JP2012080621A - 駆動装置の制御装置 - Google Patents

駆動装置の制御装置 Download PDF

Info

Publication number
JP2012080621A
JP2012080621A JP2010221275A JP2010221275A JP2012080621A JP 2012080621 A JP2012080621 A JP 2012080621A JP 2010221275 A JP2010221275 A JP 2010221275A JP 2010221275 A JP2010221275 A JP 2010221275A JP 2012080621 A JP2012080621 A JP 2012080621A
Authority
JP
Japan
Prior art keywords
rotor
relative position
loss
torque
gear mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221275A
Other languages
English (en)
Inventor
Masami Ishikawa
雅美 石川
Tomohiko Ito
智彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2010221275A priority Critical patent/JP2012080621A/ja
Priority to US13/210,749 priority patent/US20120081060A1/en
Priority to PCT/JP2011/070965 priority patent/WO2012043233A1/ja
Publication of JP2012080621A publication Critical patent/JP2012080621A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • H02K21/029Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P17/00Arrangements for controlling dynamo-electric gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】周方向の相対位置を調整可能な複数のロータを有して界磁束を変更可能な回転電機を備えた駆動装置を最適化制御する技術を提供する。
【解決手段】周方向の相対位置を調整可能な第1ロータ20及び第2ロータ10を有する回転電機2と相対位置調整機構50とを備えた駆動装置1を制御する制御装置30は、要求トルクT及び回転速度ωに基づいて、回転電機2の電気的損失と相対位置調整機構50の機械的損失とを含むシステム損失が最小となる相対位置を示すロータ間位相指令phと回転電機2を駆動する電流指令id,iqとを決定する制御指令決定部8と、電流指令id,iqに基づいて回転電機2を制御すると共に、ロータ間位相指令ph基づいて相対位置調整機構50を制御する制御部9とを備える。
【選択図】図1

