JP2012062564A - Plating material and method for manufacturing the same - Google Patents

Plating material and method for manufacturing the same Download PDF

Info

Publication number
JP2012062564A
JP2012062564A JP2010210202A JP2010210202A JP2012062564A JP 2012062564 A JP2012062564 A JP 2012062564A JP 2010210202 A JP2010210202 A JP 2010210202A JP 2010210202 A JP2010210202 A JP 2010210202A JP 2012062564 A JP2012062564 A JP 2012062564A
Authority
JP
Japan
Prior art keywords
plating layer
plating
fine particles
metal oxide
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010210202A
Other languages
Japanese (ja)
Inventor
Shuichi Kitagawa
秀一 北河
Kazuo Yoshida
和生 吉田
Shigeto Fujii
恵人 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010210202A priority Critical patent/JP2012062564A/en
Publication of JP2012062564A publication Critical patent/JP2012062564A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plating material superior in conductivity and wear resistance as well as having good contact reliability, thereby being suitable for electric and electronic components such as sliding or rotary joints and switches.SOLUTION: A base plating layer 2 including at least one layer formed of copper, nickel, cobalt, iron or an alloy containing these elements is formed on the surface of a conductive substrate 1, a composite plating layer 6 including a strike plating layer 3 and a surface plating layer 4 each formed of silver or a silver alloy is formed on the base plating layer 2, and fine metal oxide particles 5 are incorporated in the surface layer or the inside of the surface plating layer 4, or both of them at a volume ratio of ≥2.5% and ≤30%. Electric and electronic components such as sliding or rotary contacts and switches are prepared using the plating material.

Description

本発明はめっき材料とその製造方法、そのめっき材料を用いた電気・電子部品に関する。更に詳しくは、摺動性や耐摩耗性に優れ、例えば摺動型や回転型の接点・スイッチの材料として好適なめっき材料に関する。   The present invention relates to a plating material, a manufacturing method thereof, and an electric / electronic component using the plating material. More specifically, the present invention relates to a plating material which is excellent in slidability and wear resistance and is suitable as a material for, for example, a sliding type or rotating type contact / switch.

銅(Cu)やCu合金、ステンレス(SUS)、鉄合金などからなる導電性基材の上に、銀(Ag)またはAg合金からなるめっき層を設けた材料は、基材の優れた導電性や強度と、AgまたはAg合金の良好な電気接触特性とを兼ね備えた高性能導体として知られており、各種の接点やスイッチなどに広く用いられている。
このような材料の例として、基材の上に直接、あるいはCuまたはニッケル(Ni)などの下地めっきを施した上に、AgまたはAg合金のめっきを表面めっき層として施して製造したものが用いられている。この下地層は、基材成分(Cuや亜鉛(Zn)などの合金成分)が表面のAgまたはAg合金へ拡散することを抑制するためや、基材の粗度の影響を減じ、めっき面を平滑にするために設けられるものである。下地層がNiまたはNi合金からなる場合には、基材上のめっき皮膜の硬度を増加させて摺動性を良好とする効果もあり、下地めっきとして好適である。
A material in which a plating layer made of silver (Ag) or an Ag alloy is provided on a conductive base material made of copper (Cu), Cu alloy, stainless steel (SUS), iron alloy or the like has excellent conductivity of the base material. It is known as a high-performance conductor having both strength and good electrical contact characteristics of Ag or Ag alloy, and is widely used for various contacts and switches.
As an example of such a material, a material produced by applying a plating of Ag or an Ag alloy as a surface plating layer directly on a base material or after applying a base plating such as Cu or nickel (Ni) is used. It has been. This underlayer suppresses the diffusion of base material components (alloy components such as Cu and zinc (Zn)) to the surface Ag or Ag alloy, reduces the influence of the roughness of the base material, and reduces the plating surface. It is provided for smoothing. When the underlayer is made of Ni or a Ni alloy, it has an effect of improving the slidability by increasing the hardness of the plating film on the substrate, which is suitable as the undercoat.

近年では、電気・電子部品の集積化と小型化が進行し、単位面積当たりへの通電量の増大や高負荷での使用が増加しており、それに伴い接点やスイッチにはこれまで以上の電気的な接触信頼性が要求されるようになっている。   In recent years, the integration and miniaturization of electrical and electronic parts have progressed, and the amount of electricity per unit area has increased and the use at high loads has increased. Contact reliability is required.

しかしながら、Agめっき皮膜は硬度があまり高くないため、摺動や回転に伴う削れや磨耗によりAgめっき層の厚みは減少し、終には摩滅してしまう。このような問題は、Agめっき層の厚みを厚くして、めっき層消失までの時間を長くすることで解消できる。しかしながら、そのようなめっき材料では、生産性の低下やコストの上昇が避けられないという問題が生じる。   However, since the hardness of the Ag plating film is not so high, the thickness of the Ag plating layer decreases due to scraping or wear caused by sliding or rotation and eventually wears out. Such a problem can be solved by increasing the thickness of the Ag plating layer and increasing the time until the disappearance of the plating layer. However, such a plating material has a problem that a decrease in productivity and an increase in cost are unavoidable.

また、Agめっき層に導電性のグリースを塗布することも摺動・回転時の磨耗抑制には効果がある。しかしながら、静止状態においては接触抵抗が低く安定しているものの、摺動・回転時や高温環境下においてはグリースの劣化や固化により接触抵抗が上昇しやすく、接触信頼性に劣る問題がある。   In addition, applying conductive grease to the Ag plating layer is also effective in suppressing wear during sliding and rotation. However, although the contact resistance is low and stable in the stationary state, there is a problem that the contact resistance is likely to increase due to deterioration or solidification of the grease during sliding / rotation or in a high temperature environment, resulting in poor contact reliability.

この他に、上記の要望に応える別のめっき材料としては、Agに他の金属元素、例えばアンチモン(Sb)やセレン(Se)などを添加したAg合金めっき(硬質Agめっき)があげられる。このようなAg合金めっきでは、Agめっきと比べてめっき皮膜の硬度が増して耐磨耗性が向上するので、摺動用途において多く使用されている。
しかしながら、Ag以外の元素を含有する合金においては導電性が低下するため、通電量の増加に対しては接触信頼性の点で好ましくない。また、Ag合金めっきに用いるSbやSeなどの金属元素は人体に対する有毒性を有しており、製造時や廃棄後における環境負荷の面からは好ましくない。
In addition, as another plating material that meets the above-described demand, Ag alloy plating (hard Ag plating) in which other metal elements such as antimony (Sb) and selenium (Se) are added to Ag can be cited. In such an Ag alloy plating, since the hardness of the plating film is increased and the wear resistance is improved as compared with the Ag plating, it is often used in sliding applications.
However, in an alloy containing an element other than Ag, the electrical conductivity is lowered, and therefore, it is not preferable in terms of contact reliability against an increase in the amount of energization. In addition, metal elements such as Sb and Se used for Ag alloy plating are toxic to the human body, and are not preferable from the viewpoint of environmental load during production or after disposal.

また、AgまたはAg合金からなるめっき層の摺動性を高めるために、Agめっき層中にセラミックやフッ素樹脂などの硬質粒子を分散させる方法(特許文献1、2)やAgめっき層中にグラファイトを分散させる方法が開示されている(特許文献3、4、5)。
この方法で形成されたAgめっき層の場合、Agの磨耗に伴い硬質粒子やグラファイトが表層に露出した際に、硬質粒子の導電率が低いことや、グラファイト自体の導電性は金属並みであるものの、めっき層中におけるグラファイトの配向が不規則であるため、接点における接触面積が減少することにより、接触抵抗が上昇してしまうという問題が生じる。
Moreover, in order to improve the slidability of the plating layer made of Ag or an Ag alloy, a method of dispersing hard particles such as ceramic or fluororesin in the Ag plating layer (Patent Documents 1 and 2) or graphite in the Ag plating layer Is disclosed (Patent Documents 3, 4, and 5).
In the case of an Ag plating layer formed by this method, when hard particles and graphite are exposed on the surface layer due to wear of Ag, the conductivity of the hard particles is low, and the conductivity of graphite itself is comparable to that of metal. Since the orientation of the graphite in the plating layer is irregular, there is a problem that the contact resistance increases due to a decrease in the contact area at the contact.

