JP2012075820A - Pulse wave propagation velocity measuring device and pulse wave propagation velocity measuring program - Google Patents

Pulse wave propagation velocity measuring device and pulse wave propagation velocity measuring program Download PDF

Info

Publication number
JP2012075820A
JP2012075820A JP2010226598A JP2010226598A JP2012075820A JP 2012075820 A JP2012075820 A JP 2012075820A JP 2010226598 A JP2010226598 A JP 2010226598A JP 2010226598 A JP2010226598 A JP 2010226598A JP 2012075820 A JP2012075820 A JP 2012075820A
Authority
JP
Japan
Prior art keywords
pulse wave
reference time
wave
amplitude
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010226598A
Other languages
Japanese (ja)
Other versions
JP5681434B2 (en
Inventor
Yutaka Ikeda
豊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010226598A priority Critical patent/JP5681434B2/en
Publication of JP2012075820A publication Critical patent/JP2012075820A/en
Application granted granted Critical
Publication of JP5681434B2 publication Critical patent/JP5681434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulse wave propagation velocity measuring device capable of more accurately obtaining a pulse wave propagation velocity from the pulse wave of one measurement site.SOLUTION: The pulse wave propagation velocity measuring device 10 includes a pulse wave propagation velocity detecting part 5 obtaining the propagation velocity PWVof a pulse wave S by correcting a propagation velocity PWV (=2h/ΔT: h is a distance from the heart to an abdominal aortic bifurcation part) obtained based on a time difference ΔT between a reference time T1 of an ejection wave component of the pulse wave S detected by a reference time detecting part 2 and a reference time T2 of a reflection wave component, with a correction factor AI (=W1/W2) obtained from the amplitude W1 of the pulse wave S corresponding to the reference time T1 of the ejection wave component detected by a pulse wave amplitude detecting part 3 and from the amplitude W2 of the pulse wave S corresponding to the reference time T2 of the reflection wave component.

Description

この発明は、生体の脈波を測定することで、脈波の伝搬する速度を算出する脈波伝播速度測定装置および脈波伝播速度測定プログラムに関する。   The present invention relates to a pulse wave velocity measuring apparatus and a pulse wave velocity measuring program for calculating a velocity at which a pulse wave propagates by measuring a pulse wave of a living body.

従来、脈波は生体の循環器系の状態を把握する上で様々な重要な情報を有していることが知られている。特に、生体の2箇所を脈波が伝播する速度および時間は動脈硬化状態などが把握できる可能性が指摘され、医療現場でも注目されている生体指標であり、それぞれ脈波伝播速度(PWV:Pulse Wave Velocity)、脈波伝播時間(PTT:Pulse Transit Time)などと呼ばれている。   Conventionally, it is known that a pulse wave has various important information for grasping the state of a living body's circulatory system. In particular, the speed and time at which a pulse wave propagates through two locations of a living body is a biological index that has been pointed out to be able to grasp the arteriosclerosis state and the like, and is also attracting attention in the medical field, and the pulse wave propagation speed (PWV: Pulse) It is called Wave Velocity), pulse wave propagation time (PTT: Pulse Transit Time), and the like.

この脈波伝播速度には、測定箇所に応じて複数の測定手法が提案されており、例えば、頚動脈と大腿動脈との間の脈波伝播速度は、cfPWV(carotid-femoral PWV)と呼ばれ、脈波伝播速度(PWV)におけるゴールドスタンダードとして利用されている。   For this pulse wave velocity, a plurality of measurement methods have been proposed depending on the measurement location. For example, the pulse wave velocity between the carotid artery and the femoral artery is called cfPWV (carrotid-femoral PWV), It is used as a gold standard in pulse wave velocity (PWV).

しかしながら、上記cfPWVは、測定部位に大腿部付け根を含むため、測定時には大腿部付け根を露出しなければならず、測定開始のための準備の観点や、被験者の心理面などの問題から、様々な被験者に対して実施できるような一般的な測定ではない。一方、baPWV(brachial−ankle PWV)は、測定部位が上腕と足首であるので、上記cfPWVよりも測定が容易であり、上記cfPWVよりも臨床現場で普及しつつある。   However, since the cfPWV includes the thigh root at the measurement site, the thigh root must be exposed at the time of measurement. From the viewpoint of preparation for the start of measurement and the psychological aspect of the subject, It is not a general measurement that can be performed on various subjects. On the other hand, baPWV (brachial-ankle PWV) is easier to measure than the cfPWV because the measurement site is the upper arm and ankle, and is becoming more prevalent in clinical practice than the cfPWV.

一般的に、脈波伝播速度(PWV)を求めるには、2箇所の脈波測定点が必要である。   In general, two pulse wave measurement points are required to obtain the pulse wave velocity (PWV).

しかしながら、生体上のいずれの部位で測定された脈波であっても、心臓からの駆出波と生体内の様々な箇所から反射された反射波との合成波であることが知られている。そして、この駆出波と反射波とを分離することで、脈波の測定部位が1箇所でも、脈波伝播速度あるいは脈波伝播時間を求めることができる可能性がある。   However, it is known that the pulse wave measured at any part on the living body is a composite wave of the ejection wave from the heart and the reflected wave reflected from various places in the living body. . Then, by separating the ejection wave and the reflected wave, there is a possibility that the pulse wave propagation speed or the pulse wave propagation time can be obtained even if there is only one pulse wave measurement site.

そこで、非特許文献1(Takazawa K et al.”Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure”, Hypertension 1995; 26:520−3)では、駆出波と反射波を分離するための技術が開示されている。また、特許文献1(特許3495348号公報)や特許文献2(特開2007−007075号公報)では、駆出波と反射波を分離することによって、脈波の測定部位が1箇所であっても、脈波伝播速度あるいは脈波伝播時間を求めるための技術が開示されている。   Therefore, in Non-Patent Document 1 (Takazawa K et al. “Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure”, Hypertension 1995; 26: 520-3), there is a technique for separating ejection waves and reflected waves. It is disclosed. Further, in Patent Document 1 (Japanese Patent No. 3495348) and Patent Document 2 (Japanese Patent Laid-Open No. 2007-007075), even if there is only one pulse wave measurement site by separating the ejection wave and the reflected wave, A technique for obtaining a pulse wave propagation speed or pulse wave propagation time is disclosed.

一般的に、脈波は生体内の各所において反射が発生している。この脈波の反射は、血管のインピーダンス不整合が主因であり、例えば、血管の分岐や血管の弾性力の変化などが在る箇所において脈波の反射が発生する。   In general, the pulse wave is reflected at various points in the living body. The reflection of the pulse wave is mainly due to the impedance mismatch of the blood vessel. For example, the reflection of the pulse wave occurs at a location where there is a branch of the blood vessel or a change in the elastic force of the blood vessel.

ここで、特許文献1にも記述されているように、駆出波と反射波を分離する際には、主たる反射点が腸骨動脈あるいは腹部大動脈分岐周辺にあると仮定すると、生体各部で測定された脈波に対して、駆出波と反射波の分離がうまく行く。   Here, as described in Patent Document 1, when separating the ejection wave and the reflected wave, assuming that the main reflection point is around the iliac artery or the abdominal aortic branch, measurement is performed at each part of the living body. Separation of ejected wave and reflected wave is good for the pulse wave.

また、脈波伝播速度あるいは脈波伝播時間は血圧と相関があり、特許文献2には、1箇所の測定部位から得られた脈波から脈波伝播速度あるいは脈波伝播時間を算出し、血圧を同定するための技術が開示されている。また、非特許文献2(McCombie,Devin “Development of a wearable blood pressure monitor using adaptive calibration of peripheral pulse transit time measurements”,Ph.D. Thesis, Massachusetts Institute of Technology,Dept. of Mechanical Engineering,2008.)には、2箇所の測定部位から得られた脈波から脈波伝播速度あるいは脈波伝播時間を算出し、血圧を同定するための技術が開示されている。   Further, the pulse wave velocity or pulse wave propagation time has a correlation with blood pressure. In Patent Document 2, the pulse wave velocity or pulse wave propagation time is calculated from the pulse wave obtained from one measurement site, and the blood pressure is calculated. Techniques for identifying are disclosed. In Non-Patent Document 2 (McCombie, Devin “Development of a wearable blood pressure monitor using adaptive calibration of peripheral pulse transit time measurements”, Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.) Discloses a technique for calculating a pulse wave velocity or pulse wave propagation time from pulse waves obtained from two measurement sites and identifying blood pressure.