Description

本発明は、周方向の相対位置を調整可能な複数のロータを有して界磁束を変更可能な可変磁束型の回転電機と相対位置を調整する機構とを備えた駆動装置の制御装置に関する。
内部に永久磁石を埋め込んだロータを備える埋め込み磁石型の回転電機(IPMSM:interior permanent magnet synchronous motor)が広く用いられている。IPMSMでは、通常、永久磁石はロータコアに固定されているため、ロータから発生する磁束は一定である。ロータの回転速度が上昇するに従ってステータコイルに発生する誘起電圧は高くなり、誘起電圧が駆動電圧を超えると制御不能となる場合がある。これを回避するため、ある回転速度以上では、ロータからの磁界を実質的に弱める弱め界磁制御が行われる。但し、弱め界磁制御を行うと回転電機から出力されるトルクに対してステータコイルに流れる電流が大きくなるため、銅損が大きくなり効率が低下する。また、永久磁石からステータに到達する磁束が一定のままでは、ロータの回転速度が高い領域において、ステータコアにおいて生じる鉄損も大きくなり効率が低下する。
そこで、ロータが備える永久磁石からステータに到達する磁束をロータの回転速度に応じて変化させる可変磁束型の回転電機が提案されている。特開2002−58223号公報(特許文献1)には、径外側ロータ(100)と、このロータの径内側に収容される径内側ロータ(200)とを有した回転電機が開示されている(符号は特許文献1のもの。以下、背景技術の説明において同様。)。ステータコア(301)の内周面に対面しつつ回転する径外側ロータ(100)は、界磁束を形成する永久磁石(103)を有する。径内側ロータ(200)は、径外側ロータの内周面に対面する外周面を有して回転自在に配接されるヨーク又は磁石ロータからなる。両ロータの周方向の相対位相は、ギヤハウジング(4)内に収納された遊星減速ギヤ機構により変更可能である(特許文献1:第27〜37段落、図1〜3、要約等。)。また、特開2004−72978号公報(特許文献2)には、径内側ロータと径外側ロータとの双方に永久磁石を備えて、両ロータの相対位置を調整してステータに到達する界磁束を変更する構成が示されている(図1、図2等)。
回転電機の効率に影響する損失には、銅損や鉄損、インバータ損などがよく知られており、好適にはそのような損失が最も少なくなるような制御が実施される。上述したような可変磁束型の回転電機は、機械的に界磁束を変更することによって、弱め界磁電流を減らすことができ、銅損やインバータ損、さらには鉄損を抑制して回転電機の効率を上げることが可能である。一方、特許文献1の遊星減速ギヤ機構のように機械的に2つのロータの相対位相を調整する機構を設けると、ギヤ機構による損失も生じる。このギヤ機構における損失は、ロータの相対位相に対して一定ではない。従って、単純に銅損や鉄損、インバータ損などが最も少なくなる相対位相を選択して回転電機を制御した場合には、このようなギヤ機構まで考慮した装置全体の損失を最小化するような最適化制御が実現できていない可能性がある。
特開2002−58223号公報 特開2004−72978号公報
上記背景に鑑みて、周方向の相対位置を調整可能な複数のロータを有して界磁束を変更可能な回転電機を備えた駆動装置を最適化制御する技術の提供が望まれる。
上記課題に鑑みた本発明に係る駆動装置の制御装置の特徴構成は、
ステータと、周方向の相対位置を調整可能な第1ロータ及び第2ロータとを有する可変磁束型の回転電機と、これら両ロータの前記相対位置を調整する相対位置調整機構とを備えた駆動装置を制御する駆動装置の制御装置であって、
要求トルク及び回転速度に基づいて前記回転電機の銅損及び鉄損を含む電気的損失と前記相対位置調整機構の機械的損失とを少なくとも含むシステム損失が最小となる前記相対位置を示すロータ間位相指令と、前記回転電機を駆動する電流指令とを決定する制御指令決定部と、
前記電流指令に基づいて前記回転電機を制御すると共に、前記ロータ間位相指令に基づいて前記相対位置調整機構を制御する制御部と、を備える点にある。
電気的損失及び相対位置調整機構における機械的損失は、第1ロータと第2ロータとの相対位置によって異なる。従って、電気的損失と機械的損失とを合わせたシステム損失と両ロータの相対位置との関係に基づいて最適な相対位置を決定することが好ましい。本特徴構成によれば、駆動装置の要求トルク及び回転速度に基づいて、システム損失が最小となる両ロータの相対位置を示すロータ間位相指令と、回転電機を駆動する電流指令とが決定される。回転電機及び相対位置調整機構は、このように要求トルクを出力できる範囲で、システム損失が最小となるように決定された制御指令に基づいて制御される。従って、駆動装置のシステム損失が最小となるように最適化制御することが可能となる。
1つの好適な態様として、前記相対位置調整機構が、第1ロータと第2ロータとを駆動連結するギヤ機構を備えて構成されているとき、前記機械的損失は以下のように決定される。即ち、前記相対位置調整機構の機械的損失は、両ロータの前記相対位置に応じて前記第1ロータに生じる第1ロータトルクと前記第1ロータに接続された前記ギヤ機構の損失率との積の絶対値と、両ロータの前記相対位置に応じて前記第2ロータに生じる第2ロータトルクと前記第2ロータに接続された前記ギヤ機構のギヤ損失率との積の絶対値との和に基づいて決定される。周方向に相対位置を調整可能な第1ロータと第2ロータとは、磁気回路の変化に応じて互いのロータ間に生じる吸引反発力によって、それぞれ回転電機の出力トルクと同方向のトルクが作用する場合と逆方向のトルクが作用する場合とがある。一方のロータに作用するトルクが逆方向のトルクの場合、ロータ全体としての合計トルク(回転電機の出力トルク)に対して両ロータのトルクの大きさの和は合計トルクの大きさに比べて大きくなる。つまり、両ロータのトルクの絶対値の和は合計トルクの絶対値に比べて大きくなる。ところで、両ロータがそれぞれギヤ機構を備えて構成されている場合、それぞれのギヤ機構においてギヤ損失が発生する。両ロータのトルクの絶対値の和が大きくなると、その分ギヤ損失の総和も大きくなる。つまり、ギヤ損失の総和は、合計トルクの大きさが同じであっても、ロータ間の吸引反発力による逆方向のトルクの絶対値が大きいほど大きくなり、ロストルクが増加して効率も低下する。ギヤによる損失は、それぞれのロータに接続されるギヤ機構において発生するから、合計トルクに対してギヤ損失率を乗じると、実際の機械的損失よりも小さい値となる。上述したように、それぞれのロータのトルクの絶対値に対してギヤ損失率を乗じることで、正確に機械的損失が算出される。
ここで、第1ロータと第2ロータとを駆動連結するギヤ機構が近似する構成であると、第1ロータのギヤ機構と第2ロータのギヤ機構とにおけるギヤ損失率がほぼ同一の値となる。従って、それぞれのロータのトルクとギヤ損失率との積を算出した後に、それらの絶対値を加算することなく、それぞれのロータのトルクの絶対値を加算した後、ギヤ損失率との積を求めることもできる。つまり、乗算の回数を減らして、演算負荷を軽減することもできる。1つの好適な態様として、前記第1ロータ及び前記第2ロータは、共に同一の出力部材に駆動連結され、前記相対位置調整機構は、以下のように構成される。即ち、前記相対位置調整機構は、前記ギヤ機構として、3つの回転要素を備えた第1差動歯車機構と、3つの回転要素を備えた第2差動歯車機構とを備える。前記第1差動歯車機構は、3つの回転要素として、前記第1ロータに駆動連結される第1ロータ連結要素と、前記出力部材に駆動連結される第1出力連結要素と、第1固定要素とを備える。前記第2差動歯車機構は、3つの回転要素として、前記第2ロータに駆動連結される第2ロータ連結要素と、前記出力部材に駆動連結される第2出力連結要素と、第2固定要素とを備える。前記第1固定要素及び前記第2固定要素の内のいずれか一方が、両ロータの前記相対位置を変更させる駆動源に連動する変位固定要素とされ、他方が非回転部材に固定される非変位固定要素とされる。前記変位固定要素が固定された状態での前記第1ロータ連結要素の回転速度と前記第2ロータ連結要素の回転速度とが互いに等しくなるように、前記第1差動歯車機構のギヤ比と前記第2差動歯車機構のギヤ比とが設定されている。
