JP2012068292A - Imaging lens, imaging apparatus and portable terminal - Google Patents

Imaging lens, imaging apparatus and portable terminal Download PDF

Info

Publication number
JP2012068292A
JP2012068292A JP2010210617A JP2010210617A JP2012068292A JP 2012068292 A JP2012068292 A JP 2012068292A JP 2010210617 A JP2010210617 A JP 2010210617A JP 2010210617 A JP2010210617 A JP 2010210617A JP 2012068292 A JP2012068292 A JP 2012068292A
Authority
JP
Japan
Prior art keywords
lens
imaging
imaging lens
refractive power
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010210617A
Other languages
Japanese (ja)
Inventor
Maiko Nishida
麻衣子 西田
Keiji Matsuzaka
慶二 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2010210617A priority Critical patent/JP2012068292A/en
Publication of JP2012068292A publication Critical patent/JP2012068292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging lens composed of four pieces lenses with a countermeasure for attached dust recently becoming a great problem in mass production process while obtaining higher performance in a smaller size than a conventional type and without influencing other specifications or productivity.SOLUTION: The imaging lens for focusing a subject image on a photoelectric conversion section of a solid-state imaging element is composed of: a first lens having positive refractive power; a second lens having negative refractive power; a third lens having positive refractive power; and a fourth lens with at least one surface that is an aspherical surface having inflection points in positions other than an intersection with the optical axis and having negative refractive power. In this case, the first lens, the second lens and the fourth lens are fixed to an imaging surface and focusing is carried out by moving the third lens in the direction of the optical axis and the following conditional expression is satisfied. 0.7<f3/f<1.3 when f3: focal distance of the third lens and f: focal distance of the whole imaging lens system.

Description

本発明は、CCD型イメージセンサ若しくはCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置に好適な小型の撮像レンズ、該撮像レンズを備えた撮像装置及び該撮像装置を備えた携帯端末に関する。   The present invention relates to a small imaging lens suitable for an imaging device using a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, an imaging device including the imaging lens, and a portable terminal including the imaging device.

近年、CCD(Charged Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置の高性能化や小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。また、これらの撮像装置に搭載される撮像レンズには、更なる高性能化や小型化への要求が高まっている。このような用途の撮像レンズとしては、3枚構成のレンズに比べ高性能化が可能であるということで、4枚構成の撮像レンズが提案されている。   In recent years, along with the improvement in performance and size of solid-state imaging devices such as CCD (Charged Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. In addition, there is an increasing demand for higher performance and miniaturization of imaging lenses mounted on these imaging apparatuses. As an imaging lens for such a use, a four-lens imaging lens has been proposed because it can achieve higher performance than a three-lens lens.

さて、高機能な撮像装置ではオートフォーカス機能が搭載されるのが一般的である。しかしながら従来の構成では、3枚若しくは4枚のレンズ全体を繰り出す方式のため、駆動装置が大型化し、結果的にレンズユニット全体の小型化が図れなくなったり、駆動部を有する部分でゴミが発生し、そのゴミがレンズ面や固体撮像素子の受光面に付着して画質に影響を与えたり、駆動装置の偏芯誤差に伴って画質が低下したり、といった問題が顕在化するようになってきた。元来、高性能化と小型化は技術的に両立が難しい課題のため、これを克服するためには従来の全体繰り出しによるフォーカシング方式を抜本的に変更する必要がある。   Now, a high-function imaging device is generally equipped with an autofocus function. However, in the conventional configuration, since the entire system of three or four lenses is extended, the driving device becomes large, and as a result, the entire lens unit cannot be reduced in size, or dust is generated in the portion having the driving unit. The problem that the dust adheres to the lens surface and the light receiving surface of the solid-state image sensor and affects the image quality, or the image quality deteriorates due to the eccentric error of the driving device, has become apparent. . Originally, high performance and miniaturization are technically difficult problems, and in order to overcome this, it is necessary to drastically change the conventional focusing method based on the entire payout.

この対策の一例として、撮像レンズの一部若しくは全体を繰り出す光学系を用い、第1レンズと第4レンズの外径差により生じた空間にアクチュエータを配置してコイルの巻線数の増大や長さの増大を図り、駆動力を高めると共に、コンパクトな構成にした撮像装置が知られている(特許文献1参照)。   As an example of this measure, an optical system that extends part or all of the imaging lens is used, and an actuator is arranged in a space generated by a difference in outer diameter between the first lens and the fourth lens to increase or reduce the number of windings of the coil. There is known an imaging apparatus that increases the driving force, increases the driving force, and has a compact configuration (see Patent Document 1).

また、4枚構成のレンズのうち第2レンズのみを繰り出してフォーカシングを行い、小型で高性能化した撮像レンズが知られている(特許文献2参照)。   Further, an imaging lens that is small and has high performance is known (see Patent Document 2).

特開2007−108534号公報JP 2007-108534 A 特開2008−76953号公報JP 2008-76953 A

しかしながら、特許文献1,2の光学系は、何れもフォーカシング方式を変更した利点以上に光学系の負荷が増したために、光学全長が長く、誤差に対して非常に弱い構成になっている。また、画素サイズの小さい固体撮像素子においては高い解像力が要求されるが、特許文献1,2の光学系はF値がF3.3やF3.5と暗いため、充分な性能が得られないといった問題点を有している。   However, the optical systems disclosed in Patent Documents 1 and 2 both have an optical total length that is longer than the advantage of changing the focusing method, and therefore have a long optical total length and are very vulnerable to errors. In addition, a high resolution is required for a solid-state imaging device with a small pixel size, but the optical systems of Patent Documents 1 and 2 cannot obtain sufficient performance because the F value is as dark as F3.3 or F3.5. Has a problem.

本発明はかかる問題に鑑みてなされたものであり、F値がF3.0よりも小さく、従来タイプより小型で高性能化を図りつつ、他の仕様や生産性に影響を与えることもなく、且つ、近年量産工程で大きな問題となる付着ゴミへの対応を解決することができる4枚構成の撮像レンズを提供することを目的とする。   The present invention has been made in view of such a problem, and the F value is smaller than F3.0, and it is smaller and more efficient than the conventional type, without affecting other specifications and productivity. It is another object of the present invention to provide a four-lens imaging lens capable of solving the problem of adhering dust which has become a major problem in mass production processes in recent years.

ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。   Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.

L/2Y < 0.95・・・(4)
但し、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
L / 2Y <0.95 (4)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.

なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ若しくは固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえでLの値を計算するものとする。   When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the parallel plate The part is assumed to be an air conversion distance and the value of L is calculated.

上記目的は下記に記載した発明により達成される。   The above object is achieved by the invention described below.

1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、少なくとも1面が光軸との交点以外の位置に変曲点を持つ非球面であって負の屈折力を有する第4レンズとから構成され、
前記第1レンズ、前記第2レンズ及び前記第4レンズは撮像面に対して固定され、第3レンズを光軸方向に移動させることによりフォーカシングを行い、以下の条件式を満足することを特徴とする撮像レンズ。
1. An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
In order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a position where at least one surface is other than the intersection with the optical axis And an aspherical surface having an inflection point and a fourth lens having negative refractive power,
The first lens, the second lens, and the fourth lens are fixed with respect to the imaging surface, and focusing is performed by moving the third lens in the optical axis direction, and the following conditional expression is satisfied: An imaging lens.

0.7<f3/f<1.3・・・(1)
但し、
f3:前記第3レンズの焦点距離
f:撮像レンズ全系の焦点距離
2.以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
0.7 <f3 / f <1.3 (1)
However,
f3: focal length of the third lens f: focal length of the entire imaging lens system 2. The imaging lens according to 1, wherein the following conditional expression is satisfied.

0.4<d24/f<0.9・・・(2)
但し、
d24:前記第2レンズの像側面から前記第4レンズの物体側面までの光軸上の距離
f:撮像レンズ全系の焦点距離
3.以下の条件式を満足することを特徴とする前記1又は前記2に記載の撮像レンズ。
0.4 <d24 / f <0.9 (2)
However,
d24: Distance on the optical axis from the image side surface of the second lens to the object side surface of the fourth lens f: Focal length of the entire imaging lens system 3. The imaging lens as described in 1 or 2 above, wherein the following conditional expression is satisfied.

1.3<f12/f<2.3・・・(3)
但し、
f12:前記第1レンズと前記第2レンズの合成焦点距離
f:撮像レンズ全系の焦点距離
4.前記第3レンズは両凸形状を有することを特徴とする前記1〜3の何れか1項に記載の撮像レンズ。
1.3 <f12 / f <2.3 (3)
However,
f12: Composite focal length of the first lens and the second lens f: Focal length of the entire imaging lens system 4. The imaging lens according to any one of 1 to 3, wherein the third lens has a biconvex shape.

5.前記第1レンズはガラス材料で形成されていることを特徴とする前記1〜4の何れか1項に記載の撮像レンズ。   5. The imaging lens according to any one of 1 to 4, wherein the first lens is made of a glass material.

6.前記撮像レンズは全てプラスチック材料で形成されていることを特徴とする前記1〜4の何れか1項に記載の撮像レンズ。   6). 5. The imaging lens according to any one of 1 to 4, wherein the imaging lens is made of a plastic material.

7.前記1〜6の何れか1項に記載の撮像レンズを備えたことを特徴とする撮像装置。   7). An imaging apparatus comprising the imaging lens according to any one of 1 to 6 above.

8.前記7に記載の撮像装置を備えたことを特徴とする携帯端末。   8). A portable terminal comprising the imaging device according to 7 above.

