JP2012063232A - Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus - Google Patents

Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus Download PDF

Info

Publication number
JP2012063232A
JP2012063232A JP2010207408A JP2010207408A JP2012063232A JP 2012063232 A JP2012063232 A JP 2012063232A JP 2010207408 A JP2010207408 A JP 2010207408A JP 2010207408 A JP2010207408 A JP 2010207408A JP 2012063232 A JP2012063232 A JP 2012063232A
Authority
JP
Japan
Prior art keywords
spin valve
valve element
magnetic field
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207408A
Other languages
Japanese (ja)
Inventor
Taisuke Furukawa
泰助 古川
Takashi Osanaga
隆志 長永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010207408A priority Critical patent/JP2012063232A/en
Publication of JP2012063232A publication Critical patent/JP2012063232A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnetic field detection apparatus having spin valve elements on a substrate.SOLUTION: The method for manufacturing the magnetic field detection apparatus includes: a step for preparing a substrate 1; a step for forming spin valve elements 11 to 14 each including a fixed layer, an insulating layer and a free layer on the substrate; a step for forming collection magnetism areas 21, 22 in the vicinity of each spin valve element; and a magnetization step for magnetizing the free layer of each spin valve element by applying a magnetic field of an H direction to the substrate. The magnetization step applies a magnetic field of a predetermined direction different from the H direction to each spin valve element by the collection magnetism areas 21, 22 to magnetize the spin valve element in the predetermined direction different from the H direction.

Description

本発明は、磁気抵抗効果素子を用いた磁界検出装置の製造方法およびその構造に関する。   The present invention relates to a method of manufacturing a magnetic field detection device using a magnetoresistive effect element and a structure thereof.

外部から印加された磁界を検出する磁気抵抗効果素子として、金属の磁気抵抗効果を利用したAMR(Anisotropic Magneto-Resistance)素子、巨大磁気抵抗効果を利用したGMR(Giant Magneto-Resistance)素子、およびトンネル磁気抵抗効果を利用したTMR(Tunnel Magneto-Resistance)素子などがあり、特に、大きなMR比が得られるGMR素子やTMR素子が注目されている(例えば、特許文献1参照)。   As a magnetoresistive effect element for detecting a magnetic field applied from the outside, an AMR (Anisotropic Magneto-Resistance) element utilizing a magnetoresistive effect of a metal, a GMR (Giant Magneto-Resistance) element utilizing a giant magnetoresistive effect, and a tunnel There are TMR (Tunnel Magneto-Resistance) elements utilizing the magnetoresistive effect, and in particular, GMR elements and TMR elements that can obtain a large MR ratio are attracting attention (see, for example, Patent Document 1).

スピンバルブ構造のGMR素子やTMR素子は、強磁性体の第1薄膜層(自由層)と第2薄膜層(固着層)が、非磁性の薄膜層により分離された構造を有する。第1薄膜層(自由層)の磁化方向は外部磁場に応じて変化する。一方、強磁性体の第2薄膜層の磁化方向は一定方向に固定されている。第2薄膜層の磁化方向を固定するために、例えば、反強磁性体の薄膜層が第2薄膜層(固着層)に積層されている。このようなスピンバルブ構造の磁気抵抗素子の抵抗は、第1薄膜層(自由層)の磁化方向と第2薄膜層(固着層)の磁化方向とのなす角度に応じて変化する。つまり、外部磁界に影響されて第1薄膜層(自由層)の磁化方向が変化することによって素子抵抗が変化し、外部磁界を素子抵抗により検知することが可能となる。   A spin valve GMR element or TMR element has a structure in which a ferromagnetic first thin film layer (free layer) and a second thin film layer (fixed layer) are separated by a nonmagnetic thin film layer. The magnetization direction of the first thin film layer (free layer) changes according to the external magnetic field. On the other hand, the magnetization direction of the second thin film layer of the ferromagnetic material is fixed in a certain direction. In order to fix the magnetization direction of the second thin film layer, for example, an antiferromagnetic thin film layer is laminated on the second thin film layer (fixed layer). The resistance of the magnetoresistive element having such a spin valve structure changes according to the angle formed by the magnetization direction of the first thin film layer (free layer) and the magnetization direction of the second thin film layer (fixed layer). That is, the element resistance is changed by changing the magnetization direction of the first thin film layer (free layer) by being influenced by the external magnetic field, and the external magnetic field can be detected by the element resistance.

このようなスピンバルブ構造の磁気抵抗効果素子では、第2薄膜層(固着層)の磁化方向を固定する方法として、例えば、外部磁界を印加して第2薄膜層(固着層)の磁化方向を一定方向に揃えた後、外部磁場をなくした無磁場中で、ブロッキング温度以上に保持してアニールを行い、第2薄膜層(固着層)の磁化方向を固定する方法が用いられている(例えば、特許文献2参照)。   In a magnetoresistive effect element having such a spin valve structure, as a method of fixing the magnetization direction of the second thin film layer (pinned layer), for example, an external magnetic field is applied to change the magnetization direction of the second thin film layer (pinned layer). After aligning in a certain direction, a method of fixing the magnetization direction of the second thin film layer (fixed layer) by annealing at a temperature higher than the blocking temperature in the absence of an external magnetic field is used (for example, , See Patent Document 2).