このように、表面にAgまたはAg合金からなるめっき層を形成した従来のめっき材料の場合、その耐摩耗性と導電性との両立が困難であるという問題があった。   Thus, in the case of the conventional plating material which formed the plating layer which consists of Ag or an Ag alloy on the surface, there existed a problem that coexistence with the abrasion resistance and electroconductivity was difficult.

特開昭61−101919号公報JP-A-61-101919 特表2000−508379号公報JP 2000-508379 特開平4−126314号公報JP-A-4-126314 特開平9−326227号公報Japanese Patent Laid-Open No. 9-326227 特開平11−149840号公報JP-A-11-149840

本発明は、導電性、強度、耐磨耗性に優れ、しかも接触抵抗が上昇しにくい、接触信頼性が良好なめっき材料の提供を目的とする。また、摺動性や耐磨耗性に優れ、接触信頼性の高い、接点やスイッチなどの材料として好適なめっき材料の提供を目的とする。
更に、本発明は、上記めっき材料の製造方法、およびそのめっき材料を用いた電気・電子部品、例えば摺動型や回転型の接点、スイッチの提供を目的とする。
An object of this invention is to provide the plating material which is excellent in electroconductivity, intensity | strength, and abrasion resistance, and also contact resistance is hard to raise, and contact reliability is favorable. It is another object of the present invention to provide a plating material that is excellent in slidability and wear resistance, has high contact reliability, and is suitable as a material for contacts and switches.
Another object of the present invention is to provide a method for producing the plating material, and electrical / electronic parts using the plating material, for example, a sliding or rotating contact or switch.

上記課題は以下の発明により解決された。
(1)電気接点に用いる銀もしくは銀合金めっき材であって、導電性基材の表面に、銅、ニッケル、コバルト、鉄、または、これらの元素からなる群から選ばれる少なくとも1種を含む合金からなる少なくとも1層の下地めっき層と、銀または銀合金をストライクめっきした層と、さらに銀または銀合金からなる表面めっき層からなる複合めっき層とを順に形成し、前記表面めっき層の表面もしくは内部またはその両方に金属酸化物微粒子を含み、前記金属酸化物微粒子は、酸化珪素、酸化アルミニウム、酸化錫、酸化亜鉛からなる群から選ばれる1種類以上を含む金属酸化物が主成分であり、気相中若しくは液相中で合成されたものであって、前記複合めっき層のめっき皮膜より硬度が高く、複合めっき層中に体積比で2.5%以上30%以下存在することを特徴とするめっき材。
(2)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占めることを特徴とする(1)に記載のめっき材。
(3)前記金属酸化物微粒子の存在濃度が、表面めっき層の導電性基材に平行な任意の面において1平方μmあたり面積比で30%以下であることを特徴とする(1)または(2)に記載のめっき材。
(4)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占め、かつ前記金属酸化物微粒子を複数種類、混合物として含有し、その混合物の微粒子濃度を100%とするとき、前記複数種のうちの一種の金属酸化物微粒子が混合物に占める濃度の割合が25%ないし75%であることを特徴とする(1)または(3)に記載のめっき材。
(5)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分未満であり、当該粒子の存在濃度が表面めっき層の導電性基材に平行な任意の面において面積比で15%以下であることを特徴とする(1)または(3)に記載のめっき材。
(6)電気接点に用いる銀もしくは銀合金めっき材であって、導電性基材の表面に、銅、ニッケル、コバルト、鉄、または、これらの元素からなる群から選ばれる少なくとも1種を含む合金からなる少なくとも1層の下地めっき層と、銀または銀合金をストライクめっきした層と、さらに銀または銀合金からなる表面めっき層からなる複合めっき層とを順に形成し、前記表面めっき層の表面もしくは内部またはその両方に金属酸化物微粒子を含み、前記金属酸化物微粒子は、酸化珪素、酸化アルミニウム、酸化錫、酸化亜鉛からなる群から選ばれる1種類以上を含む金属酸化物が主成分であり、気相中若しくは液相中で合成されたものであって、前記複合めっき層のめっき皮膜より硬度が高く、複合めっき層中に体積比で2.5%以上30%以下存在させることを特徴とするめっき材の製造方法。
(7)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占めるように、前記微粒子を表面めっき層中に存在させることを特徴とする(6)に記載のめっき材の製造方法。
(8)前記金属酸化物微粒子の存在濃度が、表面めっき層の導電性基材に平行な任意の面において1平方μmあたり面積比で30%以下となるように、前記金属酸化物微粒子を表面めっき層に存在させることを特徴とする(6)または(7)に記載のめっき材の製造方法。
(9)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占め、かつ金属酸化物微粒子を複数種類、混合物として使用し、その混合物の微粒子濃度を100%とするとき、前記複数種のうちの一種の金属酸化物微粒子が混合物に占める濃度の割合が25%ないし75%となるように、前記微粒子を前記表面めっき層中に存在させることを特徴とする、(6)または(8)に記載のめっき材の製造方法。
(10)前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分未満であり、当該粒子の存在濃度が前記表面めっき層の導電性基材に平行な任意の面において面積比で15%以下となるように、前記金属酸化物微粒子を表面めっき層中に存在させることを特徴とする、(6)または(8)に記載のめっき材の製造方法。
The above problems have been solved by the following invention.
(1) A silver or silver alloy plating material used for electrical contacts, comprising at least one selected from the group consisting of copper, nickel, cobalt, iron, or these elements on the surface of a conductive substrate. At least one base plating layer comprising: a layer obtained by strike-plating silver or a silver alloy; and a composite plating layer comprising a surface plating layer comprising silver or a silver alloy, and the surface of the surface plating layer or Metal oxide fine particles are contained inside or both, and the metal oxide fine particles are mainly composed of a metal oxide containing at least one selected from the group consisting of silicon oxide, aluminum oxide, tin oxide, and zinc oxide, It is synthesized in the gas phase or in the liquid phase and has a higher hardness than the plating film of the composite plating layer, and is 2.5% to 30% by volume in the composite plating layer. A plating material characterized by being present below.
(2) When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The plating material according to (1), which accounts for more than half of the number of particles present.
(3) The presence concentration of the metal oxide fine particles is 30% or less in an area ratio per square μm on an arbitrary surface parallel to the conductive substrate of the surface plating layer (1) or ( The plating material as described in 2).
(4) When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. When a plurality of the metal oxide fine particles are contained as a mixture and the concentration of fine particles in the mixture is 100%, one kind of the metal oxide fine particles is a mixture. The plating material according to (1) or (3), characterized in that the concentration ratio to 25 is 25% to 75%.
(5) When the particle size of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle size of 50% to 150% with respect to the average particle size is contained in the surface plating layer. (1) or (3), wherein the concentration of the particles is less than half of the number of particles, and the concentration of the particles is 15% or less in an area ratio on any surface parallel to the conductive substrate of the surface plating layer The plating material as described in.
(6) A silver or silver alloy plating material used for electrical contacts, wherein the surface of the conductive base material includes at least one selected from the group consisting of copper, nickel, cobalt, iron, or these elements. At least one base plating layer comprising: a layer obtained by strike-plating silver or a silver alloy; and a composite plating layer comprising a surface plating layer comprising silver or a silver alloy, and the surface of the surface plating layer or Metal oxide fine particles are contained inside or both, and the metal oxide fine particles are mainly composed of a metal oxide containing at least one selected from the group consisting of silicon oxide, aluminum oxide, tin oxide, and zinc oxide, It is synthesized in the gas phase or in the liquid phase and has a higher hardness than the plating film of the composite plating layer, and is 2.5% or more and 30% by volume in the composite plating layer. Method for producing a plated material, characterized in that to presence.
(7) When the particle size of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle size of 50% to 150% with respect to the average particle size is contained in the surface plating layer. The method for producing a plating material according to (6), wherein the fine particles are present in the surface plating layer so as to occupy half or more of the number of particles present.
(8) Surface the metal oxide fine particles so that the concentration of the metal oxide fine particles is 30% or less in an area ratio per square μm on an arbitrary surface parallel to the conductive substrate of the surface plating layer. The method for producing a plating material according to (6) or (7), wherein the plating material is present in a plating layer.
(9) When the particle size of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle size of 50% to 150% with respect to the average particle size is contained in the surface plating layer. More than half of the number of particles, and using a plurality of kinds of metal oxide fine particles as a mixture, and when the fine particle concentration of the mixture is 100%, one kind of the metal oxide fine particles of the plurality of kinds is contained in the mixture The method for producing a plating material according to (6) or (8), wherein the fine particles are present in the surface plating layer so that a concentration ratio is 25% to 75%.
(10) When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The metal oxide fine particles are surface plated so that the existing concentration of the particles is less than half of the number of particles, and the area ratio is 15% or less on an arbitrary surface parallel to the conductive substrate of the surface plating layer. It exists in a layer, The manufacturing method of the plating material as described in (6) or (8) characterized by the above-mentioned.

