JP2012065531A - Power supply device for thermoelectric element - Google Patents

Power supply device for thermoelectric element Download PDF

Info

Publication number
JP2012065531A
JP2012065531A JP2010274448A JP2010274448A JP2012065531A JP 2012065531 A JP2012065531 A JP 2012065531A JP 2010274448 A JP2010274448 A JP 2010274448A JP 2010274448 A JP2010274448 A JP 2010274448A JP 2012065531 A JP2012065531 A JP 2012065531A
Authority
JP
Japan
Prior art keywords
power supply
power
charging
thermoelectric element
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274448A
Other languages
Japanese (ja)
Inventor
Su-Bon Jang
ボン ジャン・ス
Jon-Ho Yun
ホ ユン・ジョン
Ju-Ho Kim
ホ キム・ジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2012065531A publication Critical patent/JP2012065531A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device for a thermoelectric element, that can reduce the manufacturing cost and can stably supply a steady DC power to a thermoelectric element that requires a large amount of power.SOLUTION: A power supply device for a thermoelectric element comprises: DC power supply means for converting AC power into DC power externally; a charger for charging with the DC power supplied from the DC power supply means; and control means for controlling on and off of the operation of the DC power supply means by monitoring a charge condition of the charger and controlling the charger in accordance with the charge condition.

Description

本発明は熱電素子用電源供給装置に関する。   The present invention relates to a thermoelectric element power supply apparatus.

一般的に、冷温装置などに用いられる熱電素子の電源として、一定の直流(steady DC)電源であるスイッチモード電源(Switched−mode power supply;SMPS)が用いられる。   In general, a switched-mode power supply (SMPS) that is a constant direct current (steady DC) power supply is used as a power supply for a thermoelectric element used in a cooling / heating device or the like.

前記スイッチモード電源(SMPS)は、商用電源から供給される交流(AC)電源をコンピューター、通信機器、家電器機などの各種機器に適するように変換させるモジュール型の電源供給装置であり、高速電力半導体を用いて高い周波数で断続制御をし、整流と平滑回路を経て安定された各種直流電圧を得る。   The switch mode power supply (SMPS) is a module type power supply device that converts an alternating current (AC) power supplied from a commercial power supply so as to be suitable for various devices such as computers, communication devices, and home appliances, and is a high-speed power semiconductor. Is used to perform intermittent control at a high frequency, and through a rectification and smoothing circuit, various stable DC voltages are obtained.

前記熱電素子が交流(AC)電源でなく一定の直流(steady DC)電源を用いる理由は、熱電素子の特性上、片面は高温部(hot side)を他の片面は低温部(cold side)を常に維持しなければならないためである。   The reason why the thermoelectric element uses a constant direct current (steady DC) power supply instead of an alternating current (AC) power supply is that, due to the characteristics of the thermoelectric element, one side is a hot side and the other side is a low temperature part (cold side). This is because it must always be maintained.

もし熱電素子に直流(DC)電源でなく交流(AC)電源を印加する場合、電流の方向が一定でなく変わるため、それによって熱電素子の高温部(hot side)と低温部(cold side)が変わり、前記熱電素子に約1秒間隔で熱衝撃が加えられるようになる。   If an alternating current (AC) power supply is applied to the thermoelectric element instead of a direct current (DC) power supply, the direction of the current changes in a non-constant manner, thereby causing a hot side and a low temperature part (cold side) of the thermoelectric element. In other words, a thermal shock is applied to the thermoelectric element at intervals of about 1 second.

この場合、前記熱電素子の信頼性に問題が発生したり、熱電素子の特性である両端の熱差異が発生されなくなる。   In this case, there is no problem in the reliability of the thermoelectric element, and the thermal difference between both ends, which is a characteristic of the thermoelectric element, is not generated.

このような理由から、上述のように熱電素子の片面は高温部(hot side)に、他の片面は低温部(cold side)に一定に維持するために、電流が一定に維持される定電流回路が内蔵されたスイッチモード電源(SMPS)を具現して前記熱電素子の電源として用いている。   For this reason, as described above, one side of the thermoelectric element is kept constant in the high temperature portion (hot side) and the other side is kept constant in the low temperature portion (cold side), so that the current is kept constant. A switch mode power supply (SMPS) with a built-in circuit is implemented and used as a power supply for the thermoelectric element.

しかし、前記スイッチモード電源(SMPS)は熱電素子に電源を供給するために、稼動される瞬間に大電力を要する。   However, since the switch mode power supply (SMPS) supplies power to the thermoelectric element, a large amount of power is required at the moment of operation.

例えば、前記スイッチモード電源(SMPS)は0.4L/min水を25℃から5℃に変換するためにはソースで約1kWの消費電力が要する。即ち、1.5L/min水の場合、3kWを超える消費電力を要することになる。   For example, the switch mode power supply (SMPS) requires about 1 kW of power consumption at the source in order to convert 0.4 L / min water from 25 ° C. to 5 ° C. That is, in the case of 1.5 L / min water, power consumption exceeding 3 kW is required.