特公平8−21166号公報Japanese Examined Patent Publication No. 8-21166 特開2009−31292号公報JP 2009-31292 A

しかしながら、従来の磁化方法では、外部磁場を取り去った状態でアニールを行うため、アニール中に不用意に磁界が印加されると、固着層の磁化方向が乱され、所望の方向に固着層の磁化ができないという問題があった。また、磁化方向をスピンバルブ素子の形状の異方性で決定していたため、固定層の磁化方向に分散が生じるとともに、レイアウト変更が困難であるという問題もあった。   However, in the conventional magnetization method, since the annealing is performed with the external magnetic field removed, if the magnetic field is inadvertently applied during annealing, the magnetization direction of the pinned layer is disturbed, and the magnetization of the pinned layer is in the desired direction. There was a problem that could not. Further, since the magnetization direction is determined by the anisotropy of the shape of the spin valve element, there is a problem that dispersion occurs in the magnetization direction of the fixed layer and it is difficult to change the layout.

そこで、本発明は、磁気抵抗効果素子の固着層の磁化方向を所望の方向に、正確に固定するための、量産性に優れた磁界検出装置の製造方法およびその構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for manufacturing a magnetic field detector excellent in mass productivity and its structure for accurately fixing the magnetization direction of the pinned layer of the magnetoresistive effect element in a desired direction. To do.

本発明は、基板上にスピンバルブ素子を有する磁界検出装置の製造方法であって、基板を準備する工程と、基板上に、固着層、絶縁層、および自由層を含むスピンバルブ素子を形成する工程と、スピンバルブ素子の近傍に集磁領域を形成する工程と、H方向の磁界を基板に印加することにより、スピンバルブ素子の自由層を磁化する磁化工程とを含み、磁化工程は、集磁領域により、H方向とは異なる所定方向の磁界をスピンバルブ素子に印加して、H方向とは異なる所定方向にスピンバルブ素子を磁化する工程であることを特徴とする磁界検出装置の製造方法である。   The present invention relates to a method of manufacturing a magnetic field detection device having a spin valve element on a substrate, the step of preparing the substrate, and forming a spin valve element including a fixed layer, an insulating layer, and a free layer on the substrate. The step of forming a magnetic flux collecting region in the vicinity of the spin valve element, and the step of magnetizing the free layer of the spin valve element by applying a magnetic field in the H direction to the substrate. A method of manufacturing a magnetic field detection device, comprising applying a magnetic field in a predetermined direction different from the H direction to a spin valve element by a magnetic region to magnetize the spin valve element in a predetermined direction different from the H direction. It is.

また、本発明は、複数のスピンバルブ素子を有する磁界検出装置であって、基板と、基板上に形成され、固着層、絶縁層、および自由層を含む、第1スピンバルブ素子および第2スピンバルブ素子と、第1スピンバルブ素子に対して所定の間隔をおいて対向配置された第1の辺を有し、第1スピンバルブ素子の近傍に形成された第1集磁領域と、第2スピンバルブ素子に対して所定の間隔をおいて対向配置された第2の辺を有し、第2スピンバルブ素子の近傍に形成された第2集磁領域と、を含み、第1の辺と第2の辺が非平行に配置されたことを特徴とする磁界検出装置である。   The present invention is also a magnetic field detection device having a plurality of spin valve elements, the first spin valve element and the second spin valve formed on the substrate and including a pinned layer, an insulating layer, and a free layer. A valve element, a first magnetism collecting region formed in the vicinity of the first spin valve element, having a first side disposed opposite to the first spin valve element at a predetermined interval; A second magnetism collecting region formed in the vicinity of the second spin valve element and having a second side disposed opposite to the spin valve element at a predetermined interval. The magnetic field detection device is characterized in that the second sides are arranged non-parallel.

本発明にかかる磁界検出装置の製造方法では、複数のスピンバルブ型素子の固着層の磁化方向を、所望の方向に正確に固定化することができる。   In the method for manufacturing a magnetic field detection device according to the present invention, the magnetization directions of the pinned layers of the plurality of spin valve elements can be accurately fixed in a desired direction.

また、本発明にかかる磁界検出装置では、ハーフブリッジ構造やホイートストーンブリッジ構造により、同相ノイズや温度ドリフトの影響を軽減した、高感度な磁界検出ができる。   Moreover, in the magnetic field detection apparatus according to the present invention, high-sensitivity magnetic field detection with reduced influence of common-mode noise and temperature drift can be performed by the half-bridge structure and the Wheatstone bridge structure.

本発明の実施の形態にかかる磁界検出装置の平面図である。It is a top view of the magnetic field detection apparatus concerning embodiment of this invention. 本発明の実施の形態にかかる磁界検出装置の、I−I方向の断面図である。It is sectional drawing of the II direction of the magnetic field detection apparatus concerning embodiment of this invention. 図2の磁界検出装置に外部磁界を印加した場合の磁界分布である。3 is a magnetic field distribution when an external magnetic field is applied to the magnetic field detection device of FIG. 図1の磁界検出装置の拡大図である。It is an enlarged view of the magnetic field detection apparatus of FIG. 図1の磁界検出装置のスピンバルブ素子の位置における磁束密度の、集磁領域の厚さに対する依存性を示すグラフである。2 is a graph showing the dependence of the magnetic flux density at the position of the spin valve element of the magnetic field detection device of FIG. 1 on the thickness of the magnetic collection region. 本発明の実施の形態にかかる他の磁界検出装置の平面図である。It is a top view of the other magnetic field detection apparatus concerning embodiment of this invention. 本発明の実施の形態にかかる他の磁界検出装置の平面図である。It is a top view of the other magnetic field detection apparatus concerning embodiment of this invention. 本発明の実施の形態にかかる他の磁界検出装置の平面図である。It is a top view of the other magnetic field detection apparatus concerning embodiment of this invention.

