JP2012063131A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2012063131A
JP2012063131A JP2011245839A JP2011245839A JP2012063131A JP 2012063131 A JP2012063131 A JP 2012063131A JP 2011245839 A JP2011245839 A JP 2011245839A JP 2011245839 A JP2011245839 A JP 2011245839A JP 2012063131 A JP2012063131 A JP 2012063131A
Authority
JP
Japan
Prior art keywords
temperature
food
refrigerator
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011245839A
Other languages
Japanese (ja)
Other versions
JP5642045B2 (en
Inventor
Maiko Shibata
舞子 柴田
Akira Shiga
彰 志賀
Teruo Nakamura
輝男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011245839A priority Critical patent/JP5642045B2/en
Publication of JP2012063131A publication Critical patent/JP2012063131A/en
Application granted granted Critical
Publication of JP5642045B2 publication Critical patent/JP5642045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of preventing the drying of food preserved in the refrigerator.SOLUTION: The refrigerator includes a switching room for preserving the food, an inner temperature detector for detecting an air temperature in the switching room, a cooler for cooling the food that is put in the switching room and also for controlling a coolability, and a controller for controlling the cooler based on the air temperature detected by the innner temperature detector and for performing a normal operation to maintain the switching room at a preset temperature. The temperature of the floor of the switching room is configured to be lower than the air temperature of other portion in the switching room. The controller controls the coolability of the cooler so that the temperature fluctuation rate in the normal operation may become ≤0.1 K/min.

Description

本発明は、保存中の食品の乾燥を抑制することができる冷蔵庫に関わる。   The present invention relates to a refrigerator capable of suppressing drying of food during storage.

食品を冷却、保存する際には、水分の蒸発や氷の昇華により、食品の水分が減ることで、食品の乾燥が起こる。乾燥により食品の重量が減るだけでなく、空気中の酸素が働き酸化作用を受けることから、品質の劣化が促進される。このような乾燥は、保存中の庫内の温度変動が大きくなると多くなることが知られている。このため、従来は庫内の温度変動、温度ムラをできるだけ小さくすることで乾燥の抑制を行っていた。   When the food is cooled and stored, the food is dried by reducing the moisture of the food due to evaporation of water or sublimation of ice. Not only does the weight of the food decrease due to drying, but also oxygen in the air works and undergoes an oxidizing action, which promotes the deterioration of quality. It is known that such drying increases as the temperature fluctuation in the storage during storage increases. For this reason, conventionally, drying was suppressed by minimizing temperature fluctuations and temperature unevenness in the cabinet.

そこで、冷凍サイクルにおける冷媒を通す流路を切り替える切替手段を設け、冷却能力を制御することで、冷却時の吐出冷気と冷蔵庫が設置される環境の室温との温度差を小さくし、庫内の温度ムラ、温度変動を抑え、乾燥を防止する技術があった(特許文献1参照)。   Therefore, by providing a switching means for switching the flow path through which the refrigerant passes in the refrigeration cycle, and controlling the cooling capacity, the temperature difference between the cold air discharged during cooling and the room temperature of the environment where the refrigerator is installed is reduced. There has been a technique for suppressing temperature unevenness and temperature fluctuation and preventing drying (see Patent Document 1).

特開2000−283626号公報(第4頁)JP 2000-283626 A (page 4)

しかし、特許文献1のような構成である間冷式冷却では、ファンで冷気を庫内に送り庫内を冷却するため、温度変動をある程度まで抑制することはできても限度があり、完全になくすことは困難である。このため、保存中の食品は、乾燥により品質が低下する問題があることが実情である。   However, in the intercooling-type cooling that is configured as in Patent Document 1, since the inside of the warehouse is cooled with a fan to cool the inside of the warehouse, there is a limit even if the temperature fluctuation can be suppressed to some extent. It is difficult to lose. For this reason, the foodstuffs currently preserve | saved have the problem that quality falls by drying.

本発明は、上記に示すような問題を解決するためになされたものであり、間冷式冷却を行いながらも、冷蔵庫内に保存する食品の乾燥を抑制することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress drying of food stored in a refrigerator while performing intercooling cooling.

本発明に係る冷蔵庫は、食品を保存する貯蔵室と、貯蔵室内の空気温度を検出する貯蔵室温度検出手段と、貯蔵室に投入された食品を冷却すると共に、冷却能力を制御可能な冷却手段と、貯蔵室温度検出手段にて検出された空気温度に基づいて冷却手段を制御し、貯蔵室内を設定温度に維持する通常運転を行う制御手段とを備え、貯蔵室の床面の温度が貯蔵室の他の部分の空気温度よりも低くなる構成とし、制御手段は、通常運転中における温度変動速度が0.1K/分以下となるように冷却手段の冷却能力を制御するものである。   The refrigerator according to the present invention includes a storage room for storing food, a storage room temperature detecting means for detecting an air temperature in the storage room, and a cooling means for cooling the food put into the storage room and controlling the cooling capacity. And a control means for controlling the cooling means on the basis of the air temperature detected by the storage room temperature detection means and performing a normal operation for maintaining the storage room at a set temperature, and the temperature of the floor surface of the storage room is stored. The air temperature is lower than that of the other part of the chamber, and the control means controls the cooling capacity of the cooling means so that the temperature fluctuation rate during normal operation is 0.1 K / min or less.

本発明によれば、通常運転中における温度変動速度が0.1K/分以下となるように冷却手段の冷却能力を制御するようにしたので、食品の乾燥を抑制することができる。   According to the present invention, since the cooling capacity of the cooling means is controlled so that the temperature fluctuation rate during normal operation is 0.1 K / min or less, drying of food can be suppressed.

参考例1における冷蔵庫の正面図である。It is a front view of the refrigerator in Reference Example 1. 参考例1における冷蔵庫の切替室部分の側断面図である。It is a sectional side view of the switching chamber part of the refrigerator in Reference Example 1. 参考例1における冷蔵庫の制御系統概略図である。It is a control system schematic diagram of the refrigerator in Reference Example 1. 飽和水蒸気圧の差分の積算値ΣΔPと食品の水分喪失量との関係を示す図である。It is a figure which shows the relationship between integrated value (SIGMA) (DELTA) P of the difference of saturated water vapor pressure, and the moisture loss amount of a foodstuff. 7日間保存の牛肉における水分喪失量とメトミオグロビンの変化量との関係を示す図である。It is a figure which shows the relationship between the amount of water loss in the beef preserve | saved for 7 days, and the variation | change_quantity of metmyoglobin. 参考例1における冷蔵庫の制御フローチャートである。It is a control flowchart of the refrigerator in Reference Example 1. 参考例2における冷蔵庫の切替室部分の側断面図である。It is a sectional side view of the switching room part of the refrigerator in the reference example 2. 参考例2における冷蔵庫の制御系統概略図である。It is the control system schematic of the refrigerator in the reference example 2. 参考例2における冷蔵庫の制御フローチャートである。It is a control flowchart of the refrigerator in Reference Example 2. 本発明の実施の形態1に係る冷蔵庫の切替室部分の側断面図である。It is a sectional side view of the switching chamber part of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における冷蔵庫の切替室の温度の経時変化の例を示す図である。It is a figure which shows the example of the time-dependent change of the temperature of the switching chamber of the refrigerator in Embodiment 1 of this invention. 庫内の温度変動速度と食品の水分喪失量(3週間目での水分喪失量)との関係を示したものである。It shows the relationship between the rate of temperature fluctuation in the refrigerator and the amount of water loss of food (water loss amount in the third week). 本発明の実施の形態1における冷蔵庫の制御フローチャートである。It is a control flowchart of the refrigerator in Embodiment 1 of this invention. 本発明の実施の形態1に係る切替室の庫内温度(空気温度)とトレイ床面温度との比較例を示す図である。It is a figure which shows the comparative example of the chamber internal temperature (air temperature) and tray floor surface temperature of the switching chamber which concerns on Embodiment 1 of this invention.