・請求項1の効果
本発明の基本構成は、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズであり、これにより小型で収差の良好に補正された撮像レンズを得ることができる。また、物体側より順に、第1レンズ、第2レンズ及び第3レンズから成る正レンズ群と、負の第4レンズを配置した所謂テレフォトタイプのレンズ構成により撮像レンズ全長を小型化することができる。
Effect of Claim 1 The basic configuration of the present invention includes a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a first lens having a negative refractive power. Thus, it is possible to obtain an imaging lens that is small and has good aberration correction. Further, in order from the object side, the total length of the imaging lens can be reduced by a so-called telephoto type lens configuration in which a positive lens group including a first lens, a second lens, and a third lens and a negative fourth lens are arranged. it can.

更に、4枚構成のうち2枚を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることができる。   Furthermore, by using two negative lenses in the four-lens configuration, it is possible to easily correct the Petzval sum by increasing the diverging surface and to obtain an imaging lens that secures good imaging performance up to the periphery of the screen. be able to.

また、最も像側に配置された第4レンズの少なくとも1面を非球面とすることで、画面周辺部での諸収差を良好に補正することができる。更に、光軸との交点以外の位置に変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保し易くなる。   Further, by making at least one surface of the fourth lens disposed closest to the image side an aspherical surface, various aberrations at the periphery of the screen can be corrected satisfactorily. Furthermore, by using an aspherical shape having an inflection point at a position other than the intersection with the optical axis, it becomes easy to ensure the telecentric characteristics of the image-side light beam.

ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。   Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

第1レンズ、第2レンズ及び第4レンズを固定し、第3レンズのみを駆動することで、球面収差や色収差、像面湾曲などを悪化させることなくフォーカシングを行うことができる。また、撮像レンズ全系を一体で繰り出す、所謂全体繰り出しに比べてフォーカシング移動量を削減できるため、アクチュエータの省スペース化が図れ、且つ全長が不変となるため、光学ユニットを超コンパクト化することができる。更に、レンズユニット内へのゴミの侵入を防止することができ、工程の廃止によるコストダウンや不良削減による環境負荷軽減も合わせて図ることができる。   By fixing the first lens, the second lens, and the fourth lens and driving only the third lens, focusing can be performed without deteriorating spherical aberration, chromatic aberration, curvature of field, and the like. In addition, since the amount of focusing movement can be reduced compared to the so-called entire extension, in which the entire imaging lens system is extended integrally, the actuator can be saved in space, and the total length remains unchanged, so that the optical unit can be made very compact. it can. Furthermore, it is possible to prevent dust from entering the lens unit, and it is possible to reduce the environmental load by reducing costs and eliminating defects by eliminating processes.

条件式(1)はフォーカス群である第3レンズの焦点距離を適切に設定するための条件式である。条件式(1)の値が上限を下回ることで、フォーカス群の屈折力を適度に維持することができ、フォーカシング移動量を小さく抑えることができる。一方、下限を上回ることで、第3レンズと第4レンズの屈折力が強くなり過ぎず、フォーカシング時の収差変動を小さく抑えることができる。また、下式の条件式にすることがより望ましい。   Conditional expression (1) is a conditional expression for appropriately setting the focal length of the third lens that is the focus group. When the value of conditional expression (1) is below the upper limit, the refractive power of the focus group can be maintained moderately, and the amount of focusing movement can be kept small. On the other hand, by exceeding the lower limit, the refractive powers of the third lens and the fourth lens do not become too strong, and aberration fluctuations during focusing can be suppressed small. Further, it is more desirable to use the following conditional expression.

0.80<f3/f<1.15
・請求項2の効果
条件式(2)はフォーカシング時に撮像面に対し固定された第2レンズと第4レンズの光軸上の距離を規定し、フォーカシング時のクリアランスを適切に設定するための条件式である。上限を下回ることで、フォーカシングストロークの増加に伴う撮像レンズ全長の増大を抑えることができる。一方、下限を上回ることで、適度にフォーカシング時のクリアランスを確保することができる。また、下式の条件式にすることがより望ましい。
0.80 <f3 / f <1.15
The effect of claim 2 Conditional expression (2) defines the distance on the optical axis between the second lens and the fourth lens fixed with respect to the imaging surface during focusing, and is a condition for appropriately setting the clearance during focusing. It is a formula. By being below the upper limit, it is possible to suppress an increase in the total length of the imaging lens accompanying an increase in the focusing stroke. On the other hand, the clearance at the time of focusing can be ensured moderately by exceeding the lower limit. Further, it is more desirable to use the following conditional expression.

0.50<d24/f<0.75
・請求項3の効果
条件式(3)は第1レンズと第2レンズの合成焦点距離を適切に設定するための条件式である。上限を下回ることで、第1レンズと第2レンズの正の合成焦点距離を適度に維持することができるため、全系の主点位置をより物体側に配置することができ、撮像レンズ全長を短くすることができる。一方、下限を上回ることで、第1レンズと第2レンズの正の合成焦点距離が必要以上に小さくなり過ぎず、第1レンズや第2レンズで発生する高次の球面収差やコマ収差を小さく抑えることができ、第1レンズ及び第2レンズの個々の屈折力を適度に抑えることによって、製造誤差に対する像面変動を小さくすることができる。また、下式の条件式にすることがより望ましい。
0.50 <d24 / f <0.75
Effect of Claim 3 Conditional expression (3) is a conditional expression for appropriately setting the combined focal length of the first lens and the second lens. By falling below the upper limit, the positive combined focal length of the first lens and the second lens can be appropriately maintained, so that the principal point position of the entire system can be arranged closer to the object side, Can be shortened. On the other hand, by exceeding the lower limit, the positive combined focal length of the first lens and the second lens is not unnecessarily reduced, and high-order spherical aberration and coma aberration generated in the first lens and the second lens are reduced. By suppressing the individual refractive powers of the first lens and the second lens appropriately, it is possible to reduce image plane fluctuations due to manufacturing errors. Further, it is more desirable to use the following conditional expression.

1.35<f12/f<2.20
・請求項4の効果
第3レンズを両凸形状とすることで、第2レンズと第3レンズの周辺部或いは第3レンズと第4レンズの周辺部が過度に接近することを避けることができ、フォーカシング時のクリアランスの確保が容易になる。
・請求項5の効果
比較的屈折力の強い第1レンズをガラス材料で形成することにより、撮像レンズ全系での温度変化時の像点移動位置を小さくしながらも、プラスチックレンズを第2レンズ、第3レンズ及び第4レンズに使用することで、撮像レンズ全体のコストを少なく抑えることができる。また、第1レンズをガラス材料で形成すると、プラスチックレンズを外部に露出させずに構成できるので、第1レンズへの傷等の問題を回避することができる。
・請求項6の効果
近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的に短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。
・請求項7の効果
前述の請求項1〜6の効果の何れかの効果を奏する撮像装置を得ることができる。
・請求項8の効果
請求項7の効果を奏する携帯端末を得ることができる。
1.35 <f12 / f <2.20
-Effect of Claim 4 By making the 3rd lens into biconvex shape, it can avoid that the peripheral part of a 2nd lens and a 3rd lens or the peripheral part of a 3rd lens and a 4th lens approach too much. Securing clearance during focusing becomes easy.
The effect of claim 5 By forming the first lens having a relatively strong refractive power from a glass material, the plastic lens is replaced with the second lens while reducing the image point moving position when the temperature changes in the entire imaging lens system. By using it for the third lens and the fourth lens, the cost of the entire imaging lens can be reduced. Further, when the first lens is formed of a glass material, the plastic lens can be configured without being exposed to the outside, so that problems such as scratches on the first lens can be avoided.
In recent years, for the purpose of downsizing the entire solid-state imaging device, even a solid-state imaging device having the same number of pixels has been developed with a small pixel pitch and consequently a small imaging surface size. . In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to relatively shorten the focal length of the entire system, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced.
Effect of Claim 7 An imaging device that exhibits any of the effects of Claims 1 to 6 described above can be obtained.
-Effect of Claim 8 The portable terminal which has the effect of Claim 7 can be obtained.

撮像装置の断面図である。It is sectional drawing of an imaging device. 携帯電話機の外観図である。It is an external view of a mobile phone. 実施例1のレンズの断面図である。2 is a cross-sectional view of the lens of Example 1. FIG. 実施例1の収差図である。FIG. 6 is an aberration diagram of Example 1. 実施例2のレンズの断面図である。6 is a cross-sectional view of a lens of Example 2. FIG. 実施例2の収差図である。FIG. 6 is an aberration diagram of Example 2. 実施例3のレンズの断面図である。6 is a cross-sectional view of a lens of Example 3. FIG. 実施例3の収差図である。FIG. 6 is an aberration diagram of Example 3. 実施例4のレンズの断面図である。6 is a sectional view of a lens of Example 4. FIG. 実施例4の収差図である。FIG. 6 is an aberration diagram of Example 4. 実施例5のレンズの断面図である。6 is a cross-sectional view of a lens of Example 5. FIG. 実施例5の収差図である。FIG. 6 is an aberration diagram of Example 5. 実施例6のレンズの断面図である。6 is a sectional view of a lens of Example 6. FIG. 実施例6の収差図である。FIG. 6 is an aberration diagram of Example 6. 実施例7のレンズの断面図である。10 is a cross-sectional view of a lens according to Example 7. FIG. 実施例7の収差図である。FIG. 10 is an aberration diagram of Example 7.

先ず、本発明の撮像レンズを備えた撮像装置の一例を図1の断面図を参照して説明する。   First, an example of an image pickup apparatus including the image pickup lens of the present invention will be described with reference to a cross-sectional view of FIG.