このように、前記スイッチモード電源(SMPS)が大電力を要することにより、前記スイッチモード電源(SMPS)内の変圧器も大容量の電力を変圧することができなければならない。   Thus, since the switch mode power supply (SMPS) requires a large amount of power, the transformer in the switch mode power supply (SMPS) must also be able to transform a large amount of power.

このような大電力を要する変圧器は非常に高価であるため、前記スイッチモード電源(SMPS)の単価も上昇させる要因となる。   Such a transformer that requires a large amount of power is very expensive, and this increases the unit price of the switch mode power supply (SMPS).

従って、低価でありながら、大電力を要する熱電素子に一定の直流(DC)電源を安定的に供給することができる供給電源装置の必要性が台頭されている。   Accordingly, there is a need for a power supply device that can stably supply a constant direct current (DC) power source to a thermoelectric element that requires a large amount of power while being inexpensive.

本発明は上述のような問題点を解決するために導き出されたものであり、大電力の電源を要する熱電素子に電源を供給する時、低価でありながらも安定的かつ一定の直流(steady DC)電源を供給することができる熱電素子用電源供給装置を提供することを目的とする。   The present invention has been derived in order to solve the above-described problems. When power is supplied to a thermoelectric element that requires a large power source, the present invention is inexpensive but stable and constant direct current (steady). It is an object of the present invention to provide a thermoelectric element power supply device capable of supplying DC) power.

上述のような目的を果たすために、本発明の実施例による熱電素子用電源供給装置は、外部から入力された交流(AC)電源を直流(DC)電源に変換する直流電源供給手段;前記直流電源供給手段から提供された直流電源を充電する充電装置;及び前記充電装置の充電状態をモニタリングし、前記充電状態によって前記充電装置を制御して、前記直流電源供給手段の動作をオン/オフさせるように制御する制御手段を含んで構成される。   In order to achieve the above-described object, a power supply device for thermoelectric elements according to an embodiment of the present invention includes a direct current power supply means for converting an alternating current (AC) power input from the outside into a direct current (DC) power supply; A charging device for charging a DC power supply provided from a power supply means; and a charging state of the charging device is monitored, and the charging device is controlled according to the charging state to turn on / off the operation of the DC power supply means. It is comprised including the control means to control as follows.

また、前記直流電源供給手段は、外部から入力された交流(AC)電源を全波整流し、全波整流波形を有する直流(DC)電源に変換する整流器;前記全波整流波形を矩形波に変換するDC−DCコンバーター;半導体素子を含み、前記半導体素子のスイッチング速度によって前記矩形波のパルス幅を調節して、前記直流(DC)電源の波形を生成するパルス幅変調部;前記パルス幅変調部の制御によって動作し、前記半導体素子のスイッチング速度によって前記矩形波の周波数を調節して、前記直流(DC)電源の波形を生成するパルス周波数変調部;及び前記パルス幅変調され、パルス周波数変調された矩形波を有する前記直流(DC)電源を昇圧したりまたは減圧する変圧器を含むことを特徴とする。   The DC power supply means is a rectifier that performs full-wave rectification of an alternating current (AC) power input from the outside and converts it into a direct-current (DC) power having a full-wave rectified waveform; A DC-DC converter for converting; a pulse width modulation unit that includes a semiconductor element and generates a waveform of the direct current (DC) power source by adjusting a pulse width of the rectangular wave according to a switching speed of the semiconductor element; A pulse frequency modulation unit that operates by controlling a unit and adjusts a frequency of the rectangular wave according to a switching speed of the semiconductor element to generate a waveform of the direct current (DC) power source; and the pulse width modulation and the pulse frequency modulation And a transformer for boosting or reducing the direct current (DC) power source having a rectangular wave.

また、前記変圧器は、約100W程度の電力を供給することができる変圧容量を有する低容量変圧器であることを特徴とする。   The transformer is a low-capacity transformer having a transformer capacity capable of supplying about 100 W of power.

また、前記直流電源供給手段は、前記整流器の前段に設けられ、前記交流(AC)電源の電磁波の干渉及びノイズを除去するラインフィルターをさらに含むことを特徴とする。   The DC power supply means may further include a line filter that is provided in a previous stage of the rectifier and removes interference and noise of electromagnetic waves of the alternating current (AC) power.

また、前記直流電源供給手段は、前記整流器と前記DC−DCコンバーターの間に設けられ、前記整流器を通じた全波整流時に前記交流(AC)電源の位相損失を最小化するように力率を補正する力率補正部;及び前記力率補正部と前記DC−DCコンバーターの間に設けられ、電流が前記力率補正部に流れることを防止するための逆電流防止用ダイオードをさらに含むことを特徴とする。   The DC power supply means is provided between the rectifier and the DC-DC converter, and corrects the power factor so as to minimize the phase loss of the alternating current (AC) power supply during full-wave rectification through the rectifier. And a reverse current prevention diode provided between the power factor correction unit and the DC-DC converter for preventing a current from flowing to the power factor correction unit. And

また、前記直流電源供給手段は、前記制御手段の制御によって前記直流電源供給手段の動作をオン/オフさせるための全体スイッチをさらに含むことを特徴とする。   The DC power supply means further includes an overall switch for turning on / off the operation of the DC power supply means under the control of the control means.