駆動装置の制御装置の全体構成を模式的に示すブロック図 駆動装置の軸方向断面図 相対位置調整機構のスケルトン図 2つのロータの相対位置とトルクとの関係を示す図 ロータ間に捩り合いが生じている時の原理図と電流−トルク特性グラフ 両ロータに永久磁石が内蔵されている場合の捩り合いトルクと相対位置との関係の一例を示すグラフ 一方のロータに永久磁石が内蔵されている場合の捩り合いトルクと相対位置との関係の一例を示すグラフ 両ロータの相対位置とシステム損失との関係の一例を示すグラフ 両ロータの相対位置とシステム損失との関係の一例を示すグラフ
以下、本発明の好適な実施形態の一例を図面に基づいて説明する。本発明の回転電機は、第1ロータと第2ロータとの周方向の相対位置に応じてステータコイルに鎖交する界磁束が変化する可変磁束型の回転電機である。このため、本発明の回転電機は、第1ロータと第2ロータとの相対位置を変更する相対位置調整機構と回転電機とを有する駆動装置として構成されている。本発明の駆動装置の制御装置は、回転電機並びに相対位置調整機構を制御することにより、駆動装置を最適化制御する制御装置である。
図1に示すように、制御装置30は、システム損失マップ7と、回転電機2及び相対位置調整機構50の制御指令を決定する制御指令決定部8と、制御指令に基づいて回転電機2及び相対位置調整機構50を制御する制御部9とを備えている。システム損失マップ7には、システム損失が最小となる相対位置と駆動装置1(又は回転電機2)の要求トルク(トルク指令)T及び回転電機2の回転速度ωとの関係が規定されている。システム損失には、回転電機2の銅損及び鉄損を含む電気的損失と相対位置調整機構50の機械的損失とが少なくとも含まれる。電気的損失には、銅損及び鉄損の他、回転電機2の駆動回路32の一部を構成するインバータ回路の主にスイッチング素子における損失であるインバータ損も含まれていると好適である。システム損失マップ7は、回転電機2の回転速度及びトルクごとのシステム損失と相対位置(位相)との関係を実験やシミュレーション等によって得た損失データRを集め、データ解析及びデータ最適化を行って生成される。尚、システム損失には、ここに例示したものの他、駆動装置における種々の損失を含めることができる。
制御指令決定部8は、要求トルクT及び回転速度ωに基づいてシステム損失マップ7を参照し、回転電機2を駆動する電流指令id,iq及び後述する2つのロータ10,20の相対位置の制御目標であるロータ間位相指令phを決定する。本実施形態においては、汎用的なベクトル制御により回転電機2が制御される場合を例示し、永久磁石の磁束の方向であるd軸の電流指令idと、電気角においてd軸に直交するq軸の電流指令iqとが決定される。ロータ間位相指令phは、2つのロータ10,20の電気角における位相差(相対位置)の制御目標を示している。制御部9は、電流指令id,iqと電流センサ35により検出されたステータ3のコイル3bの電流及び回転センサ5により検出されたロータ4の電気角θに基づいて電流フィードバック制御を行って回転電機2を制御する。また、制御部9は、ロータ間位相指令phに基づいて相対位置調整機構50、具体的には差動歯車機構60に駆動力を与える駆動源としてのアクチュエータ(モータなど)56を駆動回路34を介して制御する。回転電機2及び相対位置調整機構50は、このように要求トルクTを出力できる範囲で、システム損失が最小となるように決定された制御指令id,iq,phに基づいて制御される。従って、制御装置30は、駆動装置1を最適化制御することが可能となる。
〔回転電機及び駆動装置の構造〕
まず、回転電機2及び相対位置調整機構50を備えた駆動装置1の構成例について説明する。図2に示すように、回転電機2は、相対位置が可変する2つのロータを有するインナロータ型の回転電機である。ロータ4は、ステータ3と対向して本実施形態では相対的に外側に配置される外ロータである第2ロータ10と、相対的に内側に配置される内ロータである第1ロータ20とから構成される。また、第1ロータ20は、第1ロータコア21と第1ロータコア21の内部に埋め込まれた永久磁石とを備えて構成される。第2ロータ10は、第2ロータコア11と第2ロータコア11に形成されたフラックスバリアを備えて構成される。第1ロータ20と第2ロータ10との相対位置に応じて、永久磁石とフラックスバリアとの位置関係が変わり、磁気回路が変わることによって界磁束が調整される。これらロータ10,20の構造の詳細については後述する。
以下の説明では、特に断らない限り、「軸方向L」、「径方向R」、「周方向」は、同軸配置された第1ロータコア21及び第2ロータコア11の軸心(すなわち回転軸X)を基準として定義している。また、以下の説明では、「軸第1方向L1」は図2における軸方向Lに沿った左方を表し、「軸第2方向L2」は図2における軸方向Lに沿った右方を表すものとする。また、「径内方向R1」は、径方向Rの内側(軸心側)へ向かう方向を表し、「径外方向R2」は、径方向Rの外側(ステータ側)へ向かう方向を表す。
図2に示すように、ステータ3及びロータ4を備えた回転電機2は、ケース80の内部に収容されている。そして、回転電機2は、第1ロータ20と第2ロータ10の周方向の相対位置を調整する相対位置調整機構50と共に駆動装置1を構成し、回転電機2の駆動力(トルクと同義)を出力軸としてのロータ軸6に伝達可能に構成されている。
ステータ3は、ケース80の周壁部85の内面に固定されている。ステータ3は、ステータコア3aとステータコア3aに巻装されたコイル(ステータコイル)3bとを備え、回転電機2の電機子を構成する。ステータコア3aは、本例では、複数枚の電磁鋼板を積層して構成されており、円筒状に形成されている。ステータ3の径内方向R1側には、永久磁石を備えた界磁としてのロータ4が配置されている。ロータ4は、回転軸X周りに回転可能にケース80に支持され、ステータ3に対して相対回転する。
ロータ4は、周方向の相対位置を調整可能な第1ロータ20及び第2ロータ10を備えて構成される。第1ロータ20は、第2ロータ10に対してステータ3とは反対側である径内方向R1側にあって、第2ロータコア11と同軸配置された第1ロータコア21を備えている。第1ロータコア21は、径方向R視において第2ロータコア11と重複するように配置されている。本例では、第1ロータコア21は、第2ロータコア11と同じ軸方向Lの長さを有し、径方向R視において第2ロータコア11と完全に重複するように配置されている。また、本例では、第1ロータコア21は、複数枚の電磁鋼板を積層して構成されている。第1ロータ20は、第1ロータコア21を支持すると共に第1ロータコア21と一体回転する第1ロータコア支持部材22を備えている。また、第1ロータ20は、第1ロータコア21の内部に埋め込まれてコイル3bと鎖交する界磁束を提供する永久磁石を備えて構成されている。
第1ロータコア支持部材22は、第1ロータコア21を径内方向R1側から当接支持するように構成されている。また、第1ロータコア支持部材22は、第1ロータコア21に対して軸第1方向L1側に配置された軸受(本例ではブッシュ)と、第1ロータコア21に対して軸第2方向L2側に配置された軸受(本例ではブッシュ)とにより、第2ロータコア支持部材12に対して回転可能に支持されている。そして、第1ロータコア支持部材22の軸第1方向L1側部分の外周面には、相対位置調整機構50が備える回転要素(本例では、第1サンギヤ51a)とスプライン結合する第1スプライン歯23が形成されている。
第2ロータ10は、第2ロータコア11を備えると共に、ステータ3と第1ロータ20との間に配置される。外ロータである第2ロータ10は、ステータ3に対して径内方向R1側において、ステータ3に対して径方向Rに対向するように配置され、第1ロータコア21と同軸に配置される円筒状の第2ロータコア11を備えている。本例では、第2ロータコア11も、複数枚の電磁鋼板を積層して構成されている。また、第2ロータ10は、第2ロータコア11を支持すると共に第2ロータコア11と一体回転する第2ロータコア支持部材12を備えている。
第2ロータコア支持部材12は、第2ロータコア11を軸第1方向L1側から支持する第1支持部12aと、第2ロータコア11を軸第2方向L2側から支持する第2支持部12bと、を備えている。第1支持部12aと第2支持部12bとは、第2ロータコア11に形成された挿通孔に挿通された締結ボルト14により軸方向Lに締結固定される。すなわち、第2ロータコア11は、第1支持部12aと第2支持部12bとの間に挟まれて固定保持される。