ところで、上述の特許文献1および2のいずれにおいても、1箇所の測定部位の脈波から脈波伝播速度あるいは脈波伝播時間を求めることができるとされているが、その前提として駆出波と反射波それぞれの脈波伝播速度が同じであることを前提にしている。この前提にしたがって、(1)1つの脈波を駆出波と反射波に分離して両者の基準時間差を求め、(2)脈波の駆出波と反射波のそれぞれが伝播する距離の差を求めている。この基準時間差と距離の差とから、脈波伝播速度あるいは脈波伝播時間を求めている。   In both Patent Documents 1 and 2, it is said that the pulse wave velocity or pulse wave propagation time can be obtained from the pulse wave at one measurement site. It is assumed that the pulse wave velocity of each reflected wave is the same. In accordance with this premise, (1) one pulse wave is separated into ejected wave and reflected wave to obtain the reference time difference between them, and (2) the difference in the distance that each of the ejected wave and reflected wave propagates. Seeking. From this reference time difference and distance difference, the pulse wave propagation speed or pulse wave propagation time is obtained.

しかしながら、実際には、駆出波の脈波伝播速度と反射波の脈波伝播速度は一致しない。何故ならば、駆出波の振幅と反射波の振幅は異なっているからである。前述の特許文献2に記載されている通り、脈波伝播速度は血圧と相関があるが、血圧は脈波の振幅に関係している。つまり、脈波伝播速度は脈波の振幅に関係しているのである。   However, actually, the pulse wave propagation speed of the ejection wave and the pulse wave propagation speed of the reflected wave do not match. This is because the ejection wave and the reflected wave have different amplitudes. As described in Patent Document 2 described above, the pulse wave velocity is correlated with the blood pressure, but the blood pressure is related to the amplitude of the pulse wave. In other words, the pulse wave propagation speed is related to the amplitude of the pulse wave.

上述の通り、反射波は反射点を腹部大動脈分岐周辺と想定することで脈波の波形形状をうまく説明できる。脈波の反射が起こる理由は、大動脈と腹部大動脈分岐におけるインピーダンス不整合があるためであるが、この不整合の度合いは人によって異なる。また、同一人物においても、体調,血管状態によって上記不整合の度合いは異なる。その結果、反射波の振幅は駆出波の振幅とは異なり、また人によってもその振幅の異なり具合は異なる。このため、脈波の駆出波の伝播速度と反射波の伝播速度とは異なることとなる。   As described above, the waveform of the pulse wave can be well explained by assuming that the reflected wave is around the abdominal aortic branch. The reason for the reflection of the pulse wave is that there is an impedance mismatch between the aorta and the abdominal aorta branch, but the degree of this mismatch varies from person to person. Even in the same person, the degree of inconsistency varies depending on the physical condition and the blood vessel state. As a result, the amplitude of the reflected wave is different from the amplitude of the ejection wave, and the degree of the amplitude differs depending on the person. For this reason, the propagation speed of the ejection wave of the pulse wave is different from the propagation speed of the reflected wave.

特許3495348号公報Japanese Patent No. 3495348 特開2007−007075号公報JP 2007-007075 A

Takazawa K et al.”Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure”, Hypertension 1995; 26:520−3Takazawa K et al. “Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure”, Hypertension 1995; 26: 520-3. McCombie,Devin “Development of a wearable blood pressure monitor using adaptive calibration of peripheral pulse transit time measurements”,Ph.D. Thesis, Massachusetts Institute of Technology,Dept. of Mechanical Engineering,2008.McCombie, Devin “Development of a wearable blood pressure monitor using adaptive calibration of peripheral pulse transit time measurements”, Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engingering, 2008. Murgo JP, Westerhof N, Giolma JP, et al.”Aortic input impedance in normal man : relationship to pressure wave form”, Circulation 1980; 62:105−16Murgo JP, Westerhof N, Giolma JP, et al. “Aortic input impedance in normal man: relationship to pressure wave form”, Circulation 1980; 62: 105-16

そこで、この発明の課題は、1箇所の測定部位の脈波から脈波伝播速度をより正確に求めることができる脈波伝播速度測定装置および脈波伝播速度測定プログラムを提供することにある。   Accordingly, an object of the present invention is to provide a pulse wave velocity measuring apparatus and a pulse wave velocity measuring program capable of more accurately obtaining a pulse wave velocity from a pulse wave at one measurement site.

上記課題を解決するため、この発明の脈波伝播速度測定装置は、生体の或る一部位における脈波を検出する脈波検出部と、
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間および上記反射波成分の基準時間と、上記脈波振幅検出部で検出した上記駆出波成分の基準時間に対応する脈波の振幅および上記反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を求める伝播速度検出部とを備えることを特徴としている。
In order to solve the above problems, a pulse wave velocity measuring device of the present invention includes a pulse wave detection unit that detects a pulse wave in a certain part of a living body,
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. A pulse wave amplitude detector for detecting amplitude;
The reference time of the ejection wave component detected by the reference time detection unit and the reference time of the reflected wave component, and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the pulse wave amplitude detection unit And a propagation velocity detector that obtains the propagation velocity of the pulse wave based on the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この発明の脈波伝播速度測定装置によれば、上記基準時間検出部で脈波の駆出波成分および反射成分の基準時間を検出すると共に、上記脈波振幅検出部で上記駆出波成分の基準時間および反射波成分の基準時間に対応する脈波の振幅を検出する。そして、上記伝播速度検出部は、上記駆出波成分,反射波成分の基準時間とこの駆出波成分,反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を求める。したがって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measuring device of the present invention, the reference time detection unit detects the pulse wave ejection wave component and the reflection component reference time, and the pulse wave amplitude detection unit detects the ejection wave component. The amplitude of the pulse wave corresponding to the reference time and the reference time of the reflected wave component is detected. Then, the propagation velocity detection unit is configured to detect the pulse wave based on the reference time of the ejected wave component and the reflected wave component and the amplitude of the pulse wave corresponding to the reference time of the ejected wave component and the reflected wave component. Find the propagation speed. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference between the pulse wave velocity of the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、一実施形態の脈波伝播速度測定装置では、上記伝播速度検出部は、
上記基準時間検出部で検出した上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記脈波振幅検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正することで上記脈波の伝播速度を求める。
Moreover, in the pulse wave velocity measuring apparatus of one embodiment, the propagation velocity detector is
The ejection wave component detected by the pulse wave amplitude detection unit based on the time difference between the reference time of the ejection wave component detected by the reference time detection unit and the reference time of the reflected wave component. The pulse wave propagation velocity is obtained by correcting with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the reference time and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定装置によれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measuring apparatus of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、一実施形態の脈波伝播速度測定装置では、上記伝播速度検出部は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から上記補正係数を求める。
Moreover, in the pulse wave velocity measuring apparatus of one embodiment, the propagation velocity detector is
The correction coefficient is obtained from the ratio between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定装置によれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measuring apparatus of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the ratio of the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、一実施形態の脈波伝播速度測定装置では、上記伝播速度検出部は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から上記補正係数を求める。
Moreover, in the pulse wave velocity measuring apparatus of one embodiment, the propagation velocity detector is
The correction coefficient is obtained from the difference between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定装置によれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measuring apparatus of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the difference between the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、この発明の脈波伝播速度測定プログラムでは、生体の或る一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを求める基準時間導出機能と、
上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能と、
上記駆出波成分の基準時間および上記反射波成分の基準時間と、上記駆出波成分の基準時間に対応する脈波の振幅および上記反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を算出する伝播速度導出機能とをコンピュータに実行させる。
In the pulse wave velocity measurement program of the present invention, the reference time for specifying the ejection wave component included in the pulse wave in a certain part of the living body and the reflected wave component included in the pulse wave are specified. A reference time deriving function for obtaining a reference time of
A pulse wave amplitude deriving function for obtaining the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and obtaining the amplitude of the pulse wave corresponding to the reference time of the reflected wave component;
The reference time of the ejected wave component and the reference time of the reflected wave component, and the amplitude of the pulse wave corresponding to the reference time of the ejected wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component Based on this, the computer is caused to execute a propagation velocity deriving function for calculating the propagation velocity of the pulse wave.

この発明の脈波伝播速度測定プログラムによれば、コンピュータに上記基準時間導出機能を実行させて、脈波の駆出波成分と反射成分を特定するための基準時間を求めると共に、上記脈波振幅導出機能で上記駆出波成分および反射成分を特定するための基準時間に対応する脈波の振幅を求める。そして、上記伝播速度導出機能で、上記駆出波成分,反射成分を特定するための基準時間と上記駆出波成分,反射成分を特定するための基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を算出する。したがって、駆出波成分の振幅と反射成分の振幅との相違による駆出波と反射波の脈波伝播速度の違いを考慮に入れて脈波伝播速度をより高い精度で検出できる。   According to the pulse wave velocity measurement program of the present invention, the computer executes the reference time deriving function to obtain the reference time for specifying the ejection wave component and the reflection component of the pulse wave, and the pulse wave amplitude The derivation function obtains the amplitude of the pulse wave corresponding to the reference time for specifying the ejection wave component and the reflection component. Based on the reference time for specifying the ejection wave component and the reflection component and the amplitude of the pulse wave corresponding to the reference time for specifying the ejection wave component and the reflection component in the propagation velocity deriving function. Then, the propagation speed of the pulse wave is calculated. Therefore, the pulse wave velocity can be detected with higher accuracy in consideration of the difference between the pulse wave velocity of the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected component.

