JP2012082291A - Chemical thermal storage medium and method for manufacturing the same - Google Patents

Chemical thermal storage medium and method for manufacturing the same Download PDF

Info

Publication number
JP2012082291A
JP2012082291A JP2010228482A JP2010228482A JP2012082291A JP 2012082291 A JP2012082291 A JP 2012082291A JP 2010228482 A JP2010228482 A JP 2010228482A JP 2010228482 A JP2010228482 A JP 2010228482A JP 2012082291 A JP2012082291 A JP 2012082291A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
chemical
storage body
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010228482A
Other languages
Japanese (ja)
Other versions
JP5521967B2 (en
Inventor
Masakazu Aoki
正和 青木
Takashi Shimazu
孝 志満津
Takashi Yamauchi
崇史 山内
Mitsuru Matsumoto
満 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010228482A priority Critical patent/JP5521967B2/en
Publication of JP2012082291A publication Critical patent/JP2012082291A/en
Application granted granted Critical
Publication of JP5521967B2 publication Critical patent/JP5521967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical thermal storage medium capable of stably actuating a chemical thermal storage system using ammonia as a working fluid, and a method for manufacturing a chemical thermal storage medium suitable for manufacturing the same.SOLUTION: The chemical thermal storage medium comprises a fired body obtained by firing a molded body of a mixture prepared by mixing thermal storage particles which generate or absorb heat by occlusion or release of ammonia and a binder which binds the thermal storage particles. The thermal storage particles contain a metal chloride which is a compound of at least one alkali metal element, alkaline earth metal element or transition metal element and chlorine. The binder contains a low-melting glass having a glass transition point of ≤600°C.

Description

本発明は、アンモニアを作動流体とする化学蓄熱体およびその製造方法に関する。   The present invention relates to a chemical heat storage body using ammonia as a working fluid and a method for producing the same.

二酸化炭素(CO)の排出削減が強く要請される昨今、エネルギー効率の向上や省エネルギー化を図るための研究開発が盛んに進められている。その一つに、各種の機器やプラントから生じる廃熱(または排熱)などを有効利用できる蓄熱システムがある。特に化学蓄熱システムは、体積あたりの蓄熱量が大きく、長期間の蓄熱が可能であり、今後有望である。この具体例として、下記の特許文献1等では、水酸化カルシウムの脱水反応時の吸熱と酸化カルシウムの水和反応時の発熱とを利用したシステムを提案している。 Recently, there is a strong demand for reduction of carbon dioxide (CO 2 ) emissions, and research and development for improving energy efficiency and energy saving are being actively promoted. One of them is a heat storage system that can effectively use waste heat (or exhaust heat) generated from various devices and plants. In particular, the chemical heat storage system has a large amount of heat storage per volume and can store heat for a long period of time, which is promising in the future. As a specific example, Patent Document 1 and the like below propose a system that uses an endotherm during the dehydration reaction of calcium hydroxide and an exotherm during the hydration reaction of calcium oxide.

もっとも、脱水反応を利用するには、ある程度の高温熱源が必要となる。このため、より低温域の廃熱等をも有効に回収し、さらなるエネルギー効率の向上を図るには、より低温域でも作動し得る化学蓄熱システムが必要となる。そこで、低温域でも気体になり易いアンモニアと金属塩化物(CaCl、NiCl等)との反応(アンモニア錯体生成反応)を利用した化学蓄熱システムが提案されている。これに関連する記載が、下記の特許文献2〜4等にある。ちなみに、下記の特許文献5には、蓄熱体ではなく、単にアンモニアの貯蔵を目的としたアンモニア貯蔵体に関する記載がある。 However, to use the dehydration reaction, a certain amount of high-temperature heat source is required. For this reason, in order to effectively recover waste heat and the like in a lower temperature region and further improve energy efficiency, a chemical heat storage system that can operate in a lower temperature region is required. Therefore, a chemical heat storage system using a reaction (ammonia complex formation reaction) between ammonia and a metal chloride (CaCl 2 , NiCl 2, etc.) that easily becomes a gas even in a low temperature range has been proposed. The description relevant to this exists in the following patent documents 2-4. Incidentally, the following Patent Document 5 has a description relating to an ammonia storage body not simply a heat storage body but merely for the purpose of storing ammonia.

特開2009−257698号公報JP 2009-257698 A 特開平5−264187号公報JP-A-5-264187 特開平6−109388号公報JP-A-6-109388 特開平6−136357号公報JP-A-6-136357 WO2010/025948号公報WO2010 / 025948

ところで化学蓄熱システムでは、円滑に系外と反応熱を交換し、発熱反応または吸熱反応を安定的に継続させることが重要である。この点、上記の特許文献等にある従来の化学蓄熱システムでは、化学蓄熱材として粉末状のCaCl等をそのまま利用していたため、反応熱の滞留が生じ易く、作動が安定しなかった。 By the way, in a chemical heat storage system, it is important to smoothly exchange reaction heat with the outside of the system and stably continue an exothermic reaction or an endothermic reaction. In this regard, in the conventional chemical heat storage system described in the above-mentioned patent documents and the like, powdered CaCl 2 or the like is used as it is as the chemical heat storage material, so that the reaction heat tends to stay and the operation is not stable.

