JP2012055855A - Catalyst carrier, catalyst body, and method for manufacturing the same - Google Patents

Catalyst carrier, catalyst body, and method for manufacturing the same Download PDF

Info

Publication number
JP2012055855A
JP2012055855A JP2010203244A JP2010203244A JP2012055855A JP 2012055855 A JP2012055855 A JP 2012055855A JP 2010203244 A JP2010203244 A JP 2010203244A JP 2010203244 A JP2010203244 A JP 2010203244A JP 2012055855 A JP2012055855 A JP 2012055855A
Authority
JP
Japan
Prior art keywords
aluminum substrate
pits
catalyst
catalyst carrier
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010203244A
Other languages
Japanese (ja)
Other versions
JP5726466B2 (en
Inventor
Makoto Sakurai
誠 櫻井
Hiromi Hiramatsu
宏美 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Japan Capacitor Industrial Co Ltd
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Japan Capacitor Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture, Japan Capacitor Industrial Co Ltd filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2010203244A priority Critical patent/JP5726466B2/en
Publication of JP2012055855A publication Critical patent/JP2012055855A/en
Application granted granted Critical
Publication of JP5726466B2 publication Critical patent/JP5726466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in which a catalyst body using an aluminum substrate which has a pit of the shape of a conventional hollow, since the pit is not penetrated, the deep part of the pit is not effectively used by the diffusion-control of a substance, and thereby the performance is not enough.SOLUTION: The catalyst carrier includes: an aluminum substrate; and two or more penetration pits which penetrate the aluminum substrate. Moreover, the catalyst carrier is characterized by forming a coating by anodization on the aluminum substrate surface and the penetration pit surface. In addition, the catalyst carrier is characterized by forming a coating by hydration treatment on the aluminum substrate surface and the penetration pit surface.

Description

本発明は、各種フィルター、吸着剤または充填材などの用途に有用な酸化物系多孔体である触媒担体、触媒体及びその製造方法に関するものである。   The present invention relates to a catalyst carrier that is an oxide-based porous body useful for various filters, adsorbents, fillers, and the like, a catalyst body, and a method for producing the same.

アルミニウムまたはアルミニウム合金の表面を陽極酸化によりアルミナ皮膜を化成せしめ、これを焼成してアルミナ触媒担体を製造せしめるものとして、引用文献1がある。   There is cited document 1 as an alumina catalyst carrier formed by forming an alumina film on the surface of aluminum or an aluminum alloy by anodic oxidation and firing it.

また、アルミニウム表面に陽極酸化によりアルミナ層を形成せしめ、次に50℃〜350℃で熱水処理した後、又は、熱水処理を行ないながら触媒活性を有する金属を前記アルミナ層に担持させて触媒体を製造して、前記触媒体のBET表面積を増大させるものとして、引用文献2がある。   In addition, an alumina layer is formed on the aluminum surface by anodic oxidation and then hydrothermally treated at 50 ° C. to 350 ° C., or a metal having catalytic activity is supported on the alumina layer while performing hydrothermal treatment. There is cited document 2 which manufactures a medium and increases the BET surface area of the catalyst body.

また、陽極酸化された金属表面を、5℃〜45℃の水又は温水で水和処理した後、焼成することにより、細孔半径分布のピークを調整するものとして、引用文献3がある。   Moreover, there exists cited reference 3 as what adjusts the peak of a pore radius distribution by carrying out the hydration process of the anodized metal surface with 5 to 45 degreeC water or warm water, and baking.

また、陽極酸化によって形成されたアルミナ層表面を、水和処理、ゾルゲル処理及び触媒担持処理及び焼成処理することにより触媒体を製造するものとして、引用文献4がある。   Further, there is cited document 4 as a catalyst body manufactured by subjecting the surface of an alumina layer formed by anodic oxidation to a hydration treatment, a sol-gel treatment, a catalyst supporting treatment and a firing treatment.

また、陽極酸化によって形成されたアルマイト表面を酸処理して、アルマイト表面の細孔の孔径を拡大し、次いで水和処理、焼成処理してアルマイト触媒担体を製造して、触媒担体のBET比表面積を増大させるものとして、引用文献5がある。   Also, the anodized surface formed by anodic oxidation is acid-treated to enlarge the pore size of the pores on the anodized surface, then hydrated and calcined to produce an anodized catalyst support, and the BET specific surface area of the catalyst support There is cited document 5 as an increase in the above.

また、アルミニウム表面に窪み状のピットを形成した後に、陽極酸化処理によって皮膜を形成し、その皮膜に形成された微細孔に触媒を担持せしめて触媒体を製造して、従来よりも陽極酸化皮膜厚を薄くして、ローコストで、高比表面積を得られるものとして、引用文献6及び引用文献7がある。   In addition, after forming hollow pits on the aluminum surface, a film is formed by anodizing treatment, and a catalyst is produced by supporting the catalyst in the micropores formed in the film. There are cited document 6 and cited document 7 which can reduce the thickness and obtain a high specific surface area at low cost.

特開昭59−59247号公報JP 59-59247 A 特開平2−144154号公報JP-A-2-144154 特開平8−246190公報JP-A-8-246190 特開平10−73226号公報JP-A-10-73226 特開2002−119856号公報JP 2002-119856 A 特開2007−237090号公報JP 2007-237090 A 特開2008−126151号公報JP 2008-126151 A

しかしながら、前記引用文献6及び引用文献7に記載の触媒体は、ピットが非貫通である為、物質の拡散律速により、ピットの深い部分まで有効に使われない為、性能が十分ではなかった。   However, the catalyst bodies described in the above cited references 6 and 7 are not sufficient in performance because the pits are non-penetrating and are not used effectively up to the deep part of the pits due to the diffusion rate limiting of the material.

本発明は触媒性能を向上せしめた触媒担体、触媒体を提供することを目的としたものである。   An object of the present invention is to provide a catalyst carrier and a catalyst body with improved catalyst performance.

本発明においては、アルミニウム基板(アルミニウム箔、アルミニウム合金基板を含む。以下同じ。)に、例えば、エッチング処理により前記アルミニウム基板の一方の面から他方の面まで貫通する複数の貫通ピットを形成せしめ、このアルミニウム基板を陽極酸化処理して、前記アルミニウム基板の表面及び貫通ピットの表面に陽極酸化皮膜(アルマイト皮膜)を形成せしめて触媒担体を作成させめる。また、このアルミニウム基板を水和処理して水酸化アルミニウムの皮膜(水和皮膜)を形成せしめ、これを焼成して触媒担体を作成せしめてもよい。その後、前記触媒担体に触媒を担持して触媒体を形成せしめる。   In the present invention, an aluminum substrate (including an aluminum foil and an aluminum alloy substrate; the same shall apply hereinafter) is formed with, for example, a plurality of penetrating pits penetrating from one surface of the aluminum substrate to the other by etching. This aluminum substrate is anodized to form an anodized film (alumite film) on the surface of the aluminum substrate and the surface of the through pits, thereby preparing a catalyst carrier. Alternatively, the aluminum substrate may be hydrated to form an aluminum hydroxide film (hydrated film), which may be fired to form a catalyst carrier. Thereafter, the catalyst is supported on the catalyst carrier to form a catalyst body.