参考例1.
図1は、参考例1における冷蔵庫の正面図である。
冷蔵庫1は、冷蔵室100と、切替室200と、製氷室300と、冷凍室400と、野菜室500等を備えている。冷蔵室100は、最上部に開閉ドアを備えて配置されている。切替室200は、冷蔵室100の下方に配置され、冷凍温度帯(−18℃)から冷蔵(3℃)、チルド(0℃)、ソフト冷凍(−7℃)などの各温度帯に切り替え可能な部屋であり、引き出しドア2(図2参照)により開閉される。製氷室300は、切替室200と並列に配置され、引き出しドアにより開閉される。冷凍室400は、製氷室300の下方に配置され、引き出しドアにより開閉される。野菜室500は、最下部に配置され、引き出しドアにより開閉される。また、冷蔵室100の正面の扉表面には、各室の温度や設定を調節する操作スイッチと、各室の温度などを表示する液晶表示部などから構成される操作パネル1aが設けられている。切替室200は、操作パネル1aによって、冷蔵(約3℃)、チルド(約0℃)、ソフト冷凍(約−5、−7、−9℃)、冷凍(約−17℃)など、6通りの温度帯に切替可能となっている。
Reference Example 1
1 is a front view of a refrigerator in Reference Example 1. FIG.
The refrigerator 1 includes a refrigerating room 100, a switching room 200, an ice making room 300, a freezing room 400, a vegetable room 500, and the like. The refrigerator compartment 100 is disposed with an open / close door at the top. The switching chamber 200 is disposed below the refrigerator compartment 100 and can be switched from the freezing temperature zone (−18 ° C.) to each temperature zone such as refrigeration (3 ° C.), chilled (0 ° C.), and soft freezing (−7 ° C.). This room is opened and closed by a drawer door 2 (see FIG. 2). The ice making chamber 300 is arranged in parallel with the switching chamber 200 and is opened and closed by a drawer door. The freezing room 400 is disposed below the ice making room 300 and is opened and closed by a drawer door. The vegetable compartment 500 is disposed at the bottom and is opened and closed by a drawer door. Further, on the front door surface of the refrigerator compartment 100, there is provided an operation panel 1a including an operation switch for adjusting the temperature and setting of each room and a liquid crystal display unit for displaying the temperature of each room. . The switching chamber 200 can be operated in six ways, including refrigeration (about 3 ° C.), chilled (about 0 ° C.), soft freezing (about −5, −7, −9 ° C.), freezing (about −17 ° C.), etc. It is possible to switch to the temperature zone.

なお、図1には図示されていないが、冷蔵庫1には冷媒を圧縮する圧縮機、冷媒を絞るキャピラリーチューブ、ガス状態の冷媒の熱を庫外に放熱して凝縮させる凝縮器、液状態の冷媒を気化させ得られる冷熱で庫内空気を冷却する冷却器(蒸発器)等を有する冷凍サイクルを備えている。また、冷蔵庫1には更に、この冷却器を通過し各室へ冷気を運ぶ通気ダクト、送風機及び各室への冷気供給量を調節するダンパー等の冷気循環装置を備えている。   Although not shown in FIG. 1, the refrigerator 1 includes a compressor that compresses the refrigerant, a capillary tube that squeezes the refrigerant, a condenser that radiates and condenses the heat of the gaseous refrigerant to the outside, and a liquid state A refrigeration cycle having a cooler (evaporator) or the like that cools the air in the cabinet with cold heat obtained by vaporizing the refrigerant is provided. The refrigerator 1 is further provided with a cold air circulation device such as a ventilation duct that passes through the cooler and carries cold air to each room, a blower, and a damper that adjusts the amount of cold air supplied to each room.

図2は、参考例1における冷蔵庫の切替室部分の側断面図である。なお、図2の左側が冷蔵庫1の正面、右側が背面であり、切替室200の正面には引き出しドア2が設けられ、切替室200の背面には、吹き出し口3と戻り口4とが開口されている。切替室200の背面側には、図示省略しているが冷気を運ぶ通気ダクトや冷却器に連通する風路が設けられており、冷気が吹き出し口3から切替室200内に流入し、切替室200内を冷却した後、戻り口4から冷却器へと戻るように構成されている。更に、切替室200内には食品を置くことができるトレイ5が設けられている。また、切替室200内には、庫内の空気温度(以下、庫内温度という)を検出する、例えばサーミスタで構成された庫内温度検出手段6が配置されている。更に、冷気の影響を受けにくい切替室200の天井面付近には、切替室200内に収納した食品の表面温度を検出する、例えば赤外線センサにより構成された食品温度検出手段7が配置されている。   FIG. 2 is a side sectional view of a switching chamber portion of the refrigerator in Reference Example 1. The left side of FIG. 2 is the front of the refrigerator 1 and the right side is the back. The drawer door 2 is provided on the front of the switching chamber 200, and the outlet 3 and the return port 4 are open on the back of the switching chamber 200. Has been. Although not shown in the drawing, the rear side of the switching chamber 200 is provided with a ventilation duct that carries cold air and an air passage that communicates with the cooler, and the cold air flows into the switching chamber 200 from the outlet 3, and the switching chamber 200 After cooling the inside of 200, it is configured to return from the return port 4 to the cooler. Further, a tray 5 in which food can be placed is provided in the switching chamber 200. In the switching chamber 200, an internal temperature detection means 6 configured by, for example, a thermistor for detecting the air temperature in the internal chamber (hereinafter referred to as the internal temperature) is disposed. Further, near the ceiling surface of the switching chamber 200 that is not easily affected by cold air, a food temperature detection means 7 configured by, for example, an infrared sensor, which detects the surface temperature of the food stored in the switching chamber 200 is disposed. .

図3は、参考例1における冷蔵庫の制御系統概略図である。
冷蔵庫1は、マイクロコンピュータで構成された制御手段としての制御装置10を備えている。制御装置10は、CPUと、各種データを記憶するRAMと、運転制御を行うためのプログラム等を記憶するROM(何れも図示せず)とを備えており、ROM内のプログラムに従って冷蔵庫1全体を制御する。
FIG. 3 is a schematic diagram of a control system of the refrigerator in Reference Example 1.
The refrigerator 1 is provided with a control device 10 as a control means constituted by a microcomputer. The control device 10 includes a CPU, a RAM that stores various data, and a ROM (none of which is shown) that stores a program for performing operation control, etc., and the entire refrigerator 1 according to the program in the ROM. Control.

制御装置10には、貯蔵室に投入された食品を冷却すると共に、冷却能力を制御可能な冷却手段(圧縮機11、ダンパー12及びファン13等)14が接続されている。ダンパー12は、冷蔵庫1の背面側の風路内に風路を開閉可能に設けられ、ダンパー12の開閉により各部屋100〜500の温度調節が行われる。また、ファン13は、冷却器により冷却された冷気を各部屋100〜500に送風する。制御装置10は、各部屋100〜500のそれぞれに設けられた各温度検出手段(庫内温度検出手段6を含む)から温度情報を取得し、冷却手段14を制御して、各部屋を、それぞれ部屋対応の温度範囲に維持する運転(通常運転)を行っている。すなわち、制御装置10が圧縮機11のON・OFFの制御、ダンパー12の開閉制御、ファン13のON・OFF制御や回転数制御を行っている。例えば食品や食材の投入等によって庫内温度の上昇を検知した場合、制御装置10は、圧縮機11をONしてダンパー12を開き、逆に冷やしすぎた場合には、圧縮機11をOFFしてダンパー12を閉じる等の制御を行っている。また、制御装置10は、冷却器に付いた霜を溶かす霜取り動作や製氷、照明などの制御も行っている。   The control device 10 is connected to cooling means (such as the compressor 11, the damper 12, and the fan 13) 14 that cools the food put into the storage room and can control the cooling capacity. The damper 12 is provided in the air path on the back side of the refrigerator 1 so that the air path can be opened and closed, and the temperature of each of the rooms 100 to 500 is adjusted by opening and closing the damper 12. Moreover, the fan 13 blows the cold air cooled by the cooler to each room 100-500. The control apparatus 10 acquires temperature information from each temperature detection means (including the internal temperature detection means 6) provided in each of the rooms 100 to 500, and controls the cooling means 14 to control each room. Operation (normal operation) is performed to maintain the temperature range corresponding to the room. That is, the control device 10 performs ON / OFF control of the compressor 11, opening / closing control of the damper 12, ON / OFF control of the fan 13, and rotation speed control. For example, when an increase in the internal temperature is detected due to the input of food or food, etc., the control device 10 turns on the compressor 11 and opens the damper 12, and conversely when it is cooled too much, it turns off the compressor 11. The damper 12 is closed. Further, the control device 10 also performs control such as defrosting operation for melting frost attached to the cooler, ice making, and lighting.