第1支持部12aは、第2ロータコア11に対して軸第1方向L1側に配置された軸受(本例ではころがり軸受)により径方向Rに支持され、第2支持部12bは、第2ロータコア11に対して軸第2方向L2側に配置された軸受(本例ではころがり軸受)により径方向Rに支持されている。そして、第1支持部12aの軸第1方向L1側部分の内周面には、相対位置調整機構50が備える回転要素(本例では、第2サンギヤ52a)とスプライン結合する第2スプライン歯13が形成されている。また、第2支持部12bの軸第2方向L2側部分の外周面には、回転センサ5(本例ではレゾルバ)のセンサロータが一体回転するように取り付けられている。回転センサ5は、ステータ3に対するロータ4の回転位置(電気角θ)や回転速度ωを検出するためのセンサである。
ところで、実施形態の回転電機2は可変磁束型の回転電機であり、第1ロータコア21及び第2ロータコア11の少なくとも一方には永久磁石が備えられる。本例では、第1ロータコア21のみに永久磁石が備えられている。一方、第2ロータコア11には、フラックスバリアとなる空隙が形成されている。そして、永久磁石及びフラックスバリアは、第1ロータ20と第2ロータ10との周方向の相対位置に応じてステータ3に到達する界磁束が変化するように配置されている。例えば、永久磁石及びフラックスバリアは、第1ロータ20と第2ロータ10との周方向の相対位置に応じて、第2ロータコア21内にバイパス路となる磁気回路が形成されて漏れ磁束が増加し、ステータ3に到達する磁束が少なくなる状態と、第2ロータコア11内を通過する漏れ磁束が抑制されてステータ3に到達する磁束が多くなる状態との双方の状態をとり得るように配置することができる。
ロータ軸6は、駆動装置1としての駆動力を出力する出力軸である。ロータ軸6は、第1ロータコア21及び第2ロータコア12と同軸配置されており、第1ロータコア21及び第2ロータコア12と同様、相対位置調整機構50の回転要素(本例では、第1キャリヤ51b及び第2キャリヤ52b)に駆動連結されている。周方向の相対位置の調整時を除いて、第1ロータコア21及び第2ロータコア11は互いに同じ回転速度(ロータ回転速度)で回転する。本実施形態においては、ロータ軸6は、第1ロータコア21及び第2ロータコア11に対して低速の回転速度で回転する。即ち、本例では、ロータ軸6の回転速度は、ロータ4の回転速度に対して減速されたものとなり、ロータ軸6には回転電機2のトルクが増幅されて伝達される。
相対位置調整機構50は、差動歯車機構60として、3つの回転要素を備えた第1差動歯車機構51と、3つの回転要素を備えた第2差動歯車機構52とを備えている。相対位置調整機構50は、回転電機2に対して軸第1方向L1側に配置されており、第1差動歯車機構51と第2差動歯車機構52とは、第1差動歯車機構51が第2差動歯車機構52に対して軸第1方向L1側に位置するように、軸方向Lに並べて配置されている。そして、相対位置調整機構50は、第1差動歯車機構51に駆動連結された第1ロータコア支持部材22と、第2差動歯車機構52に駆動連結された第2ロータコア支持部材12との周方向の相対位置を調整することで、第1ロータコア支持部材22と一体回転する第1ロータコア21と、第2ロータコア支持部材12と一体回転する第2ロータコア11との周方向の相対位置を調整する。
差動歯車機構60を構成する第1差動歯車装置51は、本実施形態では、3つの回転要素を備えたシングルピニオン型の遊星歯車機構により構成されている。即ち、第1差動歯車装置51は、3つの回転要素として、第1ロータ20に駆動連結される第1サンギヤ51aと、ロータ軸6に駆動連結される第1キャリヤ51bと、第1リングギヤ51cとを備えている。なお、第1サンギヤ51a及び第1リングギヤ51cの双方は、第1キャリヤ51bが支持する複数のピニオンギヤに噛み合う回転要素である。第1サンギヤ51a、第1キャリヤ51b、及び第1リングギヤ51cは、それぞれ本発明における「第1ロータ連結要素」、「第1出力連結要素」、及び「第1固定要素」に相当する。
第1サンギヤ51aは、第1ロータコア支持部材12と一体回転するように駆動連結(本例では、第1スプライン歯23によるスプライン結合)されることで、第1ロータ20に駆動連結されている。第1キャリヤ51bは、ロータ軸6と一体回転するように駆動連結されている。第1リングギヤ51cは、第1ロータ20と第2ロータ10との周方向の相対位置の調整時に回転位置が調整され、調整時以外では固定される。本実施形態では、第1リングギヤ51cの外周面に、ウォームホイール54が形成されている。つまり、ウォームホイール54は、第1リングギヤ51cに一体的に設けられており、第1リングギヤ51cは、変位部材としてのウォームホイール54に連動して一体回転する。第1リングギヤ51cは本発明の「変位固定要素」に相当する。
相対位置調整機構50は、ウォームホイール54に加えて、ウォームホイール54に係合するウォームギヤ55と、ウォームギヤ55を回転駆動する駆動源(アクチュエータ)としてのモータ56とを備えている。ウォームギヤ55がモータ56の駆動力により回転すると、ウォームギヤ55と噛み合うウォームホイール54が周方向に移動し、第1リングギヤ51cが回転する。つまり、モータ56は、ウォームホイール54を変位させる。図1に示すように、モータ56は、相対位置調整機構50の駆動回路34を介して制御部9により制御される。なお、ウォームホイール54の周方向への移動量、即ち、第1リングギヤ51cの回転量は、ウォームギヤ55の回転量に比例する。第1ロータ20と第2ロータ10との周方向の相対位置は、ウォームホイール54の周方向位置に応じて定まる。回転電機2の動作中における第1ロータ20と第2ロータ10との周方向の相対位置の調整範囲は、例えば電気角で90度や180度の範囲に設定される。尚、第1ロータ20と第2ロータ10との周方向の相対位置の調整範囲の大きさは、ウォームホイール54の周方向の長さにより設定される。
本実施形態において、差動歯車機構60を構成する第2差動歯車機構52も、3つの回転要素を備えたシングルピニオン型の遊星歯車機構により構成されている。即ち、第2差動歯車装置52は、3つの回転要素として、第2ロータ10に駆動連結される第2サンギヤ52aと、ロータ軸6に駆動連結される第2キャリヤ52bと、第2リングギヤ52cとを備えている。尚、第2サンギヤ52a及び第2リングギヤ52cの双方は、第2キャリヤ52bが支持する複数のピニオンギヤに噛み合う回転要素である。第2サンギヤ52a、第2キャリヤ52b、及び第2リングギヤ52cは、それぞれ本発明における「第2ロータ連結要素」、「第2出力連結要素」、及び「第2固定要素」に相当する。第2サンギヤ52aは、第2ロータコア支持部材12と一体回転するように駆動連結(本実施形態では、第2スプライン歯13によるスプライン結合)されることで、第2ロータ10に駆動連結されている。第2キャリヤ52bは、ロータ軸6と一体回転するように駆動連結されている。第2リングギヤ52cは、ケース80の第1壁部81に固定されており、本発明における「非変位固定要素」に相当する。
本実施形態では、第1キャリヤ51bと第2キャリヤ52bとが一体的に一体キャリヤ53を構成している。すなわち、「第1出力連結要素」としての第1キャリヤ51bと、「第2出力連結要素」としての第2キャリヤ52bとが、一体回転するように駆動連結されている。また、第2リングギヤ52cはケース80に固定されている。よって、第1リングギヤ51cを回転させると、第1サンギヤ51aが第2サンギヤ52aに対して相対回転し、第1サンギヤ51aと第2サンギヤ52aとの周方向の相対位置が変化する。第1サンギヤ51aには、第1ロータコア支持部材22が一体回転するように駆動連結され、第2サンギヤ52aには、第2ロータコア支持部材12が一体回転するように駆動連結されている。よって、第1リングギヤ51cの回転位置(ウォームホイール54の周方向位置)を調整することで、第1ロータコア支持部材22(第1ロータ20)と第2ロータコア支持部材12(第2ロータ10)との周方向の相対位置を調整することができる。