図1は、全体が100で表される、本発明の実施の形態にかかる磁界検出装置の上面図である。磁界検出装置100では、セラミック等の基板1の上に、4つのスピンバルブ素子(磁気抵抗効果素子)11〜14が設けられている。スピンバルブ素子11〜14は、例えばTMR素子であり、強磁性体の自由層と固着層の間に、非磁性の薄膜層が挟まれた構造となっている。固着層の、薄膜層と反対側には、固着層の磁場を固定するための反強磁性膜が積層されている。自由層は、例えばNiFeのような軟磁性材料からなり、固着層は、例えばCoFeのような磁性材料からなる。これらの層に挟まれ、これらを分離する薄膜層は、例えばAlOxのような絶縁膜からなり、反強磁性膜は、例えばIrMnからなる。基板1は、例えば集積回路が形成された多層基板であり、その配線に接続されるようにスピンバルブ素子11〜14が設けられても良い。   FIG. 1 is a top view of a magnetic field detection apparatus according to an embodiment of the present invention, the whole being represented by 100. FIG. In the magnetic field detection device 100, four spin valve elements (magnetoresistance effect elements) 11 to 14 are provided on a substrate 1 made of ceramic or the like. The spin valve elements 11 to 14 are TMR elements, for example, and have a structure in which a nonmagnetic thin film layer is sandwiched between a ferromagnetic free layer and a fixed layer. On the opposite side of the pinned layer from the thin film layer, an antiferromagnetic film for fixing the magnetic field of the pinned layer is laminated. The free layer is made of a soft magnetic material such as NiFe, and the pinned layer is made of a magnetic material such as CoFe. The thin film layer sandwiched between these layers and separating them is made of an insulating film such as AlOx, and the antiferromagnetic film is made of IrMn, for example. The substrate 1 is, for example, a multilayer substrate on which an integrated circuit is formed, and spin valve elements 11 to 14 may be provided so as to be connected to the wiring.

スピンバルブ素子11を挟むように集磁領域21、22が設けられている。集磁領域21、22は、例えば、Fe、Co、Niなどを含む磁性膜からなる。スピンバルブ素子11を挟んで対向配置された2つの集磁領域21、22の、スピンバルブ素子と隣り合う部分は、スピンバルブ素子11の中心に対して点対称で、かつスピンバルブ素子11を挟んで互いに平行な形状であることが好ましい。他のスピンバルブ素子12〜14にも同様に集磁領域が設けられている。一般には、集磁領域21、22は、スピンバルブ素子11の中心に対して点対称の形状となる。   Magnetic collection regions 21 and 22 are provided so as to sandwich the spin valve element 11. The magnetic flux collecting regions 21 and 22 are made of a magnetic film containing Fe, Co, Ni, or the like, for example. The portions adjacent to the spin valve element of the two magnetism collecting regions 21 and 22 arranged opposite to each other across the spin valve element 11 are point-symmetric with respect to the center of the spin valve element 11 and sandwich the spin valve element 11 therebetween. Preferably, the shapes are parallel to each other. The other spin valve elements 12 to 14 are similarly provided with a magnetic flux collecting region. In general, the magnetic flux collecting regions 21 and 22 have a point-symmetric shape with respect to the center of the spin valve element 11.

図2は、図1をI−I方向に見た場合の断面図である。スピンバルブ素子11は、集磁領域21、22の中央近傍に配置される。例えば基板の表面(破線で表示)にスピンバルブ素子11を形成し、基板をエッチング等で掘り下げて集磁領域21、22を形成することで、図2のような配置とすることができる。   FIG. 2 is a cross-sectional view when FIG. 1 is viewed in the II direction. The spin valve element 11 is disposed in the vicinity of the center of the magnetic flux collecting regions 21 and 22. For example, the spin valve element 11 is formed on the surface of the substrate (indicated by a broken line), and the magnetic flux collecting regions 21 and 22 are formed by digging the substrate by etching or the like, whereby the arrangement shown in FIG. 2 can be obtained.

図3は、図2と同じ方向から見た場合の、集磁領域21、22の間の磁界分布であり、X軸とZ軸の交点がスピンバルブ素子11の中心に相当する。スピンバルブ素子11と集磁領域21、22とをこのように配置することで、スピンバルブ素子11周辺の磁化が一定になることがわかる。   FIG. 3 is a magnetic field distribution between the magnetic collection regions 21 and 22 when viewed from the same direction as FIG. 2, and the intersection of the X axis and the Z axis corresponds to the center of the spin valve element 11. By arranging the spin valve element 11 and the magnetic flux collecting regions 21 and 22 in this way, it can be seen that the magnetization around the spin valve element 11 is constant.

次に、図4を用いてスピンバルブ素子の固着層の磁場方向を固定する着磁方法について説明する。図4は、図1の磁界検出装置100の一部(スピンバルブ素子11周辺)の拡大図である。磁界検出装置100の着磁工程では、スピンバルブ素子11の固着層の磁場方向を固定する際に、磁界印加方向(H方向)に外部磁場を印加する。図3では、磁界印加方向に対して、所望の着磁角だけ傾いて交差する方向に延伸するように集磁領域21、22が設けられ、スピンバルブ素子11と集磁領域21、22との間は電気的には絶縁されているが、磁気的には結合されている。   Next, a magnetization method for fixing the magnetic field direction of the pinned layer of the spin valve element will be described with reference to FIG. FIG. 4 is an enlarged view of a part of the magnetic field detection device 100 of FIG. 1 (around the spin valve element 11). In the magnetization process of the magnetic field detection device 100, when the magnetic field direction of the pinned layer of the spin valve element 11 is fixed, an external magnetic field is applied in the magnetic field application direction (H direction). In FIG. 3, the magnetism collecting regions 21 and 22 are provided so as to extend in a direction intersecting with a desired magnetization angle with respect to the magnetic field application direction, and the spin valve element 11 and the magnetism collecting regions 21 and 22. They are electrically insulated but magnetically coupled.