また、その粉末状の化学蓄熱材を成形した化学蓄熱体であっても、アンモニアの吸蔵および放出によって生じる体積膨張または体積収縮が繰り返される結果、化学蓄熱体にクラックや割れが生じ、最終的にはその化学蓄熱材が微粉化していた。このため、やはり、化学蓄熱システムを安定的に運転することは困難であった。このような課題は、特に、化学蓄熱システムの小型化や高出力化を図る際に問題となる。   In addition, even in the case of a chemical heat storage body obtained by molding the powdered chemical heat storage material, as a result of repeated volume expansion or contraction caused by ammonia occlusion and release, cracks and cracks occur in the chemical heat storage body, and finally The chemical heat storage material was pulverized. For this reason, it was still difficult to operate the chemical heat storage system stably. Such a problem becomes a problem particularly when the chemical heat storage system is reduced in size and output.

本発明はこのような事情に鑑みて為されたものであり、アンモニアを作動流体とする化学蓄熱システムを安定的に作動させ得る化学蓄熱体と、その製造に適した化学蓄熱体の製造方法を併せて提供することを目的とする。   The present invention has been made in view of such circumstances, a chemical heat storage body capable of stably operating a chemical heat storage system using ammonia as a working fluid, and a method of manufacturing a chemical heat storage body suitable for manufacturing the same. It is intended to be provided together.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、金属塩化物からなる化学蓄熱材を低融点ガラスで結着させることにより、アンモニアの吸蔵または放出を安定的に行える化学蓄熱体が得られることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of extensive research and trial and error, the present inventor has been able to stably occlude or release ammonia by binding a chemical heat storage material made of metal chloride with a low melting point glass. It was newly found that a chemical heat storage body can be obtained. By developing this result, the present invention described below has been completed.

《化学蓄熱体》
(1)本発明の化学蓄熱体は、アンモニアの吸蔵または放出により発熱または吸熱する蓄熱粒子と該蓄熱粒子を結着させるバインダーとを混合した混合物の成形体を焼成した焼成体からなる化学蓄熱体であって、前記蓄熱粒子は、アルカリ金属元素、アルカリ土類金属元素または遷移金属元素の一種以上と塩素との化合物である金属塩化物を含み、前記バインダーは、ガラス転移点が600℃以下である低融点ガラスを含むことを特徴とする。
《Chemical heat storage body》
(1) The chemical heat storage body of the present invention is a chemical heat storage body comprising a fired body obtained by firing a mixture of heat storage particles that generate or absorb heat by storing or releasing ammonia and a binder that binds the heat storage particles. The heat storage particles include a metal chloride that is a compound of at least one of an alkali metal element, an alkaline earth metal element, or a transition metal element and chlorine, and the binder has a glass transition point of 600 ° C. or less. It includes a certain low melting point glass.

(2)本発明の化学蓄熱体は、化学蓄熱材である金属塩化物の蓄熱粒子と低融点ガラスとの混合物からなる成形体を焼成させた焼成体からなる。このため本発明の化学蓄熱体は、機械的強度に優れ、アンモニアとの脱着反応が繰り返されても、容易に割れ等を生じることない。また、低融点ガラスの存在により、本発明の化学蓄熱体は、比較的低い成形圧力で所望する化学蓄熱システムに適した種々の形状に成形され得る。すなわち、形状自由度が非常に高い。このため本発明の化学蓄熱体は、アンモニアの吸脱をし易い形状(空孔率等)にも、また外部との熱交換し易い形状にもなり易い。こうして本発明の化学蓄熱体は、アンモニアとの反応性に優れ、安定的で制御性に優れる化学蓄熱システムの構築を容易とする。 (2) The chemical heat storage body of the present invention comprises a fired body obtained by firing a molded body made of a mixture of metal chloride heat storage particles, which are chemical heat storage materials, and low-melting glass. For this reason, the chemical heat storage body of the present invention is excellent in mechanical strength and does not easily crack even if the desorption reaction with ammonia is repeated. Further, due to the presence of the low melting point glass, the chemical heat storage body of the present invention can be molded into various shapes suitable for a desired chemical heat storage system at a relatively low molding pressure. That is, the degree of freedom in shape is very high. For this reason, the chemical heat storage body of the present invention is likely to have a shape that easily absorbs and desorbs ammonia (porosity, etc.) and a shape that facilitates heat exchange with the outside. Thus, the chemical heat storage body of the present invention is excellent in reactivity with ammonia, and facilitates the construction of a chemical heat storage system that is stable and excellent in controllability.

(3)もっとも、アルカリ土類金属等の塩化物からなる蓄熱粒子のバインダーとして低融点ガラスが何故優れているのか、その理由は定かではない。現状では次のように考えられる。
低融点ガラスは、ガラス転移点が低いため、焼成工程で流動性が向上し、蓄熱粒子との界面において濡れが生じ得る。このため、蓄熱粒子とバインダーである低融点ガラスとの接触面積が向上する。また蓄熱粒子と低融点ガラスとの界面において、例えば、塩化物の成分(アルカリ土類金属等)の酸化物が生成するような反応が生じ得る。このような理由により、低融点ガラスは蓄熱粒子のバインダーとして優れていると考えられる。
(3) However, it is not clear why the low melting point glass is excellent as a binder for heat storage particles made of chlorides such as alkaline earth metals. The current situation is considered as follows.
Since the low melting point glass has a low glass transition point, fluidity is improved in the firing step, and wetting may occur at the interface with the heat storage particles. For this reason, the contact area between the heat storage particles and the low melting point glass as the binder is improved. Further, at the interface between the heat storage particles and the low-melting glass, for example, a reaction in which an oxide of a chloride component (such as an alkaline earth metal) is generated can occur. For these reasons, the low melting point glass is considered to be excellent as a binder for the heat storage particles.