本発明のめっき材はAgまたはAg合金からなる表面めっき層の表層部、内部もしくはその両方に金属酸化物の微粒子が存在するめっき材料である。めっき皮膜表層部、内部およびその両方にめっき皮膜よりも硬度の高い金属酸化物が存在することで、接点として使用したときに、接点同士の金属が起こしやすい凝着を低減し、かつ粒径の幅が狭いことや濃度が低いことから表面に露出したとしても接触抵抗が上昇することのないめっき材である。
本発明のめっき材はこのような特性を有しているため、例えば電気・電子部品の摺動型や回転型の接点・スイッチの材料として好適なめっき材料である。
The plating material of the present invention is a plating material in which fine particles of metal oxide are present in the surface layer portion, the inside or both of the surface plating layer made of Ag or an Ag alloy. The presence of a metal oxide with a hardness higher than that of the plating film on the surface of the plating film, inside, and both reduces the adhesion of metal between the contacts when used as contacts, and reduces the particle size. Even if it is exposed to the surface due to its narrow width and low concentration, it is a plating material that does not increase contact resistance.
Since the plating material of the present invention has such characteristics, it is a plating material suitable as a material for, for example, a sliding type or rotating type contact / switch of an electric / electronic component.

本発明のめっき材の実施態様の一例を模式的に断面図で示す説明図である。It is explanatory drawing which shows typically an example of the embodiment of the plating material of this invention with sectional drawing. 本発明の微粒子の体積基準分布を示す説明図である。It is explanatory drawing which shows the volume reference | standard distribution of the microparticles | fine-particles of this invention. 金属酸化微粒子の粒子径分布を累積分布で示す図である。It is a figure which shows the particle size distribution of a metal oxide fine particle by cumulative distribution.

本発明のめっき材の好ましい実施態様の一例を、図1を参照して説明する。導電性基材1の上に下地めっき層2が少なくとも1層と、微粒子を含まないストライク銀または銀合金めっき層(以下、ストライクめっき層という)3が順に形成され、さらにその上に表面めっき層4が形成されている。かつ、当該表面めっき層4の表層部、内部およびその両方には微粒子5が5体積%以上の割合で分散している構造を有するものである。   An example of a preferred embodiment of the plating material of the present invention will be described with reference to FIG. At least one base plating layer 2 and a strike silver or silver alloy plating layer (hereinafter referred to as strike plating layer) 3 not containing fine particles are sequentially formed on the conductive substrate 1, and a surface plating layer is further formed thereon. 4 is formed. In addition, the surface plating layer 4 has a structure in which the fine particles 5 are dispersed at a ratio of 5% by volume or more in the surface layer portion, inside, and both.

(導電性基材)
導電性基材1の材料は格別限定されるものではなく、例えば接続コネクタとしての用途を考慮し、要求される機械的強度、耐熱性、導電性に応じて、例えば、純銅;リン青銅、黄銅、洋白、ベリリウム銅、コルソン合金のような銅合金;純鉄;ステンレス鋼のような鉄合金;各種のニッケル合金;Cu被覆材料やNi被覆材料のような複合材料などから適宜に選定すればよい。
また、導電性基材の形状としては、条材や線材などのいずれの形状でもよい。
なお、これらの材料のうち、CuまたはCu合金が好ましい。なお、導電性基材1がCu系材料でない場合も、銅、ニッケル、コバルト、鉄などが含まれる下地めっきを施してから実使用に供することにより、めっき膜の密着性や耐食性の向上が期待できる。
(Conductive substrate)
The material of the conductive substrate 1 is not particularly limited. For example, in consideration of the use as a connector, depending on the required mechanical strength, heat resistance, and conductivity, for example, pure copper; phosphor bronze, brass Copper alloy such as iron white, beryllium copper, corson alloy; pure iron; iron alloy such as stainless steel; various nickel alloys; composite materials such as Cu coating material and Ni coating material, etc. Good.
In addition, the shape of the conductive substrate may be any shape such as a strip or a wire.
Of these materials, Cu or Cu alloy is preferable. In addition, even when the conductive substrate 1 is not a Cu-based material, it is expected to improve the adhesion and corrosion resistance of the plating film by applying the base plating containing copper, nickel, cobalt, iron, and the like to actual use. it can.

(複合めっき層)
複合めっき層6(ストライクめっき層3と表面めっき層4)はAgまたはAg合金で形成され、めっき材料としての電気接触特性、耐食性、はんだ付け性を確保するために設けられる。Ag合金を使用する場合には、例えば、AgにPd、Cu、Snの少なくとも1種を含有しているものが好適である。これらのAg合金では、表面硬度を上昇させることにより耐摩耗性をさらに向上させることができる。
表面めっき層の厚さは0.5μm以上であることが好ましく、1〜5μmであることがさらに好ましい。またストライクめっき層の厚さは0.05〜1μmであることが好ましく、0.1〜0.5μmがさらに好ましい。
(Composite plating layer)
The composite plating layer 6 (the strike plating layer 3 and the surface plating layer 4) is formed of Ag or an Ag alloy, and is provided to ensure electrical contact characteristics, corrosion resistance, and solderability as a plating material. In the case of using an Ag alloy, for example, it is preferable that Ag contains at least one of Pd, Cu, and Sn. In these Ag alloys, the wear resistance can be further improved by increasing the surface hardness.
The thickness of the surface plating layer is preferably 0.5 μm or more, and more preferably 1 to 5 μm. The thickness of the strike plating layer is preferably 0.05 to 1 μm, more preferably 0.1 to 0.5 μm.

なお、表面めっき層4の表面に存在する微粒子5がプレス加工等の成型加工や部品加工時に除去、破壊されぬように保護するため、微粒子を分散した複合めっき層6(表面めっき層4とストライクめっき層3)を形成した後に、表面めっき層4の表層に薄い保護層を形成してもよい。保護層としてはAgまたはAg合金からなるものが好ましい。保護層の厚さは0.5〜2μmであることが好ましい。   In order to protect the fine particles 5 existing on the surface of the surface plating layer 4 from being removed and destroyed during molding or parts processing such as press working, the composite plating layer 6 in which the fine particles are dispersed (the surface plating layer 4 and the strike) After forming the plating layer 3), a thin protective layer may be formed on the surface layer of the surface plating layer 4. The protective layer is preferably made of Ag or an Ag alloy. The thickness of the protective layer is preferably 0.5-2 μm.