図5は、図4の構造におけるスピンバルブ素子の位置(図3のX軸とZ軸の交点)における磁束密度の、集磁領域の厚さに対する依存性を表すグラフである。横軸は集磁領域の膜厚、縦軸がスピンバルブ素子の位置における磁束密度であり、Hexは着磁のための印加磁界(任意単位)である。2つの集磁領域の間のギャップは1μmである。集磁領域を構成する磁性膜の厚さは、集磁領域間のギャップと同程度あればよい。   FIG. 5 is a graph showing the dependence of the magnetic flux density at the position of the spin valve element (intersection of the X axis and the Z axis in FIG. 3) in the structure of FIG. 4 on the thickness of the magnetic collection region. The horizontal axis is the film thickness of the magnetism collecting region, the vertical axis is the magnetic flux density at the position of the spin valve element, and Hex is the applied magnetic field (arbitrary unit) for magnetization. The gap between the two magnetic flux collecting regions is 1 μm. The thickness of the magnetic film constituting the magnetism collecting region may be about the same as the gap between the magnetism collecting regions.

固着層の着磁工程は、磁場を印加しながらブロッキング温度以上に昇温し、アニールして行われる。ブロッキング温度は、反強磁性膜の材料に依存するが、一般には200〜300℃であり、例えばIrMnを用いた場合には250℃程度となる。   The step of magnetizing the pinned layer is performed by raising the temperature above the blocking temperature while applying a magnetic field and annealing. Although the blocking temperature depends on the material of the antiferromagnetic film, it is generally 200 to 300 ° C., for example, about 250 ° C. when IrMn is used.

図4のH方向に、外部磁場を印加すると、スピンバルブ素子には、磁気抵抗効果素子に印加される磁界方向の矢印(白い矢印)で示される方向に磁場が印加される。即ち、各スピンバルブ素子に、所定の方向に磁場を印加したり、各スピンバルブ素子が形状異方性を有さなくても(図4では、スピンバルブ素子11は上面が正方形)、集磁領域の配置を換えることにより、一定方向(H方向)の磁場を印加するだけで、H方向と異なる所望の方向にスピンバルブ素子を磁化することが可能となる。このため、外部磁場は、スピンバルブ素子から遠くに配置することができるため、アニール工程中に外部磁場を発生する装置、例えば磁石の温度を低く保持することができ、外部磁場を発生する磁石の熱減磁は発生しない。   When an external magnetic field is applied in the H direction in FIG. 4, a magnetic field is applied to the spin valve element in the direction indicated by the magnetic field direction arrow (white arrow) applied to the magnetoresistive effect element. That is, even if a magnetic field is applied to each spin valve element in a predetermined direction or each spin valve element does not have shape anisotropy (in FIG. 4, the spin valve element 11 has a square top surface) By changing the arrangement of the regions, the spin valve element can be magnetized in a desired direction different from the H direction only by applying a magnetic field in a certain direction (H direction). For this reason, since the external magnetic field can be arranged far from the spin valve element, the temperature of the apparatus that generates the external magnetic field during the annealing process, for example, the magnet can be kept low, and the magnet that generates the external magnetic field can be maintained. Thermal demagnetization does not occur.

スピンバルブ素子は、例えば保磁力差型のTMR素子である。この場合、自由層/絶縁層/固着層の構造において、固着層に保磁力の大きな材料を用いる。固着層には、強磁性結合した2つ以上の磁性層を用いてもよい。この場合、固着層の着磁工程は、例えば着磁器や磁石で大きな磁界を発生させて着磁すればよい。   The spin valve element is, for example, a coercivity difference type TMR element. In this case, a material having a large coercive force is used for the pinned layer in the structure of the free layer / insulating layer / pinned layer. As the pinned layer, two or more magnetic layers that are ferromagnetically coupled may be used. In this case, the magnetization process of the fixed layer may be performed by generating a large magnetic field with a magnetizer or a magnet, for example.

このようなスピンバルブ素子の構造として、例えば、固着層の磁場方向を固定する反強磁性層としてIrMn、強磁性層(固着層)としてNiFeまたはCoFe、絶縁層としてAl、強磁性層(自由層)としてNiFeを用いたTMR素子とすることができる。この他、反強磁性層として、FeMn、IrMn、PtMn、NiOなどを用いても構わない。また、強磁性層として、Co、Fe、CoFe合金、CoNi合金、CoFeNiのようなCo、Ni、Feを主成分として含む合金、NiMnSb、CoMnGeなどの合金を用いることもできる。TMR素子として所望の性能が得られる材料であれば、特段の制約はない。また、トンネル絶縁膜として用いられる絶縁層は、非磁性層の絶縁体であれば良い。例えば、絶縁層として、Ta、SiO、MgOなどの金属の酸化物や、弗化物などを用いることができる。 As the structure of such a spin valve element, for example, IrMn as an antiferromagnetic layer for fixing the magnetic field direction of the pinned layer, NiFe or CoFe as a ferromagnetic layer (pinned layer), Al 2 O 3 as an insulating layer, a ferromagnetic layer A TMR element using NiFe as the (free layer) can be obtained. In addition, FeMn, IrMn, PtMn, NiO, or the like may be used as the antiferromagnetic layer. In addition, as the ferromagnetic layer, Co, Fe, CoFe alloy, CoNi alloy, Co, such as CoFeNi, an alloy containing Ni, Fe as a main component, NiMnSb, Co 2 MnGe, or the like can also be used. There are no particular restrictions as long as the material can obtain a desired performance as a TMR element. The insulating layer used as the tunnel insulating film may be an insulator of a nonmagnetic layer. For example, a metal oxide such as Ta 2 O 5 , SiO 2 , MgO, fluoride, or the like can be used for the insulating layer.