また、前記整流器は4個のダイオードがブリッジ連結されたブリッジ全波整流回路を含むことを特徴とする。   The rectifier includes a bridge full-wave rectifier circuit in which four diodes are bridge-connected.

また、前記充電装置は、前記直流電源供給手段から入力される直流(DC)電源をバッテリー充電電源に変換して充電を制御するための充電回路;前記充電回路を通じて供給する電源を充電し、充電された電源を放電するバッテリー;及び前記バッテリーの充電状態をモニタリングするための充電状態検出器を含むことを特徴とする。   A charging circuit for controlling charging by converting a direct current (DC) power input from the direct current power supply means into a battery charging power supply; charging a power supplied through the charging circuit; A battery for discharging the power source; and a charge state detector for monitoring a state of charge of the battery.

また、前記充電装置は前記バッテリーの充電状態を表示するための表示手段をさらに含むことを特徴とする。   The charging device may further include display means for displaying a charging state of the battery.

また、前記バッテリーは高容量充電キャパシタであることを特徴とし、前記高容量充電キャパシタは電気二重層キャパシタ(EDLC)であることを特徴とする。   The battery may be a high-capacity charging capacitor, and the high-capacity charging capacitor may be an electric double layer capacitor (EDLC).

また、前記バッテリーは2次電池または蓄電池であることを特徴とする。   The battery is a secondary battery or a storage battery.

また、前記制御手段は、前記充電状態検出器を制御して前記バッテリーの充電された量を検出することを特徴とする。   Further, the control means controls the charge state detector to detect a charged amount of the battery.

また、前記制御手段は、前記検出されたバッテリーの充電された量が最大設定値である場合、前記直流電源供給手段の動作をオフ(off)させ、前記検出されたバッテリーの充電された量が最小設定値以下である場合、前記直流電源供給手段の動作をオン(on)させることを特徴とする。   Further, the control means turns off the operation of the DC power supply means when the charged amount of the detected battery is a maximum set value, and the charged amount of the detected battery is When it is below the minimum set value, the operation of the DC power supply means is turned on.

本発明の特徴及び利点は添付図面に基づいた以下の詳細な説明によってさらに明らかになるであろう。   The features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.

本発明の詳細な説明に先立ち、本明細書及び請求範囲に用いられた用語や単語は通常的かつ辞書的な意味に解釈されてはならず、発明者が自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則にしたがって本発明の技術的思想にかなう意味と概念に解釈されるべきである。   Prior to the detailed description of the invention, the terms and words used in the specification and claims should not be construed in a normal and lexicographic sense, and the inventor best describes the invention. Therefore, it should be construed as meanings and concepts corresponding to the technical idea of the present invention in accordance with the principle that the concept of terms can be appropriately defined.

本発明によると、高容量充電が可能な電気二重層キャパシタ(Electric Double Layer Capacitor;EDLC)を含むことにより、大容量の一定の直流(DC)電源を安定的に供給する効果がある。   According to the present invention, the inclusion of an electric double layer capacitor (EDLC) capable of high-capacity charging has an effect of stably supplying a large-capacity constant direct current (DC) power source.

また、本発明によると、変圧容量が大きい高価の変圧器に代わり、変圧容量が小さい低価の変圧器を用いても具現が可能であるため、製造コストが節減される効果がある。   In addition, according to the present invention, the present invention can be realized by using a low-priced transformer with a small transformation capacity instead of an expensive transformer with a large transformation capacity.

本発明の目的、特定の長所及び新規の特徴は添付図面に係わる以下の詳細な説明および好ましい実施例によってさらに明白になるであろう。本明細書において、各図面の構成要素に参照番号を付け加えるに際し、同一の構成要素に限っては、たとえ異なる図面に示されても、できるだけ同一の番号を付けるようにしていることに留意しなければならない。また、本発明の説明において、係わる公知技術に対する具体的な説明が本発明の要旨を不必要にぼかす可能性があると判断される場合は、その詳細な説明を省略する。   Objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments when taken in conjunction with the accompanying drawings. In this specification, it should be noted that when adding reference numerals to the components of each drawing, the same components are given the same number as much as possible even if they are shown in different drawings. I must. Further, in the description of the present invention, when it is determined that a specific description of the known technique may unnecessarily obscure the gist of the present invention, the detailed description thereof is omitted.

以下、添付された図面を参照して本発明の好ましい実施例を詳細に説明する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施例による熱電素子用電源供給装置のブロック図である。   FIG. 1 is a block diagram of a thermoelectric element power supply apparatus according to an embodiment of the present invention.

図1を参照すると、本発明の一実施例による熱電素子用電源供給装置1は、直流電源供給手段10、充電手段20及び制御手段30を含んで構成される。   Referring to FIG. 1, a thermoelectric element power supply apparatus 1 according to an embodiment of the present invention includes a DC power supply means 10, a charging means 20, and a control means 30.

前記直流電源供給手段10は外部から入力される交流(AC)電源を直流(DC)電源に変換して、前記充電手段20は前記変換された直流(DC)電源を充電する。   The DC power supply means 10 converts an alternating current (AC) power input from the outside into a direct current (DC) power, and the charging means 20 charges the converted direct current (DC) power.

