上流側伝熱管列で発生し、上流側伝熱管列で細くされなかった凝縮水は、下流側伝熱管列で捕捉される確率が高くなる。そのため、給気流れ方向上流側から下流側に亘って各伝熱管列の冷却効果を同一とした第1実施形態と比べて、全体として、伝熱管44による凝縮水の捕捉効果を高めることができる。   According to the present embodiment, in addition to the effects obtained in the first embodiment, the upstream heat transfer tube array is configured to increase the amount of heat exchange between the supply air and the cooling water. A lot of condensed water is generated in the heat transfer tube rows. The condensed water generated in the downstream heat transfer tube row is relatively small, and the condensed water generated in the upstream heat transfer tube row and not thinned in the upstream heat transfer tube row is captured by the downstream heat transfer tube row. Probability increases. Therefore, as compared with the first embodiment in which the cooling effect of each heat transfer tube array is the same from the upstream side to the downstream side in the supply air flow direction, the condensate trapping effect by the heat transfer tube 44 can be enhanced as a whole. .

さらに、冷却水流入管40は下部ヘッダ32の給気流れ方向上流側に接続され、冷却水流出管42は上部ヘッダ34の給気流れ方向下流側に接続されているので、上流側伝熱管列ほど給気と冷却水との熱交換量を増大させながら、冷却水のエアクーラ30での流れを円滑にすることができる。   Further, the cooling water inflow pipe 40 is connected to the upstream side of the lower header 32 in the air supply flow direction, and the cooling water outflow pipe 42 is connected to the downstream side of the upper header 34 in the air supply flow direction. The flow of the cooling water in the air cooler 30 can be made smooth while increasing the amount of heat exchange between the supply air and the cooling water.

(実施形態3)
次に、本発明装置の第3実施形態を図5に基づいて説明する。本実施形態と前記第2実施形態とで異なる構成は、次の通りである。即ち、本実施形態では、第1実施形態のように、下部ヘッダ32の給気流れ方向流路断面積を等しくしている。また、給気流れ方向上流側から下流側の伝熱管列ほど伝熱管の本数を少なくし、伝熱管44の管径を大きくしている。上流側の伝熱管列ほど伝熱面積を多くし、給気と冷却水との熱交換量を多くしているのは、第2実施形態と同じである。
(Embodiment 3)
Next, 3rd Embodiment of this invention apparatus is described based on FIG. A different configuration between the present embodiment and the second embodiment is as follows. That is, in the present embodiment, the cross-sectional areas of the lower header 32 in the supply air flow direction are made equal as in the first embodiment. Further, the number of heat transfer tubes is decreased from the upstream side to the downstream side of the heat supply flow direction, and the tube diameter of the heat transfer tube 44 is increased. As in the second embodiment, the upstream heat transfer tube array has a larger heat transfer area and a larger amount of heat exchange between the supply air and the cooling water.

本実施形態では、下流側伝熱管の管径を大きくしているので、下流側伝熱管列の伝熱管の数を少なくできる。そのため、下流側伝熱管列の伝熱管を流れる冷却水の圧損を大幅に低減できる。従って、本実施形態では、第2実施形態で得られる作用効果に加えて、エアクーラ30の冷却水のポンプ駆動馬力を低減できる。   In this embodiment, since the tube diameter of the downstream heat transfer tube is increased, the number of heat transfer tubes in the downstream heat transfer tube row can be reduced. Therefore, the pressure loss of the cooling water flowing through the heat transfer tubes in the downstream heat transfer tube row can be greatly reduced. Therefore, in this embodiment, in addition to the effect obtained by 2nd Embodiment, the pump drive horsepower of the cooling water of the air cooler 30 can be reduced.

本発明によれば、エンジンの給気冷却装置で凝縮水を確実に捕捉し、給気弁等の腐食や、EGR通路、給気通路に設けられた部品類の腐食を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, a condensate can be reliably capture | acquired with the air supply cooling device of an engine, and corrosion of an air supply valve etc., and the corrosion of components provided in the EGR passage and the air supply passage can be suppressed.

10,30 エアクーラ(給気冷却装置)
12,32 下部ヘッダ
14、34 上下ヘッダ
16,18,36,38 側壁
20,40 冷却水流入管
22,42 冷却水流出管
24,44 伝熱管
24a〜e、44a〜d 伝熱管列
25 給気ボリューム
26 排水口
28 排水管
a 給気流れ方向
b 冷却水流れ方向
as 給気流路
10,30 Air cooler (supply air cooling device)
12, 32 Lower header 14, 34 Upper and lower header 16, 18, 36, 38 Side wall 20, 40 Cooling water inflow pipe 22, 42 Cooling water outflow pipe 24, 44 Heat transfer pipe 24a-e, 44a-d Heat transfer pipe array 25 Air supply volume 26 Drain port 28 Drain pipe a Supply air flow direction b Cooling water flow direction as Supply air flow path

Claims (7)

エンジンに給気する給気管に設けられ、給気を冷却水によって冷却するエンジン給気冷却装置において、
給気流路を挟んで上下に対向配置された上部ヘッダ及び下部ヘッダと、
下部ヘッダに設けられた冷却水流入管及び上部ヘッダに設けられた冷却水流出管と、
上下ヘッダ間に互いに間隔をおいて重力方向に並設され、給気流れ方向に沿って複数列の伝熱管列を構成するように配置された伝熱管と、を備え、
給気流路に面した前記下部ヘッダの上面を給気流れ方向下流側に向かって下方に傾斜した傾斜面とし、該傾斜面の下流側に排水口を設けていることを特徴とするエンジン給気冷却装置。
In an engine air supply and cooling device that is provided in an air supply pipe that supplies air to an engine and cools the supply air using cooling water
An upper header and a lower header that are vertically opposed to each other across the air supply channel;
A cooling water inflow pipe provided in the lower header and a cooling water outflow pipe provided in the upper header;
A heat transfer tube arranged in parallel in the direction of gravity with a space between the upper and lower headers and arranged to form a plurality of heat transfer tube rows along the air supply flow direction,
An engine air supply characterized in that an upper surface of the lower header facing the air supply flow path is an inclined surface inclined downward toward the downstream side in the supply air flow direction, and a drain outlet is provided on the downstream side of the inclined surface. Cooling system.
前記伝熱管が給気流れ方向に沿って千鳥足状に配置されていることを特徴とする請求項1に記載のエンジン給気冷却装置。   The engine air supply / cooling device according to claim 1, wherein the heat transfer tubes are arranged in a staggered pattern along a supply air flow direction. 給気流れ方向上流側に配置された伝熱管列の各伝熱管の給気との熱交換量が、給気流れ方向下流側に配置された伝熱管列の各伝熱管より大きくなるように構成されていることを特徴とする請求項1又は2に記載のエンジン給気冷却装置。   Configured so that the amount of heat exchange with the heat supply of each heat transfer tube in the heat transfer tube array arranged upstream in the supply air flow direction is greater than that of each heat transfer tube in the heat transfer tube array arranged downstream in the air supply flow direction The engine air supply and cooling device according to claim 1, wherein the engine air supply and cooling device is provided. 前記冷却水流入管が下部ヘッダの給気流れ方向上流域に接続され、前記冷却水流出管が上部ヘッダの給気流れ方向下流側域に接続されていることを特徴とする請求項3に記載のエンジン給気冷却装置。   The said cooling water inflow pipe is connected to the upstream area of the lower header in the air supply flow direction, and the cooling water outflow pipe is connected to the downstream area in the air supply flow direction of the upper header. Engine air supply cooling system. 前記下部ヘッダの内部断面積が給気流れ方向上流側から下流側に向かって漸減され、全伝熱管の管径が同一であって、下部ヘッダの内部断面積の変化に対応させて給気流れ方向上流側伝熱管列の伝熱管数を下流側伝熱管列の伝熱管数より多くし、全伝熱管の1本当りの冷却水流量を同一に構成したことを特徴とする請求項3又は4に記載のエンジン給気冷却装置。   The inner cross-sectional area of the lower header is gradually reduced from the upstream side to the downstream side in the air supply flow direction. The number of heat transfer tubes in the direction upstream side heat transfer tube row is made larger than the number of heat transfer tubes in the downstream side heat transfer tube row, and the cooling water flow rate per one of all heat transfer tubes is configured to be the same. The engine air supply and cooling device described in 1. 給気流れ方向上流側伝熱管列の伝熱管の本数を下流側伝熱管列より増やし、下流側伝熱管列の伝熱管の管径を上流側伝熱管列より大きく構成したことを特徴とする請求項3又は4に記載のエンジン給気冷却装置。   The number of heat transfer tubes in the upstream heat transfer tube row in the supply air flow direction is increased from that in the downstream heat transfer tube row, and the diameter of the heat transfer tube in the downstream heat transfer tube row is made larger than that in the upstream heat transfer tube row. Item 5. The engine air supply and cooling device according to Item 3 or 4. 請求項1〜6のいずれかの項に記載されたエンジン給気冷却装置を備えていることを特徴とするエンジン。   An engine comprising the engine air supply and cooling device according to any one of claims 1 to 6.
JP2010236365A 2010-10-21 2010-10-21 Engine air supply cooling device and engine equipped with the same Withdrawn JP2012087718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236365A JP2012087718A (en) 2010-10-21 2010-10-21 Engine air supply cooling device and engine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236365A JP2012087718A (en) 2010-10-21 2010-10-21 Engine air supply cooling device and engine equipped with the same

Publications (1)

Publication Number Publication Date
JP2012087718A true JP2012087718A (en) 2012-05-10

Family

ID=46259597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236365A Withdrawn JP2012087718A (en) 2010-10-21 2010-10-21 Engine air supply cooling device and engine equipped with the same

Country Status (1)

Country Link
JP (1) JP2012087718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485943A (en) * 2012-06-07 2014-01-01 三菱自动车工业株式会社 Condensation water drain control mechanism
KR101664081B1 (en) * 2015-06-29 2016-10-24 현대자동차 주식회사 Engine system having water cooled intercooler
US9995205B2 (en) 2015-09-14 2018-06-12 Hyundai Motor Company Condensed water discharge apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485943A (en) * 2012-06-07 2014-01-01 三菱自动车工业株式会社 Condensation water drain control mechanism
KR101664081B1 (en) * 2015-06-29 2016-10-24 현대자동차 주식회사 Engine system having water cooled intercooler
US9995205B2 (en) 2015-09-14 2018-06-12 Hyundai Motor Company Condensed water discharge apparatus

Similar Documents

Publication Publication Date Title
US9394825B2 (en) Charge air cooler internal condensation separator
JP4609243B2 (en) Exhaust gas recirculation device
KR20110105361A (en) Heat exchanger and method of manufacturing the same
US8662482B2 (en) Natural draft air cooled steam condenser and method
JP5958398B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6185349B2 (en) Intake gas cooling device for supercharged internal combustion engine
JP2009108761A (en) Intercooler
JP5112805B2 (en) EGR device
JP5267116B2 (en) Foreign material collection device
JP3744432B2 (en) Exhaust heat exchanger
JP2012087718A (en) Engine air supply cooling device and engine equipped with the same
JP2010156242A (en) Foreign material catching device
JP5141585B2 (en) Foreign matter collecting device with cooler
JP6749150B2 (en) EGR gas cooler and engine system
WO2022022119A1 (en) Egr system and vehicle
JP5923886B2 (en) Exhaust cooling device
EP3517769B1 (en) Engine intake and exhaust system and internal combustion engine
US10746138B2 (en) Hollow fin tube structure at inlet of EGR cooler
KR102047390B1 (en) EGR cooler with reinforcing protrusions for body shell
RU2282807C1 (en) Surface type heat exchanger
JP2019203421A (en) Ventilation device
JP2014051953A (en) Egr cooler
JP2010197005A (en) Complex heat exchanger
JP2010168929A (en) Egr device of internal combustion engine
JP2008088812A (en) Egr device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107