また、一実施形態の脈波伝播速度測定プログラムでは、上記伝播速度導出機能は、
上記基準時間導出機能で求めた上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記脈波振幅導出機能で求めた上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正することで上記脈波の伝播速度を求める。
In the pulse wave velocity measurement program of one embodiment, the propagation velocity derivation function is
The ejection wave component obtained by the pulse wave amplitude derivation function is determined based on the propagation velocity obtained based on the time difference between the reference time of the ejection wave component obtained by the reference time derivation function and the reference time of the reflected wave component. The pulse wave propagation velocity is obtained by correcting with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the reference time and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定プログラムによれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measurement program of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、一実施形態の脈波伝播速度測定プログラムでは、上記伝播速度導出機能は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から上記補正係数を求める。
In the pulse wave velocity measurement program of one embodiment, the propagation velocity derivation function is
The correction coefficient is obtained from the ratio between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定プログラムによれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measurement program of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the ratio of the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

また、一実施形態の脈波伝播速度測定プログラムでは、上記伝播速度検出機能は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から上記補正係数を求める。
In the pulse wave velocity measurement program of one embodiment, the propagation velocity detection function is
The correction coefficient is obtained from the difference between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波伝播速度測定プログラムによれば、上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から求めた補正係数で補正する。よって、駆出波成分の振幅と反射波成分の振幅との相違による駆出波と反射波の脈波伝播速度の相違を考慮に入れて高い精度で脈波伝播速度を測定できる。   According to the pulse wave velocity measurement program of this embodiment, the propagation velocity obtained based on the time difference between the reference time of the ejected wave component and the reference time of the reflected wave component is calculated as the reference time of the ejected wave component. Is corrected with a correction coefficient obtained from the difference between the amplitude of the pulse wave corresponding to the above and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Therefore, the pulse wave velocity can be measured with high accuracy in consideration of the difference in the pulse wave velocity between the ejected wave and the reflected wave due to the difference between the amplitude of the ejected wave component and the amplitude of the reflected wave component.

この発明の脈波伝播速度測定装置によれば、駆出波成分,反射成分を特定するための基準時間とこの駆出波成分,反射成分を特定するための基準時間に対応する脈波の振幅とに基づいて、脈波の伝播速度を求めるので、駆出波成分の振幅と反射成分の振幅の相違による駆出波と反射波の脈波伝播速度の違いを考慮に入れて脈波伝播速度を高精度に検出できる。   According to the pulse wave velocity measurement device of the present invention, the reference time for specifying the ejection wave component and the reflection component and the amplitude of the pulse wave corresponding to the reference time for specifying the ejection wave component and the reflection component Therefore, the pulse wave velocity is calculated by taking into account the difference between the pulse wave velocity of the ejected wave and the reflected wave due to the difference in the amplitude of the ejected wave component and the reflected component. Can be detected with high accuracy.

この発明の実施形態の脈波伝播速度測定装置のブロック図である。It is a block diagram of the pulse wave velocity measuring device of an embodiment of this invention. 上記実施形態の脈波検出部で検出した脈波の波形を(A)欄に示し、上記脈波の加速度波形を(B)欄に示す波形図である。FIG. 4 is a waveform diagram showing a pulse wave waveform detected by the pulse wave detection unit of the embodiment in a column (A) and an acceleration waveform of the pulse wave in a column (B). 上記脈波検出部で検出した脈波の3回微分波形を(A)欄に示し、上記脈波の4回微分波形を(B)欄に示す波形図である。It is a wave form diagram which shows the 3rd derivative waveform of the pulse wave detected by the above-mentioned pulse wave detection part in the (A) column, and shows the 4th derivative waveform of the above-mentioned pulse wave in the (B) column. 上記脈波の波形および上記脈波の基準点Q1,Q2での脈波の振幅W1,W2を示す波形図である。It is a waveform diagram showing the pulse wave amplitude and pulse wave amplitudes W1 and W2 at the reference points Q1 and Q2 of the pulse wave. 上記脈波Sの駆出波成分S1が人の生体内を伝播する経路dと反射波成分S2が人の生体内を伝播する経路hを模式的に示す模式図である。FIG. 5 is a schematic diagram schematically showing a path d through which the ejection wave component S1 of the pulse wave S propagates in the human body and a path h through which the reflected wave component S2 propagates through the human body. 上記実施形態で求めた脈波伝播速度PWVとbaPWVの臨床データによる相関を示す図である。It is a figure which shows the correlation by the clinical data of the pulse wave propagation velocity PWV calculated | required in the said embodiment, and baPWV.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1のブロック図に、この発明の実施形態である脈波伝播速度測定装置10の構成を示す。   The block diagram of FIG. 1 shows the configuration of a pulse wave velocity measuring device 10 that is an embodiment of the present invention.

この脈波伝播速度測定装置10は、脈波検出部1を備え、この脈波検出部1は、人間の生体の或る一部位における脈波を検出する。この脈波検出部1としては、例えば、発光素子から出力される赤外光が血管内の血液量に応じて反射あるいは吸収される度合いを受光素子で測定する光電容積脈波法を用いるものがある。なお、その他に、上記脈波検出部1は、血管内の血液が血管を押す圧力の変化を電気信号として取り出す圧脈波法で脈波を検出するものなどでもよい。また、上記脈波検出部1で脈波を測定する生体部位は、特に大きな制限事項があるわけではないが、できるならば、非侵襲,非拘束の部位であることが望ましく、例えば、指尖,手首,耳朶などが好ましい。   The pulse wave velocity measuring device 10 includes a pulse wave detection unit 1 that detects a pulse wave in a certain part of a human living body. For example, the pulse wave detector 1 uses a photoelectric volume pulse wave method in which the light receiving element measures the degree to which infrared light output from the light emitting element is reflected or absorbed according to the blood volume in the blood vessel. is there. In addition, the pulse wave detection unit 1 may be a device that detects a pulse wave by a pressure pulse wave method that extracts a change in pressure with which blood in a blood vessel pushes the blood vessel as an electrical signal. In addition, the body part for measuring the pulse wave by the pulse wave detection unit 1 is not particularly limited, but is preferably a non-invasive, non-constrained part if possible. Wrist, earlobe, etc. are preferred.

また、この脈波伝播速度測定装置10は、上記脈波検出部1で検出した上記脈波に含まれる駆出波成分,反射波成分のそれぞれを特定するための基準時間と上記基準時間に対応する上記脈波の振幅を検出する駆出波・反射波情報抽出部6と、この駆出波・反射波情報抽出部6からの上記基準時間および上記振幅を表す情報に基づいて、上記脈波の伝播速度を求める脈波伝播速度検出部5を備える。   Further, the pulse wave velocity measuring device 10 corresponds to a reference time for specifying each of the ejection wave component and the reflected wave component included in the pulse wave detected by the pulse wave detection unit 1 and the reference time. The pulse wave / reflected wave information extracting unit 6 for detecting the amplitude of the pulse wave, and the pulse wave based on the reference time and the information representing the amplitude from the ejected wave / reflected wave information extracting unit 6. Is provided with a pulse wave velocity detection unit 5 for obtaining the velocity of propagation.

上記駆出波・反射波情報抽出部6は、上記脈波検出部1で検出した上記脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部2を有する。   The ejection wave / reflected wave information extraction unit 6 calculates a reference time for specifying the ejection wave component included in the pulse wave detected by the pulse wave detection unit 1 and the reflected wave component included in the pulse wave. It has a reference time detector 2 that detects a reference time for identification.

この基準時間検出部2が上記基準時間を求める過程の一例を以下に説明する。まず、図2の(A)欄に、上記脈波検出部1で検出した脈波の波形の一例を示す。図2の(A)欄における縦軸は脈波の振幅(mmHg)に対応する測定電圧値(V)である。この実施形態の脈波伝搬速度測定装置10では、一例として、一般的なカフ式血圧計で測定される血圧(mmHg)でもって、脈波検出部1で測定した電圧値(V)が脈波の振幅(mmHg)にどう対応するかの補正(キャリブレーション)を行っている。なお、この補正(キャリブレーション)は、最初の使用開始時に行えばよく、その後の測定では上記キャリブレーションの結果を用いればよい。   An example of a process in which the reference time detection unit 2 calculates the reference time will be described below. First, an example of a pulse wave waveform detected by the pulse wave detector 1 is shown in the column (A) of FIG. The vertical axis in the column (A) of FIG. 2 is the measured voltage value (V) corresponding to the amplitude (mmHg) of the pulse wave. In the pulse wave propagation velocity measuring apparatus 10 of this embodiment, as an example, the voltage value (V) measured by the pulse wave detector 1 with the blood pressure (mmHg) measured by a general cuff sphygmomanometer is the pulse wave. The correction (calibration) of how to correspond to the amplitude (mmHg) of is performed. This correction (calibration) may be performed at the start of the first use, and the calibration result may be used in subsequent measurements.