制御装置10には、庫内温度検出手段6及び食品温度検出手段7が接続されており、それぞれの検出温度が制御装置10に入力される。制御装置10は、温度−飽和水蒸気圧力の関数を保持しており、庫内温度検出手段6により検出された庫内温度に基づいて庫内温度の飽和水蒸気圧P1を算出すると共に、食品温度検出手段7により検出された食品温度に基づいて食品温度の飽和水蒸気圧P2を算出する算出部10aを備えている。算出部10aは更に、P1とP2との差分ΔP(=P2−P1)を求め、その差分ΔPを積算する。制御装置10は、算出部10aで算出された一日当たりの差分ΔPの積算値が予め設定された一日あたりの許容積算値を超えないように冷却手段14を制御する制御部10bを備えている。制御部10bは、具体的には、単位時間内の差分ΔPの積算値に対して予め閾値を設け、単位時間の積算値が閾値を超えた場合、冷却手段14の冷却能力を弱める制御を行う。   The control device 10 is connected to the internal temperature detection means 6 and the food temperature detection means 7, and each detected temperature is input to the control device 10. The control device 10 holds a function of temperature-saturated steam pressure, calculates the saturated steam pressure P1 of the interior temperature based on the interior temperature detected by the interior temperature detection means 6, and detects the food temperature. A calculating unit 10a that calculates the saturated water vapor pressure P2 of the food temperature based on the food temperature detected by the means 7 is provided. The calculating unit 10a further obtains a difference ΔP (= P2−P1) between P1 and P2, and integrates the difference ΔP. The control device 10 includes a control unit 10b that controls the cooling unit 14 so that the integrated value of the difference ΔP per day calculated by the calculating unit 10a does not exceed a preset allowable integrated value per day. . Specifically, the control unit 10b sets a threshold value in advance for the integrated value of the difference ΔP within the unit time, and performs control to weaken the cooling capacity of the cooling unit 14 when the integrated value of the unit time exceeds the threshold value. .

次に、保存中の食品が乾燥する仕組みについて述べる。食品は、通常、袋や容器、ラップなどに包装された状態で保存される。保存中の食品と、庫内温度とが同じ温度であるときは水分の移動は起きない。しかし、扉の開閉や霜取り動作などにより庫内温度が上昇すると、包装内の食品に接している空気温度と食品の温度も上昇する。庫内温度が元の温度へと下降すると、食品も冷却されて食品温度が下降するが、食品は空気より熱容量が大きいため、空気温度より遅れて下降する。このため、食品温度の方が空気温度よりも高い状態となる。このとき、食品温度の飽和水蒸気圧P2の方が、空気温度の飽和水蒸気圧P1よりも高い。水は飽和水蒸気圧の高いほうから低い方へと移動するため、食品中の水分が空気中へと移動し、食品の乾燥が起きる。単位時間(ここでは1時間)に食品から喪失する水分量W[kg/h]は、次式によって表されることが知られている。   Next, the mechanism for drying the food during storage will be described. The food is usually stored in a state of being packaged in a bag, container, wrap or the like. When the food being stored is at the same temperature as the inside temperature, no moisture transfer occurs. However, when the internal temperature rises due to the opening / closing of the door or the defrosting operation, the temperature of the air in contact with the food in the package and the temperature of the food also rise. When the inside temperature is lowered to the original temperature, the food is also cooled and the food temperature is lowered. However, since the food has a larger heat capacity than the air, the food is lowered later than the air temperature. For this reason, the food temperature is higher than the air temperature. At this time, the saturated water vapor pressure P2 at the food temperature is higher than the saturated water vapor pressure P1 at the air temperature. Since water moves from a higher saturated water vapor pressure to a lower one, the moisture in the food moves into the air and the food is dried. It is known that the amount of water W [kg / h] lost from food in a unit time (here 1 hour) is expressed by the following equation.

W=βF(P2−P1)
β:食品の表面の形状によって決まる蒸散率 [kg/m2h(mmHg)]
F:食品の表面積 [m2]
P1:食品に接している空気の飽和水蒸気圧 [mmHg]
P2:食品の表面の飽和水蒸気圧 [mmHg]
β、Fは、一定と考えられるため、水分喪失量Wは、P2−P1=ΔPで決まる。食品に接している空気温度は、庫内の空気温度とほぼ同じとみなせるので、水分喪失量Wは庫内温度の飽和水蒸気圧P1と食品温度の飽和水蒸気圧P2との差分ΔPで算出することができる。
W = βF (P2-P1)
β: Transpiration rate determined by the shape of the food surface [kg / m 2 h (mmHg)]
F: Surface area of food [m 2 ]
P1: Saturated water vapor pressure of air in contact with food [mmHg]
P2: Saturated water vapor pressure on the surface of food [mmHg]
Since β and F are considered to be constant, the water loss W is determined by P2−P1 = ΔP. Since the temperature of the air in contact with the food can be regarded as almost the same as the temperature of the air in the cabinet, the amount of water loss W should be calculated by the difference ΔP between the saturated water vapor pressure P1 at the food temperature and the saturated water vapor pressure P2 at the food temperature. Can do.

図4は、庫内温度の飽和水蒸気圧P1と食品温度の飽和水蒸気圧P2との差分ΔP=P2−P1の積算値ΣΔPと、食品の水分喪失量との関係を示したものである。積算値ΣΔPが多いほど、水分喪失量も多くなることがわかる。すなわち、食品の乾燥には、庫内温度の温度変動の幅ではなく、食品温度と庫内温度の飽和水蒸気圧の差が関与しているため、差分の積算値ΣΔPに基づいて温度制御を行うことで、食品の水分喪失量を抑制し、乾燥を防ぐことができる。従って、本例では、食品の温度が庫内温度よりも高く、庫内温度の飽和水蒸気圧P1と食品温度の飽和水蒸気圧P2の差分ΔPの単位時間内における積算値が予め設定した閾値以上となった場合、冷却能力を下げるように冷却手段14を制御し、一日の合計の積算値が予め設定された許容積算値を超えないように制御する。   FIG. 4 shows the relationship between the integrated value ΣΔP of the difference ΔP = P2−P1 between the saturated water vapor pressure P1 at the internal temperature and the saturated water vapor pressure P2 at the food temperature, and the water loss of the food. It can be seen that the greater the integrated value ΣΔP, the greater the amount of water loss. That is, since the difference in the saturated water vapor pressure between the food temperature and the internal temperature is involved in the drying of the food, not the width of the temperature fluctuation of the internal temperature, temperature control is performed based on the integrated value ΣΔP of the difference. In this way, the amount of water lost in the food can be suppressed and drying can be prevented. Therefore, in this example, the temperature of the food is higher than the internal temperature, and the integrated value within the unit time of the difference ΔP between the saturated water vapor pressure P1 of the internal temperature and the saturated water vapor pressure P2 of the food temperature is equal to or greater than a preset threshold value. In this case, the cooling means 14 is controlled so as to reduce the cooling capacity, and the total integrated value of the day is controlled so as not to exceed the preset allowable integrated value.

次に、許容積算値の決定方法について説明する。
水分喪失量が多くなると、食品の重量が減るだけでなく、食品のみずみずしさが失われ、食感が低下し、酸化作用が食品の深部まで及ぶことから、品質の劣化が促進される。以下、肉の例で説明する。
Next, a method for determining the allowable integrated value will be described.
When the amount of water loss is increased, not only the weight of the food is reduced, but also the freshness of the food is lost, the texture is lowered, and the oxidation action reaches the deep part of the food, thereby promoting the deterioration of the quality. Hereinafter, an example of meat will be described.

肉の変色は、肉中の色素たんぱくであるミオグロビンが酸素と結びついてメトミオグロビンに変わる酸化反応であり、一般に消費者にも認識されている品質評価の一つである。図5は、7日間保存の牛肉における水分喪失量とメトミオグロビンの変化量との関係を示したものである。水分喪失量が大きくなると、酸化反応が進み、メトミオグロビンの変化量は多くなる。酸化が進み変色が著しくなると、ユーザーの消費意欲は低下する。   Discoloration of meat is an oxidation reaction in which myoglobin, a pigment protein in meat, is combined with oxygen to turn into metmyoglobin, and is one of quality evaluations generally recognized by consumers. FIG. 5 shows the relationship between water loss and metmyoglobin change in beef stored for 7 days. As the amount of water loss increases, the oxidation reaction proceeds and the amount of change in metmyoglobin increases. As oxidation progresses and discoloration becomes significant, users' willingness to consume decreases.

次の表1は、一日あたりの積算値が異なる保存環境で、7日間保存した牛肉について、水分喪失量、色の変化、食味を評価し、それぞれ可食か否かを示した実験結果である。   The following Table 1 shows the results of an experiment that evaluated whether or not each beef was edible by evaluating the amount of water loss, color change, and taste of beef stored for 7 days in storage environments with different integrated values per day. is there.

Figure 2012063131
Figure 2012063131

色評価から、水分喪失量が3[g/100g食品]以下であれば、変色は感知されない程度に小さく、ユーザーの消費意欲に影響しない範囲の品質となることがわかった。また食味評価では、水分喪失量5[g/100g食品]で食感の劣化を感じる被験者があり、水分喪失量10[g/100g食品]では、乾燥による食感の劣化を顕著に感じることがわかった。以上より、水分喪失量が3[g/100g食品]以下となる保存環境、すなわち一日あたりの積算値ΣΔPが150mmHg/日以下であれば、食品の品質を維持した保存が可能になる。よって、一日の許容積算値を150mmHg/日に設定する。   From the color evaluation, it was found that if the amount of water loss is 3 [g / 100 g food] or less, the discoloration is small enough not to be detected, and the quality is in a range that does not affect the user's willingness to consume. In addition, in the taste evaluation, there is a subject who feels that the texture is deteriorated at a water loss of 5 [g / 100 g food], and at the water loss of 10 [g / 100 g food], the deterioration of the texture due to drying may be noticeable. all right. From the above, if the storage environment has a water loss of 3 [g / 100 g food] or less, that is, if the integrated value ΣΔP per day is 150 mmHg / day or less, the food can be stored while maintaining the quality. Therefore, the allowable integrated value for one day is set to 150 mmHg / day.

図6は、上記のように構成した冷蔵庫の制御フローチャートである。なお、以下では、上記実験結果を踏まえ、一日の許容積算値を150mmHg/日に設定したものとして説明する。
まず、制御装置10は、冷却手段14を駆動し、切替室200の現在の設定温度に応じて予め設定された通常の冷却能力である冷却速度Vで運転し(S101)、同時に、時間の積算を開始する(S102)。
FIG. 6 is a control flowchart of the refrigerator configured as described above. In the following description, it is assumed that the allowable integrated value for one day is set to 150 mmHg / day based on the experimental results.
First, the control device 10 drives the cooling means 14 to operate at a cooling rate V that is a normal cooling capacity set in advance according to the current set temperature of the switching chamber 200 (S101), and simultaneously accumulates time. Is started (S102).

庫内温度検出手段6により庫内温度T1を、食品温度検出手段7により食品温度T2を検出し(S103)、制御装置10は、食品温度T2が庫内温度T1よりも高いとき(S104)、庫内温度T1の飽和水蒸気圧P1と食品温度T2の飽和水蒸気圧P2とを算出する(S105)。次に、飽和水蒸気圧の差分ΔP=P2−P1を算出し(S106)、ΣΔPに積算する(S107)。   The inside temperature T1 is detected by the inside temperature detecting means 6 and the food temperature T2 is detected by the food temperature detecting means 7 (S103). When the food temperature T2 is higher than the inside temperature T1 (S104), A saturated water vapor pressure P1 at the internal temperature T1 and a saturated water vapor pressure P2 at the food temperature T2 are calculated (S105). Next, the difference ΔP = P2−P1 of the saturated water vapor pressure is calculated (S106) and added to ΣΔP (S107).

制御装置10は、積算時間tが単位時間(ここでは、例えば1時間)に達するまでの間、ステップS103〜S107の処理を繰り返し、食品温度T2が庫内温度T1よりも高いときの飽和水蒸気圧の差分ΔPを積算する。そして、積算時間tが単位時間(例えば1時間)に達すると(S108)、積算値ΣΔPが予め設定された閾値以上であるか否かを判断し(S109)、積算値ΣΔPが閾値以上の場合、冷却能力を弱めるように冷却手段14を制御し、冷却速度V1(<V)で運転を行う(S110)。ここで、冷却能力を弱める際には、例えばダンパー12を閉じるか、又は、ダンパー12が閉じている時間を長くして冷気流入を抑えればよい。またダンパー12を制御する他に、圧縮機11の回転数やファン13の回転数を少なくしてもよい。食品の投入は、食品温度検出手段7による検出温度の変化や引き出しドア2の開閉によって検知したり、操作パネル1aの開閉ボタンを押すなどのユーザーの操作により検知してもよい。なお、上述したように、1日の許容積算値ΣΔPが150mmHg/日を超えないことを目標としているため、ここでの閾値は、一日の許容積算値(=150)を24時間で除算した値(150/24=6.2)に設定する。   The control device 10 repeats the processes of steps S103 to S107 until the accumulated time t reaches a unit time (here, for example, 1 hour), and the saturated water vapor pressure when the food temperature T2 is higher than the internal temperature T1. The difference ΔP is integrated. When the integration time t reaches a unit time (for example, 1 hour) (S108), it is determined whether or not the integration value ΣΔP is equal to or greater than a preset threshold value (S109). Then, the cooling means 14 is controlled to weaken the cooling capacity, and the operation is performed at the cooling rate V1 (<V) (S110). Here, when weakening the cooling capacity, for example, the damper 12 may be closed or the time during which the damper 12 is closed may be lengthened to suppress the inflow of cold air. In addition to controlling the damper 12, the rotational speed of the compressor 11 and the rotational speed of the fan 13 may be reduced. The input of the food may be detected by a change in the detected temperature by the food temperature detection means 7, opening / closing of the drawer door 2, or by a user operation such as pressing an opening / closing button of the operation panel 1a. As described above, since the target is that the allowable integrated value ΣΔP per day does not exceed 150 mmHg / day, the threshold here is the allowable integrated value (= 150) of the day divided by 24 hours. Set the value (150/24 = 6.2).

一方、ステップS109の判断において積算値ΣΔPが閾値未満の場合は、積算値ΣΔPをゼロリセットした後、ステップS101に戻り、通常の冷却速度Vでの運転を継続する。   On the other hand, if the integrated value ΣΔP is less than the threshold in the determination in step S109, the integrated value ΣΔP is reset to zero, and then the process returns to step S101 to continue the operation at the normal cooling rate V.

以上説明したように本参考例1では、食品の乾燥には、食品温度と庫内温度の飽和水蒸気圧の差が関与することに鑑み、庫内温度と食品温度のそれぞれから算出した各飽和水蒸気圧の差分を積算し、一日当たりの差分ΔPの積算値が予め設定された一日あたりの許容積算値を超えないように冷却手段14を制御するようにしたので、食品の乾燥を防止することが可能となる。また、許容積算値を実験により求めた150mmHg/日に設定したので、食品の品質を維持した保存が可能となる。   As described above, in this Reference Example 1, in view of the fact that the drying of food involves the difference in the saturated water vapor pressure between the food temperature and the internal temperature, each saturated water vapor calculated from the internal temperature and the food temperature is used. The pressure difference is integrated, and the cooling means 14 is controlled so that the integrated value of the difference ΔP per day does not exceed the preset allowable integrated value per day. Is possible. In addition, since the allowable integrated value is set to 150 mmHg / day obtained by experiments, the food can be stored while maintaining the quality of the food.

ところで、飽和水蒸気圧は、温度の指数関数として表すことができ、同じ温度差であっても、温度帯が高い方が飽和水蒸気圧の差は大きくなる。切替室200は設定温度が可変であり、高い温度帯(冷蔵(3℃)、チルド(0℃)、ソフト冷凍(−7℃))に切り替えた場合、低い温度帯(冷凍(−18℃))の場合に比べて、同じ温度差であっても飽和水蒸気圧の差は大きくなり、乾燥が進むことが考えられる。すなわち、例えば冷蔵(3℃)において食品温度が3℃、庫内温度が2℃で温度差が1℃の場合と、冷凍(−18℃)において食品温度が−17℃、庫内温度が−18℃で温度差が同様に1℃の場合とを比較すると、温度帯が高い冷蔵の場合の方が飽和水蒸気圧の差は大きくなり、乾燥が進む。   By the way, the saturated water vapor pressure can be expressed as an exponential function of temperature, and even if the temperature difference is the same, the difference in the saturated water vapor pressure becomes larger as the temperature zone is higher. The switching chamber 200 has a variable set temperature, and when switched to a high temperature zone (refrigerated (3 ° C.), chilled (0 ° C.), soft refrigeration (−7 ° C.)), a low temperature zone (freezing (−18 ° C.)) ), The difference in saturated water vapor pressure is increased even if the temperature difference is the same, and drying may proceed. That is, for example, when the food temperature is 3 ° C., the internal temperature is 2 ° C. and the temperature difference is 1 ° C. in refrigeration (3 ° C.), the food temperature is −17 ° C. and the internal temperature is −− When the temperature difference is similarly 1 ° C. at 18 ° C., the difference in saturated water vapor pressure becomes larger in the case of refrigeration with a high temperature zone, and drying proceeds.

このため、設定温度を可変に設定できる切替室200に対し、本参考例1では、単に食品温度と庫内温度との温度差に基づいて冷却手段14を制御するのではなく、食品温度と庫内温度のそれぞれから求めた飽和水蒸気圧の差に基づいて冷却手段14を制御するようにしている。これにより、切替室200がどの温度帯に設定されても、同じ指標を用いた制御が可能となり、制御装置10を簡単にすることができる。   For this reason, in the switching chamber 200 in which the set temperature can be variably set, in the first reference example, the cooling means 14 is not simply controlled based on the temperature difference between the food temperature and the interior temperature, but the food temperature and the warehouse temperature. The cooling means 14 is controlled based on the difference in saturated water vapor pressure determined from each of the internal temperatures. Thereby, no matter which temperature zone the switching chamber 200 is set, control using the same index is possible, and the control device 10 can be simplified.

また、切替室200をソフト冷凍に切り替えた場合、−5℃から−9℃での保存が可能となり、食品の乾燥を防止できる上、その食品を冷凍状態でも力を入れずに切断できるため、そのまま調理することができ、利便性が向上する。   In addition, when the switching chamber 200 is switched to soft freezing, it becomes possible to store at −5 ° C. to −9 ° C., and the food can be prevented from drying, and the food can be cut without effort even in the frozen state. It can be cooked as it is, improving convenience.

参考例2.
参考例2は、参考例1と制御方法の本質は同様であるが、参考例1と切替室200部分の構造が多少異なり、また、冷却手段14の制御を更に具体的に説明するものである。
Reference Example 2
In Reference Example 2, the essence of the control method is the same as in Reference Example 1, but the structure of the switching chamber 200 portion is slightly different from that in Reference Example 1, and the control of the cooling means 14 will be described more specifically. .

図7は、参考例2における冷蔵庫の切替室部分の側断面図である。図7において参考例1の図2と同一部分には同一符号を付す。
図7の左側が冷蔵庫1の正面、右側が背面であり、切替室200の正面には引き出しドア2が設けられ、切替室200の背面に吹き出し口3aが設けられている。また、切替室200の天井側にも吹き出し口3bが設けられており、複数の吹き出し口を有する構成となっている。吹き出し口3a、3bには、それぞれ専用ダンパー12a、12bが設けられ、ダンパー12a、12bを制御することで、吹き出し口3a、3bを開閉可能となっている。吹き出し口を複数設け、それぞれを開閉可能とすることで、切替室200に流入する冷気量を調整することが可能となっている。
FIG. 7 is a side cross-sectional view of the switching chamber portion of the refrigerator in Reference Example 2. In FIG. 7, the same parts as those in FIG.
The left side of FIG. 7 is the front of the refrigerator 1, and the right side is the back. The drawer door 2 is provided on the front of the switching chamber 200, and the outlet 3 a is provided on the back of the switching chamber 200. Moreover, the blower outlet 3b is provided also in the ceiling side of the switching chamber 200, and it has the structure which has a several blower outlet. Dedicated dampers 12a and 12b are provided in the outlets 3a and 3b, respectively, and the outlets 3a and 3b can be opened and closed by controlling the dampers 12a and 12b. By providing a plurality of outlets and opening and closing each, it is possible to adjust the amount of cold air flowing into the switching chamber 200.

図8は、参考例2における冷蔵庫の制御系統概略図である。図8において参考例1の図3と同一部分には同一符号を付す。
参考例2の冷蔵庫1は、参考例1の冷却手段14のダンパー12を、吹き出し口3a、3bの個数に合わせてダンパー12a及びダンパー12bとしたもので、その他の構成は参考例1と同様である。
FIG. 8 is a schematic diagram of a control system of the refrigerator in Reference Example 2. In FIG. 8, the same parts as those in FIG.
In the refrigerator 1 of Reference Example 2, the damper 12 of the cooling means 14 of Reference Example 1 is made of a damper 12a and a damper 12b in accordance with the number of outlets 3a and 3b, and other configurations are the same as those of Reference Example 1. is there.

図9は、上記のように構成した参考例2における冷蔵庫の制御フローチャートである。なお、以下では、上記参考例1で説明した実験結果を踏まえ、一日の積算値が150mmHg/日を超えないように冷却手段14を制御する場合について説明する。なお、切替室200は通常、全ての吹き出し口3a、3bが開いた状態である。
まず、制御装置10は、冷却手段14を駆動し、切替室200の現在の設定温度に応じて予め設定された通常の冷却能力である冷却速度Vで運転し(S201)、同時に、時間の積算を開始する(S202)。
FIG. 9 is a control flowchart of the refrigerator in Reference Example 2 configured as described above. In the following, a case will be described in which the cooling means 14 is controlled so that the integrated value per day does not exceed 150 mmHg / day, based on the experimental results described in Reference Example 1 above. Note that the switching chamber 200 is normally in a state in which all the air outlets 3a and 3b are opened.
First, the control device 10 drives the cooling means 14 to operate at a cooling rate V that is a normal cooling capacity set in advance according to the current set temperature of the switching chamber 200 (S201), and simultaneously accumulates time. Is started (S202).

庫内温度検出手段6により庫内温度T1を、食品温度検出手段7により食品温度T2を検出し(S203)、制御装置10は、食品温度T2が庫内温度T1よりも高いとき(S204)、庫内温度T1の飽和水蒸気圧P1と食品温度T2の飽和水蒸気圧P2とを算出する(S205)。次に、飽和水蒸気圧の差分ΔP=P2−P1を算出し(S206)、ΣΔPに積算する(S207)。   The internal temperature T1 is detected by the internal temperature detection means 6 and the food temperature T2 is detected by the food temperature detection means 7 (S203). When the food temperature T2 is higher than the internal temperature T1 (S204), A saturated water vapor pressure P1 at the internal temperature T1 and a saturated water vapor pressure P2 at the food temperature T2 are calculated (S205). Next, the difference ΔP = P2−P1 of the saturated water vapor pressure is calculated (S206) and added to ΣΔP (S207).

