JP2012058181A - Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same - Google Patents

Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same Download PDF

Info

Publication number
JP2012058181A
JP2012058181A JP2010204223A JP2010204223A JP2012058181A JP 2012058181 A JP2012058181 A JP 2012058181A JP 2010204223 A JP2010204223 A JP 2010204223A JP 2010204223 A JP2010204223 A JP 2010204223A JP 2012058181 A JP2012058181 A JP 2012058181A
Authority
JP
Japan
Prior art keywords
aqueous solution
test
membrane
colloidal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010204223A
Other languages
Japanese (ja)
Inventor
Kiyoki Ishimaru
石丸清樹
Seiichi Manabe
真鍋征一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sepa Sigma Inc
Original Assignee
Sepa Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepa Sigma Inc filed Critical Sepa Sigma Inc
Priority to JP2010204223A priority Critical patent/JP2012058181A/en
Publication of JP2012058181A publication Critical patent/JP2012058181A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new method to apply to a non-aqueous system of performance test to establish fine particle removal ability of a film and an integrity test of a non-destructive method for checking that a used film is within a set range in the fine particle removal performance, a test reagent to be applied to the test, and a method for manufacturing the reagent.SOLUTION: Particle removal performance is measured with non-aqueous solution having ferric hydroxide colloidal particles of an average particle diameter 13 to 200 nm where pH for stabilizing the colloidal particles ranges from 2.5 to 4.0 as testing liquid. By using a surfactant to stabilize the colloidal particles when the testing liquid is in contact with other substances, the colloidal particles are increasingly stabilized. The non-aqueous solution created by controlling mixture ratio of the ferric hydroxide colloidal particles of small diameter having a particle diameter of the ferric hydroxide colloidal particles as a nucleus with surfactant concentration is used to evaluate the particle removal performance of the film.

Description

本発明は微粒子除去を目的とした平均孔径5nm以上300nm以下の高分子多孔膜を使用後または使用前に行う膜の完全性試験または膜のウイルス除去および微粒子除去の性能試験に供する非水溶液とその製法に関する。除去対象とする微粒子とはウイルスや細菌などの感染性粒子あるいはタンパク凝集体,タンパクと他の分子との複合化した凝集体や無機粒子である。これらの微粒子を膜によって除去する技術を提供したりあるいはその技術を適切に利用したりする際には、膜の供給側は膜の微粒子除去性能を評価(この評価試験を性能試験と略称)したり、あるいは膜の使用者側は膜が微粒子除去性能を設計通り製造工程中で維持し使用されたことを確認する完全性試験を実施することが必要である。     The present invention relates to a non-aqueous solution for use in a membrane integrity test or membrane virus removal and particulate removal performance test conducted after or before use of a polymer porous membrane having an average pore diameter of 5 nm to 300 nm for the purpose of particulate removal. It relates to the manufacturing method. The fine particles to be removed include infectious particles such as viruses and bacteria, or protein aggregates, aggregates of proteins and other molecules, and inorganic particles. When providing a technology for removing these fine particles with a film or using the technology appropriately, the membrane supply side evaluates the fine particle removal performance of the membrane (this evaluation test is abbreviated as a performance test). Alternatively, it is necessary for the membrane user to perform an integrity test to confirm that the membrane has been used in the manufacturing process with the particulate removal performance as designed.

従来は、この種の膜は水溶液に対して使用されるのが一般である。しかし、気体中からの感染性微粒子の除去あるいは非水系液体(例、有機溶媒や食用油)からの感染性微粒子の除去が必要となっている。特にナノテクノロジーの進展は、種々の流体内部に未知の感染性微粒子の存在の可能性が生まれている。このような非水性の流体から膜を用いて、これらの微粒子を除去する試みがなされている。この場合、非水系で微粒子の除去性能を確認する必要があり、また非水系で膜が使用される場合には非水系で膜の完全性試験を行う必要がある。ここで非水系とは溶液中の水濃度が10%以下である溶液を意味する。     Conventionally, this type of membrane is generally used for aqueous solutions. However, it is necessary to remove infectious fine particles from gas or remove infectious fine particles from non-aqueous liquids (eg, organic solvents and edible oils). In particular, the advancement of nanotechnology has created the possibility of the presence of unknown infectious particles inside various fluids. Attempts have been made to remove these particulates from such non-aqueous fluids using membranes. In this case, it is necessary to confirm the removal performance of the fine particles in a non-aqueous system, and when the film is used in a non-aqueous system, it is necessary to perform a film integrity test in the non-aqueous system. Here, the non-aqueous system means a solution having a water concentration of 10% or less in the solution.

本発明は膜の非破壊型の微粒子除去性能試験および完全性試験用に供する非水溶液を与えさらに該非水溶液の製法を提供する。該非水溶液中には除去対象とする感染状微粒子に対応する指定された大きさ(通常、直径:プリオン用10nm,ウィルス用20nm,マイコプラズマ用80nm,細菌用では300nm)をもつ微粒子を含み、その微粒子が安定に分散していなくてはならず通常12週間以上は平均の粒径は変化しないことが必要である。     The present invention provides a non-aqueous solution for use in non-destructive particulate removal performance testing and integrity testing of membranes, and further provides a method for making the non-aqueous solution. The non-aqueous solution contains fine particles having a specified size (usually: diameter: 10 nm for prions, 20 nm for viruses, 80 nm for mycoplasma, 300 nm for bacteria) corresponding to the infectious particles to be removed. Must be stably dispersed, and it is usually necessary that the average particle size does not change for more than 12 weeks.

膜分離技術は分離に要するエネルギーが小さいこと、温和な条件での分離であることにより生物資源を利用する分野に利用されている。特にバイオ医薬品や飲食品分野の精製工程では多用されている。これらの分野での膜技術は、感染性粒子(ウイルス,細菌,プリオンなど)を除去するなどの安全性対策上不可欠である。実際に市場ではウイルス除去膜や除菌用フィルターとして膜を用いた濾過技術(膜濾過技術と略称)としてバイオ医薬品の製造工程で利用され、この分野では使用後の膜の完全性試験が義務付けられている。     Membrane separation technology is used in the field of utilizing biological resources because of the low energy required for separation and the separation under mild conditions. In particular, it is frequently used in the purification process of biopharmaceuticals and food and drink products. Membrane technology in these fields is indispensable for safety measures such as removing infectious particles (viruses, bacteria, prions, etc.). In fact, it is used in the biopharmaceutical manufacturing process as a filtration technology (abbreviated as membrane filtration technology) using a membrane as a virus removal membrane or a sterilization filter in the market. In this field, a membrane integrity test after use is obligatory. ing.

従来より提案された膜の完全性試験法には、ウィルス除去と細菌除去に関して直接法と間接法との二種類がある。例えばウィルス除去に関して直接法とはある特定の大きさを持つ微粒子を同じ大きさのウイルスのモデル物質とみなし、この微粒子を分散した水溶液を用いた膜の微粒子除去性能を測定する試験法意味する。完全性試験の定義から膜としては使用直後の膜でなくてはならない。ウィルス除去に関して実際に使われている微粒子は金コロイド粒子である。(特許文献1)一方、性能試験は膜の使用前に膜のメーカーが行う除去性能試験であり、この金コロイド粒子を用いる場合には膜の性能試験の直接法に分類される。性能試験の直接法において技取り検査では金コロイド粒子が採用されているが全数検査での直接法は開発されていない。この方法が破壊型の直接法であるため全数検査の性能試験としては不適である。金コロイド粒子は水溶液中に分散している。すなわち従来の直接法での安全性試験は除去対象物質が水に分散している場合にのみ適用できる。非水媒体での直接法での安全性試験法は提案さえない。     There are two types of membrane integrity testing methods that have been proposed in the past: direct and indirect methods for virus removal and bacteria removal. For example, the direct method for virus removal means a test method in which fine particles having a certain size are regarded as a model substance of virus of the same size, and the fine particle removal performance of a film using an aqueous solution in which the fine particles are dispersed is measured. From the definition of the integrity test, the membrane must be a membrane immediately after use. The fine particles actually used for virus removal are colloidal gold particles. (Patent Document 1) On the other hand, the performance test is a removal performance test conducted by a membrane manufacturer before using the membrane, and when using the gold colloid particles, it is classified as a direct method of the membrane performance test. Colloidal gold particles are used in technical inspections in the direct method of performance testing, but no direct method has been developed for 100% inspection. Since this method is a destructive direct method, it is not suitable as a performance test for 100% inspection. Gold colloidal particles are dispersed in an aqueous solution. That is, the conventional direct safety test can be applied only when the substance to be removed is dispersed in water. There is no suggestion of a safety test method using a direct method in non-aqueous media.

間接法による完全性試験では微粒子の除去性能を測定する代りに、孔特性に関連した物性値を測定することによって間接的に使用後の膜についての微粒子の除去性能が設定された基準以上であることを確認する試験法である。たとえば膜中の孔を介して2種の液体相を接触させた際に生じる界面張力が既知であれば2液体の一方を加圧して最初に加圧された液体が孔を通過する瞬間の圧力を測定すれば最大孔径が定まる。この圧力が所定の圧力以上であることによって膜中の最大の孔の大きさが設定された孔径内であることが原理上確認できる(特許文献2)。この方法では膜の孔特性が膜の浸漬媒体の種類によらず同一であるとする仮定を前提としている。     Instead of measuring the particle removal performance in the indirect method integrity test, the particle removal performance of the membrane after use indirectly exceeds the set standard by measuring the physical properties related to the pore characteristics. This is a test method to confirm this. For example, if the interfacial tension generated when two liquid phases are brought into contact with each other through pores in the membrane is known, the pressure at the moment when one of the two liquids is pressurized and the first pressurized liquid passes through the pores. Measure the maximum pore size. When this pressure is equal to or higher than a predetermined pressure, it can be confirmed in principle that the size of the maximum hole in the membrane is within the set hole diameter (Patent Document 2). This method presupposes that the pore characteristics of the membrane are the same regardless of the type of membrane immersion medium.

間接法での実際の測定では一定の膜間差圧を与えた際の液体の膜透過速度を測定する場合が多い(特許文献2)。しかしこの方法では界面張力が重要であるため使用後の膜の洗浄と測定時の温度制御が必要であり、しかも測定後の膜は測定時に使用していた液体で汚染される。また界面張力の大きな液体(例、水など)の場合には膜への負荷圧力が大きくなるため完全性試験によって孔が力学的に変形あるいは破壊される。したがってこの方法も破壊試験となるため全数検査が必要な性能試験としては使えない。膜の平均孔径が小さくなるほど間接法の適用が難しくなる。     In actual measurement by the indirect method, the membrane permeation rate of a liquid when a certain transmembrane pressure difference is applied is often measured (Patent Document 2). However, since the interfacial tension is important in this method, it is necessary to clean the film after use and to control the temperature at the time of measurement, and the film after the measurement is contaminated with the liquid used at the time of measurement. In the case of a liquid having a high interfacial tension (eg, water), the load pressure on the membrane increases, so that the hole is mechanically deformed or broken by the integrity test. Therefore, since this method is also a destructive test, it cannot be used as a performance test that requires 100% inspection. Application of the indirect method becomes more difficult as the average pore size of the membrane decreases.

全数検査で性能試験としての非破壊の間接法の例として、孔を介しての気体と液体との表面張力を利用して最大径またはその近傍の孔を上述の液/液界面での間接法の場合と類似の気/液界面での気体の透過速度を測定する検査法も実際の膜の製造現場では利用されている。しかしこの方法では膜としては乾燥状態であることが必要であり、かつ膜間差圧も数気圧〜十数気圧必要なためこの方法は膜ユーザーの行う完全性試験には使えない。     As an example of non-destructive indirect method as a performance test in 100% inspection, indirect method at the above-mentioned liquid / liquid interface using the surface tension of gas and liquid through the hole to make the hole with the maximum diameter or its vicinity An inspection method for measuring the gas permeation rate at the gas / liquid interface similar to the above is also used in actual film manufacturing sites. However, this method requires the membrane to be in a dry state, and the pressure difference between the membranes also requires several to tens of atmospheric pressures. Therefore, this method cannot be used for the integrity test performed by the membrane user.

本発明でいう膜分離技術とは(1)圧力差を物質移動の駆動力として孔径と粒子径との関係で物質を分離する膜濾過技術と、(2)濃度差を物質移動の駆動力とし、分子あるいは粒子自体の持つ熱運動性(いわゆるブラウン運動の激しさ)の差を利用した分離と膜中の孔の径と粒子径との関係で生じるふるい効果によって分離する孔拡散技術と(3)半透膜をへだてた濃度差を物質移動の駆動力として、膜と物質との親和力差と膜素材高分子の熱運動性(ミクロブラウン運動の激しさ)で生じる自由体積の空間部の大きさと分子の大きさとの差で分子を分離する拡散透析技術とを意味する。     The membrane separation technology referred to in the present invention is (1) membrane filtration technology that separates substances by the relationship between pore size and particle size using pressure difference as driving force for mass transfer, and (2) concentration difference as driving force for mass transfer. Separation using the difference in thermal motility (so-called Brownian motion intensity) of molecules or particles themselves and pore diffusion technology for separation by the sieving effect caused by the relationship between the pore diameter in the membrane and the particle diameter (3 ) Using the concentration difference across the semipermeable membrane as the driving force for mass transfer, the size of the free volume space caused by the difference in affinity between the membrane and the material and the thermal motility of the membrane material polymer (intensity of micro Brownian motion) And diffusion dialysis technology that separates molecules by the difference between the size of the molecule and the size of the molecule.

従来から提案されていた直接法あるいは間接法の完全性試験法ではいずれの方法でも使用後の膜を洗浄して完全性試験の正確度を高めなくてはならない現状である。その理由は直接法では(A)採用されている微粒子が金コロイド粒子であること,(B)膜分離技術として膜濾過技術を採用しているためである。(A)の理由は金コロイド粒子とタンパク質との相互作用が強く(特にグロブリンとは吸着する)膜表面や内部の孔にタンパクが残存すると見掛上微粒子除去能は増加するためである。(B)の理由は濾過により膜表面には濃度分極により水溶液中の溶解成分が高濃度に局在化し、また膜中の孔には微粒子が目詰まりを起こして残留しているためである。しかも従来技術はすべて膜が水溶液中で利用されることを前提としている。     The direct method or indirect method of integrity testing that has been proposed in the past requires cleaning the membrane after use to improve the accuracy of the integrity test. The reason is that in the direct method, (A) the fine particles adopted are colloidal gold particles, and (B) membrane filtration technology is adopted as membrane separation technology. The reason for (A) is that the interaction between the gold colloidal particles and the protein is strong (especially adsorbs to globulin), and the protein is apparently removed when the protein remains on the membrane surface or inside pores. The reason for (B) is that the dissolved component in the aqueous solution is localized at a high concentration due to concentration polarization on the membrane surface by filtration, and fine particles remain clogged in the pores in the membrane. Moreover, all the prior arts assume that the membrane is used in an aqueous solution.

特開2005−40756JP2005-40756 特開17−132215JP-A-17-132215

一度微粒子除去用として使用された膜に対して再生処理した膜が再び微粒子除去用として再利用することができるがどうかを決定する試験法を開発することができればこの分野での膜の再利用の道が開ける。従来、膜を使用した後に行われる完全性試験では、この試験自体が膜の孔構造を破壊するものと考えが定着していた。すなわち微粒子除去用としての膜の再利用が可能になるにはまず完全性試験法が非破壊試験であることが必要である。膜の供給側である膜の製造者は非破壊型試験で間接法による性能試験を行っているが、この場合には性能試験後の膜の表面および内部が清浄で未使用状態と同一の状態であることか必要である。性能試験では膜の状態が未使用状態を前提としているためこの方法は完全性試験としては利用できないとされている。結局は適切な完全性試験法がないため膜はシングルユースであるとする膜の製造者の指導に従っているのが現状である。空気や油などの非水媒体中の感染性微粒子の除去膜については完全性試験法がなく、再利用の道は皆無の状況下にある。     If a test method can be developed to determine whether a regenerated membrane can be reused for particulate removal once a membrane once used for particulate removal can be reused in this field. The road opens. Conventionally, in integrity tests performed after the use of a membrane, it has been firmly established that this test itself destroys the pore structure of the membrane. In other words, the integrity test method must first be a nondestructive test in order to be able to reuse the film for removing fine particles. The manufacturer of the membrane on the membrane supply side conducts a performance test by the indirect method in a non-destructive test. In this case, the surface and the inside of the membrane after the performance test are clean and in the same state as the unused state. It is necessary or necessary. This method cannot be used as a completeness test because the performance test assumes that the membrane is not used. After all, there is no proper integrity test method, so the current situation is that the film manufacturer follows the guidance of the film manufacturer that it is single use. There is no integrity test method for removing membranes of infectious particles in non-aqueous media such as air and oil, and there is no way to reuse them.

本発明では非破壊試験で、しかも直接法による試験用の非水溶液を提供することにより、膜の微粒子除去用としての再使用の可能性を阻外する上述の問題を解決する。すなわち本発明の第1の特徴は微粒子除去を目的とした膜に対して膜製造者が行う使用前の膜の直接法の除去性能試験と膜の使用者が行う使用後の膜の完全性試験との共通の試験用非水溶液を与える点にある。直接法でかつ非破壊型の試験法であるためには、非水溶液中には試験後に簡単に除去できる特定の大きさを持つ微粒子を分散していることが必要である。また試験法としては濾過法よりも孔拡散法の方が膜中の粒子除去が容易なために望ましい。同じ理由で膜の使用方法も孔拡散法が望ましい。従来微粒子除去を目的とした膜分離技術は膜濾過法のみであったため孔拡散法が開発されるまで膜の再生使用の可能性はなかったといえる。     The present invention solves the above-mentioned problems that impede the possibility of reuse of the membrane for removing fine particles by providing a non-aqueous solution for non-destructive testing and direct testing. That is, the first feature of the present invention is that the membrane manufacturer performs a direct removal method test of a membrane before use on a membrane intended to remove fine particles, and a membrane integrity test after use by a membrane user. And a common non-aqueous solution for testing. In order to be a direct method and a non-destructive test method, it is necessary that fine particles having a specific size that can be easily removed after the test are dispersed in the non-aqueous solution. As a test method, the pore diffusion method is preferable to the filtration method because particles in the membrane can be easily removed. For the same reason, the method of using the membrane is preferably the hole diffusion method. Conventionally, the membrane separation technique for the purpose of removing fine particles has been only the membrane filtration method, so it can be said that there was no possibility of reusing the membrane until the pore diffusion method was developed.

本発明の第2の特徴は、非水溶液中に水非晶性の酸化第2鉄コロイド粒子を分散させている点である。水酸化第2鉄コロイド粒子はほとんど無定形であるため、試験後に膜中に残存しても酸等により簡単に溶解除去できる。水酸化第2鉄コロイド粒子にすることにより非水中の3価の鉄イオン濃度および2価の鉄イオン濃度を0.1ppm以下に低下させることは可能である。透析によりさらに3価の鉄イオン濃度をさげることも可能である。2価の鉄イオンの減少はコロイド粒子の安定性に寄与するのみでなく完全性試験の感度を高める。水酸化鉄コロイド粒子を乾燥すると脱水や酸化状態が変化し、結晶化が進み、コロイド粒子は酸への溶解速度が著しく低下する。そのため試験後の粒子除去が困難となり破壊型の試験法となり好ましくない。水酸化第2鉄コロイド粒子を無定形状態に保持させておくことも重要である。     The second feature of the present invention is that water-amorphous ferric oxide colloidal particles are dispersed in a non-aqueous solution. Since the ferric hydroxide colloidal particles are almost amorphous, even if they remain in the film after the test, they can be easily dissolved and removed by acid or the like. By using ferric hydroxide colloidal particles, it is possible to reduce the concentration of trivalent iron ions and divalent iron ions in non-water to 0.1 ppm or less. It is possible to further reduce the trivalent iron ion concentration by dialysis. The reduction of divalent iron ions not only contributes to the stability of the colloidal particles but also increases the sensitivity of the integrity test. When iron hydroxide colloidal particles are dried, the dehydration and oxidation state changes, crystallization proceeds, and the dissolution rate of colloidal particles in acid is significantly reduced. Therefore, it becomes difficult to remove the particles after the test, which is not preferable because it is a destructive test method. It is also important to keep the ferric hydroxide colloid particles in an amorphous state.

本発明のコロイド粒子の形状の際にその核を与える水酸化第2鉄コロイド粒子を作製するには第2鉄塩を溶解した非水溶液中に塩基性物質を添加するか、該非水溶液を50℃以上に加熱すれば良い。PHの制御下でコロイド粒子を安定化させるためにはpHの範囲を5以下に、長期の安定にはpH2.5〜4.0に制御しておくことが必要である。塩基性物質としては苛性ソーダやアンモニアが適する。また、核となる水酸化第2鉄コロイド粒子の径を10nm以上で70nm以下に設定することが粒子径や磁性と結晶性を決定する重量な変数である。非水系の溶媒として膜を溶解または膨潤させない溶媒であることも必要である。具体的にはドライクリーニングで使用されている溶媒であり、例えば、ヘキサン、ヘプタン、オクタンである。     In order to produce ferric hydroxide colloidal particles that give nuclei in the shape of the colloidal particles of the present invention, a basic substance is added to a nonaqueous solution in which a ferric salt is dissolved, or the nonaqueous solution is heated to 50 ° C. What is necessary is just to heat above. In order to stabilize the colloidal particles under the control of pH, it is necessary to control the pH range to 5 or less, and to control the pH to 2.5 to 4.0 for long-term stability. As the basic substance, caustic soda and ammonia are suitable. In addition, setting the diameter of the ferric hydroxide colloidal particles serving as the nucleus to 10 nm or more and 70 nm or less is a variable that determines the particle diameter, magnetism, and crystallinity. A non-aqueous solvent that does not dissolve or swell the membrane is also necessary. Specifically, it is a solvent used in dry cleaning, for example, hexane, heptane, and octane.

本発明の第3の特徴は水酸化第2鉄コロイドの平均粒子径を13〜200nmの特定値に設定している点と水酸化第2鉄の濃度が鉄換算で100ppm以上である点である。微粒子除去を目的とする膜の微粒子の具体的な種類として、細菌,マイコプラズマ,リケッチャ,クラミジア,ウイルス,プリオンその他タンパクの会合体や無機粒子等がある。これらの微粒子を除去する性能を膜が有することを確認するには、その対象とする微粒子径より小さな水酸化鉄コロイド粒子の膜除去性能によって確定される。プリオンの大きさは約10nm、最小ウイルスの大きさが20nmであることが明らかになりつつあり、平均粒子径が10nm以上であることは完全性試験の目的にかなう。この水酸化鉄コロイド粒子の膜除去機構は粒子径のみに依存するふるい効果や粒子径に依存する拡散効果であることが必要である。他の効果、例えば吸着効果によって除去される場合には膜の界面特性や微粒子界面の特性によって除去性能が変化するためである。すなわち試験法としては、除去性能に対して理論上予測性を持たなくてはならない。そのためにはふるい効果や拡散効果で粒子を除去する性能を確定し、他の除去機構が付与される場合には除去性能はふるい機構のみの場合の値以上となることが必要である。コロイド粒子の濃度は完全性試験の感度を支配するので重要であり、高い検出感度が要求される。ウィルス除去用では200ppmは必要である。検出感度の上昇と鉄イオン濃度を別途測定していれば該濃度は100ppm以上であれば良い。     The third feature of the present invention is that the average particle size of the ferric hydroxide colloid is set to a specific value of 13 to 200 nm and the concentration of ferric hydroxide is 100 ppm or more in terms of iron. . Specific types of fine particles in the membrane for the purpose of removing fine particles include bacteria, mycoplasma, rickettsia, chlamydia, virus, prion and other protein aggregates and inorganic particles. In order to confirm that the film has the performance of removing these fine particles, it is determined by the film removal performance of iron hydroxide colloid particles smaller than the target fine particle diameter. It is becoming clear that the prion size is about 10 nm and the minimum virus size is 20 nm, and the average particle size of 10 nm or more serves the purpose of the integrity test. The film removal mechanism of the iron hydroxide colloidal particles needs to be a sieving effect that depends only on the particle size or a diffusion effect that depends on the particle size. This is because the removal performance varies depending on the interface characteristics of the film and the characteristics of the fine particle interface when the film is removed by other effects, for example, an adsorption effect. That is, as a test method, the removal performance must have theoretical predictability. For that purpose, the performance of removing particles is determined by a sieving effect or a diffusion effect, and when other removal mechanisms are provided, the removal performance needs to be equal to or higher than the value of the sieving mechanism alone. The concentration of colloidal particles is important because it dominates the sensitivity of the integrity test, and high detection sensitivity is required. 200ppm is necessary for virus removal. If the increase in detection sensitivity and the iron ion concentration are separately measured, the concentration may be 100 ppm or more.

除去対象のウイルスがHIV(粒径100nm)等のレトロウィルス,あるいは細菌類,マイコプラズマ,リケッチャ,クラミジアであれば粒径80nmの水酸化鉄コロイド粒子を、C型肝炎ウイルス(粒径35nm)あるいはB型肝炎ウイルス(42nm)であれば粒子径20nmのコロイド粒子を、プリオン(10nm)については粒子径10nmを試験用水溶液に含まれるコロイド粒子の径として設定する。除去対象微粒子よりもわずかに小さいコロイド粒子を試験用の水溶液を用いることにより完全性試験および性能試験の信頼度が高くなる。     If the virus to be removed is a retrovirus such as HIV (particle size 100 nm), or bacteria, mycoplasma, rickettsia, chlamydia, iron hydroxide colloidal particles with a particle size of 80 nm, hepatitis C virus (particle size 35 nm) or B For hepatitis B virus (42 nm), colloidal particles with a particle diameter of 20 nm are set, and for prions (10 nm), the particle diameter of 10 nm is set as the diameter of the colloidal particles contained in the aqueous test solution. The reliability of the integrity test and the performance test is increased by using a test aqueous solution for colloidal particles slightly smaller than the removal target fine particles.

水酸化第2鉄コロイド粒子の粒子径は鉄塩水溶液中の核の役割を果たす水酸化第2鉄コロイド粒子と界面活性剤であるドデシル硫酸ナトリウムよって制御できる。3価の鉄イオン存在比が大きくなると平均粒子径は大きくなる。また界面活性剤濃度が高くなると小さくなる。残存する鉄イオン濃度を低くすることは鉄コロイド粒子を安定化させるのに望ましい。3価の鉄イオンを与える鉄塩としては塩化第2鉄が良く、あらかじめ塩化第2鉄水溶液として利用する。     The particle size of the ferric hydroxide colloidal particles can be controlled by the ferric hydroxide colloidal particles that act as nuclei in the iron salt aqueous solution and the sodium dodecyl sulfate that is a surfactant. The average particle size increases as the trivalent iron ion abundance ratio increases. Moreover, it decreases as the surfactant concentration increases. Lowering the residual iron ion concentration is desirable to stabilize the iron colloidal particles. Ferric chloride is a good iron salt that gives trivalent iron ions, and is used in advance as an aqueous ferric chloride solution.

本発明の第4の特徴はコロイド粒子を安定化させる複数の水溶性成分を含んだ非水溶液である点である。この安定化はコロイド粒子が他の材料と接触した際の安定化剤である。該水溶性成分として水素イオンの調整が容易であることとこのイオンを試験後膜中より除去するのは簡単である。コロイド粒子の保存中にはpHは4以下に保たれる。第1鉄イオン濃度を0.1ppm以下にすることにより、コロイド粒子の安定化が向上し、またコロイド粒子の非晶性の保持が簡単である。コロイド粒子を用いて完全性試験を行う際に回路の素材、膜に残留するタンパク質や脂肪等に接触する。この接触時の安定性を確保するためにも界面活性剤を使用していることは良い。陽イオン界面活性剤、非イオン界面活性剤がこの目的のために利用される。また接触する素材表面を親水化するためにポリエチレングリコール、ポリビニルアルコールあるいはポリビニルピロニドリンが優れている。     A fourth feature of the present invention is a non-aqueous solution containing a plurality of water-soluble components that stabilize colloidal particles. This stabilization is a stabilizer when the colloidal particles come into contact with other materials. It is easy to adjust hydrogen ions as the water-soluble component and to remove these ions from the membrane after the test. The pH is kept below 4 during storage of the colloidal particles. By adjusting the ferrous ion concentration to 0.1 ppm or less, the stability of the colloidal particles is improved and the amorphousness of the colloidal particles is easily maintained. When the integrity test is performed using colloidal particles, it comes into contact with circuit materials, proteins and fats remaining in the membrane. In order to ensure the stability at the time of contact, it is preferable to use a surfactant. Cationic and non-ionic surfactants are utilized for this purpose. In addition, polyethylene glycol, polyvinyl alcohol or polyvinyl pyronidoline is excellent for making the surface of the contacting material hydrophilic.

完全性試験および微粒子除去性能試験とが非破壊でかつ試験前に膜を洗浄処理することなく実施する試験方法としては孔拡散技術であることが望ましい。該試験用水溶液中の水酸化第2鉄コロイドの平均粒子径が20nmで100nm以下の範囲であることがウィルス除去用の試験としては最適であり、この際には試験の検出感度を高める必要性がある。該コロイド粒子の濃度が200ppm以上であることが望ましい。     A pore diffusion technique is desirable as a test method in which the integrity test and the particulate removal performance test are nondestructive and performed without washing the membrane before the test. The average particle size of the ferric hydroxide colloid in the aqueous test solution is in the range of 20 nm to 100 nm or less, which is optimal as a virus removal test. In this case, it is necessary to increase the detection sensitivity of the test. There is. The concentration of the colloidal particles is desirably 200 ppm or more.