撮像レンズは物体側より順に、正の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、及び負の屈折力を有する第4レンズL4から構成されている。第4レンズL4の後方には赤外カットフィルタである平行平板Fが配置され、その後方には撮像面Iを有する固定撮像素子ISが配置されている。   The imaging lens in order from the object side is a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, and a fourth lens having a negative refractive power. It is composed of a lens L4. A parallel plate F, which is an infrared cut filter, is arranged behind the fourth lens L4, and a fixed imaging element IS having an imaging surface I is arranged behind the fourth lens L4.

なお、Fは必ずしも赤外カットフィルタである必要はなく、光学的ローパスフィルタや固定撮像素子ISのシールガラス等であってもよい。   Note that F is not necessarily an infrared cut filter, and may be an optical low-pass filter, a seal glass of the fixed image sensor IS, or the like.

また、固定撮像素子ISはCCD(Charged Coupled Device)型イメージセンサ、若しくはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等である。   The fixed imaging device IS is a CCD (Charged Coupled Device) type image sensor, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, or the like.

第1レンズL1、第2レンズL2、第4レンズL4、赤外カットフィルタF及び固定撮像素子ISを保持するリジッドなプリント基板Pは鏡筒11に装着されている。また、第3レンズL3は鏡枠12に保持され、鏡枠12はアクチュエータ13により光軸Oに沿って移動する。即ち、撮像装置の外部よりアクチュエータ13を駆動し、鏡枠12と共に第3レンズL3を移動させてフォーカシングを行う。そして、絞りSとなる開口部を有する化粧枠14にて鏡筒11を被覆している。   A rigid printed circuit board P that holds the first lens L1, the second lens L2, the fourth lens L4, the infrared cut filter F, and the fixed imaging element IS is mounted on the lens barrel 11. The third lens L3 is held by the lens frame 12, and the lens frame 12 is moved along the optical axis O by the actuator 13. That is, the actuator 13 is driven from the outside of the imaging device, and the third lens L3 is moved together with the lens frame 12 to perform focusing. The lens barrel 11 is covered with a decorative frame 14 having an opening serving as a stop S.

なお、本撮像装置においては、中間に位置する第3レンズL3を移動させてフォーカシングを行うので、アクチュエータ13より塵埃が発生したとしても、その塵埃は第4レンズL4に遮られて撮像面Iの方に移動することがない。   In the present imaging apparatus, focusing is performed by moving the third lens L3 located in the middle. Even if dust is generated from the actuator 13, the dust is blocked by the fourth lens L4 and is captured on the imaging surface I. Never move towards.

また、アクチュエータ13として、ソレノイドや圧電素子等を用いることができる。   As the actuator 13, a solenoid, a piezoelectric element, or the like can be used.

次に、この撮像装置を備えた携帯端末の一例としての携帯電話機を図2の外観図に基づいて説明する。なお、図2(A)は折り畳んだ携帯電話機を開いて内側から見た図であり、図2(B)は折り畳んだ携帯電話機を開いて外側から見た図である。   Next, a mobile phone as an example of a mobile terminal equipped with this imaging device will be described based on the external view of FIG. 2A is a view of the folded mobile phone as viewed from the inside, and FIG. 2B is a view of the folded mobile phone as viewed from the outside.

図2において、携帯電話機Tは、表示画面D1,D2を備えたケースとしての上筐体101と、操作ボタンBを備えた下筐体102とがヒンジ103を介して連結されている。撮像装置は、上筐体101内の表示画面D2の下方に内蔵されていて、上筐体101の外表面に第1レンズL1が露出している。   In FIG. 2, in the mobile phone T, an upper housing 101 as a case having display screens D <b> 1 and D <b> 2 and a lower housing 102 having operation buttons B are connected via a hinge 103. The imaging device is built under the display screen D2 in the upper casing 101, and the first lens L1 is exposed on the outer surface of the upper casing 101.

なお、この撮像装置の位置は上筐体101内の表示画面D2の上方や側面に配置してもよい。また、携帯電話機Tは折り畳み式に限定されるものではない。   Note that the position of the imaging device may be disposed above or on the side of the display screen D2 in the upper housing 101. Further, the mobile phone T is not limited to a folding type.

以下に本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。   Examples of the imaging lens of the present invention are shown below. Symbols used in each example are as follows.

f:撮像レンズ全系の焦点距離
fB:バックフォーカス
F:Fナンバー
2Y:固体撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1:前側主点位置(第1面から前側主点位置までの距離)
H2:後側主点位置(最終面から後側主点位置までの距離)
R:曲率半径
D:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
各実施例において、各面番号の後に(*)が記載されている面は非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向をX軸とし、光軸と垂直方向の高さをhとして以下の数1で表す。
f: Focal length of the entire imaging lens system fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device ENTP: Entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from the first surface to the front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial spacing Nd: refractive index of lens material with respect to d-line νd: Abbe number of lens material In each example, the surface described with (*) after each surface number has an aspheric shape The shape of the aspherical surface is expressed by the following formula 1, where the vertex of the surface is the origin, the optical axis direction is the X axis, and the height in the direction perpendicular to the optical axis is h.

Figure 2012068292
Figure 2012068292

但し、
Ai:i次の非球面係数
K:円錐定数
なお、請求項ならびに実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小二乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。
However,
Ai: i-th order aspherical coefficient K: conic constant Note that the meaning of the paraxial radius of curvature described in the claims and the examples is in the vicinity of the center of the lens (specifically, outside the lens) The approximate radius of curvature when the shape measurement value in the central region (within 10% of the diameter) is fitted by the least square method can be regarded as the paraxial radius of curvature.

また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜42を参照のこと。   For example, when a secondary aspherical coefficient is used, a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as the paraxial curvature radius. (For example, see pages 41 to 42 of “Lens Design Method” written by Yoshiya Matsui (Kyoritsu Publishing Co., Ltd.) as a reference.