制御装置10は、積算時間tが単位時間(ここでは、例えば1時間)に達するまでの間、ステップS203〜S207の処理を繰り返し、食品温度T2が庫内温度T1よりも高いときの飽和水蒸気圧の差分ΔPを積算する。そして、積算時間tが単位時間(例えば1時間)に達すると(S208)、積算値ΣΔPが予め設定された閾値以上であるか否かを判断する(S209)。積算値ΣΔPが閾値以上の場合は、吹き出し口3aが開いているかどうかをチェックし(S210)、吹き出し口3aが開いている場合、ダンパー12aを閉じて吹き出し口3aを閉じ、切替室200への冷気流入を抑える。これにより、冷却速度を弱めることができる。また、吹き出し口3aが閉じている場合は、冷却手段14を制御して冷却能力を弱め、冷却速度V1(<V)で運転を行う(S212)。ここで、吹き出し口3aが開いている場合も閉じている場合も、結局のところ冷却速度を低下させる制御を行っているが、吹き出し口3aの開閉に応じて制御を分けたのは以下の理由による。すなわち、吹き出し口3aが開いている場合は、圧縮機11などの冷却手段14を調整せずに、単に吹き出し口3aを閉じることで簡単に冷却速度を低下させることができるため、吹き出し口3aを閉じる制御を行っている。一方、吹き出し口3aが既に閉じている場合は、圧縮機11又はファン13への印加電圧を抑え、圧縮機11の回転数やファン13の回転数を少なくするなどして冷却速度V1で運転する制御を行うようにしている。   The control device 10 repeats the processing of steps S203 to S207 until the accumulated time t reaches a unit time (here, for example, 1 hour), and the saturated water vapor pressure when the food temperature T2 is higher than the internal temperature T1. The difference ΔP is integrated. When the integration time t reaches a unit time (for example, 1 hour) (S208), it is determined whether or not the integration value ΣΔP is equal to or greater than a preset threshold value (S209). If the integrated value ΣΔP is equal to or greater than the threshold value, it is checked whether or not the air outlet 3a is open (S210). If the air outlet 3a is open, the damper 12a is closed and the air outlet 3a is closed. Reduces inflow of cold air. Thereby, a cooling rate can be weakened. If the outlet 3a is closed, the cooling means 14 is controlled to weaken the cooling capacity, and the operation is performed at the cooling rate V1 (<V) (S212). Here, in both cases where the air outlet 3a is open and closed, control is performed to lower the cooling rate in the end. The reason why the control is divided according to the opening and closing of the air outlet 3a is as follows. by. That is, when the air outlet 3a is open, the cooling speed can be easily reduced by simply closing the air outlet 3a without adjusting the cooling means 14 such as the compressor 11, so the air outlet 3a Close control is performed. On the other hand, when the blowout port 3a is already closed, the voltage applied to the compressor 11 or the fan 13 is suppressed, and the rotation speed of the compressor 11 or the rotation speed of the fan 13 is reduced. Control is performed.

ステップS209の判断において積算値ΣΔPが閾値未満の場合は、積算値ΣΔPをゼロリセットした後、ステップS201に戻り、通常の冷却速度Vでの運転を継続する。   If the integrated value ΣΔP is less than the threshold value in the determination in step S209, the integrated value ΣΔP is reset to zero, and then the process returns to step S201 to continue the operation at the normal cooling rate V.

以上説明したように、参考例2によれば、参考例1と同様の作用効果を得ることができる。また、参考例2では、開口している(開いている)吹き出し口の数を可変にすることにより、容易に冷却能力を変化させることができる。なお、本参考例2では、開口している吹き出し口の数を変更させる手段としてダンパーを用いた例を示したが、ダンパーに限られたものではなく、例えば電動シャッターとしても良い。   As described above, according to the reference example 2, the same effect as the reference example 1 can be obtained. In Reference Example 2, the cooling capacity can be easily changed by making the number of open (open) outlets variable. In the second reference example, an example is shown in which a damper is used as a means for changing the number of open outlets. However, the present invention is not limited to the damper, and may be an electric shutter, for example.

実施の形態1.
図10は、本発明の実施の形態1に係る冷蔵庫の切替室部分の側断面図である。なお、図10において図2に示した参考例1と同じ部分にはこれと同じ符号を付す。また、実施の形態1の冷蔵庫1の制御系統は図3に示した参考例1の構成から食品温度検出手段7を省略した構成であり、その他は参考例1と同様である。以下、実施の形態1が参考例1と異なる部分を中心に説明する。
Embodiment 1 FIG.
FIG. 10 is a side cross-sectional view of the switching chamber portion of the refrigerator according to Embodiment 1 of the present invention. In FIG. 10, the same parts as those in Reference Example 1 shown in FIG. Moreover, the control system of the refrigerator 1 of Embodiment 1 is the structure which abbreviate | omitted the food temperature detection means 7 from the structure of the reference example 1 shown in FIG. Hereinafter, the first embodiment will be described with a focus on differences from the reference example 1.

図10に示すように、切替室200の側面下側に吹き出し口3が設けられ、この吹き出し口3からトレイ5の下側の切替室200の床面に沿って冷気が切替室200に流入する。また、切替室200の上方には切替室200よりも温度が高い設定の部屋である冷蔵室100が配置され、切替室200の下方には、切替室200よりも温度が低い設定の部屋である冷凍室400が配置されている。このような構成により、切替室200内の温度分布は、床面温度が空気温度よりも低くなっている。   As shown in FIG. 10, a blowing port 3 is provided on the lower side of the switching chamber 200, and cold air flows into the switching chamber 200 from the blowing port 3 along the floor surface of the switching chamber 200 below the tray 5. . In addition, a refrigeration room 100 that is a room having a higher temperature than the switching room 200 is disposed above the switching room 200, and a room having a lower temperature than the switching room 200 is disposed below the switching room 200. A freezer compartment 400 is arranged. With such a configuration, the temperature distribution in the switching chamber 200 is such that the floor surface temperature is lower than the air temperature.

図11は、本発明の実施の形態1における冷蔵庫の通常運転中の切替室の温度の経時変化の一例を示す図である。図11において濃い線が食品温度、薄い線が庫内温度を示している。
冷蔵庫1では、通常運転中は切替室200内を現在の設定温度に維持する制御が行われており、扉の開閉や霜取り動作などにより温度変化が生じると、現在の設定温度に戻そうとする制御が行われる。例えば食品や食材の投入等によって庫内温度の上昇を検知した場合、制御装置10は、圧縮機11をONしてダンパー12を開き、逆に冷やしすぎた場合には、圧縮機11をOFFし、ダンパー12を閉じる等の制御を行う。制御装置10は、具体的な制御として、切替室200の現在の設定温度を中心として所定の温度変動幅を持ち、温度変動幅の上限温度を上回った場合に圧縮機11をONし、温度変動幅の下限温度を下回った場合に圧縮機11をOFFする制御を行っている。このような制御により、切替室内の温度は図11に示すような温度変動が生じている。
FIG. 11 is a diagram illustrating an example of a change over time in the temperature of the switching chamber during normal operation of the refrigerator according to Embodiment 1 of the present invention. In FIG. 11, the dark line indicates the food temperature and the thin line indicates the internal temperature.
In the refrigerator 1, control is performed to maintain the inside of the switching chamber 200 at the current set temperature during normal operation. When a temperature change occurs due to opening / closing of the door, defrosting operation, or the like, the refrigerator 1 tries to return to the current set temperature. Control is performed. For example, when an increase in the internal temperature is detected due to the input of food or food, etc., the control device 10 turns on the compressor 11 and opens the damper 12, and conversely when it is cooled too much, it turns off the compressor 11. Then, control such as closing the damper 12 is performed. As a specific control, the control device 10 has a predetermined temperature fluctuation range centered on the current set temperature of the switching chamber 200, and turns on the compressor 11 when the temperature exceeds the upper limit temperature of the temperature fluctuation range. Control is performed to turn off the compressor 11 when the temperature falls below the lower limit temperature of the width. By such control, the temperature in the switching chamber varies as shown in FIG.

図12は、庫内の温度変動速度と食品の水分喪失量(3週間目での水分喪失量)との関係を示したものである。これにより、温度変動速度が速いほど水分喪失量は多くなることが分かる。温度変動速度が遅ければ(ここでは0.1K/分以下)、3週間後の水分喪失量を3[g/100g食品]以下に抑えることができ、水分量を維持した保存ができることがわかる。   FIG. 12 shows the relationship between the temperature fluctuation rate in the refrigerator and the amount of water loss of the food (water loss amount at the third week). Thereby, it turns out that a water loss amount increases, so that a temperature fluctuation rate is quick. It can be seen that if the rate of temperature fluctuation is slow (here, 0.1 K / min or less), the amount of water lost after 3 weeks can be suppressed to 3 [g / 100 g food] or less, and the water content can be preserved.