この際、前記充電された直流(DC)電源が熱電素子2に供給される。   At this time, the charged direct current (DC) power is supplied to the thermoelectric element 2.

前記制御手段30は、前記充電手段20の充電状態をモニタリングして、前記充電状態によって前記充電手段20を制御し、前記直流電源供給手段10の動作をオン/オフさせるように制御する。   The control unit 30 monitors the charging state of the charging unit 20, controls the charging unit 20 according to the charging state, and controls the operation of the DC power supply unit 10 to be turned on / off.

図2は図1に図示された直流電源供給手段の詳細ブロック図である。   FIG. 2 is a detailed block diagram of the DC power supply means shown in FIG.

図2を参照すると、前記直流電源供給手段10は、ラインフィルター11、整流器12、力率補正部(Power Factor Control;PFC)13、逆電流防止用ダイオード14、DC−DCコンバーター15、変圧器16、パルス幅変調部(Pulse Width Modulation;PWM)17、パルス周波数変調部(Pulse Frequency Modulation;PFM)18及び全体スイッチ19を含んで構成される。   Referring to FIG. 2, the DC power supply unit 10 includes a line filter 11, a rectifier 12, a power factor correction unit (PFC) 13, a reverse current prevention diode 14, a DC-DC converter 15, and a transformer 16. , A pulse width modulation (PWM) 17, a pulse frequency modulation (PFM) 18, and an overall switch 19.

前記ラインフィルター11は外部から入力された交流(AC)電源の不必要な電磁波信号の干渉及びノイズを除去する。   The line filter 11 removes interference and noise of unnecessary electromagnetic wave signals of an alternating current (AC) power source input from the outside.

前記ラインフィルター11には例えばEMI(Electromagnetic Interference)フィルターが用いられる。   For example, an EMI (Electromagnetic Interference) filter is used for the line filter 11.

前記整流器12は外部から入力された交流(AC)電源を全波整流し、全波整流波形を有する直流(DC)電源に変換する。   The rectifier 12 performs full-wave rectification on an alternating current (AC) power input from the outside and converts it to a direct current (DC) power having a full-wave rectified waveform.

この際、前記整流器12は4個のダイオードがブリッジ連結されたブリッジ全波整流回路を含んで具現され、このようなブリッジ全波整流回路は周期的に陽と陰の二つの方向に変化する交流(AC)電源を全波整流し、一つの方向の全波整流波形を有する直流(DC)電源に変換する。   In this case, the rectifier 12 includes a bridge full-wave rectifier circuit in which four diodes are bridge-connected, and the bridge full-wave rectifier circuit is an alternating current that periodically changes in two directions, positive and negative. (AC) The power source is full-wave rectified and converted to a direct current (DC) power source having a full-wave rectified waveform in one direction.

前記力率補正部(PFC)13は、前記整流器12を通じた全波整流時に交流(AC)電源の電流波形と電圧波形の位相差による位相損失が最小化になるように力率を補正する。   The power factor correction unit (PFC) 13 corrects the power factor so that the phase loss due to the phase difference between the current waveform and the voltage waveform of the alternating current (AC) power supply is minimized during full-wave rectification through the rectifier 12.

この際、電流が前記力率補正部(PFC)13に流れることを防止するために、前記力率補正部(PFC)13と後述されるDC−DCコンバーター15の間に逆電流防止用ダイオード14が配置されることができる。   At this time, in order to prevent a current from flowing to the power factor correction unit (PFC) 13, a reverse current prevention diode 14 is provided between the power factor correction unit (PFC) 13 and a DC-DC converter 15 described later. Can be arranged.

前記DC−DCコンバーター15は、大きさが一定でない前記全波整流波形を有する直流(DC)電源を一定の大きさの直流(DC)電源に変換するように、前記全波整流波形を矩形波に変換する。   The DC-DC converter 15 converts the full-wave rectified waveform into a rectangular wave so as to convert a direct-current (DC) power supply having the full-wave rectified waveform whose magnitude is not constant into a direct-current (DC) power supply having a constant magnitude. Convert to

このような前記DC−DCコンバーター15は例えば、擬似共振型フライバック(Quasi−Resonant Flyback)コンバーター、フォワード(Forward)コンバーター、 フル−ブリッジ(Full−bridge)コンバーター及びハーフ−ブリッジ(Half−bridge)コンバーターなどが用いられることができる。   The DC-DC converter 15 includes, for example, a quasi-resonant flyback converter, a forward converter, a full-bridge converter, and a half-bridge converter. Etc. can be used.

一方、前記DC−DCコンバーター15で変換された前記矩形波は、後述されるパルス幅変調部(PWM)17とパルス周波数変調部(PFM)18によって前記矩形波の幅と周波数が調節されることができる。   On the other hand, the rectangular wave converted by the DC-DC converter 15 is adjusted in width and frequency by the pulse width modulation unit (PWM) 17 and the pulse frequency modulation unit (PFM) 18 described later. Can do.

具体的には、前記パルス幅変調部(PWM)17は半導体素子を含んで、前記半導体素子のスイッチング速度によって矩形波形態の電圧または電流波形のパルス幅を調節する。   Specifically, the pulse width modulator (PWM) 17 includes a semiconductor element, and adjusts the pulse width of the voltage or current waveform in the form of a rectangular wave according to the switching speed of the semiconductor element.

一方、前記パルス周波数変調部(PFM)18は前記半導体素子のスイッチング速度によって矩形波形態の電圧または電流波形の周波数を調節する。   Meanwhile, the pulse frequency modulation unit (PFM) 18 adjusts the frequency of the voltage or current waveform in the form of a rectangular wave according to the switching speed of the semiconductor element.

従って、求める矩形波を有する前記直流(DC)電源を生成するために、前記DC−DCコンバーター15を通じて変換された前記矩形波は、前記パルス幅変調部(PWM)17及び前記パルス周波数変調部(PFM)18によってパルス幅及びパルス周波数が調節される。   Therefore, in order to generate the direct current (DC) power source having the desired rectangular wave, the rectangular wave converted through the DC-DC converter 15 is converted into the pulse width modulation unit (PWM) 17 and the pulse frequency modulation unit ( PFM) 18 adjusts the pulse width and pulse frequency.

この際、前記パルス幅変調部(PWM)17によるパルス幅調節を先に遂行した後、必要に応じて前記パルス幅変調部(PWM)17の制御によって前記パルス周波数変調部(PFM)18により周波数調節を遂行する。   At this time, after the pulse width modulation by the pulse width modulation unit (PWM) 17 is performed first, the pulse frequency modulation unit (PFM) 18 controls the frequency by the control of the pulse width modulation unit (PWM) 17 as necessary. Carry out the adjustment.

前記変圧器16は、前記生成された出力電圧波形を有する直流(DC)電源を所定大きさに調節するために昇圧または減圧する。   The transformer 16 boosts or depressurizes the direct current (DC) power source having the generated output voltage waveform to adjust the power to a predetermined magnitude.

このような前記変圧器16は1次側コイル及び2次側コイルで構成され、前記1次側コイルと前記2次側コイルの巻線比によって昇圧及び減圧の大きさを調節することができる。   The transformer 16 includes a primary side coil and a secondary side coil, and the magnitude of pressure increase and reduction can be adjusted according to the winding ratio of the primary side coil and the secondary side coil.

この際、本発明による前記変圧器16には、約100W内外の電力を供給することができる変圧容量を有する低容量変圧器が用いられる。   At this time, as the transformer 16 according to the present invention, a low-capacity transformer having a transforming capacity capable of supplying about 100 W of electric power is used.

これは、大容量の電力を熱電素子に供給するために従来少なくとも3kW以上の電力を供給しなければならない変圧容量に比べて顕著に小さい。   This is significantly smaller than a transformer capacity that conventionally has to supply at least 3 kW of power in order to supply a large amount of power to the thermoelectric element.

図3は図1に図示された充電手段の詳細ブロック図である。   FIG. 3 is a detailed block diagram of the charging means shown in FIG.

図3を参照すると、前記充電手段20は、前記直流電源供給手段10から入力される直流(DC)電源をバッテリー充電電源に変換して充電を制御するための充電回路21、前記充電回路21を通じて熱電素子に供給する電源を充電し、充電された電源を放電するバッテリー22、及び前記バッテリー22の充電状態をモニタリングするための充電状態検出器23を含んで構成される。   Referring to FIG. 3, the charging unit 20 converts a direct current (DC) power input from the DC power supply unit 10 into a battery charging power source and controls the charging through the charging circuit 21 and the charging circuit 21. The battery 22 is configured to charge the power supplied to the thermoelectric element, discharge the charged power, and the charge state detector 23 for monitoring the state of charge of the battery 22.

ここで、前記バッテリー22は高容量の充電が可能なキャパシタが用いられ、このような高容量充電キャパシタは例えば電気二重層キャパシタ(Electric Double Layer Capacitor;EDLC)がある。   Here, a capacitor capable of charging with a high capacity is used for the battery 22, and such a high capacity charging capacitor is, for example, an electric double layer capacitor (EDLC).

また、前記バッテリー22は2次電池または蓄電池が用いられることもできる。   The battery 22 may be a secondary battery or a storage battery.

前記充電状態検出器23は前記バッテリー22の充電状態をモニタリングするために、周期的に前記バッテリー22の容量を検出して制御手段30に提供する。   The charge state detector 23 periodically detects the capacity of the battery 22 and provides it to the control means 30 in order to monitor the charge state of the battery 22.

一方、前記充電装置20はこのような前記バッテリー22の充電状態を表示するための表示手段(未図示)をさらに含むことができる。   Meanwhile, the charging device 20 may further include display means (not shown) for displaying the state of charge of the battery 22.

再び、図1を参照して、前記制御手段30は、前記充電手段20から提供された前記バッテリー22の充電状態によって前記直流電源供給手段10と前記充電手段20を制御する。   Referring to FIG. 1 again, the control unit 30 controls the DC power supply unit 10 and the charging unit 20 according to the state of charge of the battery 22 provided from the charging unit 20.

具体的には、前記制御手段30は前記充電状態検出器23を制御して、前記バッテリー22の充電された量を検出する。   Specifically, the control unit 30 controls the charge state detector 23 to detect the charged amount of the battery 22.

その後、前記制御手段30は、前記検出されたバッテリー22の充電された量によって前記直流電源供給手段10の動作をオン/オフさせるように、前記全体スイッチ19を制御する。   Thereafter, the control means 30 controls the overall switch 19 so as to turn on / off the operation of the DC power supply means 10 according to the detected amount of charge of the battery 22.

例えば、前記制御手段30は、前記検出されたバッテリー22の充電された量が最大設定値である場合、それ以上前記バッテリー22に充電される直流(DC)電源を供給しないように、前記全体スイッチ19を制御して前記直流電源供給手段10の動作をオフ(off)させる。   For example, when the detected amount of charge of the battery 22 is a maximum set value, the control means 30 does not supply the direct current (DC) power for charging the battery 22 any more. 19 is controlled to turn off the operation of the DC power supply means 10.

反対に、前記制御手段30は、前記検出されたバッテリー22の充電された量が最小設定値以下である場合、前記バッテリー22に直流(DC)電源を供給して充電するように、前記全体スイッチ19を制御して前記直流電源供給手段10の動作をオン(on)させる。   On the contrary, the control means 30 is configured to supply the direct current (DC) power to the battery 22 to charge the battery 22 when the detected charged amount of the battery 22 is less than a minimum set value. 19 is controlled to turn on the operation of the DC power supply means 10.

上述のように、本発明による熱電素子用電源供給装置1は、変圧容量が小さい低容量変圧器16を用いて製造単価を低めるだけでなく、前記変圧器16で変圧された電源を充電手段20の高容量バッテリー22に充電させて用いることができるため、大電力を要する熱電素子に一定の直流(DC)電源を安定的に供給することができるようになる。   As described above, the thermoelectric element power supply device 1 according to the present invention not only lowers the manufacturing unit price by using the low-capacity transformer 16 having a small transformation capacity, but also charges the power source transformed by the transformer 16 with the charging means 20. Therefore, a constant direct current (DC) power source can be stably supplied to thermoelectric elements that require a large amount of power.

以上、本発明の好ましい実施例を参照して説明したが、該当技術分野にて通常の知識を有する者であれば、添付の特許請求範囲に記載された本発明の思想及び領域を外れない範囲内で多様な修正及び変形が可能であることを理解するであろう。   The present invention has been described with reference to the preferred embodiments. However, those who have ordinary knowledge in the pertinent technical field do not depart from the spirit and scope of the present invention described in the appended claims. It will be understood that various modifications and variations are possible within.

本発明の一実施例による熱電素子用電源供給装置のブロック図である。1 is a block diagram of a thermoelectric element power supply device according to an embodiment of the present invention. FIG. 図1に図示された直流電源供給手段の詳細ブロック図である。FIG. 2 is a detailed block diagram of DC power supply means shown in FIG. 1. 図1に図示された充電手段の詳細ブロック図である。FIG. 2 is a detailed block diagram of a charging unit illustrated in FIG. 1.

1 電源供給装置
2 熱電素子
10 直流電源供給手段
11 ラインフィルター
12 整流器
13 力率補正部(PFC)
14 逆電流防止用ダイオード
15 DC−DCコンバーター
16 変圧器
17 パルス幅変調部(PWM)
18 パルス周波数変調部(PFM)
19 全体スイッチ
20 充電手段
21 充電回路
22 バッテリー
23 充電状態検出器
30 制御手段
DESCRIPTION OF SYMBOLS 1 Power supply device 2 Thermoelectric element 10 DC power supply means 11 Line filter 12 Rectifier 13 Power factor correction part (PFC)
14 Reverse Current Prevention Diode 15 DC-DC Converter 16 Transformer 17 Pulse Width Modulation Unit (PWM)
18 Pulse frequency modulator (PFM)
DESCRIPTION OF SYMBOLS 19 General switch 20 Charging means 21 Charging circuit 22 Battery 23 Charging state detector 30 Control means

Claims (15)

外部から入力された交流(AC)電源を直流(DC)電源に変換する直流電源供給手段;
前記直流電源供給手段から提供された直流電源を充電する充電装置;及び
前記充電装置の充電状態をモニタリングし、前記充電状態によって前記充電装置を制御して、前記直流電源供給手段の動作をオン/オフさせるように制御する制御手段を含む熱電素子用電源供給装置。
DC power supply means for converting alternating current (AC) power input from the outside into direct current (DC) power;
A charging device for charging a DC power source provided from the DC power supply means; and monitoring a charging state of the charging device and controlling the charging device according to the charging state to turn on / off the operation of the DC power supply means. A power supply device for a thermoelectric element, including control means for controlling to turn off.
前記直流電源供給手段は、
外部から入力された交流(AC)電源を全波整流し、全波整流波形を有する直流(DC)電源に変換する整流器;
前記全波整流波形を矩形波に変換するDC−DCコンバーター;
半導体素子を含み、前記半導体素子のスイッチング速度によって前記矩形波のパルス幅を調節して、前記直流(DC)電源の波形を生成するパルス幅変調部;
前記パルス幅変調部の制御によって動作し、前記半導体素子のスイッチング速度によって前記矩形波の周波数を調節して、前記直流(DC)電源の波形を生成するパルス周波数変調部;及び
前記パルス幅変調され、パルス周波数変調された矩形波を有する前記直流(DC)電源を昇圧または減圧する変圧器を含むことを特徴とする請求項1に記載の熱電素子用電源供給装置。
The DC power supply means is
A rectifier for full-wave rectifying an alternating current (AC) power input from the outside and converting it to a direct current (DC) power having a full-wave rectified waveform;
A DC-DC converter for converting the full-wave rectified waveform into a rectangular wave;
A pulse width modulation unit that includes a semiconductor element and generates a waveform of the direct current (DC) power source by adjusting a pulse width of the rectangular wave according to a switching speed of the semiconductor element;
A pulse frequency modulation unit that operates according to control of the pulse width modulation unit and adjusts a frequency of the rectangular wave according to a switching speed of the semiconductor element to generate a waveform of the direct current (DC) power source; The thermoelectric element power supply device according to claim 1, further comprising a transformer that boosts or depressurizes the direct current (DC) power source having a pulse wave-modulated rectangular wave.
前記変圧器は、約100W程度の電力を供給することができる変圧容量を有する低容量変圧器であることを特徴とする請求項2に記載の熱電素子用電源供給装置。   The thermoelectric element power supply device according to claim 2, wherein the transformer is a low-capacity transformer having a transformer capacity capable of supplying about 100W of electric power. 前記直流電源供給手段は、前記整流器の前段に設けられ、前記交流(AC)電源の電磁波の干渉及びノイズを除去するラインフィルターをさらに含むことを特徴とする請求項2に記載の熱電素子用電源供給装置。   3. The thermoelectric element power supply according to claim 2, wherein the DC power supply means further includes a line filter that is provided in a front stage of the rectifier and removes interference and noise of electromagnetic waves of the alternating current (AC) power supply. Feeding device. 前記直流電源供給手段は、前記整流器と前記DC−DCコンバーターの間に設けられ、前記整流器を通じた全波整流時に前記交流(AC)電源の位相損失を最小化するように力率を補正する力率補正部;及び
前記力率補正部と前記DC−DCコンバーターの間に設けられ、電流が前記力率補正部に流れることを防止するための逆電流防止用ダイオードをさらに含むことを特徴とする請求項2に記載の熱電素子用電源供給装置。
The DC power supply means is provided between the rectifier and the DC-DC converter, and corrects the power factor so as to minimize the phase loss of the alternating current (AC) power during full-wave rectification through the rectifier. And a reverse current prevention diode provided between the power factor correction unit and the DC-DC converter for preventing a current from flowing to the power factor correction unit. The power supply apparatus for thermoelectric elements according to claim 2.
前記直流電源供給手段は、前記制御手段の制御によって前記直流電源供給手段の動作をオン/オフさせるための全体スイッチをさらに含むことを特徴とする請求項2に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 2, wherein the DC power supply means further includes an overall switch for turning on / off the operation of the DC power supply means under the control of the control means. 前記整流器は4個のダイオードがブリッジ連結されたブリッジ全波整流回路を含むことを特徴とする請求項2に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 2, wherein the rectifier includes a bridge full-wave rectifier circuit in which four diodes are bridge-connected. 前記充電装置は、
前記直流電源供給手段から入力される直流(DC)電源をバッテリー充電電源に変換して充電を制御するための充電回路;
前記充電回路を通じて供給する電源を充電し、充電された電源を放電するバッテリー;及び
前記バッテリーの充電状態をモニタリングするための充電状態検出器を含むことを特徴とする請求項1に記載の熱電素子用電源供給装置。
The charging device is:
A charging circuit for controlling charging by converting a direct current (DC) power input from the direct current power supply means into a battery charging power supply;
The thermoelectric device according to claim 1, further comprising: a battery that charges a power supplied through the charging circuit and discharges the charged power; and a charge state detector for monitoring a state of charge of the battery. Power supply device.
前記充電装置は前記バッテリーの充電状態を表示するための表示手段をさらに含むことを特徴とする請求項8に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 8, wherein the charging device further includes display means for displaying a charging state of the battery. 前記バッテリーは高容量充電キャパシタであることを特徴とする請求項8に記載の熱電素子用電源供給装置。   9. The thermoelectric element power supply device according to claim 8, wherein the battery is a high-capacity charging capacitor. 前記高容量充電キャパシタは電気二重層キャパシタ(EDLC)であることを特徴とする請求項10に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 10, wherein the high-capacity charging capacitor is an electric double layer capacitor (EDLC). 前記バッテリーは2次電池であることを特徴とする請求項8に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 8, wherein the battery is a secondary battery. 前記バッテリーは蓄電池であることを特徴とする請求項8に記載の熱電素子用電源供給装置。   The thermoelectric element power supply apparatus according to claim 8, wherein the battery is a storage battery. 前記制御手段は、前記充電状態検出器を制御して前記バッテリーの充電された量を検出することを特徴とする請求項8に記載の熱電素子用電源供給装置。   The thermoelectric element power supply device according to claim 8, wherein the control means detects the amount of charge of the battery by controlling the charge state detector. 前記制御手段は、前記検出されたバッテリーの充電された量が最大設定値である場合、前記直流電源供給手段の動作をオフ(off)させ、前記検出されたバッテリーの充電された量が最小設定値以下である場合、前記直流電源供給手段の動作をオン(on)させることを特徴とする請求項14に記載の熱電素子用電源供給装置。   The control means turns off the operation of the DC power supply means when the charged amount of the detected battery is a maximum setting value, and the charged amount of the detected battery is the minimum setting. The thermoelectric element power supply device according to claim 14, wherein when the value is equal to or less than the value, the operation of the DC power supply means is turned on.
JP2010274448A 2010-09-15 2010-12-09 Power supply device for thermoelectric element Pending JP2012065531A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0090697 2010-09-15
KR1020100090697A KR20120028694A (en) 2010-09-15 2010-09-15 Power supply for thermoelectric element

Publications (1)

Publication Number Publication Date
JP2012065531A true JP2012065531A (en) 2012-03-29

Family

ID=45885683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274448A Pending JP2012065531A (en) 2010-09-15 2010-12-09 Power supply device for thermoelectric element

Country Status (3)

Country Link
JP (1) JP2012065531A (en)
KR (1) KR20120028694A (en)
CN (1) CN102403774A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424770B1 (en) * 2013-03-21 2014-08-01 최병규 Power supply apparatus
CN104143851A (en) * 2014-08-07 2014-11-12 镇江洋溢汽车部件有限公司 Electric vehicle charging device
CN107747807A (en) * 2017-10-24 2018-03-02 长沙拓扑陆川新材料科技有限公司 A kind of bathtub of temperature self-adaptation
CN107589766A (en) * 2017-10-26 2018-01-16 长沙拓扑陆川新材料科技有限公司 A kind of self-powered temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137600A (en) * 1997-07-14 1999-02-12 Aisin Seiki Co Ltd Power source for peltier element
JP2000353830A (en) * 1999-06-10 2000-12-19 Daikin Ind Ltd Method and device for driving peltier element
JP2008263669A (en) * 2007-04-10 2008-10-30 Sony Corp Electronic equipment, electric equipment, sub-power supply unit, power supply system, and sub-power supply control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274875A (en) * 2003-03-07 2004-09-30 Yamaha Motor Co Ltd Charging apparatus for motor vehicle
CN2882081Y (en) * 2006-02-27 2007-03-21 邓小龙 High power energency power supply for input circuit equipment with rectifier filter power supply
CN201207614Y (en) * 2008-05-16 2009-03-11 深圳市瑞虹达电气有限公司 Full load flexible switch power supply control circuit
CN101697454B (en) * 2009-10-30 2011-09-14 北京航星力源科技有限公司 Grid drive circuit of insulated grid device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137600A (en) * 1997-07-14 1999-02-12 Aisin Seiki Co Ltd Power source for peltier element
JP2000353830A (en) * 1999-06-10 2000-12-19 Daikin Ind Ltd Method and device for driving peltier element
JP2008263669A (en) * 2007-04-10 2008-10-30 Sony Corp Electronic equipment, electric equipment, sub-power supply unit, power supply system, and sub-power supply control method

Also Published As

Publication number Publication date
CN102403774A (en) 2012-04-04
KR20120028694A (en) 2012-03-23

Similar Documents

Publication Publication Date Title
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US8953348B2 (en) Switching power supply circuit and power factor controller
CN107408889B (en) Power converter
US9584044B2 (en) Technologies for converter topologies
US9093908B2 (en) Bidirectional DC-DC converter and method of controlling bidirectional DC-DC converter
US7283379B2 (en) Current controlled switch mode power supply
TWI373900B (en) High efficiency charging circuit and power supplying system
US20110025289A1 (en) Two-stage switching power supply
WO2013121665A1 (en) Dc/dc converter
US9866108B2 (en) PFC shutdown circuit for light load
JP6255577B2 (en) DC power supply circuit
US20140160805A1 (en) Hysteretic-mode pulse frequency modulated (hm-pfm) resonant ac to dc converter
TWI536709B (en) Power systme and method for providing power
US10879806B2 (en) Voltage converter controller, voltage controller and corresponding methods
US10432097B2 (en) Selection control for transformer winding input in a power converter
JP2009027887A (en) Ac-dc converter
JP2012010420A (en) Multi-phase converter
JP2009027886A (en) Ac-dc converter
US20160301316A1 (en) Universal Input Voltage DC-DC Converter Employing Low Voltage Capacitor Power Bank
US20180323721A1 (en) Power supply
US20140204638A1 (en) Power supply apparatus with low power in standby mode
JP2012125090A (en) Switching power supply and display device with it
JP2012065531A (en) Power supply device for thermoelectric element
KR20100005898A (en) Ac-dc converter comprising a multi-feedback control circuit
US10224806B1 (en) Power converter with selective transformer winding input

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423