《化学蓄熱体の製造方法》
本発明は上述の化学蓄熱体としてのみならず、その製造方法としても把握される。すなわち本発明は、アンモニアの吸蔵または放出により発熱または吸熱する蓄熱粒子からなる蓄熱粉末と該蓄熱粒子を結着させるバインダーとを混合した混合物を得る混合工程と、該混合物を加圧成形した成形体を得る成形工程と、該成形体を焼成した焼成体を得る焼成工程と、を備える化学蓄熱体の製造方法であって、前記蓄熱粒子は、アルカリ金属元素、アルカリ土類金属元素または遷移金属元素の一種以上と塩素との化合物である金属塩化物を含み、前記バインダーは、ガラス転移点が600℃以下である低融点ガラスを含むことを特徴とする化学蓄熱体の製造方法でもよい。
<< Method for producing chemical heat storage body >>
This invention is grasped | ascertained not only as the above-mentioned chemical heat storage body but also as its manufacturing method. That is, the present invention relates to a mixing step for obtaining a mixture in which a heat storage powder composed of heat storage particles that generate or absorb heat by occlusion or release of ammonia and a binder that binds the heat storage particles, and a molded body obtained by pressure-molding the mixture. And a calcining step for obtaining a calcined product obtained by calcining the compact, wherein the heat accumulating particles are an alkali metal element, an alkaline earth metal element or a transition metal element. The method may be a method for producing a chemical heat storage body, including a metal chloride that is a compound of one or more of the above and chlorine, and the binder includes low-melting glass having a glass transition point of 600 ° C. or lower.

《その他》
(1)化学蓄熱体は、上述した金属塩化物や低融点ガラス以外に、種々の改質元素や改質材を含有してもよい。また原料中に含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な不可避不純物を含有し得ることはいうまでもない。
<Others>
(1) The chemical heat storage body may contain various modifying elements and modifying materials in addition to the above-described metal chloride and low-melting glass. Further, it goes without saying that impurities contained in the raw material, impurities mixed in at each step, and the like, which are difficult to remove due to cost or technical reasons, can be included.

(2)化学蓄熱体(焼成体)の形態は問わないが、例えば、シート状、板状、バルク状、棒状、管状等にし得る。また本発明の化学蓄熱体は、加工前の素材でも最終的な製品(部品)でも良い。 (2) Although the form of a chemical heat storage body (baking body) is not ask | required, it can be set as a sheet form, plate shape, bulk shape, rod shape, tubular shape, etc., for example. The chemical heat storage body of the present invention may be a raw material before processing or a final product (part).

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a〜b」のような範囲を構成し得る。さらに本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。 (3) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. The various lower limit values or upper limit values described in the present specification may be arbitrarily combined to constitute a range such as “ab”. Furthermore, any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.

各試料(化学蓄熱体)の反応率の時間変化を示すグラフである。It is a graph which shows the time change of the reaction rate of each sample (chemical heat storage body). 各試料の化学蓄熱材(CaCl)1gあたりの熱出力の時間変化を示すグラフである。The chemical thermal storage medium in each sample is a graph showing the time variation of the heat output per (CaCl 2) 1g.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係る化学蓄熱体のみならず、その製造方法にも適宜適用され得る。上述した本発明の構成に、本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。その際、製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content demonstrated by this specification including the following embodiment can be suitably applied not only to the chemical heat storage body which concerns on this invention but the manufacturing method. One or more configurations arbitrarily selected from the present specification may be added to the configuration of the present invention described above. At this time, the structure related to the manufacturing method can be a structure related to an object if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《化学蓄熱体》
本発明の化学蓄熱体は、金属塩化物からなる蓄熱粒子と、その蓄熱粒子を結着する低融点ガラスからなるバインダーとからなり、さらに高熱伝導材を含むと好ましい。
(1)蓄熱粒子
本発明に係る蓄熱粒子は、主に、アルカリ金属元素、アルカリ土類金属元素または遷移金属元素の一種以上と塩素との化合物である金属塩化物からなる。
《Chemical heat storage body》
The chemical heat storage body of the present invention is preferably composed of heat storage particles made of metal chloride and a binder made of low melting glass that binds the heat storage particles, and further contains a high heat conductive material.
(1) Heat Storage Particles The heat storage particles according to the present invention are mainly composed of a metal chloride that is a compound of at least one of an alkali metal element, an alkaline earth metal element, or a transition metal element and chlorine.

アルカリ金属元素には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)およびフランシウム(Fr)がある。その金属塩化物(アルカリ金属塩化物)としては、LiCl、NaClまたはKClなどが代表的である。アルカリ土類金属元素には、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)およびラジウム(Ra)がある。その金属塩化物(アルカリ土類金属塩化物)としては、MgCl 、CaCl、SrClなどがあるが、特にカルシウム塩化物が好ましい。蓄熱粒子に適した遷移金属元素は多数あるが、その金属塩化物としては、MnCl、FeCl、CoCl、NiCl等が代表的である。 Alkali metal elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Typical examples of the metal chloride (alkali metal chloride) include LiCl, NaCl, and KCl. Alkaline earth metal elements include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra). Examples of the metal chloride (alkaline earth metal chloride) include MgCl 2 , CaCl 2 , and SrCl 2, and calcium chloride is particularly preferable. There are many transition metal elements suitable for the heat storage particles, and typical examples of the metal chloride include MnCl 2 , FeCl 2 , CoCl 2 , and NiCl 2 .

蓄熱粒子の形態(粒形や粒径等)は問わない。すなわち、その粒形は球状でも楕円球状でもよい。また粒径も問わないが、電子顕微鏡で観察して1μm〜1mmであると好ましい。   The form (particle shape, particle size, etc.) of the heat storage particles is not limited. That is, the particle shape may be spherical or elliptical. Moreover, although a particle size is not ask | required, it is preferable that it is 1 micrometer-1 mm when observing with an electron microscope.