ここで、制御装置10は、温度変動幅を大きく設定している場合(例えば、2K)において、庫内温度を上限温度から設定温度に戻そうとする際に冷却能力を仮に最大限にして庫内を急激に冷却すると、上述した原理から食品の乾燥が進むおそれがある。このため、本実施の形態1では、庫内温度を下げる際の温度変動速度を0.1K/分以下とし、ゆっくりとしたスピードで庫内温度を下げていくようにする。そして、食品温度と庫内温度との温度差をできるだけ小さく保つようにしながら庫内温度を設定温度に到達するようにすることで、食品の乾燥抑制を図る。   Here, in the case where the temperature fluctuation range is set to be large (for example, 2K), the control device 10 temporarily sets the cooling capacity to the maximum when trying to return the internal temperature from the upper limit temperature to the set temperature. If the inside is rapidly cooled, there is a risk that the food will be dried due to the principle described above. For this reason, in this Embodiment 1, the temperature fluctuation rate at the time of lowering | hanging | removing the internal temperature shall be 0.1 K / min or less, and the internal temperature is lowered at a slow speed. And drying suppression of a foodstuff is aimed at by making the internal temperature reach preset temperature, keeping the temperature difference of food temperature and internal temperature as small as possible.

図13は、本発明の実施の形態1における冷蔵庫の制御フローチャートである。
まず、制御装置10は、冷却手段14を駆動し、切替室200の現在の設定温度に応じて予め設定された通常の冷却能力である冷却速度Vで運転し(S301)、同時に、時間の積算を開始する(S302)。
FIG. 13 is a control flowchart of the refrigerator in the first embodiment of the present invention.
First, the control device 10 drives the cooling means 14 to operate at a cooling rate V that is a normal cooling capacity preset in accordance with the current set temperature of the switching chamber 200 (S301), and at the same time, accumulates time. Is started (S302).

庫内温度検出手段6により庫内温度T1を検出し(S303)、所定時間Δt(例えば5分)経過後(S304)、再び庫内温度T1を検出し(S305)、温度変動速度ΔT/Δtを算出する(S306)。温度変動速度が0.1K/分以上の場合(S307)、冷却能力を弱めるように冷却手段14を制御し、冷却速度V1(<V)で運転を行う(S308)。冷却能力を弱める際には、ダンパー12を閉じるか、又はダンパー12が閉じている時間を長くして、切替室200内への冷気流入を抑えればよい。またダンパー12を制御する他、圧縮機11又はファン13への印加電圧を抑えて圧縮機11の回転数やファン13の回転数を少なくしてもよい。温度変動速度が0.1K/分未満のときは、ステップS301に戻って冷却速度Vでの運転を継続する。   The internal temperature detection means 6 detects the internal temperature T1 (S303), and after a predetermined time Δt (for example, 5 minutes) has elapsed (S304), the internal temperature T1 is detected again (S305), and the temperature fluctuation rate ΔT / Δt. Is calculated (S306). When the temperature fluctuation rate is 0.1 K / min or more (S307), the cooling means 14 is controlled to weaken the cooling capacity, and the operation is performed at the cooling rate V1 (<V) (S308). When the cooling capacity is weakened, the damper 12 may be closed or the time during which the damper 12 is closed may be lengthened to suppress the inflow of cold air into the switching chamber 200. In addition to controlling the damper 12, the voltage applied to the compressor 11 or the fan 13 may be suppressed to reduce the rotation speed of the compressor 11 or the rotation speed of the fan 13. When the temperature fluctuation rate is less than 0.1 K / min, the process returns to step S301 and the operation at the cooling rate V is continued.

ここで、冷却能力を決定する際には、予め設定された制御テーブルに従って決定するようにしてもよい。制御テーブルには、庫内温度と、その庫内温度が検出されたときの冷却能力(具体的には、例えば圧縮機11やファン13への印加電圧、ダンパー12の開閉等)とを対応付けて登録しておく。なお、制御テーブルに登録する冷却能力は温度変動速度が0.1K/分となるように予測して設定されたものとする。   Here, when determining the cooling capacity, it may be determined according to a preset control table. In the control table, the internal temperature and the cooling capacity when the internal temperature is detected (specifically, for example, the voltage applied to the compressor 11 and the fan 13, the opening and closing of the damper 12, etc.) are associated with each other. And register. It is assumed that the cooling capacity registered in the control table is set by predicting the temperature fluctuation rate to be 0.1 K / min.

以上説明したように本実施の形態1によれば、温度変動速度が0.1K/分以下となるように冷却手段14を制御するようにしたので、温度変動幅が大きく設定されている場合であっても、ゆっくりとした庫内温度の変化に食品の温度を追随させることができる。このとき、庫内温度と食品温度との温度差が小さくなるため、庫内温度の飽和水蒸気圧と食品温度の飽和水蒸気圧の差分ΔPも小さくなり、食品の乾燥を抑制することができる。   As described above, according to the first embodiment, the cooling means 14 is controlled so that the temperature fluctuation rate is 0.1 K / min or less, so that the temperature fluctuation range is set to be large. Even if it exists, the temperature of food can be made to follow the change of the inside temperature slowly. At this time, since the temperature difference between the internal temperature and the food temperature is small, the difference ΔP between the saturated water vapor pressure at the internal temperature and the saturated water vapor pressure at the food temperature is also small, and drying of the food can be suppressed.

ところで、実施の形態1の冷蔵庫1は、図10に示した構造により、切替室200内の温度分布が、次の図14に示すように空気温度よりもトレイ5の床面温度の方が低くなっている。   By the way, the refrigerator 1 of Embodiment 1 has the structure shown in FIG. 10, and the temperature distribution in the switching chamber 200 is lower in the floor surface temperature of the tray 5 than in the air temperature as shown in FIG. It has become.

図14は、本発明の実施の形態1に係る切替室の庫内温度(空気温度)とトレイ床面温度との比較例を示す図である。
図14に示すように庫内の空気温度よりも床面温度の方が低い温度分布により、飽和水蒸気圧差による水分移動は、食品から飽和水蒸気圧の低いトレイ5の床面へ、下方へ向かって起きる。食品は袋や容器に入れられた状態でトレイ5に載せられており、食品の下方は、食品と包装との隙間しか空間がないため、すぐに飽和に達し、それ以上水分移動しない。このため、図14に示す温度分布の切替室200の場合、水分喪失量を抑制することができる。
FIG. 14 is a diagram showing a comparative example of the internal temperature (air temperature) of the switching chamber and the tray floor surface temperature according to Embodiment 1 of the present invention.
As shown in FIG. 14, due to the temperature distribution in which the floor surface temperature is lower than the air temperature in the warehouse, the moisture movement due to the saturated water vapor pressure difference is directed downward from the food to the floor surface of the tray 5 having a low saturated water vapor pressure. Get up. The food is placed on the tray 5 in a bag or a container. Since there is only a space between the food and the package below the food, the food reaches saturation immediately and does not move any more. For this reason, in the case of the temperature distribution switching chamber 200 shown in FIG. 14, the amount of water loss can be suppressed.

また、トレイ5の床面からの直接冷却と、吹き出し口3から流入する冷気による間接冷却が行われるため、庫内温度の温度変動速度を0.1K/分以下とし、ゆっくりとした冷却を行っても、食品を効率的に冷却することができる。このため、食品の温度が庫内温度よりも高い状態の時間を短くでき、水分喪失抑制に効果的である。   Moreover, since direct cooling from the floor surface of the tray 5 and indirect cooling by the cold air flowing in from the blowout port 3 are performed, the temperature fluctuation rate of the internal temperature is set to 0.1 K / min or less, and the cooling is performed slowly. Even so, the food can be efficiently cooled. For this reason, the time in which the temperature of the food is higher than the internal temperature can be shortened, which is effective in suppressing water loss.