本発明の試験用非水溶液は微粒子除去性能試験と完全性試験との両者に利用される。両試験方法の一致は膜の再生利用の道を開く。一方、現状の完全性試験の範囲においてのみ使用する場合でも従来法に比較して簡便で洗浄処理を必要としない。さらに性能試験において性能試験の直接法でかつ除去性能の検出感度として従来の金コロイド水溶液の10〜100倍の高い検出感度を与える。     The test non-aqueous solution of the present invention is used for both the particulate removal performance test and the integrity test. The agreement between the two test methods opens the way for membrane recycling. On the other hand, even when used only in the range of the current integrity test, it is simpler than the conventional method and does not require a cleaning treatment. Furthermore, in the performance test, the detection sensitivity is 10 to 100 times higher than that of the conventional aqueous colloidal gold solution as a direct method of the performance test and the detection sensitivity of the removal performance.

水酸化第2鉄コロイド粒子の鉄濃度とドデシル硫酸ナトリウム(SDS)によって水酸化第2鉄コロイド粒子の大きさを設定する。このコロイド粒子にSDSを含む非水溶液を混合して非水系コロイド粒子を設定した。粒子径を動的光散乱法で確定する。この水溶液を20℃で2ヶ月間保管し、その後平均粒子径の変化を測定しても変化率は10%以内である。   The size of the ferric hydroxide colloid particles is set according to the iron concentration of the ferric hydroxide colloid particles and sodium dodecyl sulfate (SDS). A non-aqueous colloidal particle was set by mixing a non-aqueous solution containing SDS with the colloidal particle. Determine particle size by dynamic light scattering. Even if this aqueous solution is stored at 20 ° C. for 2 months and then the change in average particle diameter is measured, the rate of change is within 10%.

ミクロ相分離法で作製した再生セルロース多層構造平膜(例えば平均孔径30nm,空孔率65%,膜厚180ミクロン)の微粒子除去性能を孔拡散法で評価する。拡散液中の粒子濃度は以下のような錯体形成法を採用し、鉄イオンに換算で0.01ppmまで測定する。試験液中の鉄イオンに換算した粒子濃度を例えば200ppmとすると微粒子除去性能の測定は4logまで可能である。検出感度を限界の0.005ppmまで高め、粒子濃度を500ppmにすれば微粒子除去性能は5logまで可能である。     The fine particle removal performance of a regenerated cellulose multilayer structure flat membrane (for example, average pore diameter of 30 nm, porosity of 65%, film thickness of 180 microns) produced by the microphase separation method is evaluated by the pore diffusion method. The concentration of particles in the diffusion solution is measured up to 0.01 ppm in terms of iron ion, employing the following complex formation method. If the particle concentration in terms of iron ions in the test solution is, for example, 200 ppm, the fine particle removal performance can be measured up to 4 logs. If the detection sensitivity is increased to the limit of 0.005 ppm and the particle concentration is increased to 500 ppm, the fine particle removal performance can be up to 5 logs.

微粒子除去性能を評価した後、0.1規定の塩酸を孔拡散式平膜モジュールに充填し、30℃で2時間ごとに内部の液を0.1規定の塩酸で置換を繰り返す。48時間この処理により流出する鉄イオン濃度は検出限界以下となり平膜は再生される。再生後の平膜モジュールで1重量%のガンマグロブリン水溶液を孔拡散法で微粒子除去する微粒子除去およびガンマグロブリンの膜透過特性は同一製膜条件の膜で上記性能テストを行っていない膜と同一であった。     After evaluating the fine particle removal performance, 0.1 N hydrochloric acid is filled in the pore diffusion flat membrane module, and the internal solution is repeatedly replaced with 0.1 N hydrochloric acid every 30 hours at 30 ° C. The concentration of iron ions flowing out by this treatment for 48 hours is below the detection limit, and the flat membrane is regenerated. In the regenerated flat membrane module, 1% by weight of gamma globulin aqueous solution is removed by the pore diffusion method. The fine particle removal and membrane permeation characteristics of gamma globulin are the same as those of the membrane under the same film forming conditions and not subjected to the above performance test. there were.

上述のコロイド水溶液を用いて孔拡散法で完全性試験を実施する。拡散液中の水酸化第二鉄コロイド粒子濃度を測定するために拡散液中に1規定の塩酸を加えPHを約1に設定し、80℃に30分間加熱する。20℃に冷却後、少量のチオシアン酸ナトリウムを添加し着色する。着色した後に分光光度計を用いて吸光度を測定することによりあらかじめ求めた検量線より鉄イオン濃度を決定する。この方法で測定される鉄イオン濃度は0.01ppm以下0.005ppmである。     An integrity test is carried out by the pore diffusion method using the above colloidal aqueous solution. In order to measure the concentration of ferric hydroxide colloid particles in the diffusion solution, 1N hydrochloric acid is added to the diffusion solution, the pH is set to about 1, and the mixture is heated to 80 ° C. for 30 minutes. After cooling to 20 ° C., a small amount of sodium thiocyanate is added and colored. After coloring, the iron ion concentration is determined from a calibration curve obtained in advance by measuring the absorbance using a spectrophotometer. The iron ion concentration measured by this method is 0.01 ppm or less and 0.005 ppm.

エタノール20mlに塩化第2鉄6水和物(FeCl・6HO)を鉄換算濃度1200ppmを50℃の液温で溶かし(A)液とし、エタノール20mlに水酸化ナトリウム0.276mol/Lを60℃で溶かし(B)液とし、それぞれ溶けたのを確認し攪拌下でB液にA液を混合し30分間50から60℃で保持した(C)。次にエタノール10ml中にSDSを260ml中0.5%になるよう秤取り溶かした。この液をCに攪拌下で混合し50から60℃は30分間保持した(d)。次にエタノール10ml中に、SDSを260ml中1.0%になるよう秤取り溶かし、攪拌下で混合し50から60℃は30分間保持し、攪拌下でヘキサン210mlを混合し40から50℃で30分間保持した。この液を攪拌下でdに混合し40から50℃で5時間保持した。その後50℃まで冷却させ、濾紙により濾過させた。この作製により粒子径21nmを得る事ができた。 Dissolve ferric chloride hexahydrate (FeCl 3 · 6H 2 O) in 20 ml of ethanol at an iron equivalent concentration of 1200 ppm at a liquid temperature of 50 ° C. to give a solution (A). It melt | dissolved at 60 degreeC, it was set as the (B) liquid, it confirmed that each melt | dissolved, A liquid was mixed with B liquid with stirring, and it hold | maintained at 50 to 60 degreeC for 30 minutes (C). Next, SDS was weighed and dissolved in 10 ml of ethanol to 0.5% in 260 ml. This liquid was mixed with C under stirring and maintained at 50 to 60 ° C. for 30 minutes (d). Next, weigh out and dissolve SDS in 10 ml of ethanol to 1.0% in 260 ml, mix under stirring, hold at 50 to 60 ° C. for 30 minutes, mix with 210 ml of hexane under stirring and mix at 40 to 50 ° C. Hold for 30 minutes. This solution was mixed with d under stirring and kept at 40 to 50 ° C. for 5 hours. Thereafter, the mixture was cooled to 50 ° C. and filtered through filter paper. By this production, a particle diameter of 21 nm could be obtained.