上記基準時間検出部2は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Aの(A)欄に示される脈波の波形における収縮期の極大点Q1の時間T1を駆出波成分の基準時間T1として検出する。図2Aの(B)欄には、上記脈波の加速度波を示し、図2Bの(A)欄には、上記脈波の3回微分波を示している。そして、上記基準時間検出部2は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Bの(B)欄に示される脈波の4次微分波の下向き第3ゼロクロスポイントQ2を反射波成分の基準時間T2として検出する。なお、この第3ゼロクロスポイントQ2は、図2Aの(A)欄に示す脈波が極小値になった以降に、図2Bの(B)欄に示す4回微分波形が3回目に下向きにゼロクロスするポイントを意味する。   For example, when the pulse wave is Type C of blood pressure waveform classification by Murgo et al., The reference time detection unit 2 is the time of the systolic maximum point Q1 in the pulse wave waveform shown in the column (A) of FIG. 2A. T1 is detected as the reference time T1 of the ejection wave component. The (B) column of FIG. 2A shows the acceleration wave of the pulse wave, and the (A) column of FIG. 2B shows the triple differential wave of the pulse wave. For example, when the pulse wave is Type C of the blood pressure waveform classification by Murgo et al., The reference time detection unit 2 uses the third downward wave of the fourth-order differential wave of the pulse wave shown in the (B) column of FIG. 2B. The zero cross point Q2 is detected as the reference time T2 of the reflected wave component. The third zero cross point Q2 is the zero crossing of the fourth differential waveform shown in the (B) column of FIG. 2B downward for the third time after the pulse wave shown in the (A) column of FIG. 2A reaches the minimum value. It means the point to do.

なお、上述の説明では、上記検出した脈波が上記血圧波形分類のTypeCである場合について説明したが、上記検出した脈波が上記血圧波形分類のTypeC以外の波形形状である場合には、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、脈波は、大きな血圧変動がなければ、基本的にそれほど大きな波形変化を示すわけではないので、測定した複数の脈波を重ね合わせる(加算平均)ことで、脈波検出精度の改善を図ることが可能になる。   In the above description, the case where the detected pulse wave is Type C of the blood pressure waveform classification has been described. However, when the detected pulse wave has a waveform shape other than Type C of the blood pressure waveform classification, If there is a method that can suitably specify the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component, it may be adopted. For example, if the pulse wave does not show a large blood pressure fluctuation, it basically does not show a very large waveform change, so by superimposing a plurality of measured pulse waves (addition averaging), the pulse wave detection accuracy can be improved. It becomes possible to plan.

ここで、脈波形を4回微分した4回微分波形では、測定波形のノイズ成分の量によっては、微分波形が乱れてしまい、正しく反射波成分の基準時間を同定できない場合もある。そして、上記4回微分波形は乱れるが上記2回微分波形は乱れない場合もある。すなわち、波形の微分解析では、高次微分になると高周波成分を評価していることに相当するため、高周波ノイズが強調されてしまうが、2回微分程度なら、それほど高周波ノイズが強調されず、微分波形が乱れないこともある。したがって、図2Aの(B)欄に示す2回微分波形の2回目の極小値や3回目の極大値の時点を反射波成分の基準時間として検出することもできる。あるいは、上記2回微分波形の2回目の極小値と3回目の極大値との中間値の時点を反射波成分の基準時間として検出することもできる。すなわち、脈波波形の測定状況、基準時間検出部2の回路構成の複雑性に対する許容度などを勘案して、適宜適切な解析方法を採用すればよい。   Here, in the four-fold differential waveform obtained by differentiating the pulse waveform four times, the differential waveform may be disturbed depending on the amount of noise component of the measurement waveform, and the reference time of the reflected wave component may not be correctly identified. In some cases, the four-time differential waveform is disturbed, but the two-time differential waveform is not disturbed. In other words, in the differential analysis of the waveform, high frequency noise is emphasized because it is equivalent to evaluating the high frequency component when it becomes higher order differentiation. The waveform may not be disturbed. Therefore, the time point of the second minimum value or the third maximum value of the second differential waveform shown in the (B) column of FIG. 2A can also be detected as the reference time of the reflected wave component. Alternatively, the time point of the intermediate value between the second minimum value and the third maximum value of the second differential waveform can be detected as the reference time of the reflected wave component. That is, an appropriate analysis method may be adopted as appropriate in consideration of the measurement situation of the pulse wave waveform, the tolerance for the complexity of the circuit configuration of the reference time detection unit 2, and the like.

また、脈波は、ノイズレベル、年齢,性別,疾病の有無,体調などに応じて、様々な波形形状を示すことから、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、検出した脈波を、その時点の被測定者の状態と合わせて履歴として残すことで、脈波の駆出波成分の基準時間と反射波成分の基準時間を特定する精度の改善を図れる。   In addition, since the pulse wave shows various waveform shapes depending on the noise level, age, sex, presence / absence of disease, physical condition, etc., the reference time of the ejection wave component of the pulse wave and the reflected wave component are more preferably If there is a method that can specify the reference time, it may be adopted. For example, it is possible to improve the accuracy of specifying the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component by leaving the detected pulse wave as a history together with the state of the measurement subject at that time. .

また、上記駆出波・反射波情報抽出部6は、脈波振幅検出部3を有する。この脈波振幅検出部3は、図3の脈波波形図に例示するように、上記基準時間検出部2で検出した上記駆出波成分の基準時間T1に対応する上記脈波Sの振幅W1を検出すると共に上記基準時間検出部2で検出した上記反射波成分の基準時間T2に対応する上記脈波Sの振幅W2を検出する。   The ejection wave / reflected wave information extraction unit 6 includes a pulse wave amplitude detection unit 3. As illustrated in the pulse waveform diagram of FIG. 3, the pulse wave amplitude detection unit 3 has an amplitude W1 of the pulse wave S corresponding to the reference time T1 of the ejection wave component detected by the reference time detection unit 2. And the amplitude W2 of the pulse wave S corresponding to the reference time T2 of the reflected wave component detected by the reference time detection unit 2 is detected.

そして、上記駆出波・反射波情報抽出部6は、上記基準時間検出部2で検出した上記駆出波成分の基準時間T1および上記反射波成分の基準時間T2を表す情報を上記脈波伝播速度検出部5に入力すると共に、上記脈波振幅検出部3で検出した上記駆出波成分の基準時間T1に対応する脈波Sの振幅W1および上記反射波成分の基準時間T2に対応する上記脈波Sの振幅W2を表す情報を、上記脈波伝播速度検出部5に入力する。   Then, the ejection wave / reflected wave information extraction unit 6 transmits information representing the reference time T1 of the ejection wave component and the reference time T2 of the reflected wave component detected by the reference time detection unit 2 to the pulse wave propagation. While inputting into the speed detection part 5, the amplitude W1 of the pulse wave S corresponding to the reference time T1 of the ejection wave component detected by the pulse wave amplitude detection part 3 and the reference time T2 of the reflected wave component Information representing the amplitude W2 of the pulse wave S is input to the pulse wave velocity detector 5.

すると、上記脈波伝播速度検出部5は、上記駆出波成分の基準時間T1と、反射波成分の基準時間T2と、上記駆出波成分の基準時間T1に対応する脈波Sの振幅W1と、上記反射波成分S2の基準時間T2に対応する上記脈波Sの振幅W2とに基づいて、上記脈波Sの伝播速度を求める。   Then, the pulse wave velocity detector 5 detects the reference time T1 of the ejection wave component, the reference time T2 of the reflected wave component, and the amplitude W1 of the pulse wave S corresponding to the reference time T1 of the ejection wave component. And the propagation speed of the pulse wave S is obtained based on the amplitude W2 of the pulse wave S corresponding to the reference time T2 of the reflected wave component S2.

次に、先ず、脈波伝播速度の一般的な求め方について説明してから、本発明の実施形態の上記脈波伝播速度検出部5が、上記脈波Sの伝播速度PWVを求める過程を説明する。   Next, first, a general method for obtaining the pulse wave propagation speed will be described, and then the process by which the pulse wave propagation speed detection unit 5 according to the embodiment of the present invention obtains the propagation speed PWV of the pulse wave S will be described. To do.