なお、スピンバルブ素子は、固着層/絶縁層/自由層のような構造、即ち、強磁性層(自由層)が下部電極に含まれ、強磁性層(固着層)および反強磁性層が上部電極に含まれるように構成することもできる。また、強磁性層(自由層)は、単一の磁性層であってもよいし、2種類以上の異なる材料の磁性層が積層構造であってもよい。   The spin valve element has a structure such as a fixed layer / insulating layer / free layer, that is, a ferromagnetic layer (free layer) is included in the lower electrode, and a ferromagnetic layer (fixed layer) and an antiferromagnetic layer are upper. It can also be comprised so that it may be contained in an electrode. Further, the ferromagnetic layer (free layer) may be a single magnetic layer, or a magnetic layer of two or more different materials may have a laminated structure.

また、スピンバルブ素子の作製は、例えば、DCマグネトロンスパッタリング、分子線エピタキシー(MBE)法、各種スパッタ法、化学気相成長(CVD)法、蒸着法等を用いて各層を積層した後、フォトリソグラフィによるパターンニングとエッチングとより、所定の形状に加工して行う。フォトリソグラフィに代えて電子線リソグラフィや、集束イオンビーム加工を用いても良い。   In addition, the spin valve element is manufactured by, for example, depositing each layer using DC magnetron sputtering, molecular beam epitaxy (MBE) method, various sputtering methods, chemical vapor deposition (CVD) method, vapor deposition method, etc., and then photolithography. This is performed by patterning and etching into a predetermined shape. Instead of photolithography, electron beam lithography or focused ion beam processing may be used.

図1では、着磁角θ(固着層の磁化方向がH方向となす角度)が、第1のスピンバルブ素子11で45°、第2のスピンバルブ素子12で−45°、第3のスピンバルブ素子13で−45°、第4のスピンバルブ素子14で45°となっている。図1中で、左側からH方向に磁界を印加すると、集磁領域の配置により、それぞれのスピンバルブ素子11〜14に各矢印方向に磁界が印加され、それぞれの着磁角θで磁化される。   In FIG. 1, the magnetization angle θ (the angle at which the magnetization direction of the pinned layer becomes the H direction) is 45 ° for the first spin valve element 11, −45 ° for the second spin valve element 12, and the third spin. The valve element 13 is −45 °, and the fourth spin valve element 14 is 45 °. In FIG. 1, when a magnetic field is applied in the H direction from the left side, a magnetic field is applied to each spin valve element 11-14 in the direction of each arrow due to the arrangement of the magnetic collection regions, and magnetized at each magnetization angle θ. .

この状態で、ブロッキング温度以上に保持してアニール工程を行うことにより、固着層の磁化方向が90°ずつ異なる2組のスピンバルブ素子を形成できる。   In this state, by performing the annealing process while maintaining the temperature above the blocking temperature, it is possible to form two sets of spin valve elements in which the magnetization direction of the pinned layer differs by 90 °.

固着層の着磁工程において、集磁領域が磁気飽和しないように適切な磁界を印加するが、このときにスピンバルブ素子に印加される磁界を集磁領域よりも大きな磁束密度とすることは困難である。そこで、集磁領域は、固着層よりも飽和磁束密度が大きい材料で構成されることが好ましい。一般的には、Feの飽和磁束密度が高いため、固着層よりもFeの含有量の多い材料を集磁領域に用いることが好ましい。   In the magnetization process of the pinned layer, an appropriate magnetic field is applied so that the magnetic collection region is not magnetically saturated, but at this time, it is difficult to make the magnetic field applied to the spin valve element have a larger magnetic flux density than the magnetic collection region. It is. Therefore, the magnetic flux collecting region is preferably made of a material having a saturation magnetic flux density larger than that of the fixed layer. In general, since the saturation magnetic flux density of Fe is high, it is preferable to use a material having a higher Fe content than that of the pinned layer in the magnetic flux collecting region.

更に、固着層の着磁工程後に、集磁領域を除去、または磁気をなくす工程を備えても良い。集磁領域を除去は、例えば集磁領域を選択的にエッチングして行われる。これは、例えば、微少な磁界を検出する磁界検出装置では、固着層の磁化方向と垂直方向の磁界を検出するのが好ましいが、集磁領域があると固着層の着磁方向と同じ方向に磁界が印加されるためである。   Further, after the step of magnetizing the fixed layer, a step of removing the magnetism collecting region or eliminating magnetism may be provided. The removal of the magnetic collection region is performed by selectively etching the magnetic collection region, for example. This is because, for example, in a magnetic field detection device that detects a minute magnetic field, it is preferable to detect a magnetic field perpendicular to the magnetization direction of the pinned layer. This is because a magnetic field is applied.