これらのコロイド水溶液を20℃で静置保存すると粒子径が大きいほど沈降が早く100nmの粒子径の溶液では1日以内で沈降が認められた。平均粒径が20nmでは1ヶ月間はまったく変化が認められず2ヶ月後のDLS測定では平均孔径20nmと変化が認められなかった。     When these colloidal aqueous solutions were stored at 20 ° C., the larger the particle size, the faster the settling, and the precipitation with a particle size of 100 nm was observed within one day. When the average particle diameter was 20 nm, no change was observed for one month, and no change was observed with an average pore diameter of 20 nm in the DLS measurement after two months.

実施例1と同様の作製方法で得られた非水溶液にこの非水溶液中に下記の物質を添加し、コロイド粒子の安定性を確認した。
(1)ヘキサンによる稀釈と濃縮・・・稀釈倍率10倍〜濃縮倍率10倍で安定
(2)食塩水添加・・・食塩濃度が1,2重量%以上で不安定化
(3)卵アルブミン水溶液・・・0〜1重量%で安定
(4)牛ガンマーグロブリン・・・10ppm〜0.1重量%で不安定で0.2重量%以上で安定
(5)牛胸腺由来DNA・・・5ppm以上で不安定
The following substances were added to the non-aqueous solution obtained by the same production method as in Example 1 to confirm the stability of the colloidal particles.
(1) Dilution and concentration with hexane: Stable at dilution ratio of 10 times to concentration ratio of 10 times (2) Addition of saline solution: Destabilized when salt concentration is 1 wt% or more (3) Egg albumin aqueous solution ... Stable at 0 to 1% by weight (4) Bovine gamma globulin ... 10 ppm to 0.1% by weight unstable and stable at 0.2% or more (5) Bovine thymus-derived DNA ... 5 ppm or more Unstable

実施例2で得られた水酸化第二鉄コロイド粒子を含む水溶液はアルブミン水溶液から膜によってウイルス除去する場合の完全性試験に適することがわかる。特に膜表面に濃縮はほとんど起らない孔拡散法で使用された膜の使用後の膜の完全性試験用として、本非水溶液は適する。グロブリンやDNAを含む液を膜処理(濾過や孔拡散)した後、膜に対しては、本非水溶液を用いた完全性試験を行う前にあらかじめ膜を水と添加液とで洗浄する必要がある。     It can be seen that the aqueous solution containing the ferric hydroxide colloidal particles obtained in Example 2 is suitable for the integrity test when the virus is removed from the aqueous albumin solution by a membrane. In particular, the non-aqueous solution is suitable for a membrane integrity test after use of a membrane used in the pore diffusion method in which little condensation occurs on the membrane surface. After membrane treatment (filtration or pore diffusion) of a solution containing globulin or DNA, it is necessary to wash the membrane with water and an additive solution before conducting a completeness test using this non-aqueous solution. is there.

バイオ医薬品製造工程の精製工程でウイルス等の感染性粒子を除去する膜の製造時に行う微粒子除去性能試験および膜の使用者が膜の使用状態が設定どおりであったことを確認するための完全性試験に利用される。     Fine particle removal performance test conducted during the manufacture of membranes that remove viruses and other infectious particles during the purification process of biopharmaceutical manufacturing processes, and completeness for membrane users to confirm that membrane usage was as set Used for testing.

非水中の水酸化第2鉄コロイド粒子のモデル図Model diagram of ferric hydroxide colloidal particles in non-water

1:容器,2:水酸化第2鉄コロイド粒子(核),3:界面活性剤の対イオン(Naイオン),4:界面活性剤イオン(ドデシル硫酸イオン),5:エタノール,6:ヘキサン(溶媒)、少量の水の存在は無視している。 1: container, 2: ferric hydroxide colloidal particles (nuclei), 3: counter ion of surfactant (Na + ion), 4: surfactant ion (dodecyl sulfate ion), 5: ethanol, 6: hexane (Solvent), the presence of a small amount of water is ignored.

Claims (5)

微粒子除去膜の完全性試験用および微粒子除去性能試験用の非水溶液において、平均粒子径10〜200nmの非晶性の水酸化第2鉄コロイド粒子を鉄換算で100ppm含みかつ第1鉄イオン濃度が0.1ppm以下であることを特徴とする非水溶液および該コロイドの平均粒径を調整するのに際して該コロイドの核としては10nm以下の小径の3価の鉄イオン微粒子を作製しさらに界面活性剤の添加により粒子径を制御することを特徴とする完全性試験用および微粒子除去性能試験用非水溶液の製法。     The non-aqueous solution for the integrity test of the fine particle removal film and the fine particle removal performance test contains 100 ppm of amorphous ferric hydroxide colloidal particles having an average particle diameter of 10 to 200 nm in terms of iron and the ferrous ion concentration is When adjusting the average particle size of the non-aqueous solution and the colloid characterized by being 0.1 ppm or less, trivalent iron ion fine particles having a small diameter of 10 nm or less were prepared as the core of the colloid, and the surfactant A method for producing a non-aqueous solution for integrity testing and for particulate removal performance testing, characterized by controlling the particle size by addition. 請求項1において該コロイド粒子の濃度が鉄換算で200ppm以上であり、平均粒子径が10nm以上で100nm未満であることを特徴とする非水溶液を作製するために3価の鉄イオンとして塩化第2鉄の水溶液を採用し、界面活性剤としてはドデシル硫酸ナトリウム(略してSDS,SLS)利用してpHを2.5〜3.5に制御することを特徴とする非水溶液の調製方法。     In order to produce a non-aqueous solution characterized in that the concentration of the colloidal particles in claim 1 is 200 ppm or more in terms of iron and the average particle size is 10 nm or more and less than 100 nm. A method for preparing a non-aqueous solution, wherein an aqueous solution of iron is employed, and the pH is controlled to 2.5 to 3.5 using sodium dodecyl sulfate (SDS, SLS for short) as a surfactant. 請求項1において非水溶液とは下記の溶媒を主成分として含むことを特徴とする溶液。
ヘキサン、ヘプタン、オクタン、
The solution according to claim 1, wherein the non-aqueous solution contains the following solvent as a main component.
Hexane, heptane, octane,
請求項2における非水溶液でコロイド粒子をコロイド粒子以外の物質に接触した際の安定化に寄与する成分が下記物質より選定されることを特徴とする完全性試験用非水溶液。
ポリエチレングリコール,ポリビニルアルコール,ポリビニルピロリドン,陽イオン界面活性剤,非イオン界面活性剤。
The non-aqueous solution for integrity test, wherein the non-aqueous solution according to claim 2 is selected from the following substances that contribute to stabilization when the colloid particles are brought into contact with a substance other than the colloid particles.
Polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, cationic surfactant, nonionic surfactant.
請求項1,3において完全性試験と微粒子除去性能試験とが膜試験後の膜の用途に対応して孔拡散技術あるいは孔拡散・濾過技術あるいは濾過技術で行われる試験であることを特徴とする試験用非水溶液。     Claims 1 and 3 are characterized in that the integrity test and the particulate removal performance test are tests performed by a pore diffusion technique or a pore diffusion / filtration technique or a filtration technique corresponding to the use of the membrane after the membrane test. Non-aqueous solution for testing.
JP2010204223A 2010-09-13 2010-09-13 Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same Pending JP2012058181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204223A JP2012058181A (en) 2010-09-13 2010-09-13 Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204223A JP2012058181A (en) 2010-09-13 2010-09-13 Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012058181A true JP2012058181A (en) 2012-03-22

Family

ID=46055441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204223A Pending JP2012058181A (en) 2010-09-13 2010-09-13 Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012058181A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087058A (en) * 2002-08-29 2004-03-18 Fuji Photo Film Co Ltd Magnetic recording medium
JP2004359505A (en) * 2003-06-05 2004-12-24 Bridgestone Corp Method for manufacturing magnetic nanoparticle, and magnetic nanoparticle
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2006328234A (en) * 2005-05-26 2006-12-07 Sharp Corp Manufacturing process of phosphor
WO2007086302A1 (en) * 2006-01-26 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing semiconductor nanoparticle
JP2007263898A (en) * 2006-03-30 2007-10-11 Seiichi Manabe Aqueous solution where ferric hydroxide colloidal particles are dispersed for testing performance and integrity of membrane, and manufacturing method thereof
JP2009204437A (en) * 2008-02-27 2009-09-10 Seiichi Manabe Integrity testing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087058A (en) * 2002-08-29 2004-03-18 Fuji Photo Film Co Ltd Magnetic recording medium
JP2004359505A (en) * 2003-06-05 2004-12-24 Bridgestone Corp Method for manufacturing magnetic nanoparticle, and magnetic nanoparticle
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2006328234A (en) * 2005-05-26 2006-12-07 Sharp Corp Manufacturing process of phosphor
WO2007086302A1 (en) * 2006-01-26 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing semiconductor nanoparticle
JP2007263898A (en) * 2006-03-30 2007-10-11 Seiichi Manabe Aqueous solution where ferric hydroxide colloidal particles are dispersed for testing performance and integrity of membrane, and manufacturing method thereof
JP2009204437A (en) * 2008-02-27 2009-09-10 Seiichi Manabe Integrity testing device

Similar Documents

Publication Publication Date Title
Schulz et al. Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM)
Ghandashtani et al. A novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion
Miao et al. Effect of hydration forces on protein fouling of ultrafiltration membranes: the role of protein charge, hydrated ion species, and membrane hydrophilicity
Blanpain-Avet et al. Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—characterization of hydraulic and chemical cleanliness
Llanos et al. Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process
Hairom et al. Nanofiltration of hazardous Congo red dye: Performance and flux decline analysis
Nguyen et al. Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes
Gesan-Guiziou et al. Stability of latex crossflow filtration: cake properties and critical conditions of deposition
Teow et al. Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment
Wiśniewska et al. Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface–Temperature impact
Karmakar et al. Multicomponent transport model-based scaling up of long-term adsorptive filtration of MOF incorporated mixed matrix hollow fiber membrane: Treatment of textile effluent
JP4984029B2 (en) Aqueous solutions containing ferric hydroxide colloidal particles for membrane performance and integrity testing and their preparation
Mercadé-Prieto et al. Fluorescence lifetime of Rhodamine B in aqueous solutions of polysaccharides and proteins as a function of viscosity and temperature
Medina et al. A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D)
Chen et al. Separation of single and mixed anionic dyes in saline solutions using uncharged polyacrylonitrile-tris (hydroxymethyl) aminomethane (PAN-Tris) ultrafiltration membrane: performance and mechanism
JPWO2008111510A1 (en) Microporous membrane integrity test method
Hamad et al. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons
Wilding et al. Validation of cross-flow ultrafiltration for sampling of colloidal particles from aquatic systems
Teella et al. Effects of chemical sanitization using N a OH on the properties of polysulfone and polyethersulfone ultrafiltration membranes
Szewczuk-Karpisz et al. Investigation of removal possibilities of chromium (III) oxide from water solution in the presence of albumins
JP2012058181A (en) Non-aqueous solution for dispersing ferric hydroxide colloidal particles for film performance and integrity test and method for manufacturing the same
JP5489089B2 (en) Integrity test equipment
DK1647345T3 (en) Use of a metal colloid solution to test the integrity of a virus elimination membrane, method of preparing the solution, and method of testing the integrity of the membrane
de la Casa et al. Influence of pH and salt concentration on the cross-flow microfiltration of BSA through a ceramic membrane
Martı́nez et al. Streaming potential through and on ultrafiltration membranes: Influence of salt retention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916