(脈波伝播速度の一般的な求め方)
一般的に、脈波伝播速度と言うのは、生体部位の2箇所それぞれの脈波を測定し、それぞれの脈波の駆出波成分が伝播する速度を求めるものであるが、その根本原理は、Moens‐Kortewegの原理に基づく。また、非特許文献2では、脈波伝播速度と血圧の関係を、Moens‐Kortewegの関係から導出しており、次式(1)で表される。
(PWV)=α・exp(β×P) … (1)
(General method for determining pulse wave velocity)
In general, the pulse wave propagation speed is to measure the pulse wave at each of the two parts of the living body and determine the speed at which the ejection wave component of each pulse wave propagates. Based on the principle of Moens-Korteweg. In Non-Patent Document 2, the relationship between the pulse wave velocity and the blood pressure is derived from the Moens-Korteweg relationship and is expressed by the following equation (1).
(PWV) 2 = α · exp (β × P) (1)

上式(1)において、PWVは、脈波伝播速度(m/秒)、Pは血圧(mmHg)、α、βは、個人毎、個人内においても測定時間毎に若干変化する定数である。   In the above equation (1), PWV is a pulse wave velocity (m / sec), P is a blood pressure (mmHg), and α and β are constants that slightly change for each individual and for each measurement time.

しかしながら、上式(1)における定数α,βは、常時安定的に正確な値を同定することは簡単ではない。加えて、上式(1)では、血圧Pの血圧情報も必要である。このため、上式(1)によって脈波伝搬速度を同定することは容易とはいえない。   However, it is not easy to always identify accurate values for the constants α and β in the above equation (1). In addition, in the above formula (1), blood pressure information of the blood pressure P is also necessary. For this reason, it cannot be said that it is easy to identify the pulse wave velocity by the above equation (1).

一方、特許文献1(特許3495348号公報)および特許文献2(特開2007−007075号公報)では、脈波形を駆出波成分と反射波成分に分離し、駆出波と反射波との間の伝搬時間差,伝搬距離差から、脈波伝搬速度を同定する技術が開示されている。この技術の概念を、図4を用いて説明する。ここで、脈波の測定部位は、図4に符号52で示す手首ないし指先の抹消部とする。心臓51から拍出されて上記脈波測定部位(手首ないし指先の抹消部)52まで伝播してくる脈波は、心臓51から脈波測定部位52まで直接伝搬する直接伝播波と、腹部大動脈分岐部53で反射された後に脈波測定部位52まで伝搬してくる反射伝播波とを重ね合わせたものであることが知られている。また、血管は、腹部大動脈分岐部53だけではなく、身体のあらゆるところで分岐しており、血管の各分岐部におけるインピーダンス不整合によって、脈波は体中で反射を繰り返しているが、脈波波形に影響を及ぼす反射波は、腹部大動脈分岐部53の反射が支配的であることが知られている。   On the other hand, in Patent Document 1 (Japanese Patent No. 3495348) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-007075), the pulse waveform is separated into an ejected wave component and a reflected wave component, and between the ejected wave and the reflected wave. A technique for identifying a pulse wave propagation velocity from a difference in propagation time and a difference in propagation distance is disclosed. The concept of this technique will be described with reference to FIG. Here, the measurement site of the pulse wave is a wrist or fingertip erasing portion indicated by reference numeral 52 in FIG. A pulse wave that is pulsated from the heart 51 and propagates to the pulse wave measurement site (wrist or fingertip erasure part) 52 is directly propagated from the heart 51 to the pulse wave measurement site 52 and an abdominal aorta branch. It is known that the reflected propagation wave that propagates to the pulse wave measurement site 52 after being reflected by the portion 53 is superimposed. In addition, the blood vessel branches not only in the abdominal aorta bifurcation 53 but everywhere in the body, and the pulse wave is repeatedly reflected in the body due to impedance mismatch at each bifurcation of the blood vessel. It is known that the reflected wave that affects the abdominal area is predominantly reflected by the abdominal aortic bifurcation 53.

そこで、図4に示すように、人体の心臓51から脈波測定部位52までの距離をd(m)とし、心臓51から腹部大動脈分岐部53までの距離をh(m)とし、駆出波S1の基準時間T1と反射波S2の基準時間T2との時間差(T2−T1)をΔT(秒)とすると、脈波は、2h(m)の距離をΔT(秒)掛かって伝搬していることになる。ので、脈波伝搬速度は次式(2)によって求めることができる。
PWV =2h/ΔT … (2)
Therefore, as shown in FIG. 4, the distance from the human heart 51 to the pulse wave measurement site 52 is d (m), the distance from the heart 51 to the abdominal aortic bifurcation 53 is h (m), and the ejection wave When the time difference (T2−T1) between the reference time T1 of S1 and the reference time T2 of the reflected wave S2 is ΔT (seconds), the pulse wave propagates over a distance of 2h (m) over ΔT (seconds). It will be. Therefore, the pulse wave propagation velocity can be obtained by the following equation (2).
PWV = 2h / ΔT (2)

特許文献(1)および(2)で開示されている、上式(2)では、駆出波の速度と反射波の速度は同一のものとして脈波伝搬速度を同定している。   In the above equation (2) disclosed in Patent Documents (1) and (2), the velocity of the pulse wave and the velocity of the reflected wave are the same, and the pulse wave propagation velocity is identified.

しかしながら、前述の式(1)の通り、脈波伝搬速度PWVは血圧Pに依存する。そして、血圧とは脈波形における振幅成分に相当するものであり、一般的に反射波の振幅は駆出波よりも小さい。   However, the pulse wave propagation velocity PWV depends on the blood pressure P as described in the above equation (1). The blood pressure corresponds to the amplitude component in the pulse waveform, and generally the amplitude of the reflected wave is smaller than that of the ejection wave.

したがって、心臓51から拍出された後、腹部大動脈分岐部53まで伝搬される脈波(駆出波)と腹部大動脈分岐部53から再び心臓51周辺まで伝搬する脈波(反射波)とでは、脈波伝搬速度が異なるのである。駆出波の脈波伝搬速度をPWV1、反射波の脈波伝搬速度をPWV2とした場合、次式(3)が生体内の脈波伝搬を正しく表現している。
(h/PWV1)+(h/PWV2)=ΔT … (3)
Therefore, a pulse wave (ejection wave) propagating from the heart 51 to the abdominal aorta bifurcation 53 and a pulse wave (reflected wave) propagating from the abdominal aorta bifurcation 53 to the periphery of the heart 51 again are: The pulse wave velocity is different. When the pulse wave propagation velocity of the ejection wave is PWV1, and the pulse wave propagation velocity of the reflected wave is PWV2, the following equation (3) correctly represents the pulse wave propagation in the living body.
(h / PWV1) + (h / PWV2) = ΔT (3)

医学的に把握するべき脈波伝搬速度は反射波によるものではなく、駆出波によるものであるので、上式(3)を駆出波の脈波伝搬速度PWV1について解くことが必要である。しかし、上式(3)を正確に解くためには、上式(3)に上式(1)を代入し、駆出波,反射波それぞれのα,β,Pを求める必要があり、容易には解けない。   Since the pulse wave propagation speed to be medically grasped is not the reflected wave but the ejected wave, it is necessary to solve the above equation (3) for the pulse wave propagation speed PWV1 of the ejected wave. However, in order to accurately solve the above equation (3), it is necessary to substitute the above equation (1) into the above equation (3) to obtain α, β, and P of the ejection wave and the reflected wave, respectively. I can't solve it.

(本実施形態の脈波伝播速度検出部5による脈波伝播速度の求め方)
ここで、駆出波の振幅情報と反射波の振幅情報を用いた医学的診断指標にAI(Augmentation Index)というものがある。このAIは、脈波の中に反射波の成分がどれだけ関与しているかの指標であり、非特許文献(3)では、例えば、反射波時の振幅が駆出波時の振幅より大きい場合のMurgoのTypeA波形の場合は、(反射波時振幅値−駆出波時振幅値)/(反射波時振幅値)として定義されている。つまり、AI値が高い場合は、駆出波時振幅に比較して、反射波時振幅が大きく、AI値が低い場合は反射波時振幅が小さいことを表している。一方、反射波時の振幅が駆出波時の振幅より小さい場合のMurgoのTypeC波形の場合は、AI値は、(反射波時振幅値)/(駆出波時振幅値)で定義される。
(How to determine the pulse wave velocity by the pulse wave velocity detector 5 of this embodiment)
Here, there is an AI (Augmentation Index) as a medical diagnosis index using the amplitude information of the ejection wave and the amplitude information of the reflected wave. This AI is an index of how much the reflected wave component is involved in the pulse wave. In Non-Patent Document (3), for example, the amplitude at the reflected wave is larger than the amplitude at the ejection wave. Murgo's Type A waveform is defined as (Amplitude value during reflected wave−Amplitude value during ejection wave) / (Amplitude value during reflected wave). That is, when the AI value is high, the reflected wave amplitude is larger than the ejection wave amplitude, and when the AI value is low, the reflected wave amplitude is small. On the other hand, in the case of a Murgo TypeC waveform when the amplitude at the reflected wave is smaller than the amplitude at the ejected wave, the AI value is defined by (amplitude value at the reflected wave) / (amplitude value at the ejected wave). .