または、アルミニウム基板に、例えば、エッチング処理により前記アルミニウム基板の一方の面から他方の面まで貫通する複数の貫通ピットを形成せしめ、このアルミニウム基板を水和処理して、前記アルミニウム基板の表面と貫通ピットの表面を水和処理して水酸化アルミニウムの皮膜(水和皮膜)を形成せしめ、これを焼成して触媒担体を作成せしめた後に、触媒を担持して触媒体を形成せしめる。   Alternatively, a plurality of penetrating pits that penetrate from one surface of the aluminum substrate to the other surface are formed on the aluminum substrate, for example, by etching, and the aluminum substrate is hydrated to penetrate the surface of the aluminum substrate. The surface of the pits is hydrated to form an aluminum hydroxide film (hydrated film), which is fired to form a catalyst carrier, and then the catalyst is supported to form a catalyst body.

前記エッチング処理とは、特に限定されず、電気化学的手法またはサンドブラストや機械加工などの物理的手法等があるが、電気化学的手法が好ましい。   The etching treatment is not particularly limited, and includes an electrochemical method or a physical method such as sandblasting or machining, but an electrochemical method is preferable.

前記電気化学的手法は、例えば、図1に示すように、アルミニウム基板1をハロゲンイオンを含んだ溶液(例えば、塩酸)浴2で直流により電解処理して、貫通ピットを発生させた後、中性または酸性溶液中で直流により電解処理せしめて、前記貫通ピットの径を拡大せしめる。   For example, as shown in FIG. 1, the electrochemical method includes electrolytic treatment of an aluminum substrate 1 with a direct current in a solution (for example, hydrochloric acid) bath 2 containing halogen ions to generate through pits. The diameter of the through pits is increased by electrolytic treatment with direct current in a neutral or acidic solution.

前記アルミニウム基板は、電気化学的手法の場合においては、表面における(1,0,0)面の結晶方位占有率が50%以上で、アルミ純度が98%以上の厚さが5〜1000μmであり、好ましくは、表面における(1,0,0)面の結晶方位占有率が95%以上で、アルミ純度が99.9%以上で、厚さが100μm前後である。   In the case of the electrochemical method, the aluminum substrate has a (1,0,0) plane crystal orientation occupancy ratio of 50% or more and an aluminum purity of 98% or more and a thickness of 5 to 1000 μm. Preferably, the crystal orientation occupancy of the (1, 0, 0) plane on the surface is 95% or more, the aluminum purity is 99.9% or more, and the thickness is about 100 μm.

前記エッチング処理により形成される、アルミニウム基板を貫通する貫通ピットは、アルミニウム基板に対して垂直である以外に斜めであってもよい。   The through pits penetrating the aluminum substrate formed by the etching process may be oblique in addition to being perpendicular to the aluminum substrate.

また、アルミニウム基板を貫通する貫通ピットのピット径は孔径が細かすぎると、反応物質の流通が律速となり、孔径が大きすぎると、拡面効率が悪くなるため、貫通ピット中、最小のピット径は0.1μm以上で、平均ピット径が0.3〜5μmが好ましいが、特に、最小ピット径が0.3μm以上で、平均ピット径が0.5μm以上が好ましい。   In addition, if the pit diameter of the penetrating pits penetrating the aluminum substrate is too small, the flow rate of the reactant becomes rate limiting, and if the hole diameter is too large, the surface expansion efficiency deteriorates. The average pit diameter is preferably 0.1 to 5 μm and is preferably 0.3 to 5 μm. In particular, the minimum pit diameter is 0.3 μm and the average pit diameter is preferably 0.5 μm and more.

なお、図2は貫通ピットを有する酸化物レプリカ(貫通ピットの観察のためにアルミニウム部分を溶解除去した酸化物レプリカ)の断面のSEM写真を示し、図3は貫通ピットを有するアルミニウム基板の一部の模式図を表し、3はアルミニウム基板に形成された貫通ピットである。   2 shows an SEM photograph of a cross section of an oxide replica having through pits (an oxide replica in which an aluminum portion is dissolved and removed for observation of the through pits), and FIG. 3 is a part of an aluminum substrate having through pits. 3 is a through pit formed in the aluminum substrate.

前記陽極酸化処理は、酸性電解浴で行い、燐酸、硫酸、蓚酸、クロム酸、スルファサリチル酸、ピロリン酸、スルファミン酸、リンモリブデン酸、マロン酸、マレイン酸、コハク酸、酒石酸、フタル酸、クエン酸、イタコン酸、リンゴ酸、グリコール酸、硼酸、等一種類以上を溶解した水溶液で行う。   The anodizing treatment is carried out in an acidic electrolytic bath, and phosphoric acid, sulfuric acid, oxalic acid, chromic acid, sulfasalicylic acid, pyrophosphoric acid, sulfamic acid, phosphomolybdic acid, malonic acid, maleic acid, succinic acid, tartaric acid, phthalic acid, citric acid An aqueous solution in which one or more of acid, itaconic acid, malic acid, glycolic acid, boric acid and the like are dissolved is used.

前記アルマイト皮膜形成後に、形成された微細孔の孔径を酸浸漬によるポアワイドニング処理により拡大せしめてもよい。   After forming the alumite film, the pore diameter of the formed micropores may be enlarged by pore widening treatment by acid immersion.

なお、図4は陽極酸化後の貫通ピット表面にアルマイト皮膜を有するアルミニウム基板の断面のSEM写真であり、図5はアルマイト皮膜を有するアルミニウム基板の貫通ピット付近の断面のSEM写真であり、図6はその模式図を表し、4はアルミニウム基板の貫通ピット3の表面に形成されたアルマイト皮膜、5はそのアルマイト皮膜4上に多数形成された微細孔である。   4 is a SEM photograph of a cross section of an aluminum substrate having an alumite film on the surface of the through pit after anodization, and FIG. 5 is a SEM photograph of a cross section in the vicinity of the through pit of the aluminum substrate having an alumite film. Represents a schematic diagram thereof, wherein 4 is an alumite film formed on the surface of the through-pits 3 of the aluminum substrate, and 5 is a fine hole formed on the alumite film 4 in large numbers.

前記水和処理は、前記アルミニウム基板の表面積を増大するためのもので、水和処理液は特に限定されず、例えば、10〜100℃の水または温水、熱水によって行なわれる。また、反応促進剤として、トリエタノールアミン、アンモニア、ケイ酸ナトリウムなどを添加してもよい。   The hydration treatment is for increasing the surface area of the aluminum substrate, and the hydration treatment liquid is not particularly limited. For example, the hydration treatment is performed with water of 10 to 100 ° C., hot water or hot water. Moreover, you may add triethanolamine, ammonia, sodium silicate, etc. as a reaction accelerator.