尚、第1リングギヤ51cが固定された状態での第1サンギヤ51aの回転速度と第2サンギヤ52aの回転速度とが互いに等しくなるように、第1差動歯車機構51のギヤ比と第2差動歯車機構52のギヤ比とが設定されている。本実施形態では、第1差動歯車機構51と第2差動歯車機構52とは互いに同径に構成されている。そして、第1差動歯車機構51の歯数比(=第1サンギヤ51aの歯数/第1リングギヤ51cの歯数)と第2差動歯車機構52の歯数比(=第2サンギヤ52aの歯数/第2リングギヤ52cの歯数)とが互いに等しく設定されている。また、上述したように、第1キャリヤ51bと第2キャリヤ52bとが一体的に形成されているとともに、第1リングギヤ51cの回転位置の調整時を除いて、第1リングギヤ51c及び第2リングギヤ52cの双方が固定された状態となる。このような構成とすることで、第1リングギヤ51cが固定状態において第1サンギヤ51aの回転速度と第2サンギヤ52aの回転速度とが互いに等しくなり、第1ロータコア21(第1ロータ20)の回転速度と第2ロータコア11(第2ロータ10)の回転速度とが互いに等しくなる。よって、第1ロータ20と第2ロータ10との周方向の相対位置を調整することで、2つのロータ10,20で構成されるロータ4は、両ロータ間の回転位相差(相対位置、相対位相)を保持した状態で、一体回転する。つまり、ロータ4は、両ロータ10,20の相対位相(相対回転位相)が調整された状態で一体回転する。
〔ロータ間の捩り合いトルクとシステム損失〕
上述した相対位置調整機構50のような機械的に2つのロータ間の相対位置を調整する機構を設けると、ギヤ機構による機械的損失が生じる。そして、このギヤ機構による損失には、両ロータ10,20の相対位置に応じた捩り合いトルクが大きく影響する。以下、この捩り合いトルクの発生原理について図4を参照しながら説明する。捩り合いトルクの発生原理が明快に示されるため、図4では、上述したように一方のロータにのみ永久磁石が備えられる構造ではなく、両ロータに永久磁石が備えられる構造を例示している。図4においては、径方向内側に配置される内ロータ20A(上述した第1ロータ20に対応)と径方向外側に配置される外ロータ10A(上述した第2ロータ10に対応)とにより構成されるロータ4Aがステータ3Aの径方向内側に配置される。図4(a)は、両ロータ10A,20Aとの相対位置が基準位置であり、電気角における0度の位相である時を示している(位相差0度)。図4(b)は、両ロータ10A,20Aとの相対位置が基準位置に対して、電気角で90度ずれた時を示している(位相差90度)。図4(c)は、両ロータ10A,20Aとの相対位置が基準位置に対して、電気角で180度ずれた時を示している(位相差180度)。
図4(a)に示すように、位相差が電気角で0度の場合には、外ロータ10Aと内ロータ20Aとの径方向において重複する磁極が同極となり、両ロータ間には互いに反発力が生じる。この力の方向は、ロータ4Aの径方向であるから、トルクにはほとんど影響を与えない。また、図4(c)に示すように、位相差が電気角で180度の場合には、外ロータ10Aと内ロータ20Aとの径方向において重複する磁極が異極となり、両ロータ間には互いに吸引力が生じる。この力の方向も、ロータ4Aの径方向であるから、トルクにはほとんど影響を与えない。一方、図4(b)に示すように、位相差が電気角で90度の場合には、外ロータ10Aと内ロータ20Aとの径方向において重複する磁極が同極と異極とで交互に現れる。その結果、両ロータ間には径方向に対して交差する方向の吸引反発力が生じ、この吸引反発力がロータ4Aの回転方向の力にベクトル分解されてトルクに影響を与える。尚、図を簡略化するために図4(b)には吸引力のみを示した。
図5は、図4(b)に示すように、位相差が電気角で90度の場合の合計トルクを示している。図5(a)は、ステータ3Aに界磁束を提供する、外ロータ10Aと内ロータ20Aとが合成されたロータ4Aの永久磁石と、ステータ3Aの回転磁界とにより生じるトルクを模式的に示している。便宜的に、このトルクの方向を正トルクとする。図5(b)のグラフは、外ロータ10Aに生じるトルクT1と、内ロータ20Aに生じるトルクT2と、ロータ4Aに生じるトルクとしての合計トルクT3との各トルクと、ステータ3Aのコイルに流れる電流との関係を示している。トルクT4は、外ロータ10Aに生じるトルクT1と内ロータ20Aに生じる吸引反発力によるトルクを示している。尚、この際の界磁角は15度である。
ステータ3Aのコイルに流れる電流がゼロの時には、ステータ3Aに回転磁界が生じていないため、ロータ4Aの合計トルクT3はゼロである。図5(a)に示す正トルクの方向にロータ4Aのトルクが生じるようにステータ3Aのコイルに電流を流して回転磁界を発生させると、ロータ4Aの合計トルクT3は電流の増加に伴って増加する。外ロータ10Aに生じるトルクは、内ロータ20Aとの吸引反発によるトルクT4と、回転磁界により生じるトルクとがある。内ロータ20Aとの吸引反発により外ロータ10Aに作用するトルクは、図4(b)及び図5(a)に示したように、正トルクとは反対方向の負トルクである。従って、回転磁界によるトルクよりも吸引反発力によるトルクの方が大きい範囲Zでは、外ロータ10Aとしてのトルクは負トルクとなる。一方、外ロータ10Aとの吸引反発により内ロータ20Aに作用するトルクは正トルクである。
外ロータ10Aのトルクが負トルクの場合、ロータ4全体としての合計トルクに対して両ロータ10A,20Aのトルクの大きさの和は合計トルクの大きさに比べて大きくなる。つまり、両ロータ10A,20Aのトルクの絶対値の和は合計トルクの絶対値に比べて大きくなる。ところで、上述したように、外ロータ10A及び内ロータ20Aがそれぞれ差動歯車機構60のようなギヤ機構を介して結合されている場合、両ロータに接続されるそれぞれのギヤ機構においてギヤ損失が発生する。両ロータ10A,20Aのトルクの絶対値の和が大きくなると、その分ギヤ損失の総和も大きくなる。つまり、ギヤ損失の総和は、外ロータ10Aに作用する負トルクの絶対値が大きいほど大きくなり、ロストルクが増加して効率も低下する。
ここで、例えば外ロータ10A及び内ロータ20Aのそれぞれの動力伝達機構が、上述した第1差動歯車機構51及び第2差動歯車機構52のように構成され、それぞれのギヤ効率=99%であるとする。そして、両ロータ間の吸引反発トルクT4=170Nm、外ロータ10AのトルクT1=−65Nm、内ロータ20AのトルクT2=105Nmとする。この場合、2つの差動歯車機構を合わせた相対位置調整機構50の全体の効率は以下のようになる。
外ロータ10Aのロストルク:|−65×(1−0.99)|=0.65[Nm]
内ロータ20Aのロストルク:|105×(1−0.99)|=1.05[Nm]
総ロストルク:0.65+1.05=1.70[Nm]
合計トルク:105−65=40[Nm]
効率:((40−1.7)/40)×100=95.75[%]
このように、一方のロータに負のトルクが生じる場合には、同じ大きさの合計トルクを得るために外ロータ10A及び内ロータ20Aが出力するトルクの絶対値の合計は大きくなり、その分、ロストルクも大きくなる。このトルクの絶対値は吸引反発トルクT4が大きくなるほど大きくなるから、総ロストルクも吸引反発トルクT4に応じて大きくなる。つまり、機械的損失に含まれるロストルクは、図4からも明らかなように外ロータ10Aと内ロータ20Aとの相対位置(ロータ間位相差)に応じて異なる。
図6及び図7は、ロータ間位相差に応じた外ロータ10AのトルクT1と、内ロータ20AのトルクT2と、両ロータ間の吸引反発トルクT4とを示している。図6は、図4及び図5に示したように外ロータ10A及び内ロータ20Aが共に永久磁石を備えている場合の例である。この場合には、吸引反発トルクT4は、相対位置(ロータ間位相差)が電気角で180度の間に1回のピークを有する。図7は、図2及び図3を利用して説明したような内ロータである第1ロータ20にのみ永久磁石を備え、外ロータである第2ロータ10にはフラックスバリアとしての空隙が備えられる場合の例である。この場合には、磁極が存在しない第2ロータ10と第1ロータ20との反発力は存在しないため、空隙の存在により第1ロータ20が第2ロータ10を吸引する吸引力の差がロータ間位相差に応じたトルクT4となる。このため、吸引反発トルク(この場合は吸引トルク)T4は、相対位置(ロータ間位相差)が電気角で180度の間に2回のピークを有する。
回転電機の効率に影響する損失には、銅損や鉄損、インバータ損などがよく知られており、好適にはそのような損失が最も少なくなるような制御が実施される。上述したような可変磁束型の回転電機は、機械的に界磁束を変更することによって、弱め界磁電流を減らすことができ、銅損やインバータ損、さらには鉄損を抑制して回転電機の効率を上げることが可能である。一方、差動歯車機構のように機械的に2つのロータの相対位相を調整する相対位置調整機構50を設けると、上述したようなギヤ損失も生じる。そして、このギヤ損失は、図4から図7を用いて上述したように、ロータの相対位相に応じて異なる。従って、単純に銅損や鉄損、インバータ損などが最も少なくなる相対位相を選択して回転電機を制御した場合には、相対位置調整機構50まで含めたシステム全体の最適化制御が実現できていない可能性がある。
そこで、本実施形態においては、回転電機2の銅損及び鉄損を含む電気的損失と相対位置調整機構50のギヤ損失を含む機械的損失とを少なくとも含むシステム損失が最小となるように最適化制御が実施される。図8及び図9は、そのようなシステム損失と相対位置との関係の一例を示したグラフである。ここで、鉄損はコイル3bや永久磁石が発生させる磁界によりステータコア3a及びロータコア11,21を通る磁束が変化する際に失われるヒステリシス損や渦電流損などの電気エネルギーである。銅損は、コイル3bの導線の抵抗によりジュール熱となって失われる電気エネルギーである。インバータ損は、インバータを構成するスイッチング素子がスイッチングする際に失われる電気エネルギーである。これらは、電気的損失に含まれる。外側ロータ機械損失及び内側ロータ機械損失は、上述したように、相対位置調整機構50のギヤ損失に代表される機械的損失である。尚、図8は、例えば4000rpm、8Nm程度の中速・中トルクの際のシステム損失を例示し、図9は、例えば8000rpm、12Nm程度の高速・高トルクの際のシステム損失を例示している。
図8を参照すると、電気的損失のみに着目すれば、ロータ間位相(相対位置)が電気角で56.25度の時が最も損失が少ない。従って、電気的損失のみに基づいて回転電機2を制御する場合には、相対位置は当該位相に設定される。しかし、機械的損失も含めたシステム損失は、ロータ間位相が電気角で45度の時に最も少なくなっている。従って、さらに回転電機2(駆動装置1)の効率を向上させて制御するには、システム損失に基づき相対位置が45度に設定されることが好ましい。尚、図9に示すロータ間位相67.5度のように、電気的損失が最小となるロータ間位相と、機械的損失も含めたシステム損失が最小となるロータ間位相とが同一となる場合もある。
システム損失を構成する電気的損失及び機械的損失は、関数などによって容易に一般化できるような相関関係を有していないことから、システム損失に基づいた制御を実施するには、図1に示したようにシステム損失マップ7を予め用意しておくと好適である。システム損失マップ7は、図8及び図9に示したように、回転電機2(駆動装置1)の回転速度及びトルクごとに、実験又は磁場解析シミュレーション等によって得られる損失データRに基づいて生成される。
具体的には、まず、駆動装置1及び回転電機2の駆動範囲内で、回転電機2の要求トルク、回転速度に基づいて、ロータ間位相、コイル3bの電流振幅、電流位相などの電流指令が決定される。尚、電流指令は、ベクトル制御におけるd軸、q軸の電流指令id,iqであってもよい。次にこれら回転速度、ロータ間位相、電流指令を入力値として、実験やシミュレーションが実施される。そして、出力値として図8及び図9に示したような鉄損、銅損、インバータ損などの電気的損失と、内側ロータとしての第1ロータ20及び外側ロータとしての第2ロータ10のロータトルクが得られる。
上述したように、第1ロータ20と第2ロータ10とには捩り合いトルクとしての吸引反発トルクが生じるので、このトルクを考慮してロストルクが求められる。つまり、ロストルクは、両ロータ10,20の相対位置(ロータ間位相)に応じて第1ロータ20に生じる第1ロータトルクと第1ロータ20に接続されたギヤ機構の損失率との積の絶対値と、両ロータ10,20の相対位置に応じて第2ロータ10に生じる第2ロータトルクと第2ロータ10に接続されたギヤ機構のギヤ損失率との積の絶対値との和に基づいて決定される。上記において具体的な数値を用いて式及び計算例を示した通りである。
尚、計算上、各ロータ10,20のトルクとギヤ機構の損失率との積の絶対値をとることなく、各ロータ10,20のトルクの絶対値とギヤ機構の損失率との積を求めても等価であり、このような改変は言うまでもなく本発明の技術的範囲に属する。また、本実施形態における相対位置調整機構50のように、両ロータ10,20に接続されるギヤ機構の構成が同じで、ギヤ損失率も等価であれば、各ロータ10,20のトルクとギヤ機構の損失率との積を求めて足し合わせることなく、各ロータ10,20のトルクの絶対値の和とギヤ機構の損失率との積を求めてもよい。算出されたロストルクと回転速度ωとの積を求めることによって、各回転速度ωにおける機械的損失である捩り合い損失が求められる。
これまでに得られた鉄損、銅損、インバータ損を含む電気的損失と、捩り合い損失を含む機械的損失とを合算して、図8及び図9に示したようなシステム損失(損失データR)が求められる。そして、図1に示すように、損失データRに基づいて、システム損失が最小となる相対位置(ロータ間位相)と回転電機2(駆動装置1)の要求トルクT及び回転速度ωとの関係が規定されたシステム損失マップ7が生成され、不揮発性メモリなどに記憶される。システム損失マップ7は、具体的には、システム損失が最小となる相対位置が、回転電機2(駆動装置1)の要求トルクT及び回転速度ωごとに規定されたマップである。
図1に示すように、駆動装置1の制御装置30は、このシステム損失マップ7を利用して駆動装置1(回転電機2)を最適化制御する。制御装置30の制御指令決定部8は、要求トルクT及び回転速度ωに基づいてシステム損失マップ7を参照し、回転電機2を駆動する電流指令(例えば、id,iq)及び相対位置を示すロータ間位相指令phを決定する。制御部9は、この電流指令及びロータ4の磁極位置(回転角)θに基づいて回転電機2を制御すると共に、ロータ間位相指令phに基づいて相対位置調整機構50を制御する。尚、システム損失マップ7ではなく、要求トルクT及び回転速度ωに基づき、直接的に、相対位置を示すロータ間位相指令ph及び電流指令(例えば、id,iq)が規定されたマップが備えられていてもよい。また、このようなマップは、1つに限らず、複数備えられていても良い。例えば、要求トルクT及び回転速度ωに基づく最適な相対位置が規定されたマップからロータ間位相指令phが決定され、要求トルクT、回転速度ω、相対位置(ロータ間位相指令ph)に基づいて電流指令が規定されたマップから電流指令が決定されてもよい。
〔他の実施形態〕
(1)上記実施形態においては、周方向の相対位置を調整可能な外ロータ及び内ロータの双方に永久磁石が備えられる例と、内ロータに永久磁石が備えられ、外ロータにフラックスバリアが形成される例とを示した。しかし、これに限定されることなく、外ロータに永久磁石が備えられ、内ロータにフラックスバリアが形成されてもよい。また、それぞれのロータは、永久磁石を備えると共にフラックスバリアが形成されていてもよい。
(2)また、上記実施形態では、インナロータ型の回転電機を例として説明したが、当然ながらアウタロータ型の回転電機に適用することもできる。その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本発明及び本発明と均等な構成を備え、発明の要旨を逸脱しなければ、上記実施形態の一部を適宜改変した構成も、当然に本発明の技術的範囲に属する。
本発明は、永久磁石による界磁束を調整可能な可変磁束型の回転電機に利用することができる。
1:駆動装置
2:回転電機
3:ステータ
6:ロータ軸(出力部材)
7:システム損失マップ
9:制御部
10:第2ロータ
20:第1ロータ
30:駆動装置の制御装置
50:相対位置調整機構
51:第1差動歯車機構
51a:第1サンギヤ(第1ロータ連結要素)
51b:第1キャリヤ(第1出力連結要素)
51c:第1リングギヤ51c(第1固定要素)、変位固定要素
52:第2差動歯車機構
52a:第2サンギヤ(第2ロータ連結要素)
52b:第2キャリヤ(第2出力連結要素)
52c:第2リングギヤ51c(第2固定要素)、非変位固定要素
60:差動歯車機構、ギヤ機構
id,iq:電流指令
ph:ロータ間位相指令
:要求トルク
ω:回転速度

Claims (3)

  1. ステータと、周方向の相対位置を調整可能な第1ロータ及び第2ロータとを有する可変磁束型の回転電機と、これら両ロータの前記相対位置を調整する相対位置調整機構とを備えた駆動装置を制御する駆動装置の制御装置であって、
    要求トルク及び回転速度に基づいて前記回転電機の銅損及び鉄損を含む電気的損失と前記相対位置調整機構の機械的損失とを少なくとも含むシステム損失が最小となる前記相対位置を示すロータ間位相指令と、前記回転電機を駆動する電流指令とを決定する制御指令決定部と、
    前記電流指令に基づいて前記回転電機を制御すると共に、前記ロータ間位相指令に基づいて前記相対位置調整機構を制御する制御部と、
    を備える駆動装置の制御装置。
  2. 前記相対位置調整機構は、第1ロータと第2ロータとを駆動連結するギヤ機構を備え、
    前記相対位置調整機構の機械的損失は、両ロータの前記相対位置に応じて前記第1ロータに生じる第1ロータトルクと前記第1ロータに接続された前記ギヤ機構の損失率との積の絶対値と、両ロータの前記相対位置に応じて前記第2ロータに生じる第2ロータトルクと前記第2ロータに接続された前記ギヤ機構のギヤ損失率との積の絶対値との和に基づいて決定される請求項1に記載の駆動装置の制御装置。
  3. 前記第1ロータ及び前記第2ロータは、共に同一の出力部材に駆動連結され、
    前記相対位置調整機構は、前記ギヤ機構として、3つの回転要素を備えた第1差動歯車機構と、3つの回転要素を備えた第2差動歯車機構と、を備え、
    前記第1差動歯車機構は、3つの回転要素として、前記第1ロータに駆動連結される第1ロータ連結要素と、前記出力部材に駆動連結される第1出力連結要素と、第1固定要素と、を備え、
    前記第2差動歯車機構は、3つの回転要素として、前記第2ロータに駆動連結される第2ロータ連結要素と、前記出力部材に駆動連結される第2出力連結要素と、第2固定要素と、を備え、
    前記第1固定要素及び前記第2固定要素の内のいずれか一方が、両ロータの前記相対位置を変更させる駆動源に連動する変位固定要素とされ、他方が非回転部材に固定される非変位固定要素とされ、
    前記変位固定要素が固定された状態での前記第1ロータ連結要素の回転速度と前記第2ロータ連結要素の回転速度とが互いに等しくなるように、前記第1差動歯車機構のギヤ比と前記第2差動歯車機構のギヤ比とが設定されている請求項2に記載の駆動装置の制御装置。
JP2010221275A 2010-09-30 2010-09-30 駆動装置の制御装置 Pending JP2012080621A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010221275A JP2012080621A (ja) 2010-09-30 2010-09-30 駆動装置の制御装置
US13/210,749 US20120081060A1 (en) 2010-09-30 2011-08-16 Control apparatus for driving apparatus
PCT/JP2011/070965 WO2012043233A1 (ja) 2010-09-30 2011-09-14 駆動装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221275A JP2012080621A (ja) 2010-09-30 2010-09-30 駆動装置の制御装置

Publications (1)

Publication Number Publication Date
JP2012080621A true JP2012080621A (ja) 2012-04-19

Family

ID=45889227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221275A Pending JP2012080621A (ja) 2010-09-30 2010-09-30 駆動装置の制御装置

Country Status (3)

Country Link
US (1) US20120081060A1 (ja)
JP (1) JP2012080621A (ja)
WO (1) WO2012043233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887656B2 (en) 2014-03-27 2018-02-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Information processing device, information storage device, and control device of rotary electric machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222539A1 (de) * 2013-11-06 2015-05-07 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zum Betreiben einer permanent-angeregten Synchronmaschine
DE102016223303A1 (de) * 2016-11-24 2018-05-24 Audi Ag Motorsteuerung von Fahrzeugen mit mehreren E-Maschinen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147732B2 (ja) * 2000-08-11 2008-09-10 株式会社デンソー 永久磁石型回転電機
JP2005354779A (ja) * 2004-06-09 2005-12-22 Mitsubishi Heavy Ind Ltd モータ制御装置およびモータ制御方法
JP4749936B2 (ja) * 2006-06-01 2011-08-17 本田技研工業株式会社 電動機の制御装置
JP4800154B2 (ja) * 2006-09-01 2011-10-26 本田技研工業株式会社 電動機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887656B2 (en) 2014-03-27 2018-02-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Information processing device, information storage device, and control device of rotary electric machine

Also Published As

Publication number Publication date
WO2012043233A1 (ja) 2012-04-05
US20120081060A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5845429B2 (ja) モータ
US7626298B2 (en) Electric motor and method of driving the same
US9071118B2 (en) Axial motor
JP5880793B1 (ja) 電動機、電動パワーステアリング装置および車両
JP4369384B2 (ja) 回転電機
WO2012043235A1 (ja) 駆動装置の制御装置
US20100170741A1 (en) Motor and electric power supply control apparatus for the motor
JP5930131B2 (ja) 電動機制御装置、電動パワーステアリング装置および車両
CN101188374A (zh) 双转子电磁机的控制
JP2013046440A (ja) 回転電機
WO2012043233A1 (ja) 駆動装置の制御装置
JP2004328944A (ja) 磁束制御型発電機
JP2010183648A (ja) 永久磁石回転電機及びそれを用いた電動車両
JP5842852B2 (ja) 回転電機制御システム及び回転電機の制御方法
WO2006019058A1 (ja) 可変磁気抵抗型発電装置
JP4862344B2 (ja) 回転電機
JP2012075288A (ja) 回転電機
JP2012239302A (ja) 回転電機制御装置
WO2012081392A1 (ja) 回転電機
JP4910745B2 (ja) 電動機の制御装置およびその制御方法
JP4902494B2 (ja) 回転角度位置検出装置
JP5085361B2 (ja) 駆動力伝達装置
JP2001314053A (ja) 永久磁石界磁極型回転電機
JP2008125195A (ja) 電動モータおよびハイブリット車両
JP2012143055A (ja) 回転電機