また、非球面係数においは10のべき乗数(例えば2.5×10−02)をE(例えば2.5E−02)を用いて表す。
[実施例1]
撮像レンズの全体諸元を以下に示す。
f=4.09mm
fB=0.36mm
F=2.4
2Y=5.712mm
ENTP=0mm
EXTP=−3.02mm
H1=−0.86mm
H2=−3.72mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ 0.00 0.85
2(*) 2.063 0.59 1.54470 56.2 1.01
3(*) -13.004 0.05 1.03
4(*) 2.569 0.29 1.63200 23.4 1.07
5(*) 1.324 0.96 1.08
6(*) 79.139 0.90 1.54470 56.2 1.69
7(*) -2.581 0.59 1.77
8(*) 1.758 0.51 1.54470 56.2 2.11
9(*) 1.032 0.70 2.48
10 ∞ 0.15 1.51630 64.1 2.69
11 ∞ 2.73
非球面係数を以下に示す。
第2面
K=0.35079E+00,A4=0.54384E-02,A6=-0.93758E-02,A8=0.67299E-02,A10=0.33136E-02
第3面
K=0.72675E+01,A4=0.45938E-01,A6=-0.70962E-01,A8=0.91426E-01,A10=-0.24161E-01
第4面
K=-0.74930E+01,A4=-0.44538E-01,A6=-0.41307E-01,A8=0.75935E-01,A10=-0.86915E-03,A12=-0.15540E-01
第5面
K=-0.29139E+01,A4=-0.17640E-01,A6=0.26285E-01,A8=-0.25742E-01,A10=0.45900E-01,A12=-0.19641E-01
第6面
K=-0.68981E+04,A4=0.20614E-01,A6=-0.15379E-01,A8=0.12847E-01,A10=-0.40650E-02,A12=0.46243E-03
第7面
K=-0.57775E+01,A4=-0.66796E-01,A6=0.56108E-01,A8=-0.35663E-01,A10=0.16470E-01,A12=-0.32403E-02,A14=0.48988E-04,A16=0.38618E-04
第8面
K=-0.92343E+01,A4=-0.13915E+00,A6=0.32207E-01,A8=-0.29637E-02,A10=0.55955E-03,A12=-0.15757E-03,A14=0.14149E-04
第9面
K=-0.39719E+01,A4=-0.86033E-01,A6=0.28001E-01,A8=-0.74526E-02,A10=0.13072E-02,A12=-0.12455E-03,A14=0.47834E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.315
2 4 -4.747
3 6 4.606
4 8 -6.104
条件式(1)〜(4)に対応する値を以下に示す。
(1)f3/f=1.13
(2)d24/f=0.60
(3)f12/f=1.74
(4)L/2Y=0.89
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
In the aspherical coefficient, a power of 10 (for example, 2.5 × 10 −02 ) is expressed by using E (for example, 2.5E-02).
[Example 1]
The overall specifications of the imaging lens are shown below.
f = 4.09mm
fB = 0.36mm
F = 2.4
2Y = 5.712mm
ENTP = 0mm
EXTP = -3.02mm
H1 = −0.86mm
H2 = -3.72mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (aperture) ∞ 0.00 0.85
2 (*) 2.063 0.59 1.54470 56.2 1.01
3 (*) -13.004 0.05 1.03
4 (*) 2.569 0.29 1.63200 23.4 1.07
5 (*) 1.324 0.96 1.08
6 (*) 79.139 0.90 1.54470 56.2 1.69
7 (*) -2.581 0.59 1.77
8 (*) 1.758 0.51 1.54470 56.2 2.11
9 (*) 1.032 0.70 2.48
10 ∞ 0.15 1.51630 64.1 2.69
11 ∞ 2.73
The aspheric coefficient is shown below.
Second side
K = 0.35079E + 00, A4 = 0.54384E-02, A6 = -0.93758E-02, A8 = 0.67299E-02, A10 = 0.33136E-02
Third side
K = 0.72675E + 01, A4 = 0.45938E-01, A6 = -0.70962E-01, A8 = 0.91426E-01, A10 = -0.24161E-01
4th page
K = -0.74930E + 01, A4 = -0.44538E-01, A6 = -0.41307E-01, A8 = 0.75935E-01, A10 = -0.86915E-03, A12 = -0.15540E-01
5th page
K = -0.29139E + 01, A4 = -0.17640E-01, A6 = 0.26285E-01, A8 = -0.25742E-01, A10 = 0.45900E-01, A12 = -0.19641E-01
6th page
K = -0.68981E + 04, A4 = 0.20614E-01, A6 = -0.15379E-01, A8 = 0.12847E-01, A10 = -0.40650E-02, A12 = 0.46243E-03
7th page
K = -0.57775E + 01, A4 = -0.66796E-01, A6 = 0.56108E-01, A8 = -0.35663E-01, A10 = 0.16470E-01, A12 = -0.32403E-02, A14 = 0.48988E -04, A16 = 0.38618E-04
8th page
K = -0.92343E + 01, A4 = -0.13915E + 00, A6 = 0.32207E-01, A8 = -0.29637E-02, A10 = 0.55955E-03, A12 = -0.15757E-03, A14 = 0.14149E -04
9th page
K = -0.39719E + 01, A4 = -0.86033E-01, A6 = 0.28001E-01, A8 = -0.74526E-02, A10 = 0.13072E-02, A12 = -0.12455E-03, A14 = 0.47834E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.315
2 4 -4.747
3 6 4.606
4 8 -6.104
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 1.13
(2) d24 / f = 0.60
(3) f12 / f = 1.74
(4) L / 2Y = 0.89
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図3は実施例1のレンズの断面図、図4は実施例1の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例2]
撮像レンズの全体諸元を以下に示す。
f=4.09mm
fB=0.1mm
F=2.4
2Y=5.712mm
ENTP=0mm
EXTP=−2.63mm
H1=−2.02mm
H2=−3.99mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.18 0.85
2(*) 1.752 0.52 1.54470 56.2 0.86
3(*) 124.728 0.05 0.88
4(*) 2.624 0.25 1.63200 23.4 0.89
5(*) 1.385 0.94 0.92
6(*) 50.664 0.82 1.54470 56.2 1.57
7(*) -2.598 0.87 1.64
8(*) 2.205 0.45 1.54470 56.2 1.95
9(*) 1.031 0.70 2.44
10 ∞ 0.15 1.51630 64.1 2.79
11 ∞ 2.83
非球面係数を以下に示す。
第2面
K=0.44852E+00,A4=0.69148E-02,A6=0.40476E-02,A8=-0.18520E-02,A10=0.12418E-01
第3面
K=0.27403E+02,A4=0.43351E-01,A6=-0.69501E-01,A8=0.70380E-01,A10=-0.15394E-01
第4面
K=-0.10206E+02,A4=-0.32217E-01,A6=-0.80421E-01,A8=0.45459E-01,A10=0.23783E-01,A12=-0.27124E-01
第5面
K=-0.20509E+01,A4=-0.39013E-01,A6=0.26134E-01,A8=-0.34007E-02,A10=0.31606E-02,A12=0.12880E-01
第6面
K=-0.68488E+04,A4=0.63508E-02,A6=-0.71738E-02,A8=0.12038E-01,A10=-0.39758E-02,A12=0.44430E-03
第7面
K=-0.70261E+01,A4=-0.76012E-01,A6=0.52926E-01,A8=-0.32966E-01,A10=0.17088E-01,A12=-0.33712E-02,A14=-0.33162E-04,A16=0.55725E-04
第8面
K=-0.22689E+02,A4=-0.21028E+00,A6=0.60558E-01,A8=-0.61466E-02,A10=0.21257E-03,A12=-0.95414E-04,A14=0.15512E-04
第9面
K=-0.57503E+01,A4=-0.91661E-01,A6=0.28702E-01,A8=-0.72905E-02,A10=0.12980E-02,A12=-0.13201E-03,A14=0.54301E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.257
2 4 -5.035
3 6 4.562
4 8 -4.107
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=1.12
(2) d24/f=0.64
(3) f12/f=1.59
(4) L/2Y=0.84
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
3 is a cross-sectional view of the lens of Example 1, and FIG. 4 is an aberration diagram of Example 1 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 2]
The overall specifications of the imaging lens are shown below.
f = 4.09mm
fB = 0.1mm
F = 2.4
2Y = 5.712mm
ENTP = 0mm
EXTP = -2.63mm
H1 = −2.02mm
H2 = −3.99 mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (aperture) ∞ -0.18 0.85
2 (*) 1.752 0.52 1.54470 56.2 0.86
3 (*) 124.728 0.05 0.88
4 (*) 2.624 0.25 1.63200 23.4 0.89
5 (*) 1.385 0.94 0.92
6 (*) 50.664 0.82 1.54470 56.2 1.57
7 (*) -2.598 0.87 1.64
8 (*) 2.205 0.45 1.54470 56.2 1.95
9 (*) 1.031 0.70 2.44
10 ∞ 0.15 1.51630 64.1 2.79
11 ∞ 2.83
The aspheric coefficient is shown below.
Second side
K = 0.44852E + 00, A4 = 0.69148E-02, A6 = 0.40476E-02, A8 = -0.18520E-02, A10 = 0.12418E-01
Third side
K = 0.27403E + 02, A4 = 0.43351E-01, A6 = -0.69501E-01, A8 = 0.70380E-01, A10 = -0.15394E-01
4th page
K = -0.10206E + 02, A4 = -0.32217E-01, A6 = -0.80421E-01, A8 = 0.45459E-01, A10 = 0.23783E-01, A12 = -0.27124E-01
5th page
K = -0.20509E + 01, A4 = -0.39013E-01, A6 = 0.26134E-01, A8 = -0.34007E-02, A10 = 0.31606E-02, A12 = 0.12880E-01
6th page
K = -0.68488E + 04, A4 = 0.63508E-02, A6 = -0.71738E-02, A8 = 0.12038E-01, A10 = -0.39758E-02, A12 = 0.44430E-03
7th page
K = -0.70261E + 01, A4 = -0.76012E-01, A6 = 0.52926E-01, A8 = -0.32966E-01, A10 = 0.17088E-01, A12 = -0.33712E-02, A14 = -0.33162 E-04, A16 = 0.55725E-04
8th page
K = -0.22689E + 02, A4 = -0.21028E + 00, A6 = 0.60558E-01, A8 = -0.61466E-02, A10 = 0.21257E-03, A12 = -0.95414E-04, A14 = 0.15512E -04
9th page
K = -0.57503E + 01, A4 = -0.91661E-01, A6 = 0.28702E-01, A8 = -0.72905E-02, A10 = 0.12980E-02, A12 = -0.13201E-03, A14 = 0.54301E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.257
2 4 -5.035
3 6 4.562
4 8 -4.107
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 1.12
(2) d24 / f = 0.64
(3) f12 / f = 1.59
(4) L / 2Y = 0.84
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図5は実施例2のレンズの断面図、図6は実施例2の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例3]
撮像レンズの全体諸元を以下に示す。
f=3.77mm
fB=0.11mm
F=2.4
2Y=5.712mm
ENTP=0mm
EXTP=−2.72mm
H1=−1.26mm
H2=−3.67mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.01 0.79
2(*) 2.023 0.52 1.54470 56.2 0.90
3(*) -11.996 0.05 0.94
4(*) 3.610 0.30 1.63200 23.4 0.98
5(*) 1.553 0.76 1.02
6(*) 18.212 1.00 1.54470 56.2 1.56
7(*) -2.277 0.76 1.63
8(*) 2.240 0.51 1.54470 56.2 1.94
9(*) 1.023 0.70 2.47
10 ∞ 0.15 1.51630 64.1 2.76
11 ∞ 2.80
非球面係数を以下に示す。
第2面
K=0.37054E+00,A4=0.45756E-02,A6=-0.69641E-02,A8=0.38078E-02,A10=0.57746E-02
第3面
K=0.50000E+02,A4=0.36307E-01,A6=-0.69912E-01,A8=0.99844E-01,A10=-0.21206E-01
第4面
K=-0.16347E+02,A4=-0.51840E-01,A6=-0.44246E-01,A8=0.79994E-01,A10=0.13968E-01,A12=-0.25096E-01
第5面
K=-0.32094E+01,A4=-0.24486E-01,A6=0.30559E-01,A8=-0.22070E-01,A10=0.39664E-01,A12=-0.17522E-01
第6面
K=-0.74520E+03,A4=0.20055E-01,A6=-0.14404E-01,A8=0.13239E-01,A10=-0.37760E-02,A12=0.40423E-03
第7面
K=-0.51737E+01,A4=-0.74022E-01,A6=0.54898E-01,A8=-0.35431E-01,A10=0.16863E-01,A12=-0.31060E-02,A14=0.52106E-04,A16=0.30545E-04
第8面
K=-0.21709E+02,A4=-0.17357E+00,A6=0.41852E-01,A8=-0.28842E-02,A10=0.28192E-03,A12=-0.17118E-03,A14=0.21952E-04
第9面
K=-0.48743E+01,A4=-0.78801E-01,A6=0.26145E-01,A8=-0.71061E-02,A10=0.12424E-02,A12=-0.11643E-03,A14=0.43443E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.221
2 4 -4.573
3 6 3.781
4 8 -4.052
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=1.00
(2) d24/f=0.67
(3) f12/f=1.92
(4) L/2Y=0.84
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
FIG. 5 is a cross-sectional view of the lens of Example 2, and FIG. 6 is an aberration diagram of Example 2 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 3]
The overall specifications of the imaging lens are shown below.
f = 3.77 mm
fB = 0.11mm
F = 2.4
2Y = 5.712mm
ENTP = 0mm
EXTP = -2.72mm
H1 = -1.26mm
H2 = -3.67mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.01 0.79
2 (*) 2.023 0.52 1.54470 56.2 0.90
3 (*) -11.996 0.05 0.94
4 (*) 3.610 0.30 1.63200 23.4 0.98
5 (*) 1.553 0.76 1.02
6 (*) 18.212 1.00 1.54470 56.2 1.56
7 (*) -2.277 0.76 1.63
8 (*) 2.240 0.51 1.54470 56.2 1.94
9 (*) 1.023 0.70 2.47
10 ∞ 0.15 1.51630 64.1 2.76
11 ∞ 2.80
The aspheric coefficient is shown below.
Second side
K = 0.37054E + 00, A4 = 0.45756E-02, A6 = -0.69641E-02, A8 = 0.38078E-02, A10 = 0.57746E-02
Third side
K = 0.50000E + 02, A4 = 0.36307E-01, A6 = -0.69912E-01, A8 = 0.99844E-01, A10 = -0.21206E-01
4th page
K = -0.16347E + 02, A4 = -0.51840E-01, A6 = -0.44246E-01, A8 = 0.79994E-01, A10 = 0.13968E-01, A12 = -0.25096E-01