ところで金属塩化物は、アンモニアとの吸脱着反応の安定化のために、無水物であるほど好ましい。但し、化学蓄熱体による吸放熱が安定的に継続される限り、つまり、安定した反応速度が確保される範囲内なら、金属塩化物は水和物でもよい。例えば、CaCl の場合なら、CaCl ・nHO(n:付加数、配位数)のnが0〜5さらには4以下でも良い。そしてこのような蓄熱粒子からなる最終的な化学蓄熱体(焼成体)は、金属塩化物のモル数(Nm)に対する含有する水のモル数(Nw)の比である含水比R(R=Nw/Nm)が0〜4、0〜3さらには0〜2であると好ましい。 By the way, the metal chloride is more preferably an anhydride for stabilizing the adsorption / desorption reaction with ammonia. However, the metal chloride may be a hydrate as long as the heat absorption / release by the chemical heat storage body is stably continued, that is, as long as the stable reaction rate is ensured. For example, if the case of CaCl 2, CaCl 2 · nH 2 O (n: number of addition, coordination number) n is 0 to 5 and even more may be 4 or less. The final chemical heat storage body (fired body) composed of such heat storage particles has a water content ratio R (R = Nw) which is the ratio of the number of moles of water (Nw) to the number of moles of metal chloride (Nm). / Nm) is preferably 0 to 4, 0 to 3, and more preferably 0 to 2.

(2)バインダー
本発明に係るバインダーは、主に、ガラス転移点が600℃以下の低融点ガラスからなる。このような低融点ガラスには、ホウ珪酸(鉛)ガラス、鉛酸化物系ガラス、ビスマス酸化物系ガラス、バナジウム酸化物系ガラスなどがある。低融点ガラスは、それらの一種以上からなればよい。ちなみにこのガラス転移点は、示差熱分析(DTA)や示差走査熱量計(DSC)測定により得られるプロファイルの温度変化または熱量変化ピークにより特定される温度である。
(2) Binder The binder according to the present invention is mainly composed of low-melting glass having a glass transition point of 600 ° C. or lower. Examples of such low melting point glass include borosilicate (lead) glass, lead oxide glass, bismuth oxide glass, and vanadium oxide glass. Low melting glass should just consist of one or more of them. Incidentally, this glass transition point is a temperature specified by a temperature change or a calorie change peak of a profile obtained by differential thermal analysis (DTA) or differential scanning calorimeter (DSC) measurement.

ガラス転移点が過大な低融点ガラスは、焼成時に軟化せず、蓄熱粒子のバインダーとして十分に機能しない。そこでガラス転移点は550℃以下さらには500℃以下であると好ましい。ちなみに低融点ガラス以外のガラスは、ガラス転移点が蓄熱粒子の融点の近傍かそれ以上であるため、焼成時にバインダーとして機能しない。また、有機バインダー等では、加熱時に消失したり、さらにはアンモニアの浸透経路を閉塞したりするので好ましくない。   Low melting glass having an excessive glass transition point does not soften during firing and does not function sufficiently as a binder for heat storage particles. Therefore, the glass transition point is preferably 550 ° C. or lower, more preferably 500 ° C. or lower. Incidentally, glasses other than the low melting point glass do not function as a binder during firing because the glass transition point is near or above the melting point of the heat storage particles. In addition, organic binders are not preferable because they disappear during heating or block the permeation path of ammonia.

バインダーは、化学蓄熱体全体を100質量%としたときに1〜40質量%、5〜30質量%さらには7〜25質量%であると好適である。バインダーが過少では化学蓄熱体の機械的強度(または保形性)が低下し、またバインダーが過多では化学蓄熱体の単位体積あたりの蓄熱量または発熱量が低下する。   The binder is preferably 1 to 40% by mass, 5 to 30% by mass, and further 7 to 25% by mass when the entire chemical heat storage element is 100% by mass. If the amount of the binder is too small, the mechanical strength (or shape retention) of the chemical heat storage body decreases, and if the amount of the binder is excessive, the heat storage amount or heat generation amount per unit volume of the chemical heat storage body decreases.

(3)高熱伝導材
本発明の化学蓄熱体は、上述した蓄熱粒子およびバインダーよりも熱伝導性に優れる(すなわち熱伝導率のより高い)高熱伝導材をさらに含むと好ましい。理由は次の通りである。化学蓄熱システムの性能は、化学蓄熱体とアンモニアとの反応速度に左右される。この反応速度は、(i)アンモニアガスの化学蓄熱体への浸透速度(吸収速度、放出速度)、(ii)アンモニア錯体の生成速度、(iii)化学蓄熱体と外部との熱交換速度による影響を受ける。この中でも熱交換速度が律速的であり、化学蓄熱システムの性能に大きく影響する。そこで本発明の化学蓄熱体が、熱伝導性や熱伝達性を向上させる高熱伝導材を含むと、その熱交換速度が向上し、ひいては化学蓄熱システムの性能が向上し得る。
(3) High Thermal Conductive Material The chemical heat storage body of the present invention preferably further includes a high thermal conductive material that is superior in thermal conductivity (that is, higher in thermal conductivity) than the above-described thermal storage particles and binder. The reason is as follows. The performance of the chemical heat storage system depends on the reaction rate between the chemical heat storage body and ammonia. This reaction rate depends on (i) the rate of penetration of ammonia gas into the chemical regenerator (absorption rate, release rate), (ii) the rate of ammonia complex formation, and (iii) the rate of heat exchange between the chemical regenerator and the outside. Receive. Among these, the heat exchange rate is rate-limiting and greatly affects the performance of the chemical heat storage system. Therefore, when the chemical heat storage body of the present invention includes a high heat conductive material that improves heat conductivity and heat transfer, the heat exchange rate can be improved, and consequently the performance of the chemical heat storage system can be improved.

このような高熱伝導材として、種々の金属やセラミックス等が考えられる。もっとも、アルミナ(Al)、炭化ケイ素(SiC)、窒化アルミニウム(AlN)、窒化ケイ素(Si)などのセラミックスは、高熱伝導率であると共にアンモニア雰囲気中で安定であり、高熱伝導材に好適である。なお、高熱伝導材の形態は問わず、粒状でも繊維状(短繊維状、長繊維状)でもよい。 Various metals, ceramics, etc. can be considered as such a high heat conductive material. However, ceramics such as alumina (Al 2 O 3 ), silicon carbide (SiC), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ) have high thermal conductivity and are stable in an ammonia atmosphere. Suitable for conductive material. The form of the high thermal conductivity material is not limited, and may be granular or fibrous (short fiber or long fiber).

高熱伝導材は、化学蓄熱体全体を100質量%としたときに1〜40質量%、5〜30質量%さらには7〜25質量%であると好適である。高熱伝導材が過少では化学蓄熱体内の熱伝導性や化学蓄熱体の反応性の向上が図れない。また高熱伝導材が過多では化学蓄熱体の単位体積あたりの蓄熱量または発熱量が低下する。   The high thermal conductive material is preferably 1 to 40% by mass, 5 to 30% by mass, and further 7 to 25% by mass when the entire chemical heat storage body is 100% by mass. If the amount of the high heat conductive material is too small, the thermal conductivity in the chemical heat storage body and the reactivity of the chemical heat storage body cannot be improved. In addition, when the amount of the high heat conductive material is excessive, the heat storage amount or the heat generation amount per unit volume of the chemical heat storage body decreases.

なお、バインダーおよび高熱伝導材を併せた無機材は、化学蓄熱体全体を100質量%としたときに40質量%以下さらには30質量%以下とするのがよい。これらの無機材が過多では、前述したように、化学蓄熱体の単位体積あたりの蓄熱量または発熱量が低下して好ましくない。   In addition, it is good for the inorganic material which combined the binder and the high heat conductive material to be 40 mass% or less further 30 mass% or less when the whole chemical heat storage body is 100 mass%. If these inorganic materials are excessive, as described above, the amount of heat stored or the amount of heat generated per unit volume of the chemical heat storage element is not preferable.

《製造方法》
本発明の化学蓄熱体は、上述した蓄熱粒子とバインダーさらには高熱伝導材とを混合する混合工程と、得られた混合物を加圧成形する成形工程と、得られた成形体を加熱して焼成体とする焼成工程とからなる。
"Production method"
The chemical heat storage body of the present invention includes a mixing step of mixing the above-described heat storage particles, a binder, and further a high thermal conductive material, a forming step of pressure-molding the obtained mixture, and heating and baking the obtained formed body. It consists of a firing step to form a body.

(1)混合工程
混合工程は、乳鉢を用いた手動混合、各種ミキサー、回転型ボールミル、振動型ボールミル等を用いて行うことができ、1〜60分間程度の混合を行うとよい。
(1) Mixing step The mixing step can be performed using manual mixing using a mortar, various mixers, a rotary ball mill, a vibrating ball mill, or the like, and is preferably performed for about 1 to 60 minutes.

(2)成形工程
成形工程は、成形型のキャビティへ投入した混合物を加圧成形してもよいし、成形型を用いるまでもなくローラ等で圧縮成形してもよい。化学蓄熱体の所望形状に応じた方法を採用するとよい。
(2) Molding process In the molding process, the mixture charged into the cavity of the mold may be pressure-molded, or may be compression-molded with a roller or the like without using the mold. A method according to the desired shape of the chemical heat storage element may be employed.

この際の成形圧力は、例えば、50〜500MPaさらには70〜300MPaであると好ましい。成形圧力が過小では化学蓄熱体の機械的強度が低下して好ましくない。成形圧力が過大では化学蓄熱体が緻密化し、アンモニアガスの浸透性が低下するので好ましくない。   The molding pressure at this time is preferably, for example, 50 to 500 MPa or 70 to 300 MPa. If the molding pressure is too low, the mechanical strength of the chemical heat storage element is lowered, which is not preferable. An excessive molding pressure is not preferable because the chemical heat storage element becomes dense and the permeability of ammonia gas decreases.

(3)焼成工程
焼成工程により、少なくとも、成形体中の低融点ガラスは軟化または溶融して、蓄熱粒子間にほぼ均一に介在するようになる。この焼成後、隣接する蓄熱粒子は低融点ガラスによって結着した状態となり、高強度の化学蓄熱体が得られる。なお、焼成工程により蓄熱粒子同士は、焼結していても、焼結していなくてもよい。この際の焼成温度は、低融点ガラスのガラス転移点等を考慮して、300〜600℃さらには350〜550℃であると好ましい。
(3) Firing step At least the low-melting glass in the molded body is softened or melted by the firing step so that it is almost uniformly interposed between the heat storage particles. After this firing, the adjacent heat storage particles are bound by the low melting point glass, and a high-strength chemical heat storage body is obtained. Note that the heat storage particles may be sintered or not sintered in the firing step. The firing temperature at this time is preferably 300 to 600 ° C., more preferably 350 to 550 ° C., taking into account the glass transition point of the low-melting glass.