(金属酸化物微粒子)
金属酸化物微粒子の材料としては、酸化ケイ素、酸化アルミニウム、酸化スズ及び酸化亜鉛からなる群から選ばれる少なくとも1種を用いる。これらを主成分として必要に応じ、ケイ素、アルミニウム、スズ、亜鉛の窒化物やホウ化物、そのほかの金属酸化物や窒化物、ホウ化物を含んでもよい。このとき主成分は80質量%以上であることが好ましい。金属酸化物微粒子はめっき層のAgまたはAg合金層よりも硬度が高いことが必要である。このような金属酸化物微粒子を含有させることで金属同士の凝着を阻害する働きがあるため、摺動抵抗を減少させることができる。硬度は200〜2000Hvであることが好ましい。
複合めっき層における含有割合(体積%)は2.5%以上30%以下であり、5.0〜15%が好ましい。このような割合とすることで接触抵抗を増加させることなく、摺動抵抗を減少することができる。
なお、このときの含有割合(体積%)は、めっき皮膜を収束イオンビーム加工装置(FIB)にて切り出し、走査型電子顕微鏡にて微粒子が十分判別できるサイズまで拡大を行って断面から観察を行い、一定面積内の存在数から算出した値か、めっき皮膜を王水に溶解させた後、得られた液を遠心分離に掛けて粒子と液を分離した後、粒子を電子天秤にて重量を計測して測定した値とする。
微粒子を製造する技術については、一般に知られている方法を用いることができ、火炎造粒法などの気相合成法やゾルゲル法などの液相合成法があげられる。一般的には、多量の微粒子を得る目的には気相合成法が、粒径分布の小さな微粒子を得る目的には液相合成法が適している。
(Metal oxide fine particles)
As the material for the metal oxide fine particles, at least one selected from the group consisting of silicon oxide, aluminum oxide, tin oxide and zinc oxide is used. If necessary, these may contain silicon, aluminum, tin, and zinc nitrides and borides, as well as other metal oxides, nitrides, and borides. At this time, it is preferable that a main component is 80 mass% or more. The metal oxide fine particles are required to have a higher hardness than the Ag or Ag alloy layer of the plating layer. By containing such metal oxide fine particles, there is a function of inhibiting adhesion between metals, so that sliding resistance can be reduced. The hardness is preferably 200 to 2000 Hv.
The content ratio (volume%) in the composite plating layer is 2.5% or more and 30% or less, and preferably 5.0 to 15%. By setting such a ratio, the sliding resistance can be reduced without increasing the contact resistance.
The content ratio (% by volume) at this time is obtained by cutting the plated film with a focused ion beam processing device (FIB), observing from a cross section by enlarging it to a size that allows fine particles to be sufficiently identified with a scanning electron microscope. After the plating film was dissolved in aqua regia or after the plating liquid was dissolved in aqua regia, the obtained liquid was centrifuged to separate the particles from the liquid, and the particles were weighed with an electronic balance. The measured value is taken as the measured value.
As a technique for producing fine particles, a generally known method can be used, and examples thereof include a gas phase synthesis method such as a flame granulation method and a liquid phase synthesis method such as a sol-gel method. In general, the vapor phase synthesis method is suitable for obtaining a large amount of fine particles, and the liquid phase synthesis method is suitable for obtaining fine particles having a small particle size distribution.

金属酸化物微粒子を金属めっき皮膜中に共析させるためには、カチオン系、アニオン系、ノニオン系などの界面活性剤が使用されるが、めっき液中に微小容器を分散して、めっき皮膜中に共析させ得るものであれば、いずれの界面活性剤を使用してもよい。   In order to eutect the metal oxide fine particles in the metal plating film, surfactants such as cationic, anionic and nonionic surfactants are used. In the plating film, fine containers are dispersed in the plating solution. Any surfactant may be used as long as it can be co-deposited into the surface.

複合めっき層中における金属酸化物微粒子の共析量(含有量)は、体積比で2.5%以上30%未満であり、5%以上30%未満であることが好ましい。共析量が少なすぎると潤滑効果が十分に発揮されなくなり、また多すぎる場合には接点部における導電性を阻害するからである。潤滑性と導電性の観点からは、共析量が5〜15体積%であることが好ましい。
本発明においては、複合めっき層中に共析される微粒子の量は、めっき液中の微粒子濃度の他に、電流密度、撹拌速度、界面活性剤の濃度により調節することができる。また、パルス的に電流を流すパルス電解や電流の向きを周期的に逆転されるPR電解により、さらに共析量の調節が可能となる。このときパルスのオン−オフ時間の設定は任意でよいが、オン時間よりオフ時間が短い方が好ましい。また、PR電解時のオン、オフ、リバース時間の設定、オン電流値、リバース電流値の設定についても任意でよいが、オフ時間がオン、リバース時間より短時間であり、またオン時間よりリバース時間が短い方が好ましい。
The eutectoid amount (content) of the metal oxide fine particles in the composite plating layer is 2.5% or more and less than 30% by volume ratio, and preferably 5% or more and less than 30%. This is because if the amount of eutectoid is too small, the lubricating effect is not sufficiently exhibited, and if it is too large, the conductivity at the contact portion is hindered. From the viewpoint of lubricity and conductivity, the amount of eutectoid is preferably 5 to 15% by volume.
In the present invention, the amount of fine particles co-deposited in the composite plating layer can be adjusted by the current density, the stirring speed, and the surfactant concentration in addition to the fine particle concentration in the plating solution. Further, the amount of eutectoid can be further adjusted by pulse electrolysis in which current flows in a pulse manner or PR electrolysis in which the direction of the current is periodically reversed. At this time, the on / off time of the pulse may be set arbitrarily, but it is preferable that the off time is shorter than the on time. In addition, the ON, OFF, reverse time setting, ON current value, and reverse current value setting during PR electrolysis may be arbitrary, but the OFF time is ON, shorter than the reverse time, and the reverse time from the ON time. Is preferably shorter.