なお、図7は水和皮膜を有するアルミニウム基板の貫通ピット付近の断面のSEM写真を表し、6はアルミニウム基板の貫通ピット3の表面に形成された水和皮膜であり、前記水和皮膜6には微細孔が多数形成されている。   7 shows an SEM photograph of a cross section in the vicinity of the through pit of the aluminum substrate having a hydrated film. Reference numeral 6 denotes a hydrated film formed on the surface of the through pit 3 of the aluminum substrate. Has a large number of fine holes.

前記焼成処理は、前記水和皮膜中の水分を脱水すると共にアルミナ層とすることによりアルミニウム基板の表面積を拡大するもので、焼成温度が300℃未満であるとアルミナの出来方が不十分であり、550℃より高い温度では基体が損傷したり、表面積が低下するので好ましくないため、300〜550℃で5分〜3時間行う。   The firing treatment expands the surface area of the aluminum substrate by dehydrating moisture in the hydrated film and forming an alumina layer. If the firing temperature is less than 300 ° C., the production of alumina is insufficient. Since the substrate is damaged at a temperature higher than 550 ° C. or the surface area is reduced, it is not preferable.

前記触媒担体に担持される触媒活性を有する金属は、特に限定されず、例えば、触媒活性を有する公知の金属、合金または金属化合物が挙げられる。例えば、白金系金属、白金系金属の化合物、パラジウム、ロジウム、インジウム、銀、レニウム、錫、セリウム、ジルコニウム、金、金合金、マンガン、鉄、亜鉛、銅、ニッケル、ニッケル合金、コバルト、コバルト合金、ルテニウム等の中から選択することが望ましい。また、これらの触媒物質を組み合わせてもよい。   The metal having catalytic activity supported on the catalyst carrier is not particularly limited, and examples thereof include known metals, alloys or metal compounds having catalytic activity. For example, platinum metal, platinum metal compound, palladium, rhodium, indium, silver, rhenium, tin, cerium, zirconium, gold, gold alloy, manganese, iron, zinc, copper, nickel, nickel alloy, cobalt, cobalt alloy It is desirable to select from among ruthenium and the like. Moreover, you may combine these catalyst substances.

前記触媒担体に触媒を担持する方法は、例えば、触媒活性を有する金属を前記皮膜に吸着させ、更に触媒反応に用いられる物質と接触しても脱着しない程度固定させる。   In the method of supporting the catalyst on the catalyst carrier, for example, a metal having catalytic activity is adsorbed on the film, and is fixed to such an extent that it does not desorb even when contacted with a substance used in the catalytic reaction.

具体的には、例えば、含浸法、電着法、イオン交換法、共沈法、沈着法、水熱合成法、気相合成法等の公知の方法を用いる。特に、触媒活性を有する金属イオンを含有する水溶液に浸漬させる含浸法が好ましい。含浸法に用いられる水溶液は、触媒活性を有する金属を含む、塩化物、臭化物、アンモニウム化合物、シアン化物、アルカリ金属塩、これらの複合化合物を用いて調整することができる。   Specifically, for example, known methods such as an impregnation method, an electrodeposition method, an ion exchange method, a coprecipitation method, a deposition method, a hydrothermal synthesis method, and a gas phase synthesis method are used. In particular, an impregnation method of immersing in an aqueous solution containing metal ions having catalytic activity is preferable. The aqueous solution used for the impregnation method can be prepared by using a chloride, bromide, ammonium compound, cyanide, alkali metal salt, or a complex compound thereof containing a metal having catalytic activity.

また、触媒活性を有する金属を固着させるために焼成処理を行うこともできる。   In addition, a calcination treatment can be performed to fix a metal having catalytic activity.

また、必要に応じて、前記触媒体のアルミニウム基板面に対して、垂直方向から前記触媒体により分解される物質を供給せしめ、前記物質を前記貫通ピット内に流通せしめて触媒反応せしめる。   Further, if necessary, a substance decomposed by the catalyst body is supplied from the vertical direction to the aluminum substrate surface of the catalyst body, and the substance is allowed to flow through the through pits to cause a catalytic reaction.

なお、前記垂直方向から物質を供給する場合の物質流量範囲は、例えば、貫通ピット1本当たり、4.7×10-14mol/s〜1.8×10-19mol/sとする。また、この場合の圧力損失は、特に問題のある範囲ではない。 The material flow rate range when the material is supplied from the vertical direction is, for example, 4.7 × 10 −14 mol / s to 1.8 × 10 −19 mol / s per penetrating pit. Further, the pressure loss in this case is not in a particularly problematic range.

本発明においては、アルミニウム基板の表面積を増大することができ、触媒担持量を増やす事ができるので、触媒活性に優れる。また、貫通ピット内に物質を流通できるので、高効率な触媒活性を得ることができる。   In the present invention, since the surface area of the aluminum substrate can be increased and the amount of catalyst supported can be increased, the catalyst activity is excellent. Moreover, since a substance can be distributed in the through pits, highly efficient catalytic activity can be obtained.

本発明の貫通ピットを形成するために使用する装置の説明図である。It is explanatory drawing of the apparatus used in order to form the penetration pit of this invention. 本発明の貫通ピットを有する酸化物レプリカの断面のSEM写真である。It is a SEM photograph of the section of the oxide replica which has a penetration pit of the present invention. 本発明の貫通ピットを有するアルミニウム基板の模式図である。It is a schematic diagram of the aluminum substrate which has a penetration pit of the present invention. 本発明の貫通ピット表面にアルマイト皮膜を有するアルミニウム基板の断面のSEM写真である。It is a SEM photograph of the section of the aluminum substrate which has an alumite film on the penetration pit surface of the present invention. 本発明のアルマイト皮膜を有するアルミニウム基板の断面のSEM写真である。It is a SEM photograph of the section of the aluminum substrate which has an alumite film of the present invention. 本発明のアルマイト皮膜を有するアルミニウム基板の模式図である。It is a schematic diagram of the aluminum substrate which has an alumite film of the present invention. 本発明の水和皮膜を有するアルミニウム基板の断面のSEM写真である。It is a SEM photograph of the section of the aluminum substrate which has the hydration film of the present invention.

本発明の触媒担体は、アルミニウム基板と前記アルミニウム基板を貫通する複数の貫通ピットとからなる。   The catalyst carrier of the present invention comprises an aluminum substrate and a plurality of through pits that penetrate the aluminum substrate.

また、本発明の触媒担体は、前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理による皮膜が形成されていることを特徴とする。   The catalyst carrier of the present invention is characterized in that a film formed by anodization is formed on the surface of the aluminum substrate and the surface of the through pits.

また、本発明の触媒担体は、前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理をした後に水和処理をした皮膜が形成されていることを特徴とする。   The catalyst carrier of the present invention is characterized in that a film that has been hydrated after anodizing is formed on the surface of the aluminum substrate and the surface of the through pits.

また、本発明の触媒担体は、前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理をした後に水和処理をし、その後に焼成した皮膜が形成されていることを特徴とする。   Further, the catalyst carrier of the present invention is characterized in that a film is formed on the surface of the aluminum substrate and the surface of the through pits by anodizing and then hydrating and then firing.

また、本発明の触媒担体は、前記アルミニウム基板表面及び貫通ピット表面に、水和処理による皮膜が形成されていることを特徴する。   Moreover, the catalyst carrier of the present invention is characterized in that a film by hydration treatment is formed on the surface of the aluminum substrate and the surface of the through pits.

また、本発明の触媒担体は、前記アルミニウム基板表面及び貫通ピット表面に、水和処理をした後に焼成した皮膜が形成されていることを特徴する。   Further, the catalyst carrier of the present invention is characterized in that a film baked after hydration is formed on the surface of the aluminum substrate and the surface of the through pits.

本発明の触媒担体の製造方法は、アルミニウム基板に複数の貫通ピットを形成せしめる第一の工程と、前記アルミニウム基板を陽極酸化処理する第二の工程ととよりなることを特徴とする。   The method for producing a catalyst carrier according to the present invention includes a first step of forming a plurality of through pits on an aluminum substrate and a second step of anodizing the aluminum substrate.

本発明の触媒担体の製造方法は、アルミニウム基板に複数の貫通ピットを形成せしめる第一の工程と、前記アルミニウム基板を陽極酸化処理する第二の工程と、前記アルミニウム基板を水和処理する第三の工程と、前記アルミニウム基板を焼成する第四の工程とよりなることを特徴とする。   The method for producing a catalyst carrier according to the present invention includes a first step of forming a plurality of through pits on an aluminum substrate, a second step of anodizing the aluminum substrate, and a third step of hydrating the aluminum substrate. And a fourth step of firing the aluminum substrate.

本発明の触媒担体の製造方法は、アルミニウム基板に複数の貫通ピットを形成せしめる第一の工程と、前記アルミニウム基板を水和処理する第二の工程と、前記アルミニウム基板を焼成する第三の工程とよりなることを特徴とする。   The method for producing a catalyst carrier according to the present invention includes a first step of forming a plurality of through pits on an aluminum substrate, a second step of hydrating the aluminum substrate, and a third step of firing the aluminum substrate. It is characterized by comprising.

本発明の触媒体は、前記触媒担体に、触媒を担持せしめる。   In the catalyst body of the present invention, the catalyst is supported on the catalyst carrier.

また、本発明の触媒体は、触媒体により分解される物質の供給方向に対して、前記アルミニウム基板面が垂直になるよう前記アルミニウム基板を設置せしめる手段を更に有することを特徴とする。   In addition, the catalyst body of the present invention further includes means for installing the aluminum substrate so that the aluminum substrate surface is perpendicular to the supply direction of the substance to be decomposed by the catalyst body.

本発明の物質の分解方法は、前記触媒体のアルミニウム基板面に対して、垂直方向から前記触媒体により分解される物質を供給せしめる工程を更に有することを特徴とする。   The method for decomposing a substance of the present invention further includes a step of supplying a substance to be decomposed by the catalyst body from a vertical direction to the aluminum substrate surface of the catalyst body.

前記アルミニウム基板の厚さが5〜1000μmであることを特徴とする。   The aluminum substrate has a thickness of 5 to 1000 μm.

前記貫通ピットの最小のピット径が0.1μm以上であることを特徴とする。   The minimum pit diameter of the through pits is 0.1 μm or more.

前記貫通ピットの平均ピット径が0.3〜5μmであることを特徴とする。   An average pit diameter of the through pits is 0.3 to 5 μm.

前記貫通ピットはエッチング処理によって形成されたことを特徴とする。   The through pits are formed by an etching process.

以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.

(比較例1)
アルミニウム箔に陽極酸化皮膜を浴温20℃蓚酸濃度7wt%の水溶液中で直流40Vにより12時間陽極酸化を行った。その結果、陽極酸化皮膜厚さが片面約50μm、微細孔径が30nm程度である皮膜が生成していることを確認した。その後、この陽極酸化処理したアルミニウム箔を80℃のイオン交換水中にて1時間水和処理を行った。そのアルミニウム箔を銅、亜鉛イオンの溶解する液に浸漬し、銅、亜鉛を担持して触媒体を得た。
この場合の触媒担持量は、5g/m2であった。
(Comparative Example 1)
The anodized film was anodized on an aluminum foil in an aqueous solution having a bath temperature of 20 ° C. and an oxalic acid concentration of 7 wt% by DC 40 V for 12 hours. As a result, it was confirmed that a film having an anodized film thickness of about 50 μm on one side and a fine pore diameter of about 30 nm was formed. Thereafter, the anodized aluminum foil was hydrated in ion exchange water at 80 ° C. for 1 hour. The aluminum foil was immersed in a solution in which copper and zinc ions were dissolved, and copper and zinc were supported to obtain a catalyst body.
In this case, the amount of catalyst supported was 5 g / m 2 .

(比較例2)
(1,0,0)面占有率が99%以上で、アルミニウム純度が99.99%以上の100μm厚のアルミニウム箔をエッチング浴温80℃、5wt%塩酸+20wt%硫酸の浴で電流密度0.20A/cm2で50秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で500秒間、いずれも直流で電解した。その場合のエッチング深さは、片面約30μm、ピット径の平均は1.0μmのアルミニウム箔を得た。その後、このエッチング処理したアルミニウム箔を浴温20℃蓚酸濃度7wt%の水溶液中で直流40Vにより2時間陽極酸化を行った。その後同浴に8時間浸漬し、孔径拡大処理を行なった。その結果、陽極酸化皮膜厚さが約0.8μm、微細孔径が30nm程度である皮膜が生成していることを確認した。その後、このエッチング処理したアルミニウム箔を80℃のイオン交換水中にて1時間水和処理を行った。このアルミニウム箔を銅、亜鉛イオンの溶解する液に浸漬し、銅、亜鉛を担持して触媒体を得た。
この場合の触媒担持量は、5g/m2であった。
(Comparative Example 2)
A 100 μm-thick aluminum foil having a (1,0,0) plane occupancy of 99% or more and an aluminum purity of 99.99% or more was etched at a current density of 0.00 in an etching bath temperature of 80 ° C., 5 wt% hydrochloric acid + 20 wt% sulfuric acid. Electrolysis was performed at 20 A / cm 2 for 50 seconds, and then electrolysis was performed with direct current in an etching bath temperature of 80 ° C. and a 5 wt% nitric acid bath at a current density of 0.10 A / cm 2 for 500 seconds. In this case, an aluminum foil having an etching depth of about 30 μm on one side and an average pit diameter of 1.0 μm was obtained. Thereafter, the etched aluminum foil was anodized for 2 hours at a direct current of 40 V in an aqueous solution having a bath temperature of 20 ° C. and an oxalic acid concentration of 7 wt%. Thereafter, it was immersed in the same bath for 8 hours to carry out a pore size expansion treatment. As a result, it was confirmed that a film having an anodized film thickness of about 0.8 μm and a fine pore diameter of about 30 nm was formed. Then, this etched aluminum foil was hydrated in ion exchange water at 80 ° C. for 1 hour. This aluminum foil was immersed in a solution in which copper and zinc ions were dissolved, and copper and zinc were supported to obtain a catalyst body.
In this case, the amount of catalyst supported was 5 g / m 2 .