(4)処理雰囲気
化学蓄熱体の一連の製造工程は、低湿度環境下でなされるのが好ましい。化学蓄熱体が水を含有していると、化学蓄熱体とアンモニアとの反応性が低下するためである。そこで、本発明の製造方法に係る混合工程、成形工程または焼成工程は、露点−40℃以下、露点−50℃以下、露点−70℃以下さらには露点−80℃以下の低湿度環境下でなされるのが好ましい。そして、その低湿度環境下で全工程がなされるとより好適である。
(4) Treatment atmosphere It is preferable that a series of manufacturing steps of the chemical heat storage body is performed in a low humidity environment. It is because the reactivity of a chemical heat storage body and ammonia will fall when a chemical heat storage body contains water. Therefore, the mixing step, molding step or firing step according to the production method of the present invention is performed in a low humidity environment having a dew point of −40 ° C. or lower, a dew point of −50 ° C. or lower, a dew point of −70 ° C. or lower, and a dew point of −80 ° C. or lower. It is preferable. And it is more suitable when all the processes are performed in the low humidity environment.

《用途》
本発明の化学蓄熱体を公知の反応器に組み入れて作動させると、比較的低温の廃熱等をも有効に回収できたり、必要に応じた熱出力を得たりできる。但し、本発明の化学蓄熱体の使用温度域等は何ら制限されない。
<Application>
When the chemical heat storage body of the present invention is incorporated into a known reactor and operated, relatively low-temperature waste heat or the like can be effectively recovered, and a heat output as required can be obtained. However, the operating temperature range of the chemical heat storage body of the present invention is not limited at all.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
(1)原料
化学蓄熱材として、CaCl(アルカリ金属土類金属塩化物)を用意した。これはアルドリッチ社製であり、無水化合物の粉末であった。
The present invention will be described more specifically with reference to examples.
<Production of sample>
(1) Raw material As a chemical heat storage material, CaCl 2 (alkali metal earth metal chloride) was prepared. This was an Aldrich product and was an anhydrous compound powder.

次にバインダー(低融点ガラス)として、ガラス転移点280℃のバナジウム酸化物系ガラス(V(51mol%)−ZnO(19mol%)−BaO(30mol%))を用意した。このガラスは粒状の粉末であった。さらに高熱伝導材としてアルミナ(Al:昭和電工(株)社製AS−20)を用意した。このアルミナは粒状の粉末であった。 Next, vanadium oxide glass (V 2 O 5 (51 mol%)-ZnO (19 mol%)-BaO (30 mol%)) having a glass transition point of 280 ° C. was prepared as a binder (low melting point glass). This glass was a granular powder. Further, alumina (Al 2 O 3 : AS-20 manufactured by Showa Denko KK) was prepared as a high thermal conductive material. The alumina was a granular powder.

(2)混合工程、成形工程および焼成工程
上記の原料を用いて表1に示す各試料を製造した。すなわち表1に示すように種々の原料を配合した混合物を、種々の成形圧力で成形し、得られた成形体の一部を焼成して焼成体を得た。この焼成体は15×15×2mmのシート状であった。
(2) Mixing step, forming step and firing step Each sample shown in Table 1 was manufactured using the above raw materials. That is, as shown in Table 1, a mixture containing various raw materials was molded at various molding pressures, and a part of the obtained molded body was fired to obtain a fired body. This fired body was in the form of a sheet of 15 × 15 × 2 mm.

ここで混合工程は、乳鉢を用いて5分間手動で混合して行った。また混合工程、成形工程および焼成工程は、特に断らない限り、露点が−90℃となる環境下(雰囲気下)で行った。この低湿度環境は、(株)美和製作所のグローブボックスにより達成した。   Here, the mixing step was performed by manually mixing for 5 minutes using a mortar. Further, the mixing step, the molding step and the firing step were performed in an environment (in an atmosphere) in which the dew point was −90 ° C. unless otherwise specified. This low humidity environment was achieved by a glove box manufactured by Miwa Seisakusho.

《試料の評価》
(1)外観
得られた各試料の外観を観察した結果を表1に併せて示した。低融点ガラスを含む試料No.1の場合、他の試料と異なり、割れやクラックが観られず、機械的強度に優れることがわかった。
《Sample evaluation》
(1) Appearance The results of observing the appearance of the obtained samples are also shown in Table 1. Sample No. containing low melting point glass In the case of 1, unlike the other samples, it was found that no cracks or cracks were observed and the mechanical strength was excellent.

(2)性能
各試料を反応器に装?して、0.3MPa×5℃で、アンモニアガスの吸蔵性と、熱出力を評価した。この結果を図1および図2にそれぞれ示した。図1に示した反応率は容量法を用いたアンモニアガス圧力の変化により求めたものである。
(2) Performance Each sample was loaded into a reactor, and the occlusion of ammonia gas and heat output were evaluated at 0.3 MPa × 5 ° C. The results are shown in FIGS. 1 and 2, respectively. The reaction rate shown in FIG. 1 is obtained from a change in ammonia gas pressure using a volumetric method.

なお、試料No.C1〜C3の化学蓄熱体は既に割れ等を生じていたため、反応器による評価をするまでも無かったが、試料No.C1の化学蓄熱体だけ参考に評価した。ちなみに反応器にはマイクロチャンネルを用いた熱交換機構を具備しているものを使用し、本実施例では流量30cc/min、5℃の水を用いて反応熱を外部へ放熱させた。   Sample No. Since the chemical heat storage materials of C1 to C3 had already been cracked and so on, there was no need to evaluate them with a reactor. Only C1 chemical heat storage was evaluated for reference. Incidentally, a reactor equipped with a heat exchange mechanism using a microchannel was used, and in this example, reaction heat was radiated to the outside using water at a flow rate of 30 cc / min and 5 ° C.