金属酸化微粒子は粒子径分布が以下のようなものであることが好ましい。
ひとつとしては、図2に示すように平均粒子径をDとしたとき、50%D(平均の50%)から150%D(平均の150%)のみが粒子総数の50%以上を占めるようにする。累積分布で示すと図3のようになる。図3ではd50が平均であり、d25〜d75の割合を制御することとなる。
このときの粒子径Dは、めっき前であれば、動的光散乱法を用いた粒子径測定装置、例えば、(株)堀場製作所製 動的光散乱式粒径分布測定装置 LB−500を用いて測定できる。また、めっき後であれば、めっき皮膜を集束イオンビーム加工装置で断面出しを行い、表面を走査型電子顕微鏡で粒子が明確に見えるサイズに拡大観察し、得られた画像から粒子径、粒子数を計測して求める。
また、50%Dから150%Dの粒子の割合を上記のようにするためには、平均粒子径Dの微粒子を含む溶液を遠心分離機に掛け、例えば毎分6000回転の遠心分離を5分行った後に、上澄み液と沈殿部の最下層部分を取り除くことによって調製するか、平均粒子径が50%Dから150%Dの間に存在し、その平均粒子径をD´としたときに粒度分布が90%D´ないし110%D´であるような微粒子を2種類以上混和することで調製する。
このようにすることでめっき皮膜中の微粒子2.5%以上30%未満の全域に亘って、摺動抵抗を減少させる効果がある。このとき、金属酸化物の存在濃度は、表面めっき層を基材に平行な面でどの深さにおいても1平方μmに対し面積比で30%以下であることが好ましい。この面積比は、めっき皮膜を収束イオンビーム加工装置(FIB)にて切り出し、走査型電子顕微鏡にて微粒子が十分判別できるサイズまで拡大を行って断面から観察したのち、得られた拡大画像から、粒子数とめっき面積を算出して測定するものとする。
The metal oxide fine particles preferably have the following particle size distribution.
For example, as shown in FIG. 2, when the average particle diameter is D, only 50% D (50% of the average) to 150% D (150% of the average) occupy 50% or more of the total number of particles. To do. The cumulative distribution is shown in FIG. D 50 in FIG. 3 is the average, and thus to control the ratio of d 25 to d 75.
If the particle diameter D at this time is before plating, a particle diameter measuring apparatus using a dynamic light scattering method, for example, a dynamic light scattering particle size distribution measuring apparatus LB-500 manufactured by Horiba, Ltd. is used. Can be measured. In addition, after plating, the plating film is cross-sectioned with a focused ion beam processing device, and the surface is enlarged and observed with a scanning electron microscope to a size where the particles can be clearly seen. Measured and determined.
Further, in order to make the ratio of particles of 50% D to 150% D as described above, a solution containing fine particles having an average particle diameter D is applied to a centrifuge, for example, centrifugation at 6000 rpm for 5 minutes. Or after removing the lowermost layer of the supernatant and the precipitate, or the average particle size is between 50% D and 150% D, and the average particle size is D ′ It is prepared by mixing two or more kinds of fine particles having a distribution of 90% D ′ to 110% D ′.
By doing in this way, there exists an effect which reduces sliding resistance over the whole region of 2.5 to 30% of microparticles | fine-particles in a plating film. At this time, the concentration of the metal oxide is preferably 30% or less in terms of the area ratio with respect to 1 square μm at any depth on the surface parallel to the substrate. This area ratio is obtained by cutting out the plating film with a focused ion beam processing apparatus (FIB), magnifying it to a size that allows fine particles to be sufficiently identified with a scanning electron microscope, and observing it from a cross section. The number of particles and the plating area are calculated and measured.

もうひとつの態様としては、50%Dから150%Dの粒子径のものが総数の50%未満とすることである。このとき、金属酸化物微粒子の存在濃度は、表面めっき層を基材に平行な面でどの深さにおいても1平方μmに対し面積比で15%以下であることが好ましい。このようにすることでめっき皮膜中の微粒子濃度が2.5%以上30%未満の全域に亘って、微粒子を含まないめっき皮膜の摺動抵抗と比較して3割減少させる効果がある。このような表面めっき層は、平均粒子径Dの微粒子を含む溶液を遠心分離機に掛け、例えば毎分6000回転の遠心分離を5分行った後に、上澄み液と沈殿部の最下層部分の粒子を選び取り、めっき液中に分散したのちめっきして形成できる。
金属酸化物微粒子は2種以上を混合して用いてもよい。2種を混合して用いる場合、そのうちの1種が25体積%以上75体積%以下とすることが好ましい。この場合、1種の微粒子の濃度が75%を上回らないことで、めっき皮膜中の微粒子濃度が2.5%以上30%未満の全域に亘って、微粒子を含まないめっき皮膜の摺動抵抗と比較して3割減少させる効果がある。
Another aspect is that the particle size of 50% D to 150% D is less than 50% of the total number. At this time, the concentration of the metal oxide fine particles is preferably 15% or less in terms of the area ratio with respect to 1 square μm at any depth on the surface parallel to the substrate. By doing in this way, there exists an effect which reduces by 30% compared with the sliding resistance of the plating film which does not contain microparticles | fine-particles over the whole region where the microparticle density | concentration in a plating film is 2.5% or more and less than 30%. Such a surface plating layer is obtained by centrifuging a solution containing fine particles having an average particle diameter D in a centrifuge, for example, centrifuging at 6000 rpm for 5 minutes, and then the particles in the lowermost layer portion of the supernatant and the precipitation portion Can be selected and dispersed in the plating solution and then plated.
Two or more kinds of metal oxide fine particles may be mixed and used. When using 2 types in mixture, it is preferable that one of them is 25 volume% or more and 75 volume% or less. In this case, since the concentration of one kind of fine particles does not exceed 75%, the sliding resistance of the plating film containing no fine particles over the entire region where the fine particle concentration in the plating film is 2.5% or more and less than 30%. Compared to 30% reduction.

(下地めっき層)
導電性基材1の上部に形成される下地めっき層2は、導電性基材1とストライクめっき層3との密着性を向上させるとともに、基材成分が表層側に熱拡散することを防止するバリア層としても機能する。この下地めっき層2に融点が1000℃以上の高融点金属を用いた場合、一般に接点やスイッチが受ける200℃以下の熱履歴においては、下地めっき層2は熱拡散を起こしにくく、基材成分が表層側に熱拡散することを有効に防止する。
高融点金属のうち、価格の点やめっき処理が行いやすい点などから、Cu、Ni、コバルト(Co)、鉄(Fe)が好適である。また、これらの元素を含む合金めっき層やめっき後に熱処理して合金化した化合物層も同様に有効であり、例えば、Cu−Sn、Ni−Sn、Ni−P、Co−P、Ni−Co、Ni−Co−P、Ni−Cu、Ni−Feなどをあげることができる。
(Undercoat layer)
The base plating layer 2 formed on the upper portion of the conductive base material 1 improves the adhesion between the conductive base material 1 and the strike plating layer 3 and prevents the base material component from thermally diffusing to the surface layer side. Also functions as a barrier layer. When a high melting point metal having a melting point of 1000 ° C. or higher is used for the base plating layer 2, the base plating layer 2 hardly causes thermal diffusion in a heat history of 200 ° C. or lower that is generally received by a contact or switch, and the base material component is It effectively prevents thermal diffusion to the surface layer side.
Of the refractory metals, Cu, Ni, cobalt (Co), and iron (Fe) are preferable from the viewpoint of cost and ease of plating. In addition, an alloy plating layer containing these elements and a compound layer alloyed by heat treatment after plating are also effective, for example, Cu-Sn, Ni-Sn, Ni-P, Co-P, Ni-Co, Ni-Co-P, Ni-Cu, Ni-Fe, etc. can be mentioned.

また、下地めっき層2は、必要に応じて成分や特性の異なる層を2層以上積層してもよい。例えば、基材1の上部に第一の下地層としてNi層を設け、その上部に第二の下地層としてCu層を設け、さらにその上部にストライクめっき層3および表面めっき層4を設けることができる。
このようなめっき材料によれば、下地層と表面めっき層を含む複合めっき層の密着性がさらに向上する。
In addition, the base plating layer 2 may be formed by laminating two or more layers having different components and characteristics as necessary. For example, a Ni layer is provided as a first underlayer on the upper portion of the substrate 1, a Cu layer is provided as a second underlayer thereon, and a strike plating layer 3 and a surface plating layer 4 are further provided thereon. it can.
According to such a plating material, the adhesion of the composite plating layer including the base layer and the surface plating layer is further improved.

基材成分の熱拡散を防止する目的において、下地めっき層2の厚みは0.1〜2μmの範囲内に設定されていることが好ましい。この下地めっき層の厚みが薄すぎると上記効果は十分に発揮されなくなり、また必要以上に厚くしても上記効果が飽和するからである。
上記の基材成分の表層側への拡散防止効果を十分に発揮させるためには、下地めっき層2の厚さは0.25μm以上が好ましい。しかし、厚い場合には成型加工時に加工割れを起こす場合もあるため、加工性を考慮して厚みを1μm以下とすることが好ましい。
In order to prevent thermal diffusion of the base material component, the thickness of the base plating layer 2 is preferably set in the range of 0.1 to 2 μm. This is because if the thickness of the underlying plating layer is too thin, the above effect cannot be sufficiently exhibited, and even if it is made thicker than necessary, the above effect is saturated.
In order to sufficiently exhibit the effect of preventing diffusion of the base material component to the surface layer side, the thickness of the base plating layer 2 is preferably 0.25 μm or more. However, if it is thick, it may cause a processing crack at the time of molding, so it is preferable to set the thickness to 1 μm or less in consideration of workability.