(1,0,0)面占有率が99%以上で、アルミニウム純度が99.99%以上の100μm厚のアルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で500秒間、いずれも直流で電解した。その場合のエッチングピットは、反対面に伸びて貫通しており、貫通ピットの占有率は95%であり、ピット径の平均は1.5μmであるアルミニウム箔を得た。その後、このエッチング処理したアルミニウム箔を浴温20℃蓚酸濃度7wt%の水溶液中で直流40Vにより2時間陽極酸化を行った。その後同浴に8時間浸漬し、孔径拡大処理を行なった。その結果、陽極酸化皮膜厚さが片面約0.8μm、微細孔径が30nm程度である皮膜が生成していることを確認した。その後、エッチング処理したアルミニウム箔を80℃のイオン交換水中にて1時間水和処理を行った。このアルミニウム箔を銅、亜鉛イオンの溶解する液に浸漬し、銅、亜鉛を担持して触媒体を得た。
この場合の触媒担持量は、5g/m2であった。
A 100 μm-thick aluminum foil having a (1,0,0) plane occupancy of 99% or higher and an aluminum purity of 99.99% or higher in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath has a current density of 0.20 A / cm. 2 in electrolysis for 100 seconds, then, the etching bath temperature 80 ° C., 500 seconds at a current density of 0.10 a / cm 2 at 5 wt% nitric acid bath were both electrolysis with direct current. The etching pits in that case extended to the opposite surface and penetrated, and the occupying ratio of the through pits was 95%, and an aluminum foil having an average pit diameter of 1.5 μm was obtained. Thereafter, the etched aluminum foil was anodized for 2 hours at a direct current of 40 V in an aqueous solution having a bath temperature of 20 ° C. and an oxalic acid concentration of 7 wt%. Thereafter, it was immersed in the same bath for 8 hours to carry out a pore size expansion treatment. As a result, it was confirmed that a film having an anodic oxide film thickness of about 0.8 μm on one side and a fine pore diameter of about 30 nm was formed. Thereafter, the etched aluminum foil was hydrated in ion exchange water at 80 ° C. for 1 hour. This aluminum foil was immersed in a solution in which copper and zinc ions were dissolved, and copper and zinc were supported to obtain a catalyst body.
In this case, the amount of catalyst supported was 5 g / m 2 .

なお、貫通ピットの占有率とは、アルミニウム基板に形成された貫通ピット及び非貫通ピットの全体数に対する、貫通ピット数の割合を示し、「貫通ピットの占有率(%)=(貫通しているピットの本数)/(全てのピットの本数)×100」で表される。   The through-pit occupancy ratio is the ratio of the number of through-pits to the total number of through-pits and non-through-pits formed on the aluminum substrate. The number of pits) / (the number of all pits) × 100 ”.

実施例1と同じである。   Same as Example 1.

実施例1において、(1,0,0)面占有率を80%にして、その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が50%程度で、ピット径の平均が2.0μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、2.5g/m2であった。
In Example 1, the (1,0,0) plane occupancy was set to 80%, and the subsequent processing was performed in the same manner. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 50% and an average pit diameter of 2.0 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 2.5 g / m 2 .

実施例1において、(1,0,0)面占有率を95%にして、その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が70%程度で、ピット径の平均が1.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、3.0g/m2であった。
In Example 1, the (1,0,0) plane occupancy was set to 95%, and the subsequent processing was performed in the same manner. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 70% and an average pit diameter of 1.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 3.0 g / m 2 .

実施例1において、アルミニウム純度を99.0%にし、(1,0,0)面占有率を45%にして、その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が30%程度で、ピット径の平均が2.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、2.0g/m2であった。
In Example 1, the aluminum purity was set to 99.0%, the (1,0,0) plane occupancy was set to 45%, and the subsequent processing was similarly performed. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 30% and an average pit diameter of 2.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 2.0 g / m 2 .

実施例1において、箔厚を5μm厚にして、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.10A/cm2で20秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で50秒間、いずれも直流で電解した。その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が95%程度で、ピット径の平均が1.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、0.3g/m2であった。
In Example 1, the foil thickness was 5 μm, and the aluminum foil was electrolyzed for 20 seconds at a current density of 0.10 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then the etching bath temperature of 80 ° C. Both were electrolyzed by direct current in a 5 wt% nitric acid bath at a current density of 0.10 A / cm 2 for 50 seconds. Subsequent processing was similarly performed. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 95% and an average pit diameter of 1.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the catalyst loading was 0.3 g / m 2 .

実施例1において、箔厚を70μm厚にして、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で75秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で500秒間、いずれも直流で電解した。その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が95%程度で、ピット径の平均が1.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、4g/m2であった。
In Example 1, the foil thickness was set to 70 μm, and the aluminum foil was electrolyzed with an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath at a current density of 0.20 A / cm 2 for 75 seconds, and then the etching bath temperature of 80 ° C. Both were electrolyzed with a direct current in a 5 wt% nitric acid bath at a current density of 0.10 A / cm 2 for 500 seconds. Subsequent processing was similarly performed. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 95% and an average pit diameter of 1.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 4 g / m 2 .

実施例1において、箔厚を180μm厚にして、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で150秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で750秒間、いずれも直流で電解した。その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が95%程度で、ピット径の平均が1.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、8g/m2であった。
In Example 1, the foil thickness was 180 μm, and the aluminum foil was electrolyzed for 150 seconds at a current density of 0.20 A / cm 2 with an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then the etching bath temperature of 80 ° C. Both were electrolyzed with direct current in a 5 wt% nitric acid bath at a current density of 0.10 A / cm 2 for 750 seconds. Subsequent processing was similarly performed. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 95% and an average pit diameter of 1.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 8 g / m 2 .

実施例1において、箔厚を1000μm厚にして、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.60A/cm2で500秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.20A/cm2で1000秒間、いずれも直流で電解した。その後の処理を同様に行った。その結果、形成された貫通ピットの占有率が95%程度で、ピット径の平均が1.5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、50g/m2であった。
In Example 1, the foil thickness was 1000 μm, and the aluminum foil was electrolyzed in an etching bath temperature of 80 ° C. with a 10 wt% hydrochloric acid bath at a current density of 0.60 A / cm 2 for 500 seconds, and then the etching bath temperature of 80 ° C. Both were electrolyzed with direct current in a 5 wt% nitric acid bath at a current density of 0.20 A / cm 2 for 1000 seconds. Subsequent processing was similarly performed. As a result, an aluminum foil having an occupation ratio of the formed through pits of about 95% and an average pit diameter of 1.5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 50 g / m 2 .

実施例1において、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解した。その場合のエッチングピットは、反対面に伸び貫通しており、貫通ピットの占有率は95%であり、最小ピット径は0.1μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、4g/m2であった。
In Example 1, an aluminum foil was electrolyzed for 100 seconds at a current density of 0.20 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath. In this case, the etching pits extended and penetrated to the opposite surface, and the occupation ratio of the through pits was 95%, and an aluminum foil having a minimum pit diameter of 0.1 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 4 g / m 2 .

実施例1において、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で100秒間、いずれも直流で電解した。その場合のエッチングピットは、反対面に伸び貫通しており、貫通ピットの占有率は95%であり、最小ピット径は0.3μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、5g/m2であった。
In Example 1, an aluminum foil was electrolyzed for 100 seconds at a current density of 0.20 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then in an etching bath temperature of 80 ° C. and a 5 wt% nitric acid bath. Both were electrolyzed with direct current at 0.10 A / cm 2 for 100 seconds. In this case, the etching pits extended and penetrated to the opposite surface, and the occupation ratio of the through pits was 95%, and an aluminum foil having a minimum pit diameter of 0.3 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 5 g / m 2 .

実施例1において、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で1000秒間、いずれも直流で電解した。その場合のエッチングピットは、反対面に伸び貫通しており、貫通ピットの占有率は95%であり、ピット径の平均は3μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、7g/m2であった。
In Example 1, an aluminum foil was electrolyzed for 100 seconds at a current density of 0.20 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then in an etching bath temperature of 80 ° C. and a 5 wt% nitric acid bath. Both were electrolyzed with direct current at 0.10 A / cm 2 for 1000 seconds. In this case, the etching pits extended and penetrated to the opposite surface, and the occupation ratio of the through pits was 95%, and an aluminum foil having an average pit diameter of 3 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the amount of catalyst supported was 7 g / m 2 .

実施例1において、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で3000秒間、いずれも直流で電解した。その場合のエッチングピットは、反対面に伸び貫通しており、貫通ピットの占有率は95%であり、ピット径の平均は5μmであるアルミニウム箔を得た。その後、陽極酸化処理、水和処理、触媒担持処理については、実施例1と同様に行い、触媒体を得た。
この場合の触媒担持量は、6g/m2であった。
In Example 1, an aluminum foil was electrolyzed for 100 seconds at a current density of 0.20 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then in an etching bath temperature of 80 ° C. and a 5 wt% nitric acid bath. Both were electrolyzed with direct current at 0.10 A / cm 2 for 3000 seconds. In this case, the etching pits extended and penetrated to the opposite surface, and the occupation ratio of the through pits was 95%, and an average pit diameter of 5 μm was obtained. Thereafter, the anodic oxidation treatment, hydration treatment, and catalyst support treatment were performed in the same manner as in Example 1 to obtain a catalyst body.
In this case, the catalyst loading was 6 g / m 2 .

実施例1において、アルミニウム箔をエッチング浴温80℃、10wt%塩酸の浴で電流密度0.20A/cm2で100秒間電解し、次に、エッチング浴温80℃、5wt%硝酸浴で電流密度0.10A/cm2で500秒間、いずれも直流で電解した。その場合のエッチングピットは、反対面に伸び貫通しており、貫通ピットの占有率は95%であり、ピット径の平均は1.5μmであるアルミニウム箔を得た。その後、このエッチング処理したアルミニウム箔を80℃のイオン交換水中にて1時間水和処理を行った。このアルミニウム箔を銅、亜鉛イオンの溶解する液に浸漬し、銅、亜鉛を担持して触媒体を得た。
この場合の触媒担持量は、4g/m2であった。
In Example 1, an aluminum foil was electrolyzed for 100 seconds at a current density of 0.20 A / cm 2 in an etching bath temperature of 80 ° C. and a 10 wt% hydrochloric acid bath, and then in an etching bath temperature of 80 ° C. and a 5 wt% nitric acid bath. Both were electrolyzed with direct current at 0.10 A / cm 2 for 500 seconds. In this case, the etching pits extended and penetrated to the opposite surface, and the occupation ratio of the through pits was 95%, and an aluminum foil having an average pit diameter of 1.5 μm was obtained. Then, this etched aluminum foil was hydrated in ion exchange water at 80 ° C. for 1 hour. This aluminum foil was immersed in a solution in which copper and zinc ions were dissolved, and copper and zinc were supported to obtain a catalyst body.
In this case, the amount of catalyst supported was 4 g / m 2 .

前記比較例、実施例のデータを表1に示す。   Table 1 shows the data of the comparative examples and examples.

Figure 2012055855
Figure 2012055855

本発明は、非常に高比表面積であり、厚さが薄いため、小型素子への応用が期待される。そこで、今後伸張が期待される携帯電子機器の燃料電池用小型改質器への応用を視野に入れ、メタノールの水蒸気改質を行い、比較例及び実施例のメタノール分解率の評価を行った。また、比較例及び実施例2については、物質の供給を箔に対して並行に行い、その他については、箔の貫通ピットに物質を流通させ反応を行った。   Since the present invention has a very high specific surface area and a small thickness, application to a small element is expected. In view of the application of portable electronic devices, which are expected to grow in the future, to small reformers for fuel cells, methanol steam reforming was performed, and the methanol decomposition rates of comparative examples and examples were evaluated. Moreover, about the comparative example and Example 2, supply of the substance was performed in parallel with respect to foil, and it reacted by distribute | circulating a substance to the penetration pit of foil about others.

その分解測定データを表2に示す。   The decomposition measurement data is shown in Table 2.

Figure 2012055855
Figure 2012055855

その結果、本発明の貫通ピットを有するエッチング箔を用いた触媒体は優れた性能であることが判明した。   As a result, it was found that the catalyst body using the etching foil having through pits of the present invention has excellent performance.

1 アルミニウム基板
2 浴
3 貫通ピット
4 アルマイト皮膜
5 微細孔
6 水和皮膜
DESCRIPTION OF SYMBOLS 1 Aluminum substrate 2 Bath 3 Through pit 4 Anodized film 5 Fine hole 6 Hydrated film

Claims (20)

アルミニウム基板と前記アルミニウム基板を貫通する複数の貫通ピットとからなる触媒担体。   A catalyst carrier comprising an aluminum substrate and a plurality of through pits penetrating the aluminum substrate. 前記アルミニウム基板の厚さが5〜1000μmであることを特徴とする請求項1記載の触媒担体。   The catalyst carrier according to claim 1, wherein the aluminum substrate has a thickness of 5 to 1000 μm. 前記貫通ピットの最小のピット径が0.1μm以上であることを特徴とする請求項1または2記載の触媒担体。   The catalyst carrier according to claim 1 or 2, wherein a minimum pit diameter of the through pits is 0.1 µm or more. 前記貫通ピットの平均ピット径が0.3〜5μmであることを特徴とする請求項1、2または3記載の触媒担体。   4. The catalyst carrier according to claim 1, wherein an average pit diameter of the through pits is 0.3 to 5 [mu] m. 前記貫通ピットはエッチング処理によって形成されたことを特徴とする請求項1、2、3または4記載の触媒担体。   The catalyst carrier according to claim 1, wherein the through pits are formed by an etching process. 前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理による皮膜が形成されていることを特徴とする請求項1、2,3、4または5記載の触媒担体。   6. The catalyst carrier according to claim 1, wherein a film formed by anodization is formed on the surface of the aluminum substrate and the surface of the through pits. 前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理をした後に水和処理をした皮膜が形成されていることを特徴とする請求項1、2、3、4または5記載の触媒担体。   6. The catalyst carrier according to claim 1, wherein a film that has been hydrated after anodizing is formed on the surface of the aluminum substrate and the surface of the through pits. 前記アルミニウム基板表面及び貫通ピット表面に、陽極酸化処理をした後に水和処理をし、その後に焼成した皮膜が形成されていることを特徴とする請求項1、2、3、4または5記載の触媒担体。   6. The film according to claim 1, 2, 3, 4 or 5, wherein the aluminum substrate surface and the through-pit surface are formed with a film that is hydrated after anodizing and then fired. Catalyst carrier. 前記アルミニウム基板表面及び貫通ピット表面に、水和処理による皮膜が形成されていることを特徴する請求項1、2、3、4または5記載の触媒担体。   6. The catalyst carrier according to claim 1, wherein a film by hydration is formed on the surface of the aluminum substrate and the surface of the through pits. 前記アルミニウム基板表面及び貫通ピット表面に、水和処理をした後に焼成した皮膜が形成されていることを特徴する請求項1、2、3、4または5記載の触媒担体。   6. The catalyst carrier according to claim 1, wherein a film baked after hydration is formed on the surface of the aluminum substrate and the surface of the through pits. 請求項1、2、3、4、5、6、7、8、9または10の何れかに記載された触媒担体に、触媒を担持せしめた触媒体。   A catalyst body in which a catalyst is supported on the catalyst carrier according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. 触媒体により分解される物質の供給方向に対して、前記アルミニウム基板面が垂直になるよう前記アルミニウム基板を設置せしめる手段を更に有することを特徴とする請求項11記載の触媒体。   The catalyst body according to claim 11, further comprising means for installing the aluminum substrate so that the surface of the aluminum substrate is perpendicular to a supply direction of a substance decomposed by the catalyst body. アルミニウム基板に前記アルミニウム基板を貫通する複数の貫通ピットを形成せしめる第一の工程と、
前記アルミニウム基板を陽極酸化処理する第二の工程と
とよりなることを特徴とする触媒担体の製造方法。
A first step of forming a plurality of through pits penetrating the aluminum substrate in the aluminum substrate;
And a second step of anodizing the aluminum substrate. A method for producing a catalyst carrier.
アルミニウム基板に前記アルミニウム基板を貫通する複数の貫通ピットを形成せしめる第一の工程と、
前記アルミニウム基板を陽極酸化処理する第二の工程と、
前記アルミニウム基板を水和処理する第三の工程と、
前記アルミニウム基板を焼成する第四の工程と
よりなることを特徴とする触媒担体の製造方法。
A first step of forming a plurality of through pits penetrating the aluminum substrate in the aluminum substrate;
A second step of anodizing the aluminum substrate;
A third step of hydrating the aluminum substrate;
A method for producing a catalyst carrier, comprising: a fourth step of firing the aluminum substrate.
アルミニウム基板に前記アルミニウム基板を貫通する複数の貫通ピットを形成せしめる第一の工程と、
前記アルミニウム基板を水和処理する第二の工程と、
前記アルミニウム基板を焼成する第三の工程と
よりなることを特徴とする触媒担体の製造方法。
A first step of forming a plurality of through pits penetrating the aluminum substrate in the aluminum substrate;
A second step of hydrating the aluminum substrate;
A method for producing a catalyst carrier, comprising: a third step of firing the aluminum substrate.
前記貫通ピットの最小のピット径が0.1μm以上であることを特徴とする請求項13、14または15記載の触媒担体の製造方法。   The method for producing a catalyst carrier according to claim 13, 14 or 15, wherein a minimum pit diameter of the through pits is 0.1 µm or more. 前記貫通ピットの平均ピット径が0.3〜5μmであることを特徴とする請求項13、14、15または16記載の触媒担体の製造方法。   The method for producing a catalyst carrier according to claim 13, 14, 15 or 16, wherein an average pit diameter of the through pits is 0.3 to 5 µm. 前記貫通ピットはエッチング処理により形成されたことを特徴とする請求項13、14、15、16または17記載の触媒担体の製造方法。   The method of manufacturing a catalyst carrier according to claim 13, 14, 15, 16, or 17, wherein the through pits are formed by an etching process. 請求項13、14、15、16、17または18の何れかに記載された触媒担体に、触媒を担持せしめる工程を更に有することを特徴とする触媒体の製造方法。   A method for producing a catalyst body, further comprising a step of supporting a catalyst on the catalyst carrier according to any one of claims 13, 14, 15, 16, 17 and 18. 請求項19に記載された触媒体のアルミニウム基板面に対して、垂直方向から前記触媒体により分解される物質を供給せしめる工程を更に有することを特徴とする物質の分解方法。   20. The method for decomposing a substance, further comprising the step of supplying a substance to be decomposed by the catalyst body from a vertical direction to the aluminum substrate surface of the catalyst body according to claim 19.
JP2010203244A 2010-09-10 2010-09-10 Catalyst carrier, catalyst body and method for producing them Active JP5726466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203244A JP5726466B2 (en) 2010-09-10 2010-09-10 Catalyst carrier, catalyst body and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203244A JP5726466B2 (en) 2010-09-10 2010-09-10 Catalyst carrier, catalyst body and method for producing them

Publications (2)

Publication Number Publication Date
JP2012055855A true JP2012055855A (en) 2012-03-22
JP5726466B2 JP5726466B2 (en) 2015-06-03

Family

ID=46053608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203244A Active JP5726466B2 (en) 2010-09-10 2010-09-10 Catalyst carrier, catalyst body and method for producing them

Country Status (1)

Country Link
JP (1) JP5726466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018711A (en) * 2012-07-13 2014-02-03 Hitachi Aic Inc Catalytic member
EP3489974A4 (en) * 2016-09-16 2019-09-25 Japan Capacitor Industrial Co., Ltd. Electrode member for electrolytic capacitor and electrolytic capacitor
WO2020065956A1 (en) * 2018-09-28 2020-04-02 日立化成株式会社 Steam reforming method, steam reforming member, and steam reformer

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954284A (en) * 1972-09-29 1974-05-27
JPS62129110A (en) * 1985-11-25 1987-06-11 スイス・アルミニウム・リミテツド Production of microfilter
JPH02144154A (en) * 1988-11-25 1990-06-01 Hideo Kameyama Heat conductive catalytic body and production thereof
JPH02143010A (en) * 1988-11-25 1990-06-01 Hideo Kameyama Oxidation combustion with the use of heat conductivity catalyst
JPH08243408A (en) * 1995-03-08 1996-09-24 Hideo Kameyama Anode oxidization process of structural body and production of catalytic structural body utilizing the process
JP2000219978A (en) * 1999-01-28 2000-08-08 Okuno Chem Ind Co Ltd Formation of fine through hole on aluminum foil, solution for corrosion for the method and aluminum foil having fine through hole
JP2002246055A (en) * 2001-02-15 2002-08-30 Daikin Ind Ltd Device for removing carbon monoxide and fuel cell
JP2002301381A (en) * 2001-04-05 2002-10-15 Ebara Corp Supported catalyst and reforming apparatus
WO2005089939A1 (en) * 2004-03-19 2005-09-29 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Catalyst for reducing nitrogen oxides, catalytic article using the same and method for reducing nitrogen oxides in exhaust gas
JP2007142060A (en) * 2005-11-17 2007-06-07 Nichicon Corp Method of manufacturing aluminum electrode foil for electrolytic capacitor
JP2007237090A (en) * 2006-03-09 2007-09-20 Alumite Shokubai Kenkyusho:Kk Catalytic body using anodized aluminum film
JP2008012419A (en) * 2006-07-05 2008-01-24 Fujifilm Corp Manufacturing method of catalyst body
JP2008307493A (en) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology Self-organizing porous thin film type electrochemical reactor
JP2010234278A (en) * 2009-03-31 2010-10-21 Hitachi Aic Inc Hydrogen catalyst member

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954284A (en) * 1972-09-29 1974-05-27
JPS62129110A (en) * 1985-11-25 1987-06-11 スイス・アルミニウム・リミテツド Production of microfilter
US4717455A (en) * 1985-11-25 1988-01-05 Swiss Aluminium Ltd. Process for manufacturing a microfilter
JPH02144154A (en) * 1988-11-25 1990-06-01 Hideo Kameyama Heat conductive catalytic body and production thereof
JPH02143010A (en) * 1988-11-25 1990-06-01 Hideo Kameyama Oxidation combustion with the use of heat conductivity catalyst
JPH08243408A (en) * 1995-03-08 1996-09-24 Hideo Kameyama Anode oxidization process of structural body and production of catalytic structural body utilizing the process
JP2000219978A (en) * 1999-01-28 2000-08-08 Okuno Chem Ind Co Ltd Formation of fine through hole on aluminum foil, solution for corrosion for the method and aluminum foil having fine through hole
JP2002246055A (en) * 2001-02-15 2002-08-30 Daikin Ind Ltd Device for removing carbon monoxide and fuel cell
JP2002301381A (en) * 2001-04-05 2002-10-15 Ebara Corp Supported catalyst and reforming apparatus
WO2005089939A1 (en) * 2004-03-19 2005-09-29 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Catalyst for reducing nitrogen oxides, catalytic article using the same and method for reducing nitrogen oxides in exhaust gas
JP2007142060A (en) * 2005-11-17 2007-06-07 Nichicon Corp Method of manufacturing aluminum electrode foil for electrolytic capacitor
JP2007237090A (en) * 2006-03-09 2007-09-20 Alumite Shokubai Kenkyusho:Kk Catalytic body using anodized aluminum film
JP2008012419A (en) * 2006-07-05 2008-01-24 Fujifilm Corp Manufacturing method of catalyst body
JP2008307493A (en) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology Self-organizing porous thin film type electrochemical reactor
JP2010234278A (en) * 2009-03-31 2010-10-21 Hitachi Aic Inc Hydrogen catalyst member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018711A (en) * 2012-07-13 2014-02-03 Hitachi Aic Inc Catalytic member
EP3489974A4 (en) * 2016-09-16 2019-09-25 Japan Capacitor Industrial Co., Ltd. Electrode member for electrolytic capacitor and electrolytic capacitor
US10957491B2 (en) 2016-09-16 2021-03-23 Japan Capacitor Industrial Co., Ltd. Electrolytic capacitor-specific electrode member and electrolytic capacitor
WO2020065956A1 (en) * 2018-09-28 2020-04-02 日立化成株式会社 Steam reforming method, steam reforming member, and steam reformer
WO2020066282A1 (en) * 2018-09-28 2020-04-02 日立化成株式会社 Processing method, processing member, production method therefor, and processing apparatus

Also Published As

Publication number Publication date
JP5726466B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
Li et al. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes
US20180057950A1 (en) Materials and methods for the electrochemical reduction of carbon dioxide
US20170001187A1 (en) Preparation method of catalyst comprising a ruthenium-containing catalyst layer formed on the body surface
JP5726466B2 (en) Catalyst carrier, catalyst body and method for producing them
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
Volpe et al. Optimized bath for electroless deposition of palladium on amorphous alumina membranes
KR20150103864A (en) method of preparing electrocatalyst for hydrogen production in alkaline water electrolysis, method for controlling a electrocatalyst composition by changing electrolysis condition and electrocatalyst for hydrogen production in alkaline water electrolysis thereby
JP2007237090A (en) Catalytic body using anodized aluminum film
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
JP4986240B2 (en) Catalytic reactor and catalytic reaction apparatus using the same
JP2011050925A (en) Hydrogen catalyst member
JPS63232855A (en) Catalyst containing anodizing aluminum base material and manufacture thereof
Minch et al. A versatile approach to processing of high active area pillar coral-and sponge-like Pt-nanostructures. Application to electrocatalysis
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
WO2019181681A1 (en) Production method for structured catalyst and hydrogen production method using structured catalyst
CN111203213A (en) High-efficiency preferential oxidation catalyst and preparation method thereof
CN113242915A (en) Electrode for electrolysis
TWI627316B (en) A method for making a tubular anodic aluminum oxide with nanometer or sub-micron pores
JP4800865B2 (en) Method for producing catalyst body
JP2002066337A (en) Catalyst provided with high heat-transfer capability and preparation process of the same catalyst
CN104328470A (en) Preparation method of porous aluminum oxide template
CN108404923B (en) Catalyst alumina/CeO for hydrolysis hydrogen production2Preparation method of/Ni composite nanotube, catalyst and application
JPS59213402A (en) Filter
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
Abramo et al. Nanostructure-performance relationships in titania-only electrodes for the selective electrocatalytic hydrogenation of oxalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250