図1および図2に示す結果から、試料No.1の化学蓄熱体は、アンモニアガスとの反応性に優れ、反応熱を外部へ効率的に放熱することが確認された。   From the results shown in FIG. 1 and FIG. It was confirmed that the chemical heat storage body 1 was excellent in reactivity with ammonia gas and efficiently dissipated reaction heat to the outside.

Figure 2012082291
Figure 2012082291

Claims (10)

アンモニアの吸蔵または放出により発熱または吸熱する蓄熱粒子と該蓄熱粒子を結着させるバインダーとを混合した混合物の成形体を焼成した焼成体からなる化学蓄熱体であって、
前記蓄熱粒子は、アルカリ金属元素、アルカリ土類金属元素または遷移金属元素の一種以上と塩素との化合物である金属塩化物を含み、
前記バインダーは、ガラス転移点が600℃以下である低融点ガラスを含むことを特徴とする化学蓄熱体。
A chemical heat storage body comprising a fired body obtained by firing a mixture of heat storage particles that generate or absorb heat by storing or releasing ammonia and a binder that binds the heat storage particles,
The heat storage particles include a metal chloride that is a compound of at least one of an alkali metal element, an alkaline earth metal element, or a transition metal element and chlorine,
The binder comprises a low-melting glass having a glass transition point of 600 ° C or lower.
さらに、前記蓄熱粒子および前記バインダーよりも熱伝導性に優れる高熱伝導材を含む請求項1に記載の化学蓄熱体。   Furthermore, the chemical heat storage body of Claim 1 containing the high heat conductive material which is more excellent in heat conductivity than the said heat storage particle and the said binder. 前記金属塩化物は、カルシウム塩化物、マグネシウム塩化物、ストロンチウム塩化物、マンガン塩化物、コバルト塩化物、ニッケル塩化物の一種以上である請求項1または2に記載の化学蓄熱体。   The chemical heat storage element according to claim 1 or 2, wherein the metal chloride is one or more of calcium chloride, magnesium chloride, strontium chloride, manganese chloride, cobalt chloride, and nickel chloride. 前記金属塩化物のモル数(Nm)に対する含有する水のモル数(Nw)の比である含水比R(R=Nw/Nm)が0〜4である請求項1〜3のいずれかに記載の化学蓄熱体。   4. The water content ratio R (R = Nw / Nm), which is the ratio of the number of moles of water (Nw) to the number of moles (Nm) of the metal chloride, is 0 to 4. 4. Chemical heat storage body. シート状である請求項1〜4のいずれかに記載の化学蓄熱体。   It is a sheet form, The chemical heat storage body in any one of Claims 1-4. アンモニアの吸蔵または放出により発熱または吸熱する蓄熱粒子からなる蓄熱粉末と該蓄熱粒子を結着させるバインダーとを混合した混合物を得る混合工程と、
該混合物を加圧成形した成形体を得る成形工程と、
該成形体を焼成した焼成体を得る焼成工程と、
を備える化学蓄熱体の製造方法であって、
前記蓄熱粒子は、アルカリ金属元素、アルカリ土類金属元素または遷移金属元素の一種以上と塩素との化合物である金属塩化物を含み、
前記バインダーは、ガラス転移点が600℃以下である低融点ガラスを含むことを特徴とする化学蓄熱体の製造方法。
A mixing step of obtaining a mixture in which heat storage powder composed of heat storage particles that generate or absorb heat by storing or releasing ammonia and a binder that binds the heat storage particles;
A molding step for obtaining a molded body obtained by pressure-molding the mixture;
A firing step of obtaining a fired body obtained by firing the molded body;
A method for producing a chemical heat storage body comprising:
The heat storage particles include a metal chloride that is a compound of at least one of an alkali metal element, an alkaline earth metal element, or a transition metal element and chlorine,
The said binder contains the low melting glass whose glass transition point is 600 degrees C or less, The manufacturing method of the chemical heat storage body characterized by the above-mentioned.
前記混合工程は、前記蓄熱粒子および前記バインダーよりも熱伝導性に優れる高熱伝導材をさらに含む混合物を得る工程である請求項6に記載の化学蓄熱体の製造方法。   The method for producing a chemical heat storage body according to claim 6, wherein the mixing step is a step of obtaining a mixture further including a high thermal conductive material that is more excellent in thermal conductivity than the thermal storage particles and the binder. 前記成形工程は、成形圧力が50〜500MPaである請求項6または7に記載の化学蓄熱体の製造方法。   The method for producing a chemical heat storage body according to claim 6 or 7, wherein the molding step has a molding pressure of 50 to 500 MPa. 前記焼成工程は、焼成温度が300〜600℃である請求項6〜8のいずれかに記載の化学蓄熱体の製造方法。   The method for producing a chemical heat storage body according to any one of claims 6 to 8, wherein the firing step has a firing temperature of 300 to 600 ° C. 前記混合工程、前記成形工程および前記焼成工程は、露点−40℃以下の低湿度環境下でなされる請求項6〜9のいずれかに記載の化学蓄熱体の製造方法。   The method for producing a chemical heat storage body according to any one of claims 6 to 9, wherein the mixing step, the forming step, and the firing step are performed in a low humidity environment having a dew point of -40 ° C or lower.
JP2010228482A 2010-10-08 2010-10-08 Chemical heat storage body and method for producing the same Expired - Fee Related JP5521967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228482A JP5521967B2 (en) 2010-10-08 2010-10-08 Chemical heat storage body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228482A JP5521967B2 (en) 2010-10-08 2010-10-08 Chemical heat storage body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012082291A true JP2012082291A (en) 2012-04-26
JP5521967B2 JP5521967B2 (en) 2014-06-18

Family

ID=46241520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228482A Expired - Fee Related JP5521967B2 (en) 2010-10-08 2010-10-08 Chemical heat storage body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5521967B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068628A1 (en) * 2012-10-29 2014-05-08 株式会社 日立製作所 Heat storage system and power generation system
JP2014159497A (en) * 2013-02-19 2014-09-04 Toyota Central R&D Labs Inc Chemical heat storage material, method of producing the same and chemical heat storage structure
JP2015221741A (en) * 2014-05-23 2015-12-10 株式会社豊田中央研究所 Ammonia storage and release device
WO2016158973A1 (en) * 2015-03-31 2016-10-06 日本ペイントホールディングス株式会社 Chemical heat storage material, and composition for forming chemical heat storage material
AT518826A1 (en) * 2016-07-11 2018-01-15 Technische Universität Wien Process for thermochemical energy storage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712549B2 (en) * 2010-10-08 2015-05-07 株式会社豊田中央研究所 Chemical heat storage body and method for producing the same
EP2644679B1 (en) * 2011-02-10 2018-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302077A (en) * 1988-02-29 1989-12-06 Uwe Rockenfeller Heat exchange system
JPH04202492A (en) * 1990-11-30 1992-07-23 Yahashi Kogyo Kk Production of heat storage element
JPH08505411A (en) * 1990-06-15 1996-06-11 インスティチュート カタリザ シビルスコゴ オトデレニア ロッシイスコイ アカデミイ ナウク Heat storage material and its use
JP2009133590A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Heat storage device and its manufacturing method
JP2011089091A (en) * 2009-10-26 2011-05-06 Toyota Central R&D Labs Inc Heat regenerator and method of manufacturing the same
JP2012082292A (en) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc Chemical thermal storage medium and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302077A (en) * 1988-02-29 1989-12-06 Uwe Rockenfeller Heat exchange system
JPH08505411A (en) * 1990-06-15 1996-06-11 インスティチュート カタリザ シビルスコゴ オトデレニア ロッシイスコイ アカデミイ ナウク Heat storage material and its use
JPH04202492A (en) * 1990-11-30 1992-07-23 Yahashi Kogyo Kk Production of heat storage element
JP2009133590A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Heat storage device and its manufacturing method
JP2011089091A (en) * 2009-10-26 2011-05-06 Toyota Central R&D Labs Inc Heat regenerator and method of manufacturing the same
JP2012082292A (en) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc Chemical thermal storage medium and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068628A1 (en) * 2012-10-29 2014-05-08 株式会社 日立製作所 Heat storage system and power generation system
JP5923619B2 (en) * 2012-10-29 2016-05-24 株式会社日立製作所 Thermal storage system, power generation system
JP2014159497A (en) * 2013-02-19 2014-09-04 Toyota Central R&D Labs Inc Chemical heat storage material, method of producing the same and chemical heat storage structure
JP2015221741A (en) * 2014-05-23 2015-12-10 株式会社豊田中央研究所 Ammonia storage and release device
WO2016158973A1 (en) * 2015-03-31 2016-10-06 日本ペイントホールディングス株式会社 Chemical heat storage material, and composition for forming chemical heat storage material
US10836945B2 (en) 2015-03-31 2020-11-17 Nippon Paint Holdings Co., Ltd. Chemical heat storage material, and composition for forming chemical heat storage material
AT518826A1 (en) * 2016-07-11 2018-01-15 Technische Universität Wien Process for thermochemical energy storage
AT518826B1 (en) * 2016-07-11 2018-09-15 Univ Wien Tech Process for thermochemical energy storage

Also Published As

Publication number Publication date
JP5521967B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5521967B2 (en) Chemical heat storage body and method for producing the same
CN103717548B (en) Synthesis formulation and preparation and application thereof
JP5765346B2 (en) Chemical heat storage body and method for producing the same
Wang et al. Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations
KR101182271B1 (en) Porous manganese oxide absorbent for Lithium having spinel type structure and a method of manufacturing the same
JP6317066B2 (en) Carbon dioxide adsorbent, method for producing the same, and carbon dioxide collecting module including the same
KR101315371B1 (en) Method for production of high strength concrete using fly ash geopolymer
JP2011502783A (en) Recovery and sequestration system and method for gas and composition obtained therefrom
JP5457962B2 (en) Carbon dioxide capture material
JP5712549B2 (en) Chemical heat storage body and method for producing the same
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
CN105601320B (en) A kind of porous ceramics and preparation method thereof using the preparation of rich magnesium metallurgy nickel slag
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
JP5768887B2 (en) Chemical heat storage material, manufacturing method thereof, and chemical heat storage structure
US10371460B2 (en) Heat storage member
CN107285778A (en) A kind of preparation method of high temperature resistant forsterite type refractory material
Liu et al. Novel low-cost anorthite porous ceramic-based binary chlorate high-temperature thermal energy storage material: preparation and characterization
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
JP2009222273A (en) Method of manufacturing chemical heat storage material molded product
KR100550209B1 (en) Manufacturing Method of carbondioxide adsorbent in using high temperature
JP6036730B2 (en) Method for producing composite metal halide and chemical heat storage material
Kim et al. Kinetic study of lithium orthosilicate pellets for high‐temperature chemical heat pumps
JP2014159497A (en) Chemical heat storage material, method of producing the same and chemical heat storage structure
JP2012106899A (en) Furnace material and method for producing the furnace material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

LAPS Cancellation because of no payment of annual fees