(めっき材)
上記本発明のめっき材は、電気・電子部品に用いられている従来の金属材料に代えて用いることができる。特に、摺動性や耐磨耗性に優れ、接触信頼性の高いので、摺動型や回転型の接点またはスイッチの材料として好適に用いることができる。
(Plating material)
The plating material of the present invention can be used in place of a conventional metal material used in electric / electronic parts. In particular, since it is excellent in slidability and wear resistance and has high contact reliability, it can be suitably used as a sliding or rotating contact or switch material.

以下、本発明について実施例に基づきさらに詳細に説明するが本発明はこれに限定されるものではない。
各実施例で作製した各めっき材について、摩擦係数、接触抵抗、密着性、耐久性、曲げ加工性の評価を実施した。評価方法は次の通りである。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.
About each plating material produced in each Example, friction coefficient, contact resistance, adhesiveness, durability, and bending workability were evaluated. The evaluation method is as follows.

摩擦係数:
バウデン型摩擦試験機を用いて、めっき材の表面を摺動させた際の往復100回摺動後の動摩擦係数を測定し、摺動初期の値を基準として、100回摺動後の値を百分率で表した。測定条件は、荷重0.98N(100gf)、摺動距離10mm、摺動速度100mm/分とした。相手材は3mmRの鋼球プローブまたは直径5mmのAgめっき張り出し加工材を用いた。
Coefficient of friction:
Using a Bowden type friction tester, measure the dynamic friction coefficient after sliding 100 times reciprocating when the surface of the plating material is slid, and use the initial sliding value as a reference to determine the value after 100 times sliding. Expressed as a percentage. The measurement conditions were a load of 0.98 N (100 gf), a sliding distance of 10 mm, and a sliding speed of 100 mm / min. The mating material used was a 3 mmR steel ball probe or a 5 mm diameter Ag plating projecting material.

接触抵抗:
定電流通電時の電圧を測定することにより評価した。先端が5mmRのAgプローブを荷重0.49N(50gf)で接触させ、10mA通電時の電圧を測定し、n=10の平均値より接触抵抗を算出した。なお、測定は初期および150℃×1000時間加熱後に実施した。
Contact resistance:
The evaluation was made by measuring the voltage during constant current application. An Ag probe with a tip of 5 mmR was brought into contact with a load of 0.49 N (50 gf), the voltage when 10 mA was energized was measured, and the contact resistance was calculated from the average value of n = 10. The measurement was performed at the initial stage and after heating at 150 ° C. for 1000 hours.

密着性:
めっき表面からクロスカットを施し、テープピール試験により評価した。クロスカット後のめっき表面に、粘着テープ(寺岡製作所631S)を貼り付けて引き剥がした際に、めっき皮膜の剥離が見られないものを○、剥離が見られたものを×として評価した。
Adhesion:
A cross cut was applied from the plating surface, and evaluation was performed by a tape peel test. When the adhesive tape (Teraoka Seisakusho 631S) was affixed to the plated surface after cross-cutting and peeled off, the case where peeling of the plating film was not observed was evaluated as ◯, and the case where peeling was observed was evaluated as ×.

耐久性:
往復100回摺動後に、摺動部における基材または下地層の露出が見られるかを評価した。摺動部を450倍でマイクロスコープ観察し、基材や下地めっき層の露出が見られないものを○、露出が見られたものを×として評価した。
durability:
After 100 reciprocating slides, it was evaluated whether exposure of the base material or the base layer in the sliding part was observed. The sliding part was observed with a microscope at a magnification of 450 times, and the case where the substrate and the underlying plating layer were not exposed was evaluated as ◯, and the case where the exposure was observed was evaluated as ×.

曲げ加工性:
導電性基材の圧延方向と直角に90°曲げ(0.2R)を施し、曲げ部におけるめっき皮膜の割れにより評価した。曲げ部について500倍でSEM観察し、めっき皮膜に割れが見られないものを○、割れが見られたものを×として評価した。
Bending workability:
90 ° bending (0.2R) was performed at right angles to the rolling direction of the conductive substrate, and the evaluation was made by cracking the plating film at the bent portion. SEM observation was performed at 500 times with respect to the bent part, and the case where no crack was observed in the plating film was evaluated as “◯” and the case where the crack was observed was evaluated as “X”.

本発明例1〜98、比較例1〜5
表1に示す化学成分組成の銅または銅合金を鋳造、圧延、焼鈍を行い厚さ0.2mmの純銅(C1020:基材A)、黄銅(C2600:基材B)、リン青銅(C5210:基材C)、コルソン系合金(Cu−Ni−Si:基材D)を作製した。CXXXXはJIS規格を表す。ステンレス(SUS304:基材E)については購入した。これらの基材にめっき前処理として脱脂処理および酸洗処理を順次施し、その後下地めっき層の形成を行い、ストライクめっき層、表面めっき層を順次施して、めっき材を作製した。各層を形成する際のめっき条件については表2に、作製しためっき材については表3−1〜表3−3に、めっき材の評価については表4−1〜表4−3に示した。
Invention Examples 1 to 98, Comparative Examples 1 to 5
Copper or a copper alloy having the chemical composition shown in Table 1 is cast, rolled, and annealed to have a thickness of 0.2 mm pure copper (C1020: base material A), brass (C2600: base material B), phosphor bronze (C5210: base) Material C) and a Corson alloy (Cu—Ni—Si: substrate D) were produced. CXXX represents the JIS standard. Stainless steel (SUS304: Base material E) was purchased. These substrates were sequentially subjected to degreasing treatment and pickling treatment as pretreatment for plating, and then a base plating layer was formed, and a strike plating layer and a surface plating layer were sequentially applied to prepare a plating material. The plating conditions for forming each layer are shown in Table 2, the prepared plating materials are shown in Table 3-1 to Table 3-3, and the evaluation of the plating materials are shown in Table 4-1 to Table 4-3.

前記脱脂処理は、クリーナー160S(メルテックス社製)を60g/リットル含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で30秒間カソード電解して行った。また、前記酸洗処理は、硫酸を100g/リットル含む酸洗液中に室温で30秒間浸漬して行った。
各処理間には工業用水、水道水、イオン交換水等による水洗工程を設けた。
The degreasing treatment was performed by cathodic electrolysis for 30 seconds in a degreasing solution containing 60 g / liter of cleaner 160S (manufactured by Meltex) at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 . The pickling treatment was performed by immersing in a pickling solution containing 100 g / liter of sulfuric acid at room temperature for 30 seconds.
A water washing step with industrial water, tap water, ion exchange water, etc. was provided between each treatment.

複合めっき層の形成においては、表2のAgめっき浴に金属酸化物微粒子を表3−1〜表3−3に示す共析量に対応させた量を添加しためっき液を用い、同様のめっき条件にてめっきを施した。なお、めっき液中において微粒子を安定して分散させるために、カチオン性の界面活性剤を適宜用いたが、本発明はこれに限定されるものではない。
なお、粒子1、粒子2は以下のようにして作製した。
テトラエトキシランをエタノールやプロパノールなどのアルコールに溶解させ、その後倍量以上の水を加えて十分に混和し、テトラエトキシシランを5wt%含むアルコール溶液を得た。触媒を加えた後、加熱しながらゲル化し、得られたゲルを乾燥させることにより粒子を得た。
各粒子とも、AgまたはAg合金のめっき皮膜より硬度が高く、粒子1の硬度は800Hv、粒子2は900HVであった。
また、小径、大径は図2の50%D,150%Dを表し、径とその割合の測定は以下のようにして行った。
堀場製作所製動的光散乱式粒径分布測定装置 LB−500を用いて、調製した粒子を含む混合溶液を測定した。得られた測定結果のピーク位置から平均粒径を算出し、またピークの面積比から混合比を算出した。
In the formation of the composite plating layer, the same plating is performed using a plating solution in which metal oxide fine particles are added to the Ag plating bath in Table 2 in amounts corresponding to the eutectoid amounts shown in Tables 3-1 to 3-3. Plating was performed under conditions. In addition, in order to disperse | distribute microparticles | fine-particles stably in a plating solution, although the cationic surfactant was used suitably, this invention is not limited to this.
Particles 1 and 2 were prepared as follows.
Tetraethoxylane was dissolved in an alcohol such as ethanol or propanol, and then more than double the amount of water was added and mixed well to obtain an alcohol solution containing 5 wt% tetraethoxysilane. After adding a catalyst, it gelatinized, heating, and obtained particle | grains by drying the obtained gel.
Each particle had higher hardness than the plated film of Ag or Ag alloy, the hardness of particle 1 was 800 Hv, and particle 2 was 900 HV.
Further, the small diameter and the large diameter represent 50% D and 150% D in FIG. 2, and the diameter and the ratio thereof were measured as follows.
The mixed solution containing the prepared particles was measured using a dynamic light scattering particle size distribution analyzer LB-500 manufactured by Horiba. The average particle diameter was calculated from the peak position of the obtained measurement result, and the mixing ratio was calculated from the peak area ratio.

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

Figure 2012062564
Figure 2012062564

なお、複合めっき層の表面から微小容器が露出した場合には、めっき層表面から微小容器頂点までの高さは、複合めっき層の厚さに含まれない。   When the micro container is exposed from the surface of the composite plating layer, the height from the plating layer surface to the top of the micro container is not included in the thickness of the composite plating layer.

表4−1、4−2に示したように、本発明例のめっき材料はいずれも摺動性および接触信頼性が良好であった。また、微粒子の粒径分布の規定を加えた本発明例のめっき材料はいずれも耐久性が良好であった。
これに対して、表4−3に示したように、表面めっき層に金属酸化物微粒子を有しない比較例1では、摺動後期における摩擦係数が高く、摺動性に劣るものであった。また、微粒子の共析量が多い比較例2、5と複数種類の微粒子が混合していて、一方の微粒子濃度が高すぎる比較例3、4では、摺動性および接触抵抗が大きく劣化するものとなった。
As shown in Tables 4-1 and 4-2, the plating materials of the examples of the present invention all had good slidability and contact reliability. In addition, the plating materials of the examples of the present invention to which the definition of the particle size distribution of the fine particles was added all had good durability.
On the other hand, as shown in Table 4-3, in Comparative Example 1 in which the metal plating fine particles were not included in the surface plating layer, the friction coefficient in the latter half of the sliding was high and the sliding property was inferior. Further, Comparative Examples 2 and 5 having a large amount of eutectoid of fine particles and a plurality of types of fine particles are mixed, and in Comparative Examples 3 and 4 in which one fine particle concentration is too high, the slidability and the contact resistance are greatly deteriorated. It became.

1 導電性基材
2 下地めっき層
3 ストライクめっき層
4 表面めっき層
5 金属酸化物微粒子
6 複合めっき層
DESCRIPTION OF SYMBOLS 1 Conductive base material 2 Base plating layer 3 Strike plating layer 4 Surface plating layer 5 Metal oxide fine particle 6 Composite plating layer

Claims (10)

電気接点に用いる銀もしくは銀合金めっき材であって、導電性基材の表面に、銅、ニッケル、コバルト、鉄、または、これらの元素からなる群から選ばれる少なくとも1種を含む合金からなる少なくとも1層の下地めっき層と、銀または銀合金をストライクめっきした層と、さらに銀または銀合金からなる表面めっき層からなる複合めっき層とを順に形成し、前記表面めっき層の表面もしくは内部またはその両方に金属酸化物微粒子を含み、前記金属酸化物微粒子は、酸化珪素、酸化アルミニウム、酸化錫、酸化亜鉛からなる群から選ばれる1種類以上を含む金属酸化物が主成分であり、気相中若しくは液相中で合成されたものであって、前記複合めっき層のめっき皮膜より硬度が高く、複合めっき層中に体積比で2.5%以上30%以下存在することを特徴とするめっき材。   A silver or silver alloy plating material used for an electrical contact, wherein the surface of the conductive substrate is at least made of copper, nickel, cobalt, iron, or an alloy containing at least one selected from the group consisting of these elements. A base plating layer, a layer obtained by strike plating of silver or a silver alloy, and a composite plating layer consisting of a surface plating layer made of silver or a silver alloy are formed in order, and the surface or the inside of the surface plating layer or its Both contain metal oxide fine particles, and the metal oxide fine particles are mainly composed of a metal oxide containing at least one selected from the group consisting of silicon oxide, aluminum oxide, tin oxide, and zinc oxide, Alternatively, it is synthesized in the liquid phase and has higher hardness than the plating film of the composite plating layer, and is present in the composite plating layer in a volume ratio of 2.5% to 30%. A plating material characterized by: 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占めることを特徴とする請求項1に記載のめっき材。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The plating material according to claim 1, which occupies more than half of the plating material. 前記金属酸化物微粒子の存在濃度が、表面めっき層の導電性基材に平行な任意の面において1平方μmあたり面積比で30%以下であることを特徴とする請求項1または請求項2に記載のめっき材。   3. The metal oxide fine particle present concentration is 30% or less in an area ratio per square μm on an arbitrary surface parallel to the conductive substrate of the surface plating layer. The plating material as described. 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占め、かつ前記金属酸化物微粒子を複数種類、混合物として含有し、その混合物の微粒子濃度を100%とするとき、前記複数種のうちの一種の金属酸化物微粒子が混合物に占める濃度の割合が25%ないし75%であることを特徴とする請求項1または請求項3に記載のめっき材。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The concentration of the metal oxide fine particles in the mixture when the concentration of fine particles in the mixture is 100%. The plating material according to claim 1 or 3, wherein the ratio is 25% to 75%. 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分未満であり、当該粒子の存在濃度が表面めっき層の導電性基材に平行な任意の面において面積比で15%以下であることを特徴とする請求項1または請求項3に記載のめっき材。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The concentration of the particles is 15% or less in an area ratio on an arbitrary surface parallel to the conductive substrate of the surface plating layer, according to claim 1 or 3. Plating material. 電気接点に用いる銀もしくは銀合金めっき材であって、導電性基材の表面に、銅、ニッケル、コバルト、鉄、または、これらの元素からなる群から選ばれる少なくとも1種を含む合金からなる少なくとも1層の下地めっき層と、銀または銀合金をストライクめっきした層と、さらに銀または銀合金からなる表面めっき層からなる複合めっき層とを順に形成し、前記表面めっき層の表面もしくは内部またはその両方に金属酸化物微粒子を含み、前記金属酸化物微粒子は、酸化珪素、酸化アルミニウム、酸化錫、酸化亜鉛からなる群から選ばれる1種類以上を含む金属酸化物が主成分であり、気相中若しくは液相中で合成されたものであって、前記複合めっき層のめっき皮膜より硬度が高く、複合めっき層中に体積比で2.5%以上30%以下存在させることを特徴とするめっき材の製造方法。   A silver or silver alloy plating material used for an electrical contact, comprising at least one of an alloy containing at least one selected from the group consisting of copper, nickel, cobalt, iron, or these elements on the surface of a conductive substrate. A base plating layer, a layer obtained by strike plating of silver or a silver alloy, and a composite plating layer consisting of a surface plating layer made of silver or a silver alloy are formed in order, and the surface or the inside of the surface plating layer or its Both contain metal oxide fine particles, and the metal oxide fine particles are mainly composed of a metal oxide containing at least one selected from the group consisting of silicon oxide, aluminum oxide, tin oxide, and zinc oxide, Alternatively, it is synthesized in a liquid phase and has higher hardness than the plating film of the composite plating layer, and is present in the composite plating layer in a volume ratio of 2.5% to 30%. Method for producing a plated material, characterized in that to. 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占めるように、前記微粒子を表面めっき層中に存在させることを特徴とする請求項6に記載のめっき材の製造方法。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The method for producing a plating material according to claim 6, wherein the fine particles are present in the surface plating layer so as to occupy more than half of the surface plating layer. 前記金属酸化物微粒子の存在濃度が、表面めっき層の導電性基材に平行な任意の面において1平方μmあたり面積比で30%以下となるように、前記金属酸化物微粒子を表面めっき層に存在させることを特徴とする請求項6または請求項7に記載のめっき材の製造方法。   The metal oxide fine particles are added to the surface plating layer so that the concentration of the metal oxide fine particles is 30% or less in an area ratio per square μm on an arbitrary surface parallel to the conductive substrate of the surface plating layer. The method for producing a plating material according to claim 6 or 7, wherein the plating material is present. 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分以上を占め、かつ金属酸化物微粒子を複数種類、混合物として使用し、その混合物の微粒子濃度を100%とするとき、前記複数種のうちの一種の金属酸化物微粒子が混合物に占める濃度の割合が25%ないし75%となるように、前記微粒子を前記表面めっき層中に存在させることを特徴とする、請求項6または請求項8に記載のめっき材の製造方法。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. When the concentration of fine particles of the mixture is 100%, and the concentration of the fine particles of the mixture is 100%, the concentration of the fine particles of the metal oxide in the mixture The method for producing a plating material according to claim 6 or 8, wherein the fine particles are present in the surface plating layer so that the ratio is 25% to 75%. 前記金属酸化物微粒子の粒径を動的光散乱法で測定した場合、平均粒子径に対して粒子径が50%から150%までの粒子数が前記表面めっき層中に含有されている粒子数の半分未満であり、当該粒子の存在濃度が前記表面めっき層の導電性基材に平行な任意の面において面積比で15%以下となるように、前記金属酸化物微粒子を表面めっき層中に存在させることを特徴とする、請求項6または請求項8に記載のめっき材の製造方法。   When the particle diameter of the metal oxide fine particles is measured by a dynamic light scattering method, the number of particles having a particle diameter of 50% to 150% with respect to the average particle diameter is contained in the surface plating layer. The metal oxide fine particles are contained in the surface plating layer so that the concentration of the particles is 15% or less in an area ratio on an arbitrary surface parallel to the conductive substrate of the surface plating layer. The method for producing a plating material according to claim 6 or 8, wherein the plating material is present.
JP2010210202A 2010-09-17 2010-09-17 Plating material and method for manufacturing the same Pending JP2012062564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210202A JP2012062564A (en) 2010-09-17 2010-09-17 Plating material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210202A JP2012062564A (en) 2010-09-17 2010-09-17 Plating material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012062564A true JP2012062564A (en) 2012-03-29

Family

ID=46058567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210202A Pending JP2012062564A (en) 2010-09-17 2010-09-17 Plating material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012062564A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331251B2 (en) 2013-11-29 2016-05-03 Nichia Corporation Light emitting device
US9362190B2 (en) 2013-12-25 2016-06-07 Nichia Corporation Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element
WO2017094378A1 (en) * 2015-11-30 2017-06-08 オムロン株式会社 Contact member, sliding contact, electrical device and method for producing contact member
WO2018180287A1 (en) * 2017-03-27 2018-10-04 日本電産株式会社 Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact
US10134955B2 (en) 2015-12-26 2018-11-20 Nichia Corporation Light emitting element and method of manufacturing the same
US10249804B2 (en) 2016-07-19 2019-04-02 Nichia Corporation Semiconductor device, base, and method for manufacturing same
JP2020012202A (en) * 2015-01-30 2020-01-23 Dowaメタルテック株式会社 Silver plating material and method for producing the same
US10586896B2 (en) 2016-05-11 2020-03-10 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
CN110923785A (en) * 2019-12-11 2020-03-27 哈尔滨东大高新材料股份有限公司 Method for preparing silver alloy/copper alloy composite contact material for circuit breaker by codeposition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331251B2 (en) 2013-11-29 2016-05-03 Nichia Corporation Light emitting device
US9748455B2 (en) 2013-12-25 2017-08-29 Nichia Corporation Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element
US9362190B2 (en) 2013-12-25 2016-06-07 Nichia Corporation Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element
JP2020012202A (en) * 2015-01-30 2020-01-23 Dowaメタルテック株式会社 Silver plating material and method for producing the same
US10381174B2 (en) 2015-11-30 2019-08-13 Omron Corporation Contact member, sliding contact, electrical device and method for producing contact member having electrical contact surface layer comprising coated particles
CN107924771A (en) * 2015-11-30 2018-04-17 欧姆龙株式会社 Contact member, sliding contact, the manufacture method of electrical equipment and contact member
JP2017103064A (en) * 2015-11-30 2017-06-08 オムロン株式会社 Contact member, sliding contact, electrical device, and method of manufacturing contact member
WO2017094378A1 (en) * 2015-11-30 2017-06-08 オムロン株式会社 Contact member, sliding contact, electrical device and method for producing contact member
US10134955B2 (en) 2015-12-26 2018-11-20 Nichia Corporation Light emitting element and method of manufacturing the same
US10586896B2 (en) 2016-05-11 2020-03-10 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
US11349049B2 (en) 2016-05-11 2022-05-31 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
US10249804B2 (en) 2016-07-19 2019-04-02 Nichia Corporation Semiconductor device, base, and method for manufacturing same
WO2018180287A1 (en) * 2017-03-27 2018-10-04 日本電産株式会社 Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact
CN110923785A (en) * 2019-12-11 2020-03-27 哈尔滨东大高新材料股份有限公司 Method for preparing silver alloy/copper alloy composite contact material for circuit breaker by codeposition
CN110923785B (en) * 2019-12-11 2022-04-22 哈尔滨东大高新材料股份有限公司 Method for preparing silver alloy/copper alloy composite contact material for circuit breaker by codeposition

Similar Documents

Publication Publication Date Title
JP2012062564A (en) Plating material and method for manufacturing the same
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
CN1318647C (en) Metal-plated material and method for preparation, and electric and electronic parts using same
JP5128153B2 (en) Electrical contact material and manufacturing method thereof
JP5255225B2 (en) Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
WO2017090638A1 (en) Tin-plated copper terminal material, terminal, and wire terminal part structure
WO2015108004A1 (en) Electrical contact material for connectors and method for producing same
JP2008270192A (en) Silver coating material for movable contact component, and manufacturing method thereof
KR20150022965A (en) A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP2017203214A (en) Copper terminal material with tin plating, terminal and wire terminal part structure
JP2013189681A (en) Silver plating material
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
JP2009007668A (en) Metal material for electrical electronic component
JP5019591B2 (en) Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
JP2007291458A (en) Cu-Ni-Si ALLOY-TINNED STRIP
JP2012122135A (en) Plating assistant, plating liquid, and plating material
JP5654015B2 (en) Composite plating materials and electrical / electronic parts using them
JP6172811B2 (en) Ag-Sn alloy plating solution and method for manufacturing electronic component
JP2010146925A (en) Contactor material for electric motor and method of manufacturing the same
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
CN110603349B (en) Tin-plated copper terminal material, terminal, and electric wire terminal structure
JP2009215632A (en) Metallic material for electric contact component
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts