JP2012087018A - Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same - Google Patents

Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same Download PDF

Info

Publication number
JP2012087018A
JP2012087018A JP2010235870A JP2010235870A JP2012087018A JP 2012087018 A JP2012087018 A JP 2012087018A JP 2010235870 A JP2010235870 A JP 2010235870A JP 2010235870 A JP2010235870 A JP 2010235870A JP 2012087018 A JP2012087018 A JP 2012087018A
Authority
JP
Japan
Prior art keywords
mass
mixed powder
surface area
specific surface
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010235870A
Other languages
Japanese (ja)
Inventor
Masato Nishikawa
正人 西川
Taku Kawasaki
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010235870A priority Critical patent/JP2012087018A/en
Publication of JP2012087018A publication Critical patent/JP2012087018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a SiC-BN composite sintered compact exhibiting no color unevenness, and being good in processability, strength and heat resistance.SOLUTION: The SiC-BN composite sintered compact contains 10 to 40 mass% of boron nitride, 58 to 88 mass% of silicon carbide and 0.5 to <3 mass% of boron carbide or boron carbide and carbon, and has a relative density of ≥97%, a bending strength of ≥300 MPa, and a mass loss rate of ≤0.6 mass% after 10-hr heating at 2,000°C in Ar gas. The method for manufacturing a SiC-BN composite sintered compact includes hot-press sintering a mixed powder in a non-oxidizing atmosphere at a pressure of 10 to 50 MPa at a temperature of 1,850 to 2,150°C for a holding time of 1 to 6 hours, the mixed powder containing 10 to 40 mass% of the boron nitride having a specific surface area of ≥10 m/g and an oxygen content of 18.5×(a BN mass% in the mixed powder), 58 to 88 mass% of the silicon carbide having a specific surface area of ≥7 m/g, and ≥0.5 to <3 mass% of boron carbide or boron carbide and carbon, and having an oxygen amount of ≤1.20 mass%, and a specific surface area of 8 to 45 m/g.

Description


本発明は、窒化硼素/炭化珪素複合焼結体に関するものである。

The present invention relates to a boron nitride / silicon carbide composite sintered body.

炭化珪素(SiC)は、耐熱性、耐薬品性、高熱伝導率、低比重、高硬度等の優れた特性を持つ事から、メカニカルシ−ル、高温構造材、半導体製造装置部材として幅広く実用化されている。特にMOCVD装置等の半導体装置部材においては、合成温度の高温化にともない部材へ求められる耐熱性も大きく上昇している。又、精密加工を要する部品も多くなっている。SiCは、高硬度であるため、機械加工性に乏しく、精密加工を行えば、更に高価な材料であった。この為、加工性に優れた窒化硼素(BN)を複合させる事により、加工性を向上させる研究開発(特許文献1、特許文献2、特許文献3及び特許文献4)が行われている。
しかし、BNとSiCを混合、焼結すると焼結体に色ムラが発生し、強度低下、耐熱性低下等の問題があった。
Silicon carbide (SiC) has excellent properties such as heat resistance, chemical resistance, high thermal conductivity, low specific gravity, and high hardness, so it is widely used as a mechanical seal, high-temperature structural material, and semiconductor manufacturing equipment member. Has been. In particular, in a semiconductor device member such as an MOCVD apparatus, the heat resistance required for the member is greatly increased as the synthesis temperature is increased. In addition, there are many parts that require precision machining. Since SiC has a high hardness, it has poor machinability and is a more expensive material if precision machining is performed. For this reason, research and development (Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4) for improving workability by combining boron nitride (BN) having excellent workability are being performed.
However, when BN and SiC are mixed and sintered, color unevenness occurs in the sintered body, causing problems such as a decrease in strength and a decrease in heat resistance.

特開2009−179507号公報JP 2009-179507 A 特開2008−222497号公報JP 2008-222497 A 特開2010−150101号公報JP 2010-150101 A 特開2010−153699号公報JP 2010-153699 A

本発明の目的は、色ムラの発生が無く、強度、耐熱性、加工性の良好なSiC−BN複合焼結体を提供することである。   An object of the present invention is to provide a SiC-BN composite sintered body that is free from color unevenness and has good strength, heat resistance, and workability.

上記課題を解決するため、本発明者がSiC−BN複合焼結体の色ムラについて調査した結果、色ムラの発生している部分は、酸素量が多く、強度、耐熱性に劣っており、焼結する前の混合粉末中の酸素量を規制してHP焼結する事により、色ムラが無く、強度、耐熱性の良好なSiC−BN複合焼結体が得られる事を見出した。
特許文献1は、焼結助剤(好ましい焼結助剤として酸化アルミニウム、酸化マグネシュウム、酸化イットリウム、酸化カルシュウム、及びランタノイド金属の酸化物、スピネル等の複合酸化物、並びに窒化アルミニウムなどの窒化物からなる郡から選ばれる一種又は二種以上)を3〜25質量%と多量に含有している為、色むらの発生、耐熱性低下をまねいていた。更に混合粉末の酸素を低減するため、1450〜1650℃での熱処理のためコストアップを招くものであった。本発明は、特許文献1とは焼結助剤の種類及び添加量が異なっている。又、本発明は、混合粉末を焼結する前に加熱処理を行わなくても、焼結体の特性が優れた窒化硼素/炭化珪素複合焼結体を得ることができる。
In order to solve the above problems, as a result of investigation of the color unevenness of the SiC-BN composite sintered body by the present inventor, the portion where the color unevenness is generated has a large amount of oxygen and is inferior in strength and heat resistance. It was found that a SiC-BN composite sintered body with no color unevenness and good strength and heat resistance can be obtained by controlling the amount of oxygen in the mixed powder before sintering and performing HP sintering.
Patent Literature 1 discloses a sintering aid (preferred sintering aids include aluminum oxide, magnesium oxide, yttrium oxide, calcium oxide, lanthanoid metal oxides, composite oxides such as spinel, and nitrides such as aluminum nitride. 1) or a mixture of two or more selected from the county, which is contained in a large amount of 3 to 25% by mass, it caused the occurrence of uneven color and reduced heat resistance. Further, in order to reduce oxygen in the mixed powder, the heat treatment at 1450 to 1650 ° C. caused an increase in cost. The present invention differs from Patent Document 1 in the type and amount of the sintering aid. Further, according to the present invention, a boron nitride / silicon carbide composite sintered body having excellent sintered body characteristics can be obtained without performing a heat treatment before sintering the mixed powder.

特許文献2においても、前処理として加熱処理を行った後、焼結する方法が行われている、この方法では、工程が増え、コストアップをもたらしていた。又、特許文献2の請求項1で示されている混合粉末の特性は、62.1<X+0.101×Y の式を満たすものである。ここで、Xは、混合粉末の比表面積(m/g)、Yは、混合粉末を焼結した複合材料のヤング率(GPa)である。本発明の混合粉末の比表面積は8〜45m/g、焼結体の弾性率は80〜150GPaであり、特許文献2の請求項1の式に本発明の混合粉末の数値を代入しても、式1が成り立たたず、本発明と特許文献2の混合粉末は異なるものである。
特許文献3は、混合粉末の酸素が増加し、色ムラが発生しやすく、本発明より耐熱性が劣るもの(2000℃での質量変化が大きい)であった。
特許文献4は、本発明と焼結助剤が事なる。又、色ムラも発生しやすく、本発明より耐熱性が劣るもの(2000℃での質量変化が大きい)であった。
Also in patent document 2, the method of sintering after performing heat processing as pre-processing is performed. In this method, the process increased and the cost was brought up. Further, the characteristics of the mixed powder shown in claim 1 of Patent Document 2 satisfy the formula 62.1 <X + 0.101 × Y. Here, X is the specific surface area (m 2 / g) of the mixed powder, and Y is the Young's modulus (GPa) of the composite material obtained by sintering the mixed powder. The specific surface area of the mixed powder of the present invention is 8 to 45 m 2 / g, the elastic modulus of the sintered body is 80 to 150 GPa, and the numerical value of the mixed powder of the present invention is substituted into the formula of claim 1 of Patent Document 2. However, Formula 1 does not hold, and the mixed powder of the present invention and Patent Document 2 are different.
In Patent Document 3, oxygen in the mixed powder increases, color unevenness is likely to occur, and heat resistance is inferior to that of the present invention (mass change at 2000 ° C. is large).
In Patent Document 4, the present invention and the sintering aid are different. Further, color unevenness was likely to occur, and the heat resistance was inferior to that of the present invention (mass change at 2000 ° C. was large).

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)窒化硼素10〜40質量%、炭化珪素58〜88質量%、炭化硼素又は炭化硼素と炭素が0.5〜3質量%未満の相対密度97%以上、曲げ強さ300MPa以上、Arガス中の2000℃で10時間加熱後の質量減少率が0.6質量%以下であることを特徴とするSiC−BN複合焼結体。
(2)比表面積10m/g以上で酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以下の窒化硼素が10〜40質量%、比表面積7m/g以上の炭化珪素が58〜88質量%、炭化硼素又は炭化硼素と炭素が0.5質量%以上3質量%未満の混合粉末であり、混合粉末の酸素量が1.20質量%以下、比表面積が8〜45m/gである混合粉末を非酸化性雰囲気で圧力10〜50MPa、温度1,850〜2,150℃、保持時間1〜6時間のホットプレス焼結を用いて焼結することを特徴と前記(1)に記載のSiC−BN複合焼結体の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) Boron nitride 10-40% by mass, silicon carbide 58-88% by mass, boron carbide or boron carbide and carbon in a relative density of 0.5% to less than 3% by mass 97% or more, bending strength 300 MPa or more, Ar gas A SiC-BN composite sintered body having a mass reduction rate of 0.6% by mass or less after heating at 2000 ° C. for 10 hours.
(2) Specific surface area of 10 m 2 / g or more and oxygen content of 18.5 × (BN mass% in mixed powder) −40 to 57 mass% of boron nitride 10 to 40 mass%, specific surface area of 7 m 2 / g or more Of silicon carbide is 58 to 88% by mass, boron carbide or a mixed powder of boron carbide and carbon of 0.5% by mass or more and less than 3% by mass, the oxygen content of the mixed powder is 1.20% by mass or less, and the specific surface area is Sintering the mixed powder of 8 to 45 m 2 / g in a non-oxidizing atmosphere using hot press sintering at a pressure of 10 to 50 MPa, a temperature of 1,850 to 2,150 ° C., and a holding time of 1 to 6 hours. Features and method for producing SiC-BN composite sintered body according to (1) above.

本発明によれば、色ムラが無く、良好な機械加工性、強度及び耐熱性を備えたSiC−BN燒結体を製造することができる。   According to the present invention, it is possible to produce a SiC-BN sintered body having no color unevenness and having good machinability, strength and heat resistance.

本願発明に用いる窒化硼素としては、非晶質の窒化硼素、乱層構造の窒化硼素、六方昌の窒化硼素のいずれも用いることが可能である。比表面積は10m/g以上で酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以下の微粉窒化硼素を用いることで色ムラが無く、高強度のSiC−BN燒結体を製造することができる。金属不純物は、出来る限り少ないものが好ましい。使用窒化硼素粉中の酸素含有量質量%と混合粉末中の窒化硼素質量%と焼結体の色ムラの関係を検討した結果、窒化硼素の酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以下を用いると色ムラが発生しない事が判った。
ここでの色ムラとは、焼結体の基準部と比較部(例えば中央部と外周部)との色差であり、JISZ8730に準じ、Lab系による色差△Eabを測定し、色差△Eabが1.0以上のものである。色差△Eab=1.0以上は、色の違いが容易に判別できるものである。
As the boron nitride used in the present invention, any of amorphous boron nitride, disordered layer boron nitride, and hexagonal boron nitride can be used. The specific surface area is 10 m 2 / g or more and the oxygen content is 18.5 × (BN mass% in the mixed powder) −0.657 or less. A sintered body can be produced. The metal impurities are preferably as few as possible. As a result of examining the relationship between the oxygen content mass% in the boron nitride powder used, the boron nitride mass% in the mixed powder, and the color unevenness of the sintered body, the oxygen content of the boron nitride was 18.5 × (in the mixed powder It was found that color unevenness does not occur when BN mass%) -0.657 or less is used.
Here, the color unevenness is a color difference between the reference portion and the comparison portion (for example, the central portion and the outer peripheral portion) of the sintered body, and the color difference ΔE * ab by the L * a * b * system is measured according to JISZ8730. The color difference ΔE * ab is 1.0 or more. When the color difference ΔE * ab = 1.0 or more, the color difference can be easily distinguished.

本願発明に用いる炭化珪素としては、α−SiC及びβ−SiCのどちらも使用可能である。又、両者混合していても使用可能である。比表面積は、7m/g以上の微粉炭化珪素を用いる。金属不純物は、少ない方が好ましい。 As silicon carbide used in the present invention, both α-SiC and β-SiC can be used. Moreover, even if both are mixed, it can be used. As the specific surface area, finely divided silicon carbide of 7 m 2 / g or more is used. Less metal impurities are preferable.

本願発明の焼結助剤に用いる炭化硼素としては、高純度で平均粒径5μm以下の微粉が好ましい。
本願発明の焼結助剤に用いる炭素としては、高純度で微粉のカ−ボンであればいずれも使用可能であるが、その中でも炭化水素系原料を不完全燃焼あるいは熱分解し、微粉のカ−ボンが得られるカ−ボンブラックが好ましい。カ−ボンブラックの中でも、金属不純物の少ないアセチレンブラックがより好ましい。
The boron carbide used for the sintering aid of the present invention is preferably a fine powder having a high purity and an average particle size of 5 μm or less.
As the carbon used in the sintering aid of the present invention, any carbon can be used as long as it is a high-purity and fine powder carbon. Among them, the hydrocarbon raw material is incompletely combusted or pyrolyzed to obtain a fine powder carbon. -Carbon black from which a bon can be obtained is preferred. Among carbon blacks, acetylene black with few metal impurities is more preferable.

焼結前の窒化硼素、炭化珪素、炭化硼素又は炭化硼素と炭素の混合粉末の配合において、窒化硼素10質量%未満の場合、又は炭化珪素88質量%を越えると硬度が高くなり機械加工性が低下し、加工コスト増大を及ぼす。窒化硼素40質量%を越えた場合、又は炭化珪素58質量%未満では、機械強度の低下を起こす。好ましくは、BN12〜38質量%、炭化珪素60〜86質量%あり、より好ましくは、BN14〜35質量%、炭化ケイ素63〜84質量%である。
焼結助剤としては、高温で揮発しにくい炭化硼素又は炭化硼素と炭素が0.5〜3質量%未満である。炭化硼素素又は炭化硼素と炭素が0.5質量%未満では、焼結が十分に起こらず、所望の強度が得られにくい。又炭化硼素又は炭化硼素と炭素が3質量%以上では、粒界の助剤層が増え十分な強度が得にくくなる。好ましくは、炭化硼素又は炭化硼素と炭素が0.6〜2.8質量%、より好ましくは、炭化硼素又は炭化硼素と炭素が0.7〜2.6質量%である。
In the combination of boron nitride, silicon carbide, boron carbide or mixed powder of boron carbide and carbon before sintering, when the boron nitride is less than 10% by mass, or exceeds 88% by mass of silicon carbide, the hardness increases and the machinability becomes high. This will reduce the processing cost. When the boron nitride exceeds 40% by mass or when the silicon carbide is less than 58% by mass, the mechanical strength is lowered. Preferably, BN is 12 to 38% by mass and silicon carbide is 60 to 86% by mass, and more preferably, BN is 14 to 35% by mass and silicon carbide is 63 to 84% by mass.
As the sintering aid, boron carbide or boron carbide and carbon which are difficult to volatilize at high temperatures is 0.5 to less than 3% by mass. When boron carbide or boron carbide and carbon are less than 0.5% by mass, sintering does not occur sufficiently and it is difficult to obtain a desired strength. When boron carbide or boron carbide and carbon are 3% by mass or more, the auxiliary layer at the grain boundary increases and it becomes difficult to obtain sufficient strength. Preferably, boron carbide or boron carbide and carbon are 0.6 to 2.8% by mass, and more preferably boron carbide or boron carbide and carbon are 0.7 to 2.6% by mass.

混合粉末中の酸素が1.20質量%を越えると、HP焼結体の中央部に色ムラが発生し、強度低下、耐熱性低下(高温での質量減少率が大きい)を起こしやすい。これは、硼素の酸化物が最も影響していると推測する。
好ましくは、混合粉末中の酸素は、1.17質量%以下であり、更に好ましくは、1.15質量%以下である。
混合粉末の比表面積が8m/g未満であると焼結体の結晶が大きくなり、十分な強度が得られない。又、加工時の加工性が劣る。比表面積が45m/gを越えると、使用する原料のBN及びSiCの比表面積も大きいものを使用するか、混合時、微粉砕する必要があり、コストが高くなり、高価なものとなる。好ましくは、比表面積10〜43m/g、更に好ましくは、比表面積12〜40m/gである。
上記の様な色ムラが無く、良好な加工性、耐熱性、曲げ強さを有する素材は、以下の条件を適用することで得られる。
If the oxygen content in the mixed powder exceeds 1.20% by mass, color unevenness occurs at the center of the HP sintered body, which tends to cause a decrease in strength and a decrease in heat resistance (a large mass reduction rate at high temperatures). This is presumed that boron oxide has the most influence.
Preferably, oxygen in the mixed powder is 1.17% by mass or less, and more preferably 1.15% by mass or less.
When the specific surface area of the mixed powder is less than 8 m 2 / g, crystals of the sintered body become large, and sufficient strength cannot be obtained. Moreover, the workability at the time of processing is inferior. When the specific surface area exceeds 45 m 2 / g, it is necessary to use a material having a large specific surface area of BN and SiC as raw materials to be used, or to pulverize at the time of mixing, resulting in an increase in cost and cost. The specific surface area is preferably 10 to 43 m 2 / g, and more preferably the specific surface area is 12 to 40 m 2 / g.
A material having no color unevenness as described above and having good processability, heat resistance, and bending strength can be obtained by applying the following conditions.

原料粉末とその配合は、
(1) 比表面積10m/g以上で酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以下の窒化硼素10〜40質量%、
(2) 比表面積7.0m/g以上の炭化珪素58〜88質量%
(3) 炭化硼素又は炭化硼素と炭素が0.5質量%以上3質量%未満
(4) 混合粉末中の酸素が1.20質量%以下、比表面積が8〜45m/g
混合粉末を以下の条件でホットプレス焼結するものである。
(5)圧力10〜50MPa
(6)温度1850〜2150℃
(7)保持時間 1〜6時間
(8)非酸化性雰囲気
The raw material powder and its composition
(1) 10 to 40% by mass of boron nitride having a specific surface area of 10 m 2 / g or more and an oxygen content of 18.5 × (BN mass% in the mixed powder) −0.657 or less,
(2) 58 to 88% by mass of silicon carbide having a specific surface area of 7.0 m 2 / g or more
(3) Boron carbide or boron carbide and carbon are 0.5% by mass or more and less than 3% by mass (4) Oxygen in the mixed powder is 1.20% by mass or less, and the specific surface area is 8 to 45 m 2 / g.
The mixed powder is subjected to hot press sintering under the following conditions.
(5) Pressure 10-50 MPa
(6) Temperature 1850-2150 ° C
(7) Holding time 1-6 hours (8) Non-oxidizing atmosphere

窒化硼素の比表面積が10m/g以下になると焼結体の強度が低下する。好ましくは13m/g以上、更に好ましくは、15m/g以上である。又酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以上になると、混合粉末中の酸素量が、1.20質量%を越え焼結体に色ムラが発生し、強度低下、耐熱性低下となる。
炭化珪素の比表面積は、焼結体の強度に関係し、比表面積7m/g以下の場合、炭化珪素の焼結体の結晶粒子が大きくなり、所望の強度が得にくい。又加工時の治具の摩耗が大きくなる。
When the specific surface area of boron nitride is 10 m 2 / g or less, the strength of the sintered body decreases. Preferably it is 13 m < 2 > / g or more, More preferably, it is 15 m < 2 > / g or more. When the oxygen content is 18.5 × (BN mass% in the mixed powder) −0.657 or more, the oxygen content in the mixed powder exceeds 1.20 mass% and color unevenness occurs in the sintered body. , The strength is lowered and the heat resistance is lowered.
The specific surface area of silicon carbide is related to the strength of the sintered body. When the specific surface area is 7 m 2 / g or less, the crystal particles of the sintered body of silicon carbide are large, and it is difficult to obtain a desired strength. Also, the wear of the jig during processing increases.

混合は、混合粉末中の酸素が1.20質量%以下で、比表面積が8〜45m/gになるように、湿式又は、乾式にて行う。好ましくは、混合粉末中の酸素が増加しにくいアルコ−ル系溶剤やフッ素系溶剤等を用い、湿式混合で均一混合粉末を得る事が望ましい。混合ボ−ルの材質は、Al,ZrO等の酸化物より、SiC、Si等の非酸化物系が、ボ−ルからの混合粉中への酸素の増加が無く好ましい。
焼結は、常圧焼結、加圧焼結、ホットプレス焼結等いずれも可能であるが、より緻密化しやすいホットプレス法が望ましい。(5)の圧力は、5MPa未満では、十分な焼結体が得られにくく、所望の強度が得られにくい。圧力50MPa以上では、設備が大きくなり、コスト的に不利となる。好ましくは、10〜45MPaで、更に好ましくは、15〜40MPaある。(6)の焼結温度1850℃未満では、十分緻密な焼結体が得られず、所望の強度が得られにくい。焼結温度2150℃を越えるとカ−ボンダイスに付着し、製品とダイスの分離が困難となる。好ましくは、1900℃〜2100℃である。より好ましくは、1980℃〜2080℃である。(7)の保持時間1時間未満では、十分な焼結体が得られにくく、所望の強度が得られにくい。6時間を超えると結晶粒径が大きくなり、強度低下を起こす。又、コストが高くなる。好ましくは、2〜4時間である。(8)の雰囲気は、Ar、N、CO等の非酸化性雰囲気で行う。
Mixing is performed by a wet method or a dry method so that oxygen in the mixed powder is 1.20% by mass or less and a specific surface area is 8 to 45 m 2 / g. Preferably, it is desirable to obtain a uniform mixed powder by wet mixing using an alcohol solvent or a fluorine solvent that does not easily increase oxygen in the mixed powder. The mixed ball is made of non-oxides such as SiC and Si 3 N 4 from the oxides such as Al 2 O 3 and ZrO 2 , and there is no increase in oxygen from the ball into the mixed powder. preferable.
Sintering can be any of normal pressure sintering, pressure sintering, hot press sintering, etc., but a hot press method that facilitates densification is desirable. When the pressure of (5) is less than 5 MPa, it is difficult to obtain a sufficient sintered body, and it is difficult to obtain a desired strength. When the pressure is 50 MPa or more, the equipment becomes large, which is disadvantageous in terms of cost. Preferably, it is 10-45 MPa, More preferably, it is 15-40 MPa. When the sintering temperature of (6) is less than 1850 ° C., a sufficiently dense sintered body cannot be obtained, and it is difficult to obtain a desired strength. When the sintering temperature exceeds 2150 ° C., it adheres to the carbon die and it becomes difficult to separate the product and the die. Preferably, it is 1900 degreeC-2100 degreeC. More preferably, it is 1980 degreeC-2080 degreeC. When the holding time of (7) is less than 1 hour, it is difficult to obtain a sufficient sintered body, and it is difficult to obtain a desired strength. If it exceeds 6 hours, the crystal grain size increases, causing a decrease in strength. In addition, the cost increases. Preferably, it is 2 to 4 hours. The atmosphere of (8) is performed in a non-oxidizing atmosphere such as Ar, N 2 and CO.

以下実施例により、本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
実施例1
先ず原料粉末は以下の方法で調整した。市販の炭化珪素粉末(純度98.6質量%、比表面積12m/g、平均粒径0.7μm)、六方晶窒化硼素粉末(純度97.8質量%、平均粒径1.1μm、比表面積31m/g、酸素1.02質量%)、市販の炭化硼素(平均粒径1.0μm)、及び黒鉛(比表面積70m/g、純度99.9質量%以上)を表1に示す所定の割合にて混合した。混合は、エタノ−ル溶液、Siボ−ルを用い、ボ−ルミルにて、湿式20h混合した後、乾燥、解砕し、混合粉末を得た。原料及び混合粉末の酸素と比表面積を測定した。酸素は、堀場製作所製のO/N同時分析機(EMGA−620W/C)を用い測定した。比表面積は、ユアサアイオニクス株式会社製モノソーブ(LOOP) 型式;MS−22を用い、BET法により測定した。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
Example 1
First, the raw material powder was prepared by the following method. Commercially available silicon carbide powder (purity 98.6% by mass, specific surface area 12 m 2 / g, average particle size 0.7 μm), hexagonal boron nitride powder (purity 97.8% by mass, average particle size 1.1 μm, specific surface area) 31 m 2 / g, oxygen 1.02% by mass), commercially available boron carbide (average particle size 1.0 μm), and graphite (specific surface area 70 m 2 / g, purity 99.9% by mass or more) shown in Table 1. The ratio was mixed. For mixing, an ethanol solution and a Si 3 N 4 ball were used, mixed in a ball mill for 20 hours in a wet manner, dried and crushed to obtain a mixed powder. The oxygen and specific surface area of the raw material and mixed powder were measured. Oxygen was measured using an O / N simultaneous analyzer (EMGA-620W / C) manufactured by Horiba. The specific surface area was measured by the BET method using a monosorb (LOOP) model manufactured by Yuasa Ionics Co., Ltd .; MS-22.

混合粉末500gを内径140mmの黒鉛製のダイスにセットしてホットプレス焼結した。焼結条件を表1に示す。焼結体は取り出した後、直径140mmの上下面を1mm程度研削し、中央部と外周部での色ムラを目視により観察と日本電色工業製の色差計(ZE6000)を用いて、JISZ8730に準じ、Lab系による色差△Eabを測定した。その後、アルキメデス法で相対密度を測定した。
中央部より、幅4mm×厚さ3mm×長さ40mmに加工して、JIS R−1601に準じ曲げ強さを測定した。JIS R−1602に準じ弾性率を測定した。曲げ強さ測定試料を用い、Arガスを毎分1リッタ−流しながら、2000℃で10時間加熱後の質量減少量を測定した。
又、幅40mm×長さ40mm×厚み2mmに加工し、直径3mmの超硬ドリルにて穴加工を乾式で行い、加工終了時間を測定し、加工性を評価した。
加工条件は、回転数3000rpm、ドリルにかかる荷重2kgにて行った。これらの結果を表2に示す。
500 g of the mixed powder was set on a graphite die having an inner diameter of 140 mm and subjected to hot press sintering. The sintering conditions are shown in Table 1. After the sintered body is taken out, the upper and lower surfaces of the diameter of 140 mm are ground by about 1 mm, and the color unevenness at the central portion and the outer peripheral portion is visually observed and a color difference meter (ZE6000) manufactured by Nippon Denshoku Industries Co., Ltd. is used. Similarly, the color difference ΔE * ab due to the L * a * b * system was measured. Thereafter, the relative density was measured by the Archimedes method.
From the center part, it processed into width 4mm * thickness 3mm * length 40mm, and bending strength was measured according to JISR-1601. The elastic modulus was measured according to JIS R-1602. Using a bending strength measurement sample, the mass loss after heating at 2000 ° C. for 10 hours was measured while flowing Ar gas at 1 liter per minute.
Moreover, it processed into width 40mm * length 40mm * thickness 2mm, the hole was drilled with the carbide drill of diameter 3mm, the processing completion time was measured, and workability was evaluated.
The processing conditions were a rotation speed of 3000 rpm and a load applied to the drill of 2 kg. These results are shown in Table 2.

実施例2〜3
比表面積と酸素含有量の異なる六方晶窒化硼素粉末を用いた以外は、実施例1と同様な条件で行った。
実施例4〜8
比表面積と酸素含有量の異なる六方晶窒化硼素粉末と比表面積の異なる炭化珪素粉末を用い、窒化硼素、炭化珪素の配合比率を変えた以外は、実施例1と同様な条件で行った。
実施例9〜12
炭化珪素、窒化硼素、炭化硼素、炭素の配合比を変えた以外は、実施例1と同様な条件で行った。
実施例13〜16
HP条件を変えた以外は、実施例1と同様な条件で行った。
実施例17
混合時の混合液にF系溶剤(日本ゼオン社のゼオロ−ラHTA)を用い、混合したこと以外は、実施例1と同様な条件で行った。
Examples 2-3
The process was performed under the same conditions as in Example 1 except that hexagonal boron nitride powder having a different specific surface area and oxygen content was used.
Examples 4-8
The process was performed under the same conditions as in Example 1 except that hexagonal boron nitride powder having a different specific surface area and oxygen content and silicon carbide powder having a different specific surface area were used and the mixing ratio of boron nitride and silicon carbide was changed.
Examples 9-12
The test was performed under the same conditions as in Example 1 except that the mixing ratio of silicon carbide, boron nitride, boron carbide, and carbon was changed.
Examples 13-16
The test was performed under the same conditions as in Example 1 except that the HP conditions were changed.
Example 17
It was performed on the same conditions as Example 1 except having mixed using the F-type solvent (Nippon-Zero Co., Ltd. Zeolora HTA) for the liquid mixture at the time of mixing.

比較例1〜14
比較のため、本発明の範囲外の条件(表1に示す)でHP焼結体を製作し、実施例1と同様な評価を行い表2にその結果を示す。
比較例15
焼結助剤として、一般的なYとAlの組み合わせにて、焼結体を製作し、実施例と同様に評価した。
比較例16
SiC単味の焼結体を製作し、実施例1と同様に評価した。
Comparative Examples 1-14
For comparison, an HP sintered body was manufactured under conditions outside the scope of the present invention (shown in Table 1), the same evaluation as in Example 1 was performed, and the results are shown in Table 2.
Comparative Example 15
As a sintering aid, a sintered body was produced with a combination of general Y 2 O 3 and Al 2 O 3 and evaluated in the same manner as in the examples.
Comparative Example 16
A simple SiC sintered body was produced and evaluated in the same manner as in Example 1.

Figure 2012087018
Figure 2012087018

Figure 2012087018
Figure 2012087018

表2の結果から明らかなように、本発明の実施例では、いずれも色ムラが無く、相対密度97%以上で曲げ強さ300MPa以上と比較的高密度、高強度でありながら、機械加工性がSiC単味より良好であり、精密加工部品に好適であった。又、2000℃のArガス中での質量減少が少なく、耐熱性良好であり、高温部材として好適であった。
混合粉末中の酸素量が、本発明の範囲外の比較例1〜2及び比較例4の場合、HP焼結体の中央部に色ムラが発生し、強度が低く、2000℃のArガス中での質量減少が大きく、耐熱性に劣るものであった。組成が本発明の範囲外である比較例3のBN10質量%未満の場合、加工性に劣るものであった。BN量が40質量%を越えた比較例4の場合、混合粉末の比表面積が小さい比較例5、比較例6の場合、及び焼結助剤の量が本発明の範囲外の比較例7〜9の場合、十分な強度が得られず低強度品であった。
As is clear from the results in Table 2, in all of the examples of the present invention, there is no color unevenness, the relative density is 97% or more, the bending strength is 300 MPa or more, and the machinability is high. Was better than the simple SiC, and was suitable for precision processed parts. Moreover, there was little mass loss in 2000 degreeC Ar gas, heat resistance was favorable, and it was suitable as a high temperature member.
In the case of Comparative Examples 1 and 2 and Comparative Example 4 in which the amount of oxygen in the mixed powder is outside the range of the present invention, color unevenness occurs in the central portion of the HP sintered body, the strength is low, and the Ar gas at 2000 ° C. The mass loss at was large and the heat resistance was poor. When the composition was less than 10% by mass of BN in Comparative Example 3, which was outside the scope of the present invention, the workability was poor. In the case of Comparative Example 4 in which the amount of BN exceeds 40% by mass, in the case of Comparative Example 5 and Comparative Example 6 in which the specific surface area of the mixed powder is small, and Comparative Examples 7 to 7 in which the amount of sintering aid is outside the scope of the present invention In the case of 9, sufficient strength could not be obtained and the product was low strength.

HP焼結時の温度が本発明の範囲外であるHP温度1850℃未満の比較例10の場合、十分な焼結体が得られず、低強度品であった。2150℃以上の比較例11の場合、焼結体がカ−ボンダイスに焼き付き焼結体とダイスの分離が困難であった。
HP焼結時の圧力、保持時間が本発明の範囲外である比較例12〜14の場合、十分な曲げ強度が得られない。
焼結助剤として一般的なYとAlの組み合わせを用いた比較例15の場合、マダラ状の色ムラが発生し、2000℃のArガス中での質量減少が大きく、本発明より劣るものであった。
SiC単味の比較例16の場合、加工性に劣るものであった。
In the case of Comparative Example 10 in which the HP temperature was outside the range of the present invention and the HP temperature was less than 1850 ° C., a sufficient sintered body could not be obtained and the product was low strength. In the case of Comparative Example 11 at 2150 ° C. or higher, it was difficult to separate the sintered body from the die by baking the sintered body onto the carbon die.
In the case of Comparative Examples 12 to 14 in which the pressure and holding time during HP sintering are outside the scope of the present invention, sufficient bending strength cannot be obtained.
In the case of Comparative Example 15 using a general combination of Y 2 O 3 and Al 2 O 3 as a sintering aid, spotted color unevenness occurs, and the mass loss in Ar gas at 2000 ° C. is large. It was inferior to the present invention.
In the case of the comparative example 16 of SiC simpleness, it was inferior to workability.

本発明の部材は、色ムラが無く、精密加工性に優れ、比較的高強度で高耐熱性を有している。メカニカルシ−ル、高温構造材、MOCVD装置等半導体製造部材として好適に使用可能である。
The member of the present invention has no color unevenness, excellent precision workability, relatively high strength and high heat resistance. It can be suitably used as a semiconductor manufacturing member such as a mechanical seal, a high-temperature structural material, and an MOCVD apparatus.

Claims (2)

窒化硼素10〜40質量%、炭化珪素58〜88質量%、炭化硼素又は炭化硼素と炭素が0.5〜3質量%未満の相対密度97%以上、曲げ強さ300MPa以上、Arガス中の2000℃で10時間加熱後の質量減少率が0.6質量%以下であることを特徴とするSiC−BN複合焼結体。 Boron nitride 10 to 40% by mass, silicon carbide 58 to 88% by mass, boron carbide or boron carbide and carbon with a relative density of 97% or more with less than 0.5 to 3% by mass, bending strength 300 MPa or more, 2000 in Ar gas A SiC-BN composite sintered body having a mass reduction rate of 0.6% by mass or less after heating at 10 ° C. for 10 hours. 比表面積10m/g以上で酸素含有量が18.5×(混合粉末中のBN質量%)−0.657以下の窒化硼素が10〜40質量%、比表面積7m/g以上の炭化珪素が58〜88質量%、炭化硼素又は炭化硼素と炭素が0.5質量%以上3質量%未満の混合粉末であり、混合粉末の酸素量が1.20質量%以下、比表面積が8〜45m/gである混合粉末を非酸化性雰囲気で圧力10〜50MPa、温度1850〜2150℃、保持時間1〜6時間のホットプレス焼結を用いて焼結することを特徴とする請求項1に記載のSiC−BN複合焼結体の製造方法。
Silicon carbide having a specific surface area of 10 m 2 / g or more and an oxygen content of 18.5 × (BN mass% in the mixed powder) −0.657 or less of boron nitride of 10 to 40 mass% and a specific surface area of 7 m 2 / g or more Is 58 to 88% by mass, mixed powder of boron carbide or boron carbide and carbon of 0.5 to 3% by mass, the oxygen content of the mixed powder is 1.20% by mass or less, and the specific surface area is 8 to 45 m. The mixed powder of 2 / g is sintered in a non-oxidizing atmosphere using hot press sintering at a pressure of 10 to 50 MPa, a temperature of 1850 to 2150 ° C, and a holding time of 1 to 6 hours. The manufacturing method of the SiC-BN compound sintered compact of description.
JP2010235870A 2010-10-20 2010-10-20 Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same Pending JP2012087018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235870A JP2012087018A (en) 2010-10-20 2010-10-20 Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235870A JP2012087018A (en) 2010-10-20 2010-10-20 Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012087018A true JP2012087018A (en) 2012-05-10

Family

ID=46259064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235870A Pending JP2012087018A (en) 2010-10-20 2010-10-20 Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012087018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152053A (en) * 2013-02-06 2014-08-25 Denki Kagaku Kogyo Kk Mold material for glass molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119270A (en) * 2005-10-26 2007-05-17 Denki Kagaku Kogyo Kk Manufacturing method of boron nitride sintered compact
JP2010150101A (en) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk Heat resistant black member and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119270A (en) * 2005-10-26 2007-05-17 Denki Kagaku Kogyo Kk Manufacturing method of boron nitride sintered compact
JP2010150101A (en) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk Heat resistant black member and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014000478; マテリアル・データベース編纂委員会編: マテリアル・データベース-無機材料- , 19890125, p.124〜127,131,132 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152053A (en) * 2013-02-06 2014-08-25 Denki Kagaku Kogyo Kk Mold material for glass molding

Similar Documents

Publication Publication Date Title
Li et al. Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid
Yamada et al. High strength B4C–TiB2 composites fabricated by reaction hot-pressing
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
US8454933B2 (en) Polycrystalline magnesium oxide (MgO) sintered body and MgO sputtering target
Ye et al. Spark plasma sintering of cBN/β-SiAlON composites
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
Basu et al. Development of WC–ZrO2 nanocomposites by spark plasma sintering
Wang et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter
Eser et al. The effect of the wet-milling process on sintering temperature and the amount of additive of SiAlON ceramics
Lv et al. Effect of controllable decomposition of MAX phase (Ti3SiC2) on mechanical properties of rapidly sintered polycrystalline diamond by HPHT
Suri et al. Liquid phase sintering of Si3N4/SiC nanopowders derived from silica fume
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
US8426043B2 (en) Boron suboxide composite materials
JP5825955B2 (en) Method for producing boron nitride / silicon carbide composite sintered body
Nekouee et al. Preparation and characterization of β-SiAlON/TiN nanocomposites sintered by spark plasma sintering and pressureless sintering
US11479463B2 (en) Method of forming a βSiAlON by spark plasma sintering
JP2010189203A (en) SiC-BASED ABRASION RESISTANT MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2012087018A (en) Boron nitride/silicon carbide composite sintered compact, and method for manufacturing the same
US8741797B2 (en) Composite body including a nitride material, a carbide material, and an amorphous phase material
JP5161060B2 (en) Heat resistant black member and method for producing the same
Manukyan et al. Combustion synthesis and compaction of Si3N4–TiN composite powder
CN109694254A (en) A method of compact silicon nitride ceramics are prepared using single sintering aid is normal pressure-sintered
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
YU Preparation of ZrN-Si3N4 composite powder with zircon and carbon black as raw materials
JP2019529320A (en) Ceramic component and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127