5th page
K = -0.32094E + 01, A4 = -0.24486E-01, A6 = 0.30559E-01, A8 = -0.22070E-01, A10 = 0.39664E-01, A12 = -0.17522E-01
6th page
K = -0.74520E + 03, A4 = 0.20055E-01, A6 = -0.14404E-01, A8 = 0.13239E-01, A10 = -0.37760E-02, A12 = 0.40423E-03
7th page
K = -0.51737E + 01, A4 = -0.74022E-01, A6 = 0.54898E-01, A8 = -0.35431E-01, A10 = 0.16863E-01, A12 = -0.31060E-02, A14 = 0.52106E -04, A16 = 0.30545E-04
8th page
K = -0.21709E + 02, A4 = -0.17357E + 00, A6 = 0.41852E-01, A8 = -0.28842E-02, A10 = 0.28192E-03, A12 = -0.17118E-03, A14 = 0.21952E -04
9th page
K = -0.48743E + 01, A4 = -0.78801E-01, A6 = 0.26145E-01, A8 = -0.71061E-02, A10 = 0.12424E-02, A12 = -0.11643E-03, A14 = 0.43443E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.221
2 4 -4.573
3 6 3.781
4 8 -4.052
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 1.00
(2) d24 / f = 0.67
(3) f12 / f = 1.92
(4) L / 2Y = 0.84
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図7は実施例3のレンズの断面図、図8は実施例3の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例4]
撮像レンズの全体諸元を以下に示す。
f=3.79mm
fB=0.11mm
F=2.4
2Y=5.712mm
ENTP=0mm
EXTP=−2.92mm
H1=−0.95mm
H2=−3.68mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.07 0.79
2(*) 2.399 0.48 1.54470 56.2 0.82
3(*) -10.927 0.05 0.88
4(*) 2.965 0.30 1.63200 23.4 0.95
5(*) 1.505 0.91 1.01
6(*) 8.548 1.28 1.54470 56.2 1.83
7(*) -2.007 0.60 1.89
8(*) 5.282 0.65 1.58300 30.0 1.99
9(*) 1.354 0.70 2.70
10 ∞ 0.15 1.51630 64.1 2.91
11 ∞ 2.95
非球面係数を以下に示す。
第2面
K=0.59191E+00,A4=0.87759E-02,A6=-0.20149E-02,A8=-0.78992E-03,A10=0.12823E-01
第3面
K=-0.31205E+02,A4=0.53949E-01,A6=-0.83260E-01,A8=0.94894E-01,A10=-0.71105E-02
第4面
K=-0.10813E+02,A4=-0.34483E-01,A6=-0.49889E-01,A8=0.61982E-01,A10=0.13144E-01,A12=-0.12016E-01
第5面
K=-0.32243E+01,A4=-0.35285E-01,A6=0.28685E-01,A8=-0.25608E-01,A10=0.27856E-01,A12=-0.68657E-02
第6面
K=-0.80790E+02,A4=0.22084E-01,A6=-0.16727E-01,A8=0.12167E-01,A10=-0.38208E-02,A12=0.42880E-03
第7面
K=-0.62607E+01,A4=-0.85469E-01,A6=0.57783E-01,A8=-0.36895E-01,A10=0.16293E-01,A12=-0.31319E-02,A14=0.65734E-04,A16=0.31030E-04
第8面
K=-0.68457E+01,A4=-0.16160E+00,A6=0.35989E-01,A8=-0.18806E-02,A10=0.44076E-03,A12=-0.26023E-03,A14=0.24664E-04
第9面
K=-0.31851E+01,A4=-0.93809E-01,A6=0.34345E-01,A8=-0.85435E-02,A10=0.13342E-02,A12=-0.11313E-03,A14=0.38571E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.658
2 4 -5.252
3 6 3.118
4 8 -3.324
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=0.82
(2) d24/f=0.74
(3) f12/f=2.20
(4) L/2Y=0.91
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
FIG. 7 is a cross-sectional view of the lens of Example 3, and FIG. 8 is an aberration diagram of Example 3 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 4]
The overall specifications of the imaging lens are shown below.
f = 3.79 mm
fB = 0.11mm
F = 2.4
2Y = 5.712mm
ENTP = 0mm
EXTP = -2.92mm
H1 = −0.95mm
H2 = -3.68mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.07 0.79
2 (*) 2.399 0.48 1.54470 56.2 0.82
3 (*) -10.927 0.05 0.88
4 (*) 2.965 0.30 1.63200 23.4 0.95
5 (*) 1.505 0.91 1.01
6 (*) 8.548 1.28 1.54470 56.2 1.83
7 (*) -2.007 0.60 1.89
8 (*) 5.282 0.65 1.58300 30.0 1.99
9 (*) 1.354 0.70 2.70
10 ∞ 0.15 1.51630 64.1 2.91
11 ∞ 2.95
The aspheric coefficient is shown below.
Second side
K = 0.59191E + 00, A4 = 0.87759E-02, A6 = -0.20149E-02, A8 = -0.78992E-03, A10 = 0.12823E-01
Third side
K = -0.31205E + 02, A4 = 0.53949E-01, A6 = -0.83260E-01, A8 = 0.94894E-01, A10 = -0.71105E-02
4th page
K = -0.10813E + 02, A4 = -0.34483E-01, A6 = -0.49889E-01, A8 = 0.61982E-01, A10 = 0.13144E-01, A12 = -0.12016E-01
5th page
K = -0.32243E + 01, A4 = -0.35285E-01, A6 = 0.28685E-01, A8 = -0.25608E-01, A10 = 0.27856E-01, A12 = -0.68657E-02
6th page
K = -0.80790E + 02, A4 = 0.22084E-01, A6 = -0.16727E-01, A8 = 0.12167E-01, A10 = -0.38208E-02, A12 = 0.42880E-03
7th page
K = -0.62607E + 01, A4 = -0.85469E-01, A6 = 0.57783E-01, A8 = -0.36895E-01, A10 = 0.16293E-01, A12 = -0.31319E-02, A14 = 0.65734E -04, A16 = 0.31030E-04
8th page
K = -0.68457E + 01, A4 = -0.16160E + 00, A6 = 0.35989E-01, A8 = -0.18806E-02, A10 = 0.44076E-03, A12 = -0.26023E-03, A14 = 0.24664E -04
9th page
K = -0.31851E + 01, A4 = -0.93809E-01, A6 = 0.34345E-01, A8 = -0.85435E-02, A10 = 0.13342E-02, A12 = -0.11313E-03, A14 = 0.38571E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.658
2 4 -5.252
3 6 3.118
4 8 -3.324
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 0.82
(2) d24 / f = 0.74
(3) f12 / f = 2.20
(4) L / 2Y = 0.91
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図9は実施例4のレンズの断面図、図10は実施例4の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例5]
撮像レンズの全体諸元を以下に示す。
f=3.83mm
fB=0.3mm
F=2.8
2Y=5.96mm
ENTP=0mm
EXTP=−3.29mm
H1=−0.26mm
H2=−3.53mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ 0.05 0.68
2(*) 3.182 0.67 1.54470 56.2 0.82
3(*) -2.913 0.05 0.95
4(*) 3.967 0.30 1.63200 23.4 1.03
5(*) 1.575 0.88 1.05
6(*) -9.756 1.02 1.54470 56.2 1.37
7(*) -1.928 0.44 1.66
8(*) 1.186 0.40 1.54470 56.2 2.16
9(*) 0.750 0.80 2.60
10 ∞ 0.30 1.51630 64.1 2.79
11 ∞ 2.86
非球面係数を以下に示す。
第2面
K=-0.45758E+01,A4=-0.28424E-01,A6=-0.39239E-01,A8=-0.12479E-01,A10=0.14456E-01,A12=-0.21717E-01
第3面
K=-0.74241E+00,A4=-0.27292E-01,A6=-0.76425E-02,A8=-0.18638E-01,A10=0.10818E-01,A12=-0.97311E-02
第4面
K=-0.14695E+02,A4=-0.59815E-01,A6=0.73392E-01,A8=-0.26102E-02,A10=-0.13526E-01,A12=0.42023E-02
第5面
K=-0.52113E+01,A4=0.26371E-01,A6=0.46057E-02,A8=0.11422E-01,A10=-0.32746E-02,A12=-0.51200E-03
第6面
K=0.30000E+02,A4=0.30411E-01,A6=-0.38860E-01,A8=0.15273E-01,A10=-0.24488E-02,A12=-0.54631E-03
第7面
K=-0.99516E+00,A4=0.14879E-02,A6=0.11480E-01,A8=-0.15562E-01,A10=0.62762E-02,A12=-0.96329E-03
第8面
K=-0.44069E+01,A4=-0.13395E+00,A6=0.32661E-01,A8=-0.51361E-02,A10=0.71764E-03,A12=-0.55404E-04
第9面
K=-0.27724E+01,A4=-0.94378E-01,A6=0.29651E-01,A8=-0.60688E-02,A10=0.68145E-03,A12=-0.31543E-04
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 2.904
2 4 -4.344
3 6 4.217
4 8 -5.529
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=1.10
(2) d24/f=0.61
(3) f12/f=1.63
(4) L/2Y=0.85
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
FIG. 9 is a cross-sectional view of the lens of Example 4, and FIG. 10 is an aberration diagram of Example 4 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 5]
The overall specifications of the imaging lens are shown below.
f = 3.83mm
fB = 0.3mm
F = 2.8
2Y = 5.96mm
ENTP = 0mm
EXTP = -3.29mm
H1 = −0.26mm
H2 = −3.53mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (aperture) ∞ 0.05 0.68
2 (*) 3.182 0.67 1.54470 56.2 0.82
3 (*) -2.913 0.05 0.95
4 (*) 3.967 0.30 1.63200 23.4 1.03
5 (*) 1.575 0.88 1.05
6 (*) -9.756 1.02 1.54470 56.2 1.37
7 (*) -1.928 0.44 1.66
8 (*) 1.186 0.40 1.54470 56.2 2.16
9 (*) 0.750 0.80 2.60
10 ∞ 0.30 1.51630 64.1 2.79
11 ∞ 2.86
The aspheric coefficient is shown below.
Second side
K = -0.45758E + 01, A4 = -0.28424E-01, A6 = -0.39239E-01, A8 = -0.12479E-01, A10 = 0.14456E-01, A12 = -0.21717E-01
Third side
K = -0.74241E + 00, A4 = -0.27292E-01, A6 = -0.76425E-02, A8 = -0.18638E-01, A10 = 0.10818E-01, A12 = -0.97311E-02
4th page
K = -0.14695E + 02, A4 = -0.59815E-01, A6 = 0.73392E-01, A8 = -0.26102E-02, A10 = -0.13526E-01, A12 = 0.42023E-02
5th page
K = -0.52113E + 01, A4 = 0.26371E-01, A6 = 0.46057E-02, A8 = 0.11422E-01, A10 = -0.32746E-02, A12 = -0.51200E-03
6th page
K = 0.30000E + 02, A4 = 0.30411E-01, A6 = -0.38860E-01, A8 = 0.15273E-01, A10 = -0.24488E-02, A12 = -0.54631E-03
7th page
K = -0.99516E + 00, A4 = 0.14879E-02, A6 = 0.11480E-01, A8 = -0.15562E-01, A10 = 0.62762E-02, A12 = -0.96329E-03
8th page
K = -0.44069E + 01, A4 = -0.13395E + 00, A6 = 0.32661E-01, A8 = -0.51361E-02, A10 = 0.71764E-03, A12 = -0.55404E-04
9th page
K = -0.27724E + 01, A4 = -0.94378E-01, A6 = 0.29651E-01, A8 = -0.60688E-02, A10 = 0.68145E-03, A12 = -0.31543E-04
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 2.904
2 4 -4.344
3 6 4.217
4 8 -5.529
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 1.10
(2) d24 / f = 0.61
(3) f12 / f = 1.63
(4) L / 2Y = 0.85
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図11は実施例5のレンズの断面図、図12は実施例5の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例6]
撮像レンズの全体諸元を以下に示す。
f=3.96mm
fB=0.25mm
F=2.8
2Y=5.96mm
ENTP=0mm
EXTP=−2.87mm
H1=−1.08mm
H2=−3.71mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ 0.00 0.71
2(*) 3.898 0.77 1.49700 81.6 0.74
3(*) -2.524 0.64 0.94
4(*) -1.163 0.30 1.63200 23.4 1.12
5(*) -1.733 0.52 1.19
6(*) 14.168 1.08 1.54470 56.2 1.46
7(*) -2.129 0.40 1.67
8(*) 5.902 0.45 1.54470 56.2 1.79
9(*) 1.161 0.59 2.50
10 ∞ 0.30 1.51600 64.1 2.79
11 ∞ 2.87
非球面係数を以下に示す。
第2面
K=-0.57280E+01,A4=-0.58462E-01,A6=-0.98713E-02,A8=-0.14260E+00,A10=0.23855E+00,A12=-0.24086E+00,A14=0.84941E-01
第3面
K=0.38463E+01,A4=-0.53699E-01,A6=0.29418E-01,A8=-0.79605E-01,A10=0.15850E+00,A12=-0.14738E+00,A14=0.56192E-01
第4面
K=-0.33413E+01,A4=-0.12915E+00,A6=0.39888E+00,A8=-0.36717E+00,A10=0.21473E+00,A12=-0.74718E-01,A14=0.12071E-01
第5面
K=-0.17023E+02,A4=-0.32680E+00,A6=0.93412E+00,A8=-0.14471E+01,A10=0.16513E+01,A12=-0.12860E+01,A14=0.62272E+00,A16=-0.16332E+00
第6面
K=0.69766E+01,A4=-0.58809E-01,A6=0.54584E-01,A8=-0.51044E-01,A10=0.22469E-01,A12=-0.54223E-02,A14=0.53021E-03
第7面
A4=0.10747E-01,A6=-0.20621E-02,A8=-0.28274E-02,A10=0.12984E-02,A12=-0.46925E-03,A14=0.10462E-03
第8面
K=-0.19610E+03,A4=-0.18946E+00,A6=0.51005E-01,A8=-0.66501E-02,A10=-0.15519E-02,A12=0.10531E-02,A14=-0.16313E-03
第9面
K=-0.47431E+01,A4=-0.88521E-01,A6=0.32516E-01,A8=-0.88001E-02,A10=0.14910E-02,A12=-0.14098E-03,A14=0.54495E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.211
2 4 -7.033
3 6 3.479
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=0.88
(2) d24/f=0.50
(3) f12/f=1.36
(4) L/2Y=0.87

なお、第1レンズL1はガラスモールドレンズ、それ以外のレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
11 is a sectional view of the lens of Example 5, and FIG. 12 is an aberration diagram of Example 5 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 6]
The overall specifications of the imaging lens are shown below.
f = 3.96mm
fB = 0.25mm
F = 2.8
2Y = 5.96mm
ENTP = 0mm
EXTP = -2.87mm
H1 = -1.08mm
H2 = -3.71mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (aperture) ∞ 0.00 0.71
2 (*) 3.898 0.77 1.49700 81.6 0.74
3 (*) -2.524 0.64 0.94
4 (*) -1.163 0.30 1.63200 23.4 1.12
5 (*) -1.733 0.52 1.19
6 (*) 14.168 1.08 1.54470 56.2 1.46
7 (*) -2.129 0.40 1.67
8 (*) 5.902 0.45 1.54470 56.2 1.79
9 (*) 1.161 0.59 2.50
10 ∞ 0.30 1.51600 64.1 2.79
11 ∞ 2.87
The aspheric coefficient is shown below.
Second side
K = -0.57280E + 01, A4 = -0.58462E-01, A6 = -0.98713E-02, A8 = -0.14260E + 00, A10 = 0.23855E + 00, A12 = -0.24086E + 00, A14 = 0.84941 E-01
Third side
K = 0.38463E + 01, A4 = -0.53699E-01, A6 = 0.29418E-01, A8 = -0.79605E-01, A10 = 0.15850E + 00, A12 = -0.14738E + 00, A14 = 0.56192E- 01
4th page
K = -0.33413E + 01, A4 = -0.12915E + 00, A6 = 0.39888E + 00, A8 = -0.36717E + 00, A10 = 0.21473E + 00, A12 = -0.74718E-01, A14 = 0.12071E -01
5th page
K = -0.17023E + 02, A4 = -0.32680E + 00, A6 = 0.93412E + 00, A8 = -0.14471E + 01, A10 = 0.16513E + 01, A12 = -0.12860E + 01, A14 = 0.62272E + 00, A16 = -0.16332E + 00
6th page
K = 0.69766E + 01, A4 = -0.58809E-01, A6 = 0.54584E-01, A8 = -0.51044E-01, A10 = 0.22469E-01, A12 = -0.54223E-02, A14 = 0.53021E- 03
7th page
A4 = 0.10747E-01, A6 = -0.20621E-02, A8 = -0.28274E-02, A10 = 0.12984E-02, A12 = -0.46925E-03, A14 = 0.10462E-03
8th page
K = -0.19610E + 03, A4 = -0.18946E + 00, A6 = 0.51005E-01, A8 = -0.66501E-02, A10 = -0.15519E-02, A12 = 0.10531E-02, A14 = -0.16313 E-03
9th page
K = -0.47431E + 01, A4 = -0.88521E-01, A6 = 0.32516E-01, A8 = -0.88001E-02, A10 = 0.14910E-02, A12 = -0.14098E-03, A14 = 0.54495E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.211
2 4 -7.033
3 6 3.479
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 0.88
(2) d24 / f = 0.50
(3) f12 / f = 1.36
(4) L / 2Y = 0.87

The first lens L1 is made of a glass mold lens, and the other lenses are made of a plastic material. The first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens Focusing is performed by moving the lens L3 in the optical axis direction.

図13は実施例6のレンズの断面図、図14は実施例6の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
[実施例7]
撮像レンズの全体諸元を以下に示す。
f=4.04mm
fB=0.33mm
F=2.88
2Y=5.712mm
ENTP=0mm
EXTP=−3.05mm
H1=−0.79mm
H2=−3.71mm
撮像レンズの面データを以下に示す。
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ 0.00 0.70
2(*) 2.166 0.67 1.54470 56.2 0.82
3(*) -9.662 0.05 0.91
4(*) 3.369 0.30 1.63200 23.4 0.97
5(*) 1.504 0.81 1.03
6(*) 88.347 0.96 1.54470 56.2 1.68
7(*) -2.435 0.56 1.74
8(*) 1.709 0.53 1.54470 56.2 2.07
9(*) 0.997 0.70 2.52
10 ∞ 0.30 1.51630 64.1 2.73
11 ∞ 2.83
非球面係数を以下に示す。
第2面
K=0.30304E+00,A4=0.10051E-02,A6=-0.88779E-03,A8=-0.23670E-02,A10=0.56888E-02
第3面
K=0.28128E+02,A4=0.39928E-01,A6=-0.40265E-01,A8=0.10559E+00,A10=-0.58458E-01
第4面
K=-0.19261E+02,A4=-0.33015E-01,A6=-0.23680E-01,A8=0.86145E-01,A10=-0.41031E-02,A12=-0.33236E-01
第5面
K=-0.36779E+01,A4=-0.13736E-01,A6=0.26633E-01,A8=-0.25386E-01,A10=0.51478E-01,A12=-0.27594E-01
第6面
K=0.23252E+02,A4=0.28991E-01,A6=-0.16340E-01,A8=0.12472E-01,A10=-0.43172E-02,A12=0.59190E-03
第7面
K=-0.82051E+01,A4=-0.80791E-01,A6=0.64742E-01,A8=-0.36155E-01,A10=0.15863E-01,A12=-0.32747E-02,A14=0.77253E-04,A16=0.44690E-04
第8面
K=-0.73049E+01,A4=-0.13561E+00,A6=0.29873E-01,A8=-0.25393E-02,A10=0.52932E-03,A12=-0.19210E-03,A14=0.20635E-04
第9面
K=-0.34495E+01,A4=-0.88150E-01,A6=0.29371E-01,A8=-0.74753E-02,A10=0.12352E-02,A12=-0.11410E-03,A14=0.43445E-05
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.314
2 4 -4.587
3 6 4.367
4 8 -5.943
条件式(1)〜(4)に対応する値を以下に示す。
(1) f3/f=1.08
(2) d24/f=0.58
(3) f12/f=1.85
(4) L/2Y=0.89
なお、本撮像レンズを構成する全てのレンズはプラスチック材料から形成されており、第1レンズL1、第2レンズL2及び第4レンズL4は撮像面Iに対して固定され、第3レンズL3を光軸方向に移動させることによりフォーカシングを行う。
FIG. 13 is a sectional view of the lens of Example 6, and FIG. 14 is an aberration diagram of Example 6 (spherical aberration, astigmatism, distortion, and meridional coma).
[Example 7]
The overall specifications of the imaging lens are shown below.
f = 4.04mm
fB = 0.33mm
F = 2.88
2Y = 5.712mm
ENTP = 0mm
EXTP = -3.05mm
H1 = −0.79mm
H2 = -3.71mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (aperture) ∞ 0.00 0.70
2 (*) 2.166 0.67 1.54470 56.2 0.82
3 (*) -9.662 0.05 0.91
4 (*) 3.369 0.30 1.63200 23.4 0.97
5 (*) 1.504 0.81 1.03
6 (*) 88.347 0.96 1.54470 56.2 1.68
7 (*) -2.435 0.56 1.74
8 (*) 1.709 0.53 1.54470 56.2 2.07
9 (*) 0.997 0.70 2.52
10 ∞ 0.30 1.51630 64.1 2.73
11 ∞ 2.83
The aspheric coefficient is shown below.
Second side
K = 0.30304E + 00, A4 = 0.10051E-02, A6 = -0.88779E-03, A8 = -0.23670E-02, A10 = 0.56888E-02
Third side
K = 0.28128E + 02, A4 = 0.39928E-01, A6 = -0.40265E-01, A8 = 0.10559E + 00, A10 = -0.58458E-01
4th page
K = -0.19261E + 02, A4 = -0.33015E-01, A6 = -0.23680E-01, A8 = 0.86145E-01, A10 = -0.41031E-02, A12 = -0.33236E-01
5th page
K = -0.36779E + 01, A4 = -0.13736E-01, A6 = 0.26633E-01, A8 = -0.25386E-01, A10 = 0.51478E-01, A12 = -0.27594E-01
6th page
K = 0.23252E + 02, A4 = 0.28991E-01, A6 = -0.16340E-01, A8 = 0.12472E-01, A10 = -0.43172E-02, A12 = 0.59190E-03
7th page
K = -0.82051E + 01, A4 = -0.80791E-01, A6 = 0.64742E-01, A8 = -0.36155E-01, A10 = 0.15863E-01, A12 = -0.32747E-02, A14 = 0.77253E -04, A16 = 0.44690E-04
8th page
K = -0.73049E + 01, A4 = -0.13561E + 00, A6 = 0.29873E-01, A8 = -0.25393E-02, A10 = 0.52932E-03, A12 = -0.19210E-03, A14 = 0.20635E -04
9th page
K = -0.34495E + 01, A4 = -0.88150E-01, A6 = 0.29371E-01, A8 = -0.74753E-02, A10 = 0.12352E-02, A12 = -0.11410E-03, A14 = 0.43445E -05
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.314
2 4 -4.587
3 6 4.367
4 8 -5.943
Values corresponding to conditional expressions (1) to (4) are shown below.
(1) f3 / f = 1.08
(2) d24 / f = 0.58
(3) f12 / f = 1.85
(4) L / 2Y = 0.89
Note that all the lenses constituting the imaging lens are made of a plastic material, and the first lens L1, the second lens L2, and the fourth lens L4 are fixed with respect to the imaging surface I, and the third lens L3 is irradiated with light. Focusing is performed by moving in the axial direction.

図15は実施例7のレンズの断面図、図16は実施例7の収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。   FIG. 15 is a sectional view of the lens of Example 7, and FIG. 16 is an aberration diagram of Example 7 (spherical aberration, astigmatism, distortion, and meridional coma).

ここで、プラスチック材料は温度変化時の屈折率変化が大きいため、第1レンズL1から第4レンズL4の全てをプラスチックレンズで構成すると、周囲温度が変化した際に、撮像レンズ全系の像点位置が変動してしまうという問題をかかえてしまう。   Here, since the plastic material has a large refractive index change when the temperature changes, if all of the first lens L1 to the fourth lens L4 are made of plastic lenses, the image point of the entire imaging lens system when the ambient temperature changes. The problem is that the position will fluctuate.

そこで、最近ではプラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化が殆ど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性の極めて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、比較的屈折力の大きな正レンズ(L1)、またはすべてのレンズ(L1〜L4)に、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動を小さく抑えることが可能となる。 Therefore, recently, it has been found that by mixing inorganic fine particles in a plastic material, the temperature change of the plastic material can be reduced. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, by using a plastic material in which such inorganic particles are dispersed in the positive lens (L1) having a relatively large refractive power or all the lenses (L1 to L4), the temperature change of the entire imaging lens system is achieved. It is possible to suppress the image point position fluctuation at the time.

また、近年撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。   Further, in recent years, as a method for mounting an imaging device at a low cost and in large quantities, a reflow process (heating process) is performed on a substrate on which solder is previously potted while an IC chip or other electronic component and an optical element are mounted. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting solder.

このようなリフロー処理を用いて実装を行うためには、電子部品と共に光学素子を約200〜260度に加熱する必要があるが、このような高温下では熱可塑性樹脂を用いたレンズでは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりもコストが高いため、撮像装置の低コスト化の要求に応えられないという問題があった。   In order to perform mounting using such a reflow process, it is necessary to heat the optical element together with the electronic component to about 200 to 260 degrees, but at such a high temperature, a lens using a thermoplastic resin is thermally deformed. However, there is a problem that the optical performance deteriorates due to discoloration. As one of the methods for solving such a problem, a technology has been proposed that uses a glass mold lens having excellent heat resistance and achieves both miniaturization and optical performance in a high temperature environment. Since the cost is higher than the lens used, there is a problem that it is difficult to meet the demand for cost reduction of the imaging device.

そこで、撮像レンズの材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さいため、リフロー処理に有効であり、かつガラスモールドレンズよりも製造し易く安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性を両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂および紫外線硬化性樹脂のいずれをも指すものとする。   Therefore, by using an energy curable resin as the material of the imaging lens, since the optical performance degradation when exposed to high temperatures is small compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, It is effective for the reflow process, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens. The energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.

また、本発明のプラスチックレンズを前述のエネルギー硬化性樹脂も用いて形成してもよい。   Further, the plastic lens of the present invention may be formed using the above-mentioned energy curable resin.

なお、本実施例は、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定すれば、撮像面の周辺部にゆくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。本実施例は、前記要求が緩和された分について、より小型化を目指した設計例となっている。   In the present embodiment, the chief ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small at the periphery of the imaging surface. However, recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the imaging surface of the imaging device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces with a solid-state image sensor can be restrained small. The present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
S 絞り
F 平行平板
I 撮像面
L1 1st lens L2 2nd lens L3 3rd lens S Aperture F Parallel plate I Imaging surface

Claims (8)

固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、少なくとも1面が光軸との交点以外の位置に変曲点を持つ非球面であって負の屈折力を有する第4レンズとから構成され、
前記第1レンズ、前記第2レンズ及び前記第4レンズは撮像面に対して固定され、第3レンズを光軸方向に移動させることによりフォーカシングを行い、以下の条件式を満足することを特徴とする撮像レンズ。
0.7<f3/f<1.3
但し、
f3:前記第3レンズの焦点距離
f:撮像レンズ全系の焦点距離
An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
In order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a position where at least one surface is other than the intersection with the optical axis And an aspherical surface having an inflection point and a fourth lens having negative refractive power,
The first lens, the second lens, and the fourth lens are fixed with respect to the imaging surface, and focusing is performed by moving the third lens in the optical axis direction, and the following conditional expression is satisfied: An imaging lens.
0.7 <f3 / f <1.3
However,
f3: focal length of the third lens f: focal length of the entire imaging lens system
以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
0.4<d24/f<0.9
但し、
d24:前記第2レンズの像側面から前記第4レンズの物体側面までの光軸上の距離
f:撮像レンズ全系の焦点距離
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.4 <d24 / f <0.9
However,
d24: Distance on the optical axis from the image side surface of the second lens to the object side surface of the fourth lens f: Focal length of the entire imaging lens system
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の撮像レンズ。
1.3<f12/f<2.3
但し、
f12:前記第1レンズと前記第2レンズの合成焦点距離
f:撮像レンズ全系の焦点距離
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
1.3 <f12 / f <2.3
However,
f12: Composite focal length of the first lens and the second lens f: Focal length of the entire imaging lens system
前記第3レンズは両凸形状を有することを特徴とする請求項1〜3の何れか1項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the third lens has a biconvex shape. 前記第1レンズはガラス材料で形成されていることを特徴とする請求項1〜4の何れか1項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the first lens is made of a glass material. 前記撮像レンズは全てプラスチック材料で形成されていることを特徴とする請求項1〜4の何れか1項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the imaging lens is entirely made of a plastic material. 請求項1〜6の何れか1項に記載の撮像レンズを備えたことを特徴とする撮像装置。   An imaging apparatus comprising the imaging lens according to claim 1. 請求項7に記載の撮像装置を備えたことを特徴とする携帯端末。   A portable terminal comprising the imaging device according to claim 7.
JP2010210617A 2010-09-21 2010-09-21 Imaging lens, imaging apparatus and portable terminal Pending JP2012068292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210617A JP2012068292A (en) 2010-09-21 2010-09-21 Imaging lens, imaging apparatus and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210617A JP2012068292A (en) 2010-09-21 2010-09-21 Imaging lens, imaging apparatus and portable terminal

Publications (1)

Publication Number Publication Date
JP2012068292A true JP2012068292A (en) 2012-04-05

Family

ID=46165691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210617A Pending JP2012068292A (en) 2010-09-21 2010-09-21 Imaging lens, imaging apparatus and portable terminal

Country Status (1)

Country Link
JP (1) JP2012068292A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208377A (en) * 2011-03-30 2012-10-25 Olympus Corp Image pickup optical system and image pickup device using the same
WO2013150706A1 (en) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
CN103513402A (en) * 2012-06-15 2014-01-15 三星电子株式会社 Imaging optical device
JP2014130346A (en) * 2012-12-28 2014-07-10 Genius Electronic Optical Co Portable device and its optical imaging lens
US8804024B2 (en) 2012-11-15 2014-08-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
TWI471589B (en) * 2012-12-28 2015-02-01 玉晶光電股份有限公司 Mobile device and optical imaging lens thereof
JP5836532B1 (en) * 2015-08-05 2015-12-24 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
CN106033142A (en) * 2015-03-12 2016-10-19 佳能企业股份有限公司 Optical lens
CN106646828A (en) * 2016-12-15 2017-05-10 广东旭业光电科技股份有限公司 Optical lens
US9995908B2 (en) 2016-10-03 2018-06-12 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device
WO2020073983A1 (en) * 2018-10-11 2020-04-16 南昌欧菲精密光学制品有限公司 Optical photography lens assembly, imaging module, and electronic device
CN111198434A (en) * 2020-02-24 2020-05-26 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111308652A (en) * 2020-02-24 2020-06-19 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10761296B2 (en) 2017-01-23 2020-09-01 Kantatsu Co., Ltd. Imaging lens
CN113759510A (en) * 2021-09-15 2021-12-07 江西晶浩光学有限公司 Optical imaging system, get for instance module and electronic equipment
WO2023207590A1 (en) * 2022-04-29 2023-11-02 宁波舜宇光电信息有限公司 Optical assembly and assembly method therefor, and camera module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293324A (en) * 2005-03-17 2006-10-26 Konica Minolta Opto Inc Image pickup lens and apparatus, and mobile terminal provided with image pickup apparatus
JP2007212877A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus having same
WO2008078708A1 (en) * 2006-12-22 2008-07-03 Seiko Precision Inc. Imaging lens, and imaging device and portable terminal device using the imaging lens
JP2010060980A (en) * 2008-09-05 2010-03-18 Konica Minolta Opto Inc Image pickup lens, image pickup apparatus and mobile terminal
JP2010096820A (en) * 2008-10-14 2010-04-30 Konica Minolta Opto Inc Imaging apparatus and personal digital assistant
JP2010145648A (en) * 2008-12-17 2010-07-01 Fujinon Corp Imaging lens constituted of three groups and imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293324A (en) * 2005-03-17 2006-10-26 Konica Minolta Opto Inc Image pickup lens and apparatus, and mobile terminal provided with image pickup apparatus
JP2007212877A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus having same
WO2008078708A1 (en) * 2006-12-22 2008-07-03 Seiko Precision Inc. Imaging lens, and imaging device and portable terminal device using the imaging lens
JP2010060980A (en) * 2008-09-05 2010-03-18 Konica Minolta Opto Inc Image pickup lens, image pickup apparatus and mobile terminal
JP2010096820A (en) * 2008-10-14 2010-04-30 Konica Minolta Opto Inc Imaging apparatus and personal digital assistant
JP2010145648A (en) * 2008-12-17 2010-07-01 Fujinon Corp Imaging lens constituted of three groups and imaging apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208377A (en) * 2011-03-30 2012-10-25 Olympus Corp Image pickup optical system and image pickup device using the same
WO2013150706A1 (en) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
JP5370619B1 (en) * 2012-04-06 2013-12-18 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
US8704937B2 (en) 2012-04-06 2014-04-22 Konica Minolta Optics, Inc. Imaging optical system, imaging device, and digital apparatus
TWI512328B (en) * 2012-04-06 2015-12-11 Konica Minolta Optics Inc Camera optics, camera and digital machines
CN103513402A (en) * 2012-06-15 2014-01-15 三星电子株式会社 Imaging optical device
US8804024B2 (en) 2012-11-15 2014-08-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
JP2014130346A (en) * 2012-12-28 2014-07-10 Genius Electronic Optical Co Portable device and its optical imaging lens
TWI471589B (en) * 2012-12-28 2015-02-01 玉晶光電股份有限公司 Mobile device and optical imaging lens thereof
US9057866B2 (en) 2012-12-28 2015-06-16 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
CN106033142A (en) * 2015-03-12 2016-10-19 佳能企业股份有限公司 Optical lens
JP5836532B1 (en) * 2015-08-05 2015-12-24 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
US9995908B2 (en) 2016-10-03 2018-06-12 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device
CN106646828A (en) * 2016-12-15 2017-05-10 广东旭业光电科技股份有限公司 Optical lens
US10761296B2 (en) 2017-01-23 2020-09-01 Kantatsu Co., Ltd. Imaging lens
WO2020073983A1 (en) * 2018-10-11 2020-04-16 南昌欧菲精密光学制品有限公司 Optical photography lens assembly, imaging module, and electronic device
CN111198434A (en) * 2020-02-24 2020-05-26 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111308652A (en) * 2020-02-24 2020-06-19 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111308652B (en) * 2020-02-24 2021-07-30 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN113759510A (en) * 2021-09-15 2021-12-07 江西晶浩光学有限公司 Optical imaging system, get for instance module and electronic equipment
WO2023207590A1 (en) * 2022-04-29 2023-11-02 宁波舜宇光电信息有限公司 Optical assembly and assembly method therefor, and camera module

Similar Documents

Publication Publication Date Title
JP5553253B2 (en) Imaging lens, imaging device, and portable terminal
JP5391806B2 (en) Imaging lens, imaging optical device, and digital device
JP5206688B2 (en) Imaging lens, imaging device, and portable terminal
JP4977869B2 (en) Imaging lens, imaging device, and portable terminal
JP5348563B2 (en) Imaging lens, imaging device, and portable terminal
WO2011021271A1 (en) Imaging lens, imaging device, and portable terminal
JP5740799B2 (en) Imaging lens, imaging device, and portable terminal
JP5673680B2 (en) Imaging lens
JP2012068292A (en) Imaging lens, imaging apparatus and portable terminal
JP4924141B2 (en) Imaging lens, imaging device, and portable terminal
JP4858648B2 (en) Imaging lens, imaging device, and portable terminal
JP5370619B1 (en) Imaging optical system, imaging apparatus, and digital device
JP2014232147A (en) Imaging lens, imaging apparatus, and portable terminal
JP2009282223A (en) Imaging lens, imaging unit and personal digital assistant
WO2015041123A1 (en) Imaging lens, imaging device, and portable terminal
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
WO2011052370A1 (en) Imaging lens
WO2011092984A1 (en) Image-capturing lens, image-capturing device, and portable terminal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507