次に、図1に示す磁界検出装置を用いて磁界の検出について説明する。一般に、抵抗が変化する素子で信号を検出する場合、素子に接続された電源ラインに電流ノイズが印加されると、検出したい信号が変化していなくても、素子の両端の電圧が変化し信号を誤検出する。これを防ぐためには、2つの実質的に等しい素子を、信号に対する抵抗の変化が反対になるように配置し、それらを電気的に直列接続して等しい電流を流し、その中点電位を検出する、所謂ハーフブリッジ構造が好ましい。より好ましくは、外部からの信号に対する中点電位の変化方向が互いに反対である2つのハーフブリッジの差動出力を取るホイートストーンブリッジ構造をとる。   Next, detection of a magnetic field will be described using the magnetic field detection apparatus shown in FIG. In general, when a signal is detected by an element whose resistance changes, if current noise is applied to the power supply line connected to the element, the voltage at both ends of the element changes, even if the signal to be detected does not change. Is falsely detected. In order to prevent this, two substantially equal elements are arranged so that the resistance change with respect to the signal is opposite, and they are electrically connected in series so that an equal current flows and the midpoint potential is detected. A so-called half-bridge structure is preferable. More preferably, it adopts a Wheatstone bridge structure that takes the differential output of two half bridges in which the change direction of the midpoint potential with respect to an external signal is opposite to each other.

本実施の形態にかかる磁界検出装置100においても、図1に示すように、4つのスピンバルブ素子11〜14を配置し、それらをハーフブリッジないしはホイートストーンブリッジを構成するように配線することで、測定精度を向上させることができる。   Also in the magnetic field detection apparatus 100 according to the present embodiment, as shown in FIG. 1, four spin valve elements 11 to 14 are arranged and wired so as to form a half bridge or a Wheatstone bridge. Measurement accuracy can be improved.

図1に示す磁界検出装置のように、固着層の磁化方向(着磁角θ)が45°のスピンバルブ素子と、固定抵抗からなるブリッジ回路の出力電圧Vは、例えば第1のスピンバルブ素子の固着層の磁化方向を基準とした磁界の印加方向Θに対して、   As in the magnetic field detection device shown in FIG. 1, the output voltage V of the bridge circuit composed of a spin valve element having a fixed layer magnetization direction (magnetization angle θ) of 45 ° and a fixed resistance is, for example, the first spin valve element. For the magnetic field application direction Θ relative to the magnetization direction of the pinned layer of

V=V0+ΔVcosΘ ......(1)   V = V0 + ΔV cos Θ (1)

のような抵抗変化を示す。また、固着層の磁化方向(着磁角θ)が−45°のスピンバルブ素子と、固定抵抗からなるブリッジ回路の出力は、磁界の印加方向Θに対して、 The resistance change is shown as follows. In addition, the output of the bridge circuit composed of the spin valve element having a magnetization direction (magnetization angle θ) of −45 ° and a fixed resistance with respect to the application direction Θ of the magnetic field is

V=V0+ΔVcos(Θ+90°)=V0−ΔVsinΘ ......(2)   V = V0 + ΔVcos (Θ + 90 °) = V0−ΔVsinΘ (2)

のような抵抗変化を示す。 The resistance change is shown as follows.

式(1)から磁界の印加角度を求めることを考えると、Θが0°〜360°の範囲で同じVを示すΘが、最大2点存在するため、一意に角度を決めることができない。また、90°、270°付近で角度に対する抵抗の変化が小さくなり、ひいては磁界の印加角度の検出誤差が大きくなる。   Considering obtaining the applied angle of the magnetic field from the equation (1), the angle cannot be uniquely determined because there are at most two Θs showing the same V in the range of Θ of 0 ° to 360 °. In addition, the resistance change with respect to the angle becomes small near 90 ° and 270 °, and the detection error of the magnetic field application angle becomes large.

このとき、式(1)の出力は角度に対する抵抗の変化が大きいため、上記の両方の波形からアークタンジェントを求めることで、全角度領域で良好な角度検出精度を達成できる。   At this time, since the output of Expression (1) has a large change in resistance with respect to the angle, by obtaining the arc tangent from both the above waveforms, it is possible to achieve good angle detection accuracy in the entire angle region.

即ち、第1と第4のスピンバルブ素子11、14でハーフブリッジを構成し、第2と第3のスピンバルブ素子12、13で他のハーフブリッジを構成すると、2つのハーフブリッジでは互いに位相が90°異なる出力が得られるため、全角度領域で良好な角度検出精度を達成できる。   That is, when the first and fourth spin valve elements 11 and 14 form a half bridge and the second and third spin valve elements 12 and 13 form another half bridge, the two half bridges have a phase mutually different. Since outputs different by 90 ° can be obtained, good angle detection accuracy can be achieved in all angle regions.

なお、集磁領域は、所望の方向に磁界を提供できるような形状であれば、他の形状を用いても構わない。また、その所望の機能を失わない範囲で、互いに結合されていても良い。   The magnetic flux collecting region may have another shape as long as it can provide a magnetic field in a desired direction. Further, they may be combined with each other as long as the desired function is not lost.

例えば、図6は、本実施の形態にかかる他の磁気測定装置200であり、集磁領域20の変形例(スピンバルブ素子10を挟んで集磁領域20は鏡面対象)を示す。このような集磁領域20を備えることによっても、H方向に外部磁場を印加した場合に、4つのスピンバルブ素子10には矢印方向(θ=±45°)の磁場を印加することができる。   For example, FIG. 6 shows another magnetic measurement apparatus 200 according to the present embodiment, and shows a modification of the magnetic collection region 20 (the magnetic collection region 20 is a mirror surface with the spin valve element 10 interposed therebetween). By providing such a magnetic flux collecting region 20, when an external magnetic field is applied in the H direction, a magnetic field in the arrow direction (θ = ± 45 °) can be applied to the four spin valve elements 10.

また、簡易には、図7の磁気検出装置300に示すように、集磁領域20は、スピンバルブ素子10の片側のみに設けても構わない。   Further, simply, as shown in the magnetic detection device 300 of FIG. 7, the magnetism collecting region 20 may be provided only on one side of the spin valve element 10.

ここでは、着磁工程は、外部磁場によりH方向に磁界を印加する場合について説明したが、集磁領域とスピンバルブ素子とが同一基板上に設けられ、それらと絶縁された複数の電流線を流れる電流によって発生する磁界を行っても良い。   Here, the magnetization process has been described for the case where a magnetic field is applied in the H direction by an external magnetic field. However, a plurality of current lines that are provided on the same substrate and insulated from the magnetic flux collecting region and the spin valve element are provided. A magnetic field generated by a flowing current may be performed.

例えば、図8に示す他の磁気検出装置400のような電流線30を設けることで、スピンバルブ素子11〜14に対して、θ=225度、315度、135度、45度の方向に磁界を印加できる。電流線30は、例えば基板1の裏面に設けられた金属層からなる。   For example, by providing the current line 30 as in the other magnetic detection device 400 shown in FIG. 8, the magnetic field in the direction of θ = 225 degrees, 315 degrees, 135 degrees, and 45 degrees with respect to the spin valve elements 11 to 14. Can be applied. The current line 30 is made of, for example, a metal layer provided on the back surface of the substrate 1.

以上のように、本発明の実施の形態にかかる磁界検出装置の製造方法では、複数のスピンバルブ型素子の固着層の磁化方向が、所望の方向に、正確に固定化できる。このため、例えば固着層の磁化方向が正反対の素子を組み合わせてハーフブリッジを構成することで、同相ノイズや温度ドリフトの影響を軽減した磁界検出装置を形成することができる。   As described above, in the method of manufacturing the magnetic field detection device according to the embodiment of the present invention, the magnetization directions of the pinned layers of the plurality of spin valve elements can be accurately fixed in a desired direction. For this reason, for example, by forming a half bridge by combining elements having opposite magnetization directions of the pinned layer, it is possible to form a magnetic field detection device that reduces the effects of common-mode noise and temperature drift.

1 基板、10、11、12、13、14 スピンバルブ素子、20、21、22 集磁領域、30 電流層、100、200、300、400 磁界検出装置。   DESCRIPTION OF SYMBOLS 1 Board | substrate 10, 11, 12, 13, 14 Spin valve element, 20, 21, 22 Magnetic collection area | region, 30 Current layer, 100, 200, 300, 400 Magnetic field detection apparatus.

Claims (9)

基板上にスピンバルブ素子を有する磁界検出装置の製造方法であって、
基板を準備する工程と、
基板上に、固着層、絶縁層、および自由層を含むスピンバルブ素子を形成する工程と、
スピンバルブ素子の近傍に集磁領域を形成する工程と、
H方向の磁界を基板に印加することにより、スピンバルブ素子の自由層を磁化する磁化工程とを含み、
磁化工程は、集磁領域により、H方向とは異なる所定方向の磁界をスピンバルブ素子に印加して、H方向とは異なる所定方向にスピンバルブ素子を磁化する工程であることを特徴とする磁界検出装置の製造方法。
A method of manufacturing a magnetic field detection device having a spin valve element on a substrate,
Preparing a substrate;
Forming a spin valve element including a pinned layer, an insulating layer, and a free layer on a substrate;
Forming a magnetic flux collecting region in the vicinity of the spin valve element;
A magnetization step of magnetizing the free layer of the spin valve element by applying a magnetic field in the H direction to the substrate,
The magnetization step is a step of magnetizing the spin valve element in a predetermined direction different from the H direction by applying a magnetic field in a predetermined direction different from the H direction to the spin valve element by means of the magnetic collection region. A method for manufacturing a detection device.
集磁領域は、スピンバルブ素子を挟んで対向配置された、スピンバルブ素子の中心に対して点対称な形状の2つの領域からなることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the magnetism collecting region is composed of two regions having a point-symmetric shape with respect to the center of the spin valve element, which are disposed to face each other with the spin valve element interposed therebetween. 磁化工程は、H方向の磁界基板に印加しながら、自由層のブロッキング温度以上の温度でアニールする工程を含むことを特徴とする請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the magnetizing step includes a step of annealing at a temperature equal to or higher than a blocking temperature of the free layer while being applied to the magnetic field substrate in the H direction. 磁化工程後に、集磁領域を選択的に除去する工程、または集磁領域を消磁する工程を含むことを特徴とする請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, further comprising a step of selectively removing the magnetized region after the magnetizing step, or a step of demagnetizing the magnetized region. 複数のスピンバルブ素子を有する磁界検出装置であって、
基板と、
基板上に形成され、固着層、絶縁層、および自由層を含む、第1スピンバルブ素子および第2スピンバルブ素子と、
第1スピンバルブ素子に対して所定の間隔をおいて対向配置された第1の辺を有し、第1スピンバルブ素子の近傍に形成された第1集磁領域と、
第2スピンバルブ素子に対して所定の間隔をおいて対向配置された第2の辺を有し、第2スピンバルブ素子の近傍に形成された第2集磁領域と、を含み、
第1の辺と第2の辺が非平行に配置されたことを特徴とする磁界検出装置。
A magnetic field detection device having a plurality of spin valve elements,
A substrate,
A first spin valve element and a second spin valve element formed on a substrate and including a pinned layer, an insulating layer, and a free layer;
A first magnetic flux collecting region formed in the vicinity of the first spin valve element, having a first side disposed opposite to the first spin valve element at a predetermined interval;
A second magnetic flux collecting region having a second side disposed opposite to the second spin valve element at a predetermined interval and formed in the vicinity of the second spin valve element,
A magnetic field detection device, wherein the first side and the second side are arranged non-parallel.
第1集磁領域と第2集磁領域は、基板に磁界が印加された場合に、第1スピンバルブ素子と第2スピンバルブ素子に、互いに異なる方向に磁界を印加するように配置されたことを特徴とする請求項5に記載の磁界検出装置。   The first magnetism collecting region and the second magnetism collecting region are arranged to apply magnetic fields in different directions to the first spin valve element and the second spin valve element when a magnetic field is applied to the substrate. The magnetic field detection apparatus according to claim 5. 第1集磁領域は、第1スピンバルブ素子の中心に対して点対称な形状に設けられた1組の集磁領域からなり、および/または第2集磁領域は、第2スピンバルブ素子の中心に対して点対称な形状に設けられた1組の集磁領域からなることを特徴とする請求項5に記載の磁界検出装置。   The first magnetic flux collecting region is composed of a pair of magnetic flux collecting regions provided in a point-symmetric shape with respect to the center of the first spin valve element, and / or the second magnetic flux collecting region is the second spin valve element. 6. The magnetic field detection device according to claim 5, comprising a set of magnetic flux collecting regions provided in a point-symmetric shape with respect to the center. 第1の辺と第2の辺は、互いに直交する方向に配置されたことを特徴とする請求置5に記載の磁界検出装置。   The magnetic field detection device according to claim 5, wherein the first side and the second side are arranged in directions orthogonal to each other. 集磁領域は、固着層より飽和磁束密度の大きい材料からなることを特徴とする請求項5に記載の磁界検出装置。   The magnetic field detection device according to claim 5, wherein the magnetic flux collecting region is made of a material having a saturation magnetic flux density larger than that of the fixed layer.
JP2010207408A 2010-09-16 2010-09-16 Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus Pending JP2012063232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207408A JP2012063232A (en) 2010-09-16 2010-09-16 Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207408A JP2012063232A (en) 2010-09-16 2010-09-16 Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus

Publications (1)

Publication Number Publication Date
JP2012063232A true JP2012063232A (en) 2012-03-29

Family

ID=46059096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207408A Pending JP2012063232A (en) 2010-09-16 2010-09-16 Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus

Country Status (1)

Country Link
JP (1) JP2012063232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063234A (en) * 2010-09-16 2012-03-29 Tlv Co Ltd Steam dryness measuring apparatus
JP2017516987A (en) * 2014-04-17 2017-06-22 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Monolithic three-axis linear magnetic sensor and manufacturing method thereof
JP2017534855A (en) * 2014-09-28 2017-11-24 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip differential free layer push-pull magnetic field sensor bridge and manufacturing method
CN111505111A (en) * 2020-04-30 2020-08-07 中国航发成都发动机有限公司 Magnetic powder detection device and method for annular part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063234A (en) * 2010-09-16 2012-03-29 Tlv Co Ltd Steam dryness measuring apparatus
JP2017516987A (en) * 2014-04-17 2017-06-22 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Monolithic three-axis linear magnetic sensor and manufacturing method thereof
JP2017534855A (en) * 2014-09-28 2017-11-24 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip differential free layer push-pull magnetic field sensor bridge and manufacturing method
CN111505111A (en) * 2020-04-30 2020-08-07 中国航发成都发动机有限公司 Magnetic powder detection device and method for annular part

Similar Documents

Publication Publication Date Title
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
JP4508058B2 (en) Magnetic field detection device and manufacturing method thereof
EP1720027B1 (en) Magnetic field detector and current detection device, position detection device and rotation detection device using the magnetic field detector
TWI244785B (en) Magnetic sensor, production process of the magnetic sensor and magnetic array suitable for the production process
JP6984792B2 (en) Magnetic sensor, magnetic sensor array, magnetic field distribution measuring device, and positioning device
CN113574694B (en) Magneto-resistive element and magnetic sensor
KR100800279B1 (en) Azimuth meter having spin-valve giant magneto-resistive elements
JP2014515470A (en) Single chip 2-axis bridge type magnetic field sensor
JP2008268219A (en) Magnetic sensor, its manufacturing method, current detecting method, and current detecting device
JP2016176911A (en) Magnetic sensor
JP2008134181A (en) Magnetic detector and its manufacturing method
JP2012185044A (en) Magnetic sensor and manufacturing method for the same
JP2009036770A (en) Magnetic sensor and its manufacturing method
US7123454B2 (en) Longitudinal bias structure having stability with minimal effect on output
WO2012090631A1 (en) Electromagnetic proportional current sensor
JP2010286236A (en) Origin detection device
JP2014199183A (en) Magnetic sensor and magnetic sensor system
US11467232B2 (en) Magnetoresistive sensor and fabrication method for a magnetoresistive sensor
JP2015219227A (en) Magnetic sensor
JP2006269955A (en) Magnetic field detecting device
JP2007024598A (en) Magnetic sensor
US20210066391A1 (en) Dual tunnel magnetoresistance (tmr) element structure
JP4985522B2 (en) Magnetic field measuring method and magnetic sensor
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
JP2015135267A (en) current sensor