なお、実施の形態1では、図10に示したように吹き出し口3が1箇所の例を示したが、複数箇所設けても良く、この場合、複数の吹き出し口のそれぞれに対応してダンパーを設け、各ダンパーを制御するなどして温度変動速度が0.1K/分以下となるようにすればよい。   In the first embodiment, as shown in FIG. 10, an example in which one outlet 3 is provided is shown. However, a plurality of outlets may be provided. In this case, a damper is provided corresponding to each of the plurality of outlets. It is only necessary that the temperature fluctuation speed is 0.1 K / min or less by providing and controlling each damper.

1a 操作パネル、2 ドア、3 吹き出し口、3a 吹き出し口、3b 吹き出し口、4 戻り口、5 トレイ、6 庫内温度検出手段、7 食品温度検出手段、10 制御装置、10a 算出部、10b 制御部、11 圧縮機、12 ダンパー、12a ダンパー、12b ダンパー、13 ファン、14 冷却手段、100 冷蔵室、200 切替室、300 製氷室、400 冷凍室、500 野菜室。   DESCRIPTION OF SYMBOLS 1a Operation panel, 2 door, 3 outlet, 3a outlet, 3b outlet, 4 return opening, 5 trays, 6 inside temperature detection means, 7 food temperature detection means, 10 control apparatus, 10a calculation part, 10b control part , 11 Compressor, 12 damper, 12a damper, 12b damper, 13 fan, 14 cooling means, 100 refrigeration room, 200 switching room, 300 ice making room, 400 freezing room, 500 vegetable room.

Claims (4)

食品を保存する貯蔵室と、
前記貯蔵室内の空気温度を検出する貯蔵室温度検出手段と、
前記貯蔵室に投入された食品を冷却すると共に、冷却能力を制御可能な冷却手段と、
前記貯蔵室温度検出手段にて検出された空気温度に基づいて前記冷却手段を制御し、前記貯蔵室内を設定温度に維持する通常運転を行う制御手段とを備え、
前記貯蔵室の床面の温度が前記貯蔵室の他の部分の空気温度よりも低くなる構成とし、
前記制御手段は、通常運転中における温度変動速度が0.1K/分以下となるように前記冷却手段の冷却能力を制御することを特徴とする冷蔵庫。
A storage room for storing food,
A storage chamber temperature detecting means for detecting an air temperature in the storage chamber;
Cooling means capable of cooling the food charged in the storage room and controlling the cooling capacity;
Control means for controlling the cooling means based on the air temperature detected by the storage room temperature detection means, and performing a normal operation for maintaining the storage room at a set temperature,
The temperature of the floor surface of the storage room is configured to be lower than the air temperature of the other part of the storage room,
The refrigerator characterized in that the control means controls the cooling capacity of the cooling means so that the temperature fluctuation rate during normal operation is 0.1 K / min or less.
前記貯蔵室は設定温度が可変であることを特徴とする請求項1記載の冷蔵庫。   The refrigerator according to claim 1, wherein the storage room has a variable set temperature. 前記貯蔵室の設定温度が−5℃から−9℃であることを特徴とする請求項1又は請求項2記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein a set temperature of the storage room is -5 ° C to -9 ° C. 前記貯蔵室内に冷気を流入させるための吹き出し口を複数設け、吹き出し口はそれぞれ開閉可能であり、開口する吹き出し口の数を可変にして冷却能力を制御することを特徴とする請求項1乃至請求項3の何れかに記載の冷蔵庫。   A plurality of air outlets for allowing cool air to flow into the storage chamber are provided, each of the air outlets can be opened and closed, and the cooling capacity is controlled by varying the number of air outlets opened. Item 4. The refrigerator according to any one of Items 3.
JP2011245839A 2011-11-09 2011-11-09 refrigerator Active JP5642045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245839A JP5642045B2 (en) 2011-11-09 2011-11-09 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245839A JP5642045B2 (en) 2011-11-09 2011-11-09 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009190223A Division JP4901922B2 (en) 2009-08-19 2009-08-19 refrigerator

Publications (2)

Publication Number Publication Date
JP2012063131A true JP2012063131A (en) 2012-03-29
JP5642045B2 JP5642045B2 (en) 2014-12-17

Family

ID=46059018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245839A Active JP5642045B2 (en) 2011-11-09 2011-11-09 refrigerator

Country Status (1)

Country Link
JP (1) JP5642045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194259A (en) * 2016-09-26 2017-10-26 日立アプライアンス株式会社 refrigerator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127473A (en) * 1984-07-16 1986-02-06 三洋電機株式会社 Controller for storage warehouse
JPH10288441A (en) * 1997-04-15 1998-10-27 Matsushita Refrig Co Ltd Refrigerator
JPH11101556A (en) * 1997-07-31 1999-04-13 Samsung Electron Co Ltd Refrigerator with cold air outlet opening/closing unit
JP2000121223A (en) * 1998-10-20 2000-04-28 Sanyo Electric Co Ltd Food cooling method for cooling chamber
JP2001133112A (en) * 1999-11-10 2001-05-18 Matsushita Refrig Co Ltd Refrigerator
JP2001272152A (en) * 2000-03-29 2001-10-05 Hoshizaki Electric Co Ltd Refrigerator
JP2007046848A (en) * 2005-08-10 2007-02-22 Mitsubishi Electric Corp Refrigerator
JP2007271152A (en) * 2006-03-31 2007-10-18 Hitachi Appliances Inc Refrigerator
JP2008164273A (en) * 2006-12-07 2008-07-17 Hitachi Appliances Inc Refrigerator
JP2009014313A (en) * 2007-07-09 2009-01-22 Daiwa Industries Ltd Refrigerator
JP2009030934A (en) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp Refrigerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127473A (en) * 1984-07-16 1986-02-06 三洋電機株式会社 Controller for storage warehouse
JPH10288441A (en) * 1997-04-15 1998-10-27 Matsushita Refrig Co Ltd Refrigerator
JPH11101556A (en) * 1997-07-31 1999-04-13 Samsung Electron Co Ltd Refrigerator with cold air outlet opening/closing unit
JP2000121223A (en) * 1998-10-20 2000-04-28 Sanyo Electric Co Ltd Food cooling method for cooling chamber
JP2001133112A (en) * 1999-11-10 2001-05-18 Matsushita Refrig Co Ltd Refrigerator
JP2001272152A (en) * 2000-03-29 2001-10-05 Hoshizaki Electric Co Ltd Refrigerator
JP2007046848A (en) * 2005-08-10 2007-02-22 Mitsubishi Electric Corp Refrigerator
JP2007271152A (en) * 2006-03-31 2007-10-18 Hitachi Appliances Inc Refrigerator
JP2008164273A (en) * 2006-12-07 2008-07-17 Hitachi Appliances Inc Refrigerator
JP2009014313A (en) * 2007-07-09 2009-01-22 Daiwa Industries Ltd Refrigerator
JP2009030934A (en) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194259A (en) * 2016-09-26 2017-10-26 日立アプライアンス株式会社 refrigerator

Also Published As

Publication number Publication date
JP5642045B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
EP2757334B1 (en) Refrigerator and method of controlling humidity in a refrigerating chamber of refrigerator
JP5401889B2 (en) refrigerator
US7762102B2 (en) Soft freeze assembly for a freezer storage compartment
JP5572599B2 (en) refrigerator
JP2009030934A (en) Refrigerator
WO2016194356A1 (en) Refrigerator
JP2006266585A (en) Refrigerator
JP6925514B2 (en) refrigerator
JP5630106B2 (en) refrigerator
JP2015038409A (en) Refrigerator
US20180187968A1 (en) Refrigeration unit with air humidity monitoring
JP4901922B2 (en) refrigerator
JP5642045B2 (en) refrigerator
JP5384271B2 (en) Cooling system
JP6495034B2 (en) refrigerator
JP2012042137A (en) Refrigerator
KR100678777B1 (en) Refrigerator
CN111854279B (en) Refrigerator with a door
CN110017660B (en) Method for rapidly cooling food in a domestic refrigeration appliance and domestic refrigeration appliance
JPH10288441A (en) Refrigerator
JP5927428B2 (en) refrigerator
JP5927425B2 (en) refrigerator
KR100878806B1 (en) Kimch refrigerator and method for maturing kimch using the kimch refrigerator
JP2006226614A (en) Refrigerator
JP5927426B2 (en) refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5642045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250