本発明者らは、上式(3)の方程式を正確に解く代わりに、上記AIなどのように、反射波成分の振幅情報が反映された生体指標を利用することで、特許文献1および特許文献2に記載された技術に比べてより正確な脈波伝搬速度を、簡便に同定できることを見出した。   Instead of solving the equation (3) correctly, the present inventors use a biometric index reflecting the amplitude information of the reflected wave component, such as the above-described AI, to thereby provide a patent document 1 and a patent. It has been found that a more accurate pulse wave velocity can be easily identified as compared with the technique described in Document 2.

この実施形態では、例えば、上記脈波伝播速度検出部5は、式(2)で簡易的に求めた脈波伝搬速度PWVに対して、次式(4)に示すように、補正係数(AI/x)を乗算することで補正した脈波伝搬速度PWVを求める。
PWV=PWV×(AI/x)=(2h/ΔT)×(AI/x) … (4)
In this embodiment, for example, the pulse wave velocity detector 5 corrects the correction coefficient (AI) as shown in the following equation (4) with respect to the pulse wave velocity PWV obtained simply by equation (2). / x) is multiplied to find a corrected pulse wave velocity PWV * .
PWV * = PWV × (AI / x) = (2h / ΔT) × (AI / x) (4)

上式(4)において、h(m)は心臓51から腹部大動脈分岐部53までの距離であり、ΔT(秒)は、駆出波S1の基準時間T1と反射波S2の基準時間T2との時間差(T2−T1)である。また、上式(4)において、上記AIは、上述の通り、W2/W1、つまり、上記反射波成分S2の基準時間T2に対応する脈波Sの振幅W2を上記駆出波成分の基準時間T1に対応する上記脈波Sの振幅W1で除算した値とした。なお、上式(4)において、xは、臨床結果から同定する定数であり、例えば、x=70である。このxの値は、後述の通り様々な値をとることが、当然のことながら可能で、装置・被験者などに対応して、適宜適切な値を設定することが可能である。   In the above equation (4), h (m) is the distance from the heart 51 to the abdominal aorta bifurcation 53, and ΔT (seconds) is the reference time T1 of the ejection wave S1 and the reference time T2 of the reflected wave S2. It is a time difference (T2-T1). In the above equation (4), the AI is W2 / W1, that is, the amplitude W2 of the pulse wave S corresponding to the reference time T2 of the reflected wave component S2, as described above, is the reference time of the ejection wave component. The value was divided by the amplitude W1 of the pulse wave S corresponding to T1. In the above equation (4), x is a constant identified from clinical results, for example, x = 70. As will be described later, various values of x can be taken as a matter of course, and appropriate values can be set as appropriate in accordance with the device, the subject, and the like.

上記脈波伝播速度検出部5は、この式(4)に従って、AI値が比較的高い場合(例えばAI>70である場合)には脈波伝搬速度PWVを式(2)による計算結果PWVよりも高い値に補正する。一方、AI値が比較的低い場合(例えばAI<70である場合)には、上記脈波伝播速度検出部5は、上式(4)に従って、脈波伝搬速度PWVを式(2)による計算結果PWVより低い値に補正する。 According to this equation (4), the pulse wave propagation velocity detection unit 5 calculates the pulse wave propagation velocity PWV * according to equation (2) when the AI value is relatively high (for example, when AI> 70). Correct to a higher value. On the other hand, when the AI value is relatively low (for example, when AI <70), the pulse wave velocity detector 5 sets the pulse wave velocity PWV * according to equation (2) according to the above equation (4). Correction is made to a value lower than the calculation result PWV.

ここで、図5の散布図に、本実施形態の脈波伝播速度測定装置によって求めた補正後の脈波伝播速度PWVと市販の脈波伝播速度測定装置によって求めた脈波伝播速度baPWV(brachial−ankle PWV)との相関を白抜きの四角印で示す。この市販の脈波伝播速度測定装置によって求めた脈波伝播速度baPWVは、前述の如く、上腕と足首との2箇所の測定部位で脈波を検出することによって測定した脈波伝播速度である。また、図5の散布図では、白抜きの菱形印でもって、補正前の脈波伝播速度PWVと上記市販の脈波伝播速度測定装置によって求めた脈波伝播速度baPWVとの相関を示している。 Here, the corrected pulse wave velocity PWV * obtained by the pulse wave velocity measuring device of the present embodiment and the pulse wave velocity baPWV (obtained by a commercially available pulse wave velocity measuring device) are shown in the scatter diagram of FIG. The correlation with brachial-ankle (PWV) is indicated by white square marks. The pulse wave velocity baPWV obtained by this commercially available pulse wave velocity measuring device is a pulse wave velocity measured by detecting pulse waves at two measurement sites of the upper arm and the ankle as described above. Further, in the scatter diagram of FIG. 5, the correlation between the pulse wave velocity PWV before correction and the pulse wave velocity baPWV obtained by the above-described commercially available pulse wave velocity measuring device is shown by white diamonds. .

また、図5に示す特性K1は、補正後の脈波伝播速度PWVと脈波伝播速度baPWVとの関係を上記白抜きの四角印のデータから求めた回帰直線である。また、図5に示す特性K2は、補正前の脈波伝播速度PWVと脈波伝播速度baPWVとの関係を上記白抜きの菱形印のデータから求めた回帰直線である。 A characteristic K1 shown in FIG. 5 is a regression line obtained by calculating the relationship between the corrected pulse wave velocity PWV * and the pulse wave velocity baPWV from the data of the white squares. A characteristic K2 shown in FIG. 5 is a regression line obtained by determining the relationship between the pulse wave propagation velocity PWV before correction and the pulse wave propagation velocity baPWV from the data of the white diamonds.

補正前の脈波伝播速度PWVは上記脈波伝播速度baPWVとの相関係数Rが、0.56なのに対して、補正後の脈波伝播速度PWVは上記脈波伝播速度baPWVとの相関係数Rが、0.67である。すなわち、上記補正後の脈波伝播速度PWVによれば、補正前の脈波伝播速度PWVに比べて、上記脈波伝播速度baPWVとの相関が高くなっている。つまり、補正後の脈波伝播速度PWVは、補正前の脈波伝播速度PWVに比べて、精度が大きく改善されていることが分かる。 The pulse wave propagation velocity PWV before correction has a correlation coefficient R of 0.56 with the pulse wave propagation velocity baPWV, whereas the pulse wave propagation velocity PWV * after correction is correlated with the pulse wave propagation velocity baPWV. The number R is 0.67. That is, according to the corrected pulse wave velocity PWV * , the correlation with the pulse wave velocity baPWV is higher than the pulse wave velocity PWV before correction. That is, it can be seen that the accuracy of the corrected pulse wave velocity PWV * is greatly improved as compared with the pulse wave velocity PWV before correction.

また、図5の散布図を参照すると、上記脈波伝播速度baPWV(brachial−ankle PWV)と、本実施形態で求めた脈波伝播速度PWVおよび補正前の脈波伝播速度PWVとは値が異なっている。つまり、上記脈波伝播速度baPWVよりも、この実施形態で求めた脈波伝播速度PWV,PWVの方が遅い。その理由は、上記測定部位が上腕と足首である脈波伝播速度baPWVは、抹消部(細い血管)を伝播経路に含んだ脈波伝播速度であるのに対し、この実施形態で求めた脈波伝播速度PWV,PWVは、心臓51から腹部大動脈分岐部53までの人体中の最も太い血管を伝播経路としているからである。 Further, referring to the scatter diagram of FIG. 5, the pulse wave propagation velocity baPWV (brachial-ankle PWV), the pulse wave propagation velocity PWV * obtained in the present embodiment, and the pulse wave propagation velocity PWV before correction are values. Is different. That is, the pulse wave propagation speeds PWV * and PWV obtained in this embodiment are slower than the pulse wave propagation speed baPWV. The reason is that the pulse wave propagation velocity baPWV in which the measurement site is the upper arm and the ankle is a pulse wave propagation velocity including a peripheral portion (thin blood vessel) in the propagation path, whereas the pulse wave obtained in this embodiment is used. This is because the propagation speeds PWV * and PWV use the thickest blood vessel in the human body from the heart 51 to the abdominal aorta bifurcation 53 as a propagation path.

ところで、上述の説明では、上記補正前のPWV=(2h/ΔT)に乗算する補正係数(AI/x)のAIを、W2/W1、つまり、上記反射波成分S2の基準時間T2に対応する脈波Sの振幅W2を上記駆出波成分の基準時間T1に対応する上記脈波Sの振幅W1で除算した値とした。   By the way, in the above description, AI of the correction coefficient (AI / x) multiplied by PWV = (2h / ΔT) before correction corresponds to W2 / W1, that is, the reference time T2 of the reflected wave component S2. A value obtained by dividing the amplitude W2 of the pulse wave S by the amplitude W1 of the pulse wave S corresponding to the reference time T1 of the ejection wave component.

しかし、上記補正係数におけるAIは、特に上記(W2/W1)に限定されるものではない。つまり、上記補正係数におけるAIとしては、振幅比(W2/W1)だけではなく、振幅差(W2−W1)を用いてもよい。例えば、反射波振幅W2から駆出波振幅W1を減算した値(W2−W1)を駆出波振幅W1もしくは反射波振幅W2で除算した値(W2−W1)/W1,(W2−W1)/W2などを上記補正係数におけるAIとして用いて脈波伝搬速度を補正してもよい。   However, AI in the correction coefficient is not particularly limited to (W2 / W1). That is, not only the amplitude ratio (W2 / W1) but also the amplitude difference (W2−W1) may be used as the AI in the correction coefficient. For example, a value obtained by subtracting the ejection wave amplitude W1 from the reflected wave amplitude W2 (W2-W1) divided by the ejection wave amplitude W1 or the reflected wave amplitude W2 (W2-W1) / W1, (W2-W1) / The pulse wave propagation velocity may be corrected using W2 or the like as AI in the correction coefficient.

また、駆出波振幅と反射波振幅との関係によっては、補正式(上式(4))を調整してもよい。というのも、反射波成分の基準時間T2時には駆出波の残存成分が残っており、駆出波の残存成分と反射波成分との和が反射波成分の基準時間T2における振幅であるからである。例えば、駆出波成分の基準時間T1における脈波振幅に対して、反射波成分の基準時間T2における脈波振幅が比較的大きい場合(例えば、AI値が100以上など)は、補正値を大きくしてもよい。つまり、式(2)で得られた値をより大きくする補正をかけるなどである。その方法としては、例えば、式(4)の右辺の後部(AI/x)を大きくする(α×(AI/x):αは定数)などである。そうすることで、より正確な脈波伝搬速度PWVの同定が可能となる。   Further, the correction equation (the above equation (4)) may be adjusted depending on the relationship between the ejection wave amplitude and the reflected wave amplitude. This is because the remaining component of the ejected wave remains at the reference time T2 of the reflected wave component, and the sum of the remaining component of the ejected wave and the reflected wave component is the amplitude of the reflected wave component at the reference time T2. is there. For example, when the pulse wave amplitude at the reference time T2 of the reflected wave component is relatively large with respect to the pulse wave amplitude at the reference time T1 of the ejection wave component (for example, the AI value is 100 or more), the correction value is increased. May be. That is, a correction for increasing the value obtained by the equation (2) is applied. As the method, for example, the rear part (AI / x) of the right side of the equation (4) is increased (α × (AI / x): α is a constant). By doing so, it becomes possible to identify the pulse wave velocity PWV more accurately.

また、上述のように、上記基準時間検出部2が上記基準時間T1とT2を求める基準時間導出機能と、上記脈波振幅検出部3が上記基準時間T1,T2に対応する脈波Sの振幅W1,W2を求める脈波振幅導出機能と、上記脈波伝播速度検出部5が、上記駆出波成分S1,反射成分S2の基準時間T1,T2の差ΔTに基づいて、上式(4)等を用いて上記脈波Sの駆出波の伝播速度PWVを求める機能とを、脈波伝播速度測定プログラムによってコンピュータに実行させてもよい。   In addition, as described above, the reference time detection unit 2 obtains the reference time T1 and T2, and the pulse wave amplitude detection unit 3 detects the amplitude of the pulse wave S corresponding to the reference times T1 and T2. Based on the difference ΔT between the reference wave times T1 and T2 of the ejection wave component S1 and the reflection component S2, the pulse wave amplitude derivation function for obtaining W1 and W2 and the pulse wave propagation velocity detection unit 5 are based on the above equation (4). Etc., the computer may execute the function of obtaining the propagation velocity PWV of the ejection wave of the pulse wave S using a pulse wave velocity measurement program.

1 脈波検出部
2 基準時間検出部
3 脈波振幅検出部
5 脈波伝播速度検出部
6 駆出波・反射波情報抽出部
10 脈波伝播速度測定装置
51 心臓
52 手首ないし指先の抹消部
53 腹部大動脈分岐部
d 心臓から脈波測定部位までの距離
h 心臓から腹部大動脈分岐部までの距離
Q1 極大点
Q2 4次微分波の第3ゼロクロスポイント
S 脈波
T1 駆出波成分の基準時間
T2 反射波成分の基準時間
W1 基準時間T1に対応する脈波Sの振幅
W2 基準時間T2に対応する脈波Sの振幅
PWV1 駆出波S1の伝播速度
PWV2 反射波S2の伝播速度
DESCRIPTION OF SYMBOLS 1 Pulse wave detection part 2 Reference time detection part 3 Pulse wave amplitude detection part 5 Pulse wave propagation velocity detection part 6 Ejection wave and reflected wave information extraction part 10 Pulse wave propagation velocity measuring apparatus 51 Heart 52 Wrist or fingertip erasure part 53 Abdominal aortic bifurcation d distance from heart to pulse wave measurement site h distance from heart to abdominal aortic bifurcation Q1 local maximum Q2 third zero cross point of fourth-order differential wave S pulse wave T1 reference time of ejection wave component T2 reflection Wave component reference time W1 Amplitude of pulse wave S corresponding to reference time T1 W2 Amplitude of pulse wave S corresponding to reference time T2 PWV1 Propagation speed of ejection wave S1 PWV2 Propagation speed of reflected wave S2

Claims (8)

生体の或る一部位における脈波を検出する脈波検出部と、
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間および上記反射波成分の基準時間と、上記脈波振幅検出部で検出した上記駆出波成分の基準時間に対応する脈波の振幅および上記反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を求める伝播速度検出部とを備えることを特徴とする脈波伝播速度測定装置。
A pulse wave detector for detecting a pulse wave in a certain part of the living body;
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. A pulse wave amplitude detector for detecting amplitude;
The reference time of the ejection wave component detected by the reference time detection unit and the reference time of the reflected wave component, and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the pulse wave amplitude detection unit And a propagation velocity detection unit that obtains the propagation velocity of the pulse wave based on the amplitude of the pulse wave corresponding to the reference time of the reflected wave component.
請求項1に記載の脈波伝播速度測定装置において、
上記伝播速度検出部は、
上記基準時間検出部で検出した上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記脈波振幅検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正することで上記脈波の伝播速度を求めることを特徴とする脈波伝播速度測定装置。
In the pulse wave velocity measuring device according to claim 1,
The propagation velocity detector is
The ejection wave component detected by the pulse wave amplitude detection unit based on the time difference between the reference time of the ejection wave component detected by the reference time detection unit and the reference time of the reflected wave component. The propagation speed of the pulse wave is obtained by correcting with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the reference time of the pulse wave and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Pulse wave velocity measuring device.
請求項2に記載の脈波伝播速度測定装置において、
上記伝播速度検出部は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から上記補正係数を求めることを特徴とする脈波伝播速度測定装置。
In the pulse wave velocity measuring device according to claim 2,
The propagation velocity detector is
The pulse wave propagation velocity characterized in that the correction coefficient is obtained from the ratio of the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. measuring device.
請求項2に記載の脈波伝播速度測定装置において、
上記伝播速度検出部は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から上記補正係数を求めることを特徴とする脈波伝播速度測定装置。
In the pulse wave velocity measuring device according to claim 2,
The propagation velocity detector is
The pulse wave propagation velocity characterized in that the correction coefficient is obtained from a difference between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. measuring device.
生体の或る一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを求める基準時間導出機能と、
上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能と、
上記駆出波成分の基準時間および上記反射波成分の基準時間と、上記駆出波成分の基準時間に対応する脈波の振幅および上記反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記脈波の伝播速度を算出する伝播速度導出機能とをコンピュータに実行させることを特徴とする脈波伝播速度測定プログラム。
A reference time deriving function for obtaining a reference time for specifying the ejection wave component included in the pulse wave in a certain part of the living body and a reference time for specifying the reflected wave component included in the pulse wave;
A pulse wave amplitude deriving function for obtaining the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and obtaining the amplitude of the pulse wave corresponding to the reference time of the reflected wave component;
The reference time of the ejected wave component and the reference time of the reflected wave component, and the amplitude of the pulse wave corresponding to the reference time of the ejected wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component A pulse wave velocity measurement program for causing a computer to execute a propagation velocity derivation function for calculating the pulse velocity.
請求項5に記載の脈波伝播速度測定プログラムにおいて、
上記伝播速度導出機能は、
上記基準時間導出機能で求めた上記駆出波成分の基準時間と上記反射波成分の基準時間との時間差に基づいて求めた伝播速度を、上記脈波振幅導出機能で求めた上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅とから求めた補正係数で補正することで上記脈波の伝播速度を求めることを特徴とする脈波伝播速度測定プログラム。
In the pulse wave velocity measurement program according to claim 5,
The propagation speed derivation function is
The ejection wave component obtained by the pulse wave amplitude derivation function is determined based on the propagation velocity obtained based on the time difference between the reference time of the ejection wave component obtained by the reference time derivation function and the reference time of the reflected wave component. The propagation speed of the pulse wave is obtained by correcting with a correction coefficient obtained from the amplitude of the pulse wave corresponding to the reference time of the pulse wave and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. To measure pulse wave velocity.
請求項6に記載の脈波伝播速度測定プログラムにおいて、
上記伝播速度導出機能は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との比から上記補正係数を求めることを特徴とする脈波伝播速度測定プログラム。
In the pulse wave velocity measurement program according to claim 6,
The propagation speed derivation function is
The pulse wave propagation velocity characterized in that the correction coefficient is obtained from the ratio of the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Measurement program.
請求項6に記載の脈波伝播速度測定プログラムにおいて、
上記伝播速度導出機能は、
上記駆出波成分の基準時間に対応する上記脈波の振幅と上記反射波成分の基準時間に対応する上記脈波の振幅との差から上記補正係数を求めることを特徴とする脈波伝播速度測定プログラム。
In the pulse wave velocity measurement program according to claim 6,
The propagation speed derivation function is
The pulse wave propagation velocity characterized in that the correction coefficient is obtained from a difference between the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Measurement program.
JP2010226598A 2010-10-06 2010-10-06 Pulse wave velocity measuring device and pulse wave velocity measuring program Expired - Fee Related JP5681434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010226598A JP5681434B2 (en) 2010-10-06 2010-10-06 Pulse wave velocity measuring device and pulse wave velocity measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010226598A JP5681434B2 (en) 2010-10-06 2010-10-06 Pulse wave velocity measuring device and pulse wave velocity measuring program

Publications (2)

Publication Number Publication Date
JP2012075820A true JP2012075820A (en) 2012-04-19
JP5681434B2 JP5681434B2 (en) 2015-03-11

Family

ID=46236751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010226598A Expired - Fee Related JP5681434B2 (en) 2010-10-06 2010-10-06 Pulse wave velocity measuring device and pulse wave velocity measuring program

Country Status (1)

Country Link
JP (1) JP5681434B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194308A1 (en) * 2015-05-29 2016-12-08 京セラ株式会社 Electronic device
CN110215233A (en) * 2019-04-30 2019-09-10 深圳大学 A kind of segmented pulse wave imaging method based on the scanning of plane of ultrasound wave
CN110960199A (en) * 2019-12-24 2020-04-07 中国人民解放军陆军军医大学第一附属医院 System for double-variable measurement of arteriosclerosis degree
JP2021023615A (en) * 2019-08-06 2021-02-22 学校法人 関西大学 Pulse pressure estimation device, pulse pressure estimation system, pulse pressure estimation method, and control program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010139A (en) * 2001-07-02 2003-01-14 Nippon Colin Co Ltd Measuring device for information on pulse wave propagation speed
JP2003250769A (en) * 2002-03-01 2003-09-09 Nippon Colin Co Ltd Arteriosclerosis examination instrument
JP2004113593A (en) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd Apparatus for evaluating arteriosclerotic degree
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2009082175A (en) * 2007-09-27 2009-04-23 Omron Healthcare Co Ltd Respiration training instrument and computer program
JP2010194108A (en) * 2009-02-25 2010-09-09 Omron Healthcare Co Ltd Blood pressure information measuring device and calculation program for arteriosclerosis degree index
JP2012070876A (en) * 2010-09-28 2012-04-12 Omron Healthcare Co Ltd Blood pressure information measurement device and method for calculating index for degree of arteriosclerosis using the device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010139A (en) * 2001-07-02 2003-01-14 Nippon Colin Co Ltd Measuring device for information on pulse wave propagation speed
JP2003250769A (en) * 2002-03-01 2003-09-09 Nippon Colin Co Ltd Arteriosclerosis examination instrument
JP2004113593A (en) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd Apparatus for evaluating arteriosclerotic degree
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2009082175A (en) * 2007-09-27 2009-04-23 Omron Healthcare Co Ltd Respiration training instrument and computer program
JP2010194108A (en) * 2009-02-25 2010-09-09 Omron Healthcare Co Ltd Blood pressure information measuring device and calculation program for arteriosclerosis degree index
JP2012070876A (en) * 2010-09-28 2012-04-12 Omron Healthcare Co Ltd Blood pressure information measurement device and method for calculating index for degree of arteriosclerosis using the device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194308A1 (en) * 2015-05-29 2016-12-08 京セラ株式会社 Electronic device
JPWO2016194308A1 (en) * 2015-05-29 2017-12-07 京セラ株式会社 Electronics
JP2019063583A (en) * 2015-05-29 2019-04-25 京セラ株式会社 Electronic apparatus
US10993632B2 (en) 2015-05-29 2021-05-04 Kyocera Corporation Electronic device for detecting a pulse wave of a subject
CN110215233A (en) * 2019-04-30 2019-09-10 深圳大学 A kind of segmented pulse wave imaging method based on the scanning of plane of ultrasound wave
JP2021023615A (en) * 2019-08-06 2021-02-22 学校法人 関西大学 Pulse pressure estimation device, pulse pressure estimation system, pulse pressure estimation method, and control program
JP7308519B2 (en) 2019-08-06 2023-07-14 学校法人 関西大学 Pulse pressure estimation device, pulse pressure estimation system, pulse pressure estimation method, and control program
CN110960199A (en) * 2019-12-24 2020-04-07 中国人民解放军陆军军医大学第一附属医院 System for double-variable measurement of arteriosclerosis degree

Also Published As

Publication number Publication date
JP5681434B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
CN102843962B (en) Pulse wave velocity measurement device, pulse wave velocity measurement method and pulse wave velocity measurement program
Nabeel et al. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation
EP3157416B1 (en) System for cuff-less blood pressure (bp) measurement of a subject
McCombie et al. Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics
JP5328613B2 (en) Pulse wave velocity measuring device and pulse wave velocity measuring program
US11690523B2 (en) Carotid artery blood pressure detecting device
US20200000349A1 (en) Pulse detection module and use-as-you-need blood pressure measurement device comprising the same
Nabeel et al. A magnetic plethysmograph probe for local pulse wave velocity measurement
Huotari et al. Photoplethysmography and its detailed pulse waveform analysis for arterial stiffness
US20140148702A1 (en) Method, device and system for determining the open/closed switch moment of an artery of interest under a changing pressure
US20120179053A1 (en) Apparatus for measuring a propagation velocity of a blood pressure wave
KR20070056925A (en) Blood pressure measuring method and apparatus
JP5681434B2 (en) Pulse wave velocity measuring device and pulse wave velocity measuring program
JP4641210B2 (en) Ophthalmic measuring device
Rasool et al. Continuous and noninvasive blood pressure estimation by two-sensor measurement of pulse transit time
EP3936036B1 (en) A method and a system for estimating a measure of cardiovascular health of a subject
Charlton et al. Vascular biology and microcirculation: Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: A review from VascAgeNet
Guo et al. Combining local PWV and quantified arterial changes for calibration-free cuffless blood pressure estimation: A clinical validation
JP5690550B2 (en) Pulse wave velocity measuring device
US20220000378A1 (en) Method and a system for estimating a measure of cardiovascular health of a subject
Luzhnov et al. Influence of the Hand Position and the Pulse Oximeter Sensor Position on the Pulse Blood Filling Signal
JP5328614B2 (en) Pulse wave analyzer and pulse wave analysis program
Proença et al. Continuous non-occlusive blood pressure monitoring at the sternum
Chen et al. A multi-sensor platform for monitoring diabetic peripheral neuropathy
Spigulis et al. Micro-circulation of skin blood: optical monitoring by advanced photoplethysmography techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees