JP2012055826A - Low-temperature oxidation catalyst, method for manufacturing the same, and oxidation method using the catalyst - Google Patents

Low-temperature oxidation catalyst, method for manufacturing the same, and oxidation method using the catalyst Download PDF

Info

Publication number
JP2012055826A
JP2012055826A JP2010201168A JP2010201168A JP2012055826A JP 2012055826 A JP2012055826 A JP 2012055826A JP 2010201168 A JP2010201168 A JP 2010201168A JP 2010201168 A JP2010201168 A JP 2010201168A JP 2012055826 A JP2012055826 A JP 2012055826A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
catalyst
oxidation
platinum
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010201168A
Other languages
Japanese (ja)
Other versions
JP5531212B2 (en
Inventor
Yutaka Oi
豊 多井
Atsuko Tomita
衷子 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010201168A priority Critical patent/JP5531212B2/en
Publication of JP2012055826A publication Critical patent/JP2012055826A/en
Application granted granted Critical
Publication of JP5531212B2 publication Critical patent/JP5531212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a supported platinum catalyst, as well as a method for manufacturing the same, having a low temperature oxidation activity that is more excellent than conventional products.SOLUTION: The oxide supported platinum catalyst is obtained by dispersing platinum ultrafine particles on an oxide support that especially contains a transition metal as a promoter component, and then adding water for hydrogen processing at 300°C or less.

Description

本発明は、低温における高い酸化活性を有する触媒とその製造方法およびその触媒を用いた酸化方法に関するものである。   The present invention relates to a catalyst having high oxidation activity at a low temperature, a production method thereof, and an oxidation method using the catalyst.

100℃以下の低温で有効な酸化触媒はいくつかの局面で切望されている。   An oxidation catalyst effective at a low temperature of 100 ° C. or less is desired in several aspects.

暖房や湯沸かし器の不完全燃焼による一酸化炭素(以下、「CO」という)中毒により、今なお人命にかかわる被害の報告がある。室温環境における、CO酸化触媒や高感度のCOセンサーが実現できれば、このような被害は未然に防止することができる。   There are still reports of life-threatening damage due to carbon monoxide (CO) poisoning due to incomplete combustion of heating and water heaters. If a CO oxidation catalyst or highly sensitive CO sensor can be realized in a room temperature environment, such damage can be prevented.

また、野菜や果物などの農作物は、熟成や腐敗を低減するため、生産・加工場および家庭においても冷蔵される。これら作物は、熟成の過程でエチレンガスを放出し、それが周りの野菜や果実等の熟成を一層進めることが知られている。従って、発生したエチレンガスを簡便且つ有効に分解できるプロセスが望まれており、酸化触媒によるエチレン分解は、その有力な候補のひとつであるが、冷蔵庫内の低温環境で有効に動作する酸化触媒はまだ存在しない。   In addition, crops such as vegetables and fruits are refrigerated in production / processing plants and households to reduce ripening and spoilage. It is known that these crops release ethylene gas during the ripening process, which further promotes the ripening of surrounding vegetables and fruits. Therefore, a process capable of easily and effectively decomposing the generated ethylene gas is desired, and ethylene decomposition by an oxidation catalyst is one of the promising candidates, but an oxidation catalyst that operates effectively in a low-temperature environment in a refrigerator is It does n’t exist yet.

加えて、自動車排ガスの浄化においては、低温状態でのエンジン始動(コールドスタート)時の触媒分解効率の向上が望まれている。この要求は、今後自動車の主流となると予想されるハイブリッド車において、より高まることは明白である。なぜならハイブリッド車は、従来の自動車に比較して、エンジンの休止状態の割合が高く、排気ガスの低温化が顕著となるからである。このことから、従来と比較してより低温で働く触媒、特に、COやハイドロカーボン(以下、HCという)を酸化できる触媒が求められる。   In addition, in the purification of automobile exhaust gas, it is desired to improve the catalyst decomposition efficiency at the time of engine start (cold start) in a low temperature state. It is clear that this demand will increase even more in hybrid vehicles, which are expected to become mainstream in the future. This is because the hybrid vehicle has a higher engine resting state ratio and the exhaust gas becomes colder than the conventional vehicle. For this reason, there is a need for a catalyst that operates at a lower temperature than conventional catalysts, particularly a catalyst that can oxidize CO and hydrocarbon (hereinafter referred to as HC).

一方、今後、普及が期待される家庭用燃料電池システムでは、燃料として改質された水素ガスを用いるが、ここには微量のCOが含まれる。CO分子は電極触媒として用いられる白金を被毒するため、除去しなければならない。この目的のため、水素中のCOを選択的に酸化する触媒(PROX触媒)が用いられる。現状、PROX触媒は典型的には150℃程度の温度で使用されているが、このような温度下では、メタン化反応が起きる可能性があり、かつまた、燃料電池自体の動作温度は80℃付近であるので、これに近い温度で運転できるよう、低温下でのCO酸化活性の高い触媒が求められている。   On the other hand, reformed hydrogen gas is used as a fuel in household fuel cell systems, which are expected to become widely used in the future, and contains a small amount of CO. CO molecules must be removed because they poison the platinum used as an electrocatalyst. For this purpose, a catalyst (PROX catalyst) that selectively oxidizes CO in hydrogen is used. At present, the PROX catalyst is typically used at a temperature of about 150 ° C. Under such a temperature, a methanation reaction may occur, and the operating temperature of the fuel cell itself is 80 ° C. Therefore, there is a demand for a catalyst having high CO oxidation activity at low temperatures so that it can be operated at a temperature close to this.

低温で高活性な酸化触媒としては、チタニアや酸化鉄等の酸化物担体上にナノサイズの金を分散させた、担持金触媒が提案されている(特許文献1)。この触媒は、0℃以下の低温においても活性を示す希有な触媒であるが、炭酸根が蓄積しやすいほか、活性点が金であるため、わずかな高温に晒されただけでも焼結を起し易いという問題がある。一方、白金を活性点とした触媒としては、アルミナ担持白金触媒に水等の溶媒を添加し、500℃程度で処理することで白金を再分散させて低温活性を上げる方法が知られているが、室温付近で高いCO酸化活性を得るために5wt%もの白金担持量を要している(特許文献2)。また、白金/アルミナに鉄を添加することで、CO酸化活性が向上することが報告されているが、反応温度は200℃と高温である(特許文献3)。ビスマス(Bi)、セリウム(Ce)、ジルコニウム(Zr)の複合酸化物に白金等の貴金属を担持した触媒、あるいはそれらをさらにアルミナに分散させた触媒も開発されているが、構成要素が多いために調製には繁雑な操作が要求されるうえ、十分な性能を得るためには、やはり、多量の白金を必要とする(特許文献4)。さらには、FSM-16等のメソポーラスシリカに担持した白金触媒が、低温で高いCO酸化活性を有することが明らかになってきた(非特許文献1)。しかしながら、FSM-16やMCM-41などのメソポーラスシリカは、それ自体を作製するために、テンプレートとなる有機物を大量に使用し、最終的にそれらを燃焼除去することが必要なため、環境負荷が大きく、また、製造コストも高い。   As a highly active oxidation catalyst at a low temperature, a supported gold catalyst in which nano-sized gold is dispersed on an oxide carrier such as titania or iron oxide has been proposed (Patent Document 1). This catalyst is a rare catalyst that exhibits activity even at low temperatures of 0 ° C. or lower. However, carbonate radicals tend to accumulate, and since the active site is gold, sintering occurs even when exposed to a slight high temperature. There is a problem that it is easy to do. On the other hand, as a catalyst having platinum as an active site, a method of increasing the low-temperature activity by redispersing platinum by adding a solvent such as water to an alumina-supported platinum catalyst and treating at about 500 ° C. is known. In order to obtain high CO oxidation activity near room temperature, platinum loading of 5 wt% is required (Patent Document 2). Moreover, although it has been reported that CO oxidation activity improves by adding iron to platinum / alumina, the reaction temperature is as high as 200 ° C. (Patent Document 3). A catalyst in which a noble metal such as platinum is supported on a composite oxide of bismuth (Bi), cerium (Ce), or zirconium (Zr), or a catalyst in which these are further dispersed in alumina has been developed, but has many components. In addition, complicated operations are required for the preparation, and a large amount of platinum is still required to obtain sufficient performance (Patent Document 4). Furthermore, it has become clear that platinum catalysts supported on mesoporous silica such as FSM-16 have high CO oxidation activity at low temperatures (Non-patent Document 1). However, mesoporous silicas such as FSM-16 and MCM-41 require a large amount of organic materials that are used as templates in order to produce them, and ultimately they must be burned and removed. Large and also expensive to manufacture.

特開平05-057192号公報JP 05-057192 A 特開2006-68670号公報JP 2006-68670 A 特開2003-164764号公報Japanese Patent Laid-Open No. 2003-164764 特開2007-229559号公報JP 2007-229559

A. Fukuoka et al., J. Am. Chem. Soc. 129, 10120 (2007).A. Fukuoka et al., J. Am. Chem. Soc. 129, 10120 (2007).

本発明は、上記事情に鑑み、低温での活性が極めて高い酸化触媒、その酸化触媒を簡便な方法で作製できる酸化触媒調製法、およびその酸化触媒を用いた酸化方法を提供することを目的とする。   In view of the above circumstances, the present invention aims to provide an oxidation catalyst having extremely high activity at low temperature, an oxidation catalyst preparation method capable of producing the oxidation catalyst by a simple method, and an oxidation method using the oxidation catalyst. To do.

本発明者らは、このような技術的課題を解決するため鋭意研究を重ねた結果、酸化物担体上に白金を分散させた後、水で湿潤させ、水素気流中100〜300℃、好適には150〜250℃という低温で熱処理することにより調製した触媒、特に、調製の過程で微量の遷移金属を導入した触媒が極めて高い低温酸化活性を示すことを発見した。   As a result of intensive studies to solve such technical problems, the present inventors have dispersed platinum on an oxide support, then wetted with water, and preferably in a hydrogen stream at 100 to 300 ° C. Discovered that a catalyst prepared by heat treatment at a low temperature of 150 to 250 ° C., particularly a catalyst into which a small amount of transition metal was introduced during the preparation, exhibited extremely high low-temperature oxidation activity.

すなわち、本発明の酸化触媒調製法は、酸化物担体上の白金分散物を、水で湿潤させ、水素気流中100〜300℃の温度下で熱処理することを特徴とする。   That is, the oxidation catalyst preparation method of the present invention is characterized in that a platinum dispersion on an oxide support is wetted with water and heat-treated in a hydrogen stream at a temperature of 100 to 300 ° C.

この酸化触媒調製法において、熱処理の温度範囲が、150〜250℃であることが好ましい。   In this oxidation catalyst preparation method, the temperature range of the heat treatment is preferably 150 to 250 ° C.

この酸化触媒調製法において、酸化物担体が、アルミナ、ジルコニア、シリカおよびチタニアからなる群から選ばれる少なくとも1種の金属酸化物であることが好ましい。   In this oxidation catalyst preparation method, the oxide carrier is preferably at least one metal oxide selected from the group consisting of alumina, zirconia, silica and titania.

この酸化触媒調製法において、酸化物担体上の白金分散物が、白金前駆体と酸化物担体を分散媒中で混合する工程、混合物を乾燥させる工程、乾燥された結果物を酸化雰囲気で焼成する工程、焼成された結果物を還元雰囲気で還元する工程、を順次おこなって作製されることが好ましい。   In this oxidation catalyst preparation method, a platinum dispersion on an oxide carrier is mixed with a platinum precursor and an oxide carrier in a dispersion medium, the mixture is dried, and the dried result is fired in an oxidizing atmosphere. It is preferable that the step and the step of reducing the fired product in a reducing atmosphere are sequentially performed.

この酸化触媒調製法において、乾燥された結果物の焼成は、100〜400℃でおこなうことが好ましい。   In this oxidation catalyst preparation method, the dried resultant product is preferably calcined at 100 to 400 ° C.

この酸化触媒調製法において、焼成された結果物の還元は、100〜400℃でおこなうことが好ましい。   In this oxidation catalyst preparation method, it is preferable to reduce the calcined resultant product at 100 to 400 ° C.

この酸化触媒調製法において、酸化物担体が、助触媒成分を含有するものであることが好ましい。   In this oxidation catalyst preparation method, the oxide carrier preferably contains a promoter component.

この酸化触媒調製法において、混合物は、さらに助触媒成分が添加されているものであることが好ましい。   In this oxidation catalyst preparation method, the mixture is preferably further added with a promoter component.

この酸化触媒調製法において、助触媒成分が、遷移金属であることが好ましい。   In this oxidation catalyst preparation method, the promoter component is preferably a transition metal.

本発明の酸化触媒は、上記いずれかの方法により調製したものであることを特徴とする。   The oxidation catalyst of the present invention is prepared by any one of the above methods.

本発明の酸化方法は、上記いずれかの方法により調製した酸化触媒の存在下で、炭化水素、又は一酸化炭素を酸化反応させることを特徴とする。   The oxidation method of the present invention is characterized in that a hydrocarbon or carbon monoxide is oxidized in the presence of an oxidation catalyst prepared by any of the above methods.

本発明の酸化方法は、上記いずれかの方法により調製した酸化触媒の存在下で、一酸化炭素含有水素の一酸化炭素を選択的に酸化させることを特徴とする。   The oxidation method of the present invention is characterized in that carbon monoxide containing carbon monoxide is selectively oxidized in the presence of an oxidation catalyst prepared by any of the above methods.

本発明の燃料電池用一酸化炭素濃度低減装置は、上記いずれかの方法により調製した酸化触媒を用いている。   The carbon monoxide concentration reducing device for a fuel cell of the present invention uses the oxidation catalyst prepared by any one of the above methods.

本発明の一酸化炭素センサーは、上記いずれかの方法により調製した酸化触媒を用いている。   The carbon monoxide sensor of the present invention uses an oxidation catalyst prepared by any one of the above methods.

本発明の内燃機関排ガス浄化装置は、上記いずれかの方法により調製した酸化触媒を用いている。   The internal combustion engine exhaust gas purification apparatus of the present invention uses an oxidation catalyst prepared by any one of the above methods.

本発明のエチレン分解製品は、上記いずれかの方法により調製した酸化触媒を用いている。   The ethylene decomposition product of the present invention uses an oxidation catalyst prepared by any one of the above methods.

本発明によれば、低温での活性が極めて高い酸化触媒が簡便な方法で得られ、それを用いて暖房器具などの不完全燃焼ガスや自動車のコールドスタート時の排ガス浄化、水素ガス中のCO選択酸化等に効果的なガス処理システムを構築することができる。   According to the present invention, an oxidation catalyst having extremely high activity at a low temperature can be obtained by a simple method, and it can be used to purify exhaust gas at the time of cold start of automobiles, incomplete combustion gases such as heating appliances, CO in hydrogen gas A gas processing system effective for selective oxidation or the like can be constructed.

実施例1における、ジニトロジアミン白金含浸後、焼成後、および還元後の赤外吸収スペクトル。The infrared absorption spectrum in Example 1 after impregnation with dinitrodiamine platinum, after firing, and after reduction. 実施例1における、焼成後試料のPtL3吸収端近傍におけるEXAFSから得た、Pt周りの動径分布。The radial distribution around Pt obtained from EXAFS in the vicinity of the PtL 3 absorption edge of the sample after firing in Example 1. 実施例1における、還元後試料のHAADF−STEM像。The HAADF-STEM image of the sample after a reduction | restoration in Example 1. FIG. 実施例1における、水の添加および水素処理後試料のHAADF-STEM像。The HAADF-STEM image of the sample after water addition and hydrogen treatment in Example 1. CO転化率の水添加後の水素処理温度依存を示すグラフ。The graph which shows the hydrogen treatment temperature dependence after water addition of CO conversion. CO転化率の還元温度依存を示すグラフ。The graph which shows the reduction temperature dependence of CO conversion rate. CO転化率の焼成温度依存を示すグラフ。The graph which shows the calcination temperature dependence of CO conversion rate. 実施例2、4、11、および比較例2、3のCO転化率の温度依存を示すグラフ。The graph which shows the temperature dependence of CO conversion rate of Examples 2, 4, and 11 and Comparative Examples 2 and 3. 実施例12の水素中におけるCO転化率、O2転化率、CO酸化選択性の温度依存を示すグラフ。10 is a graph showing the temperature dependence of CO conversion rate, O2 conversion rate, and CO oxidation selectivity in hydrogen in Example 12. 比較例4の水素中におけるCO転化率、O2転化率、CO酸化選択性の温度依存を示すグラフ。6 is a graph showing the temperature dependence of CO conversion rate, O2 conversion rate, and CO oxidation selectivity in hydrogen in Comparative Example 4.

本発明の触媒調製方法は、一般的な調製法である含浸・焼成法を前提とし、これから出発したものである。従来の方法では、例えば粉末状の触媒を得る場合には、白金源(白金前駆体)となる塩化白金酸やジニトロジアミン白金などの溶液に、担体となるアルミナ等の酸化物粉末を投入し、吸着あるいは溶媒を蒸発させることにより、白金イオンあるいは白金錯体を担体上に分散させる。その後、得られた粉末を高温(典型的には500〜700℃)で焼成した後、必要に応じて還元(典型的には含H2気流中、400〜500℃)する。この操作により、酸化物担体上に典型的には1〜10nmサイズの白金ナノ粒子を分散させることが出来、触媒として供される。白金源を水溶液に分散させるために界面活性剤を用いる場合、ガス気流ではなく、水素化ホウ素ナトリウム等の還元剤を用いて還元する場合もある。   The catalyst preparation method of the present invention is based on an impregnation / calcination method, which is a general preparation method, and starts from this. In the conventional method, for example, when obtaining a catalyst in a powder form, an oxide powder such as alumina serving as a carrier is charged into a solution of chloroplatinic acid or dinitrodiamine platinum serving as a platinum source (platinum precursor), Platinum ions or platinum complexes are dispersed on the support by adsorption or evaporation of the solvent. Thereafter, the obtained powder is calcined at a high temperature (typically 500 to 700 ° C.), and then reduced (typically 400 to 500 ° C. in an H 2 -containing gas stream) as necessary. By this operation, platinum nanoparticles typically having a size of 1 to 10 nm can be dispersed on the oxide support and used as a catalyst. When a surfactant is used to disperse the platinum source in the aqueous solution, reduction may be performed using a reducing agent such as sodium borohydride instead of a gas stream.

本発明においては焼成および還元操作を例えば100〜400℃の温度で施した後、得られた試料を水で湿潤状態とし、水素気流中100〜300℃、好適には150〜250℃の温度で熱処理を施すことを特徴としている。また、担体である酸化物に遷移金属を含有させることにより、より効果的に酸化活性を増大させることができる。   In the present invention, after firing and reducing operations are performed at a temperature of, for example, 100 to 400 ° C., the obtained sample is wetted with water, and is heated in a hydrogen stream at 100 to 300 ° C., preferably at a temperature of 150 to 250 ° C. It is characterized by heat treatment. Further, the oxidation activity can be increased more effectively by including a transition metal in the oxide as a carrier.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の酸化触媒調製法は、酸化物担体上の白金分散物を、水で湿潤させ、水素気流中で熱処理することを特徴としている。   The oxidation catalyst preparation method of the present invention is characterized in that a platinum dispersion on an oxide support is wetted with water and heat-treated in a hydrogen stream.

白金は、例えば超微粒子として酸化物担体上に分散、担持されており、その大きさは特に限定されるものではないが、酸化反応の酸化活性等の観点から、粒子径が20nm以下、なかでも0.1〜10nm、特に0.1〜2nmが好ましい範囲として考慮される。   Platinum is dispersed and supported on an oxide carrier as ultrafine particles, for example, and the size thereof is not particularly limited, but from the viewpoint of the oxidation activity of the oxidation reaction, the particle diameter is 20 nm or less. 0.1-10 nm, in particular 0.1-2 nm is considered as a preferred range.

白金を担持させる酸化物担体は、従来触媒担体として用いられている無機酸化物であればよい。具体例としては、アルミニウム、ジルコニウム、ケイ素、チタン、スズ、バリウム、亜鉛などの金属の酸化物あるいはこれらの金属の複合酸化物などが挙げられる。なかでも入手のしやすさ、コスト、酸化反応の酸化活性等を考慮すると、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)が好適である。 The oxide carrier on which platinum is supported may be an inorganic oxide conventionally used as a catalyst carrier. Specific examples include oxides of metals such as aluminum, zirconium, silicon, titanium, tin, barium, and zinc, or composite oxides of these metals. Among these, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), and titania (TiO 2 ) are preferable in consideration of availability, cost, oxidation activity of the oxidation reaction, and the like.

酸化物担体には、酸化反応の酸化活性を向上させるために、助触媒成分が含有されていてもよい。助触媒成分としては、鉄、ルテニウム、セリウム、コバルト、銅、ニッケル、マンガンなどの遷移金属が好ましく、なかでも鉄、ルテニウム、セリウムが好ましい。なお、酸化物担体に助触媒成分を含有させるかわりに、後述する白金前駆体と酸化物担体と溶媒との混合物に助触媒成分を添加することもできる。   The oxide carrier may contain a promoter component in order to improve the oxidation activity of the oxidation reaction. As the promoter component, transition metals such as iron, ruthenium, cerium, cobalt, copper, nickel, and manganese are preferable, and iron, ruthenium, and cerium are particularly preferable. Instead of containing the promoter component in the oxide carrier, the promoter component can be added to a mixture of a platinum precursor, an oxide carrier and a solvent described later.

酸化物担体の形状、大きさ等については、白金を担持可能な形状および大きさであれば特に制限されるものではなく、例えば、粉体、造粒物、成形物など各種形状のものを用いることができる。酸化物担体の形態についても緻密体、多孔質体など任意の形態であってよい。酸化物担体が多孔質体の場合、重量あたりの白金超微粒子の担持量を多くすることができる。   The shape, size, etc. of the oxide support are not particularly limited as long as it is a shape and size capable of supporting platinum. For example, various shapes such as powder, granulated product, and molded product are used. be able to. The form of the oxide carrier may be any form such as a dense body and a porous body. When the oxide carrier is a porous body, the amount of platinum ultrafine particles supported per weight can be increased.

白金の担持量については、反応形態、酸化物担体の比表面積、形状等に応じて適宜設定される。例えば、白金と酸化物担体の合計量を100wt%として、白金量を0.1〜10wt%、好ましくは0.1〜5wt%、より好ましくは0.1〜3wt%の範囲に設定される。白金の担持量がかかる範囲内の場合、炭化水素や一酸化炭素の酸化反応において低温領域で優れた酸化活性を得ることができる。   The amount of platinum supported is appropriately set according to the reaction form, the specific surface area of the oxide carrier, the shape, and the like. For example, the total amount of platinum and oxide support is 100 wt%, and the platinum amount is set in the range of 0.1 to 10 wt%, preferably 0.1 to 5 wt%, more preferably 0.1 to 3 wt%. When the supported amount of platinum is within such a range, excellent oxidation activity can be obtained in a low temperature region in the oxidation reaction of hydrocarbons or carbon monoxide.

白金を酸化物担体に担持させる方法は特に制限はなく、含浸法、析出沈殿法等の公知の調製法を適宜適用できる。   The method for supporting platinum on an oxide carrier is not particularly limited, and a known preparation method such as an impregnation method or a precipitation method can be appropriately applied.

例えば、含浸法によって白金を酸化物担体に担持させる場合、まず、白金の担持量が所定の量になるように濃度および液量を調整した白金前駆体である各種の白金の金属酸、金属塩、金属錯体を準備する。次に、この白金前駆体、酸化物担体、水等の溶媒、さらに必要に応じて界面活性剤や助触媒成分を容器に投入して撹拌、混合する。次に、加熱等によって溶媒を除去してこの混合物を乾燥させる。このとき、酸化物担体上には白金イオンや白金錯体が分散した状態となっている。次に、乾燥した混合物を酸化雰囲気で焼成し、次いで還元処理する。尚、プロセスを簡略化するために、酸化雰囲気での焼成を行わずに、混合物を還元処理する場合も想定される。   For example, when platinum is supported on an oxide support by an impregnation method, first, various platinum metal acids and metal salts which are platinum precursors whose concentrations and liquid amounts are adjusted so that the supported amount of platinum becomes a predetermined amount. Prepare a metal complex. Next, the platinum precursor, the oxide carrier, a solvent such as water, and further, if necessary, a surfactant and a promoter component are put into a container and stirred and mixed. Next, the solvent is removed by heating or the like, and the mixture is dried. At this time, platinum ions and a platinum complex are dispersed on the oxide carrier. Next, the dried mixture is fired in an oxidizing atmosphere and then subjected to a reduction treatment. In order to simplify the process, it may be assumed that the mixture is subjected to reduction treatment without firing in an oxidizing atmosphere.

白金前駆体である白金の金属酸、金属塩、金属錯体の具体例としては、塩化白金酸、ジニトロジアミン白金、塩化白金、塩化白金酸ナトリウム、塩化白金酸カリウム、塩化白金酸アンモニウム等が挙げられる。   Specific examples of platinum metal acid, metal salt, and metal complex that are platinum precursors include chloroplatinic acid, dinitrodiamineplatinum, platinum chloride, sodium chloroplatinate, potassium chloroplatinate, and ammonium chloroplatinate. .

酸化雰囲気としては、例えば、空気、酸素ガス、酸素ガス含有アルゴンガス、酸素ガス含有窒素ガス等が挙げられる。酸化雰囲気での焼成は、例えば、100〜400℃、好ましくは100〜300℃の温度でおこなうことがよい。この焼成温度は、従来、担持白金触媒を含浸法によって調製したときの典型的な焼成温度500〜700℃よりも低く、製造コストを抑えることができる。   Examples of the oxidizing atmosphere include air, oxygen gas, oxygen gas-containing argon gas, oxygen gas-containing nitrogen gas, and the like. Firing in an oxidizing atmosphere is preferably performed at a temperature of 100 to 400 ° C, preferably 100 to 300 ° C, for example. This calcination temperature is conventionally lower than the typical calcination temperature of 500 to 700 ° C. when the supported platinum catalyst is prepared by the impregnation method, and the production cost can be suppressed.

還元処理は、例えば、還元雰囲気中、100〜400℃、好ましくは150〜250℃の温度に加熱しておこなうことができる。この還元温度は、従来、担持白金触媒を含浸法によって調製したときの典型的な還元温度400〜500℃と比べて比較的低く、製造コストを抑えることができる。還元雰囲気としては、例えば、水素ガス、水素ガス含有アルゴンガス、水素ガス含有窒素ガス等が挙げられる。   The reduction treatment can be performed, for example, by heating to a temperature of 100 to 400 ° C., preferably 150 to 250 ° C. in a reducing atmosphere. This reduction temperature is relatively low as compared with a typical reduction temperature of 400 to 500 ° C. when a supported platinum catalyst is prepared by an impregnation method in the past, and the production cost can be suppressed. Examples of the reducing atmosphere include hydrogen gas, hydrogen gas-containing argon gas, hydrogen gas-containing nitrogen gas, and the like.

還元処理の別の方法として、還元剤を含む水溶液を調製し、室温〜100℃程度に加温した後、混合物をこの水溶液に添加しておこなう方法がある。還元剤としては、水素化ホウ素ナトリウム、ヨウ化水素、水素化アルミニウムリチウム、ヒドラジン等が挙げられる。   As another method of the reduction treatment, there is a method in which an aqueous solution containing a reducing agent is prepared, heated to room temperature to about 100 ° C., and then the mixture is added to the aqueous solution. Examples of the reducing agent include sodium borohydride, hydrogen iodide, lithium aluminum hydride, hydrazine and the like.

以上の方法により、酸化物担体上に白金が分散、担持される。   By the above method, platinum is dispersed and supported on the oxide carrier.

このように酸化物担体上の白金分散物を、上記したように水で湿潤させ、水素気流中で熱処理を施す。例えば、酸化物担体上の白金分散物に水を添加し水素気流を流通させ熱処理を施すなど水素気流中に水蒸気を共存させた状態で熱処理をおこなう。なお、この水素気流中での熱処理を以下、水素処理ともいう。   In this way, the platinum dispersion on the oxide support is wetted with water as described above and subjected to heat treatment in a hydrogen stream. For example, the heat treatment is performed in a state where water vapor coexists in the hydrogen stream, for example, water is added to the platinum dispersion on the oxide support and the hydrogen stream is circulated to perform the heat treatment. Hereinafter, the heat treatment in the hydrogen stream is also referred to as hydrogen treatment.

熱処理の温度は100〜300℃、好ましくは150〜250℃、より好ましくは200〜250℃であることが望ましい。この温度範囲で熱処理を施した触媒は、炭化水素や一酸化炭素の酸化反応において低温領域で優れた酸化活性を示す。またこの水素処理は比較的低温雰囲気下での熱処理であるため、低コストで触媒を作製することができる。   The heat treatment temperature is 100 to 300 ° C, preferably 150 to 250 ° C, more preferably 200 to 250 ° C. A catalyst subjected to heat treatment in this temperature range exhibits excellent oxidation activity in a low temperature region in the oxidation reaction of hydrocarbons and carbon monoxide. Moreover, since this hydrogen treatment is a heat treatment in a relatively low temperature atmosphere, a catalyst can be produced at a low cost.

以上のように水の添加および水素処理という簡便な方法で得られた触媒は、酸化物担体上に白金超微粒子が分散、担持されており、炭化水素や一酸化炭素の酸化反応の酸化触媒として、低温領域において高い触媒活性を示すとともに一酸化炭素の酸化反応について高い酸化選択性を示す。ここで低温領域とは、例えば、100℃以下の温度範囲である。50℃以下、25℃以下の温度領域においても酸化反応の触媒活性が高く、一酸化炭素の酸化選択性も高い。下限は特に制限されるものではないが、例えば-40℃とすることができる。もちろん、このような低温領域だけでなくこれよりも高い温度領域においても酸化反応の触媒活性および一酸化炭素の酸化選択性は高い。   As described above, the catalyst obtained by a simple method of water addition and hydrogen treatment has platinum ultrafine particles dispersed and supported on an oxide carrier, and serves as an oxidation catalyst for the oxidation reaction of hydrocarbons and carbon monoxide. In addition, it exhibits high catalytic activity in a low temperature region and high oxidation selectivity for the oxidation reaction of carbon monoxide. Here, the low temperature region is, for example, a temperature range of 100 ° C. or less. Even in the temperature range of 50 ° C. or lower and 25 ° C. or lower, the catalytic activity of the oxidation reaction is high, and the oxidation selectivity of carbon monoxide is also high. The lower limit is not particularly limited, but can be, for example, −40 ° C. Of course, the catalytic activity of the oxidation reaction and the oxidation selectivity of carbon monoxide are high not only in such a low temperature region but also in a higher temperature region.

上記の方法で得られた触媒を用いて炭化水素や一酸化炭素を酸化するには、炭化水素ガスや一酸化炭素ガスを酸素の共存下で触媒に接触させればよい。触媒と炭化水素ガスや一酸化炭素ガスとの接触は、固定床もしくは流動床の流通式反応装置によりおこなうことができる。   In order to oxidize hydrocarbons or carbon monoxide using the catalyst obtained by the above method, hydrocarbon gas or carbon monoxide gas may be brought into contact with the catalyst in the presence of oxygen. Contact of the catalyst with the hydrocarbon gas or carbon monoxide gas can be carried out by a fixed bed or fluidized bed flow reactor.

本発明では、一酸化炭素を含む水素ガスを酸素の共存下で上記触媒に接触させることにより低温領域で一酸化炭素を選択的に酸化することができる。水素ガス中に含まれる微量の一酸化炭素、例えば、0.4〜2モル%程度の一酸化炭素を酸化することができる。   In the present invention, carbon monoxide can be selectively oxidized in a low temperature region by bringing hydrogen gas containing carbon monoxide into contact with the catalyst in the presence of oxygen. A trace amount of carbon monoxide contained in hydrogen gas, for example, about 0.4 to 2 mol% of carbon monoxide can be oxidized.

このため、燃料電池システムの燃料として用いられる改質された水素ガス(微量の一酸化炭素を含む)中の一酸化炭素を低温領域で効果的に酸化し、前記水素ガスから一酸化炭素を除去することができる。したがって、上記触媒を用いて燃料電池用一酸化炭素濃度低減装置として利用することができる。また、暖房や湯沸かし器の不完全燃焼による一酸化炭素を検知する一酸化炭素センサーとして上記触媒を利用することもできる。さらに、上記触媒を用いて炭化水素や一酸化炭素を低温領域で酸化できるので、自動車等の内燃機関排ガス浄化装置として上記触媒を利用することができる。さらにまた、冷蔵庫内の低温環境で有効に作動し、庫内の農作物から発生したエチレンガスを分解するエチレン分解製品として上記触媒を利用することができる。   For this reason, carbon monoxide in reformed hydrogen gas (including a small amount of carbon monoxide) used as fuel for the fuel cell system is effectively oxidized in a low temperature region, and carbon monoxide is removed from the hydrogen gas. can do. Therefore, it can utilize as a carbon monoxide concentration reduction apparatus for fuel cells using the said catalyst. Moreover, the said catalyst can also be utilized as a carbon monoxide sensor which detects the carbon monoxide by the incomplete combustion of a heating or a water heater. Furthermore, since hydrocarbons and carbon monoxide can be oxidized in the low temperature region using the catalyst, the catalyst can be used as an exhaust gas purification device for internal combustion engines such as automobiles. Furthermore, the catalyst can be used as an ethylene decomposition product that operates effectively in a low-temperature environment in the refrigerator and decomposes ethylene gas generated from agricultural products in the warehouse.

以下に実施例を示し、さらに詳しく説明するが、本発明は以下の例によって限定されるものではない。
[実施例1]
Examples will be described below in more detail, but the present invention is not limited to the following examples.
[Example 1]

<白金源の含浸>
白金量50g/Lのジニトロジアミン白金硝酸溶液1.053mLを20mLのサンプル瓶に計り取り、3mLのイオン交換水を加えた。ここにアルミナ(触媒学会参照触媒JRC-ALO-2)1gを加え、室温でロータリーミキサーを用いて30分間撹拌した。白金仕込み量は5wt%である。内容物を蒸発皿に移し、湯煎により水分を徐々に蒸発させた。
<焼成および還元>
得られた粉末をアルミナ角皿に移し、環状炉を用いて、300mL/minの空気気流中、200℃で2時間焼成した。この粉末を100mg計り取り、ガラス管に詰め、50mL/minのH2/Ar(1:1)の混合ガス気流中、200℃で2時間還元処理を施した。図1にこれまでの各段階で取得した赤外(IR)透過スペクトルを示す。ジニトロジアミン白金含浸後は1380cm-1付近にアルミナ表面に吸着したNO3 -イオンに由来するピークの他、1380cm-1および1480cm-1付近にショルダーが観測され、これらはそれぞれPtに配位したNH3およびNO2によるものと考えられる。焼成後はNH3およびNO2由来のショルダーは消失する。図2は焼成後試料のPtL3吸収端近傍におけるEXAFS(Extend X-ray Absorption Fine Structure)から得た、Pt周りの動径分布である。比較のために記したPtO2における動径分布と同様のパターンを示しながら、第2シェルに由来するピークが小さいことから、この時点で、Ptは酸化白金ナノ粒子として存在すると考えられる。還元後の試料のIRスペクトルからは、この時点でアルミナ表面のNO3 -が脱離することが分かる。図3に還元後試料のHAADF-STEM(High Angle Annular Dark Field-Scanning Transmission Electron Microscope)像を示す。粒子径がサブナノ(0.1nm)から2nmまでの白金粒子が分散していることが分かる。
<水の添加および水素処理>
ガラス管中の試料に0.1mLの水を加えて湿潤状態とした。この後、33.3mL/minのH2ガスを流通させ、200℃で30分処理した。図4にこの試料のHAADF-STEM像を示す。図3の結果同様、粒子径がサブナノ(0.1nm)から2nmまでのPt粒子が分散していることが分かる。
<CO酸化活性評価>
上記試料を固定床流通式触媒活性評価装置にて、CO 1%、O2 0.5%、N2 98.5%の混合ガス33.3mL/minを流して、CO酸化活性を種々の温度において評価した。定常状態の反応性を評価するため、室温で2時間上記混合ガスを流通させた後、室温(28℃)でCO転換率を計測したところ、32%であった。
[比較例1]
<Impregnation of platinum source>
1.053 mL of a dinitrodiamine platinum nitric acid solution with a platinum amount of 50 g / L was weighed into a 20 mL sample bottle, and 3 mL of ion exchange water was added. To this was added 1 g of alumina (JRC-ALO-2, reference catalyst for the Catalysis Society of Japan), and the mixture was stirred at room temperature for 30 minutes using a rotary mixer. The amount of platinum charged is 5 wt%. The contents were transferred to an evaporating dish, and water was gradually evaporated with a hot water bath.
<Baking and reduction>
The obtained powder was transferred to an alumina square dish and baked at 200 ° C. for 2 hours in an air stream of 300 mL / min using an annular furnace. 100 mg of this powder was weighed, packed in a glass tube, and subjected to reduction treatment at 200 ° C. for 2 hours in a mixed gas stream of 50 mL / min of H2 / Ar (1: 1). Figure 1 shows the infrared (IR) transmission spectra obtained at each stage so far. After Dinitrodiammineplatinum impregnation NO 3 adsorbed on alumina surface in the vicinity of 1380 cm -1 - other peaks from ions, it is observed shoulder in the vicinity of 1380 cm -1 and 1480 cm -1, which are coordinated to the Pt respectively NH It believed to be due to 3 and NO 2. After firing, the shoulder derived from NH 3 and NO 2 disappears. Fig. 2 shows the radial distribution around Pt obtained from EXAFS (Extend X-ray Absorption Fine Structure) near the PtL 3 absorption edge of the sample after firing. While showing the same pattern as the radial distribution in PtO 2 described for comparison, the peak derived from the second shell is small, and at this point, Pt is considered to exist as platinum oxide nanoparticles. From the IR spectrum of the sample after the reduction, it can be seen that NO 3 − on the alumina surface is desorbed at this point. FIG. 3 shows a HAADF-STEM (High Angle Annular Dark Field-Scanning Transmission Electron Microscope) image of the reduced sample. It can be seen that platinum particles having a particle size from sub-nano (0.1 nm) to 2 nm are dispersed.
<Water addition and hydrogen treatment>
The sample in the glass tube was wetted by adding 0.1 mL of water. Thereafter, 33.3 mL / min of H 2 gas was circulated and treated at 200 ° C. for 30 minutes. FIG. 4 shows a HAADF-STEM image of this sample. Similar to the results of FIG. 3, it can be seen that Pt particles having a particle size of sub-nano (0.1 nm) to 2 nm are dispersed.
<Evaluation of CO oxidation activity>
The above sample was evaluated by using a fixed bed flow-type catalytic activity evaluation apparatus at a flow rate of 33.3 mL / min of CO 1%, O 2 0.5%, N 2 98.5%, and CO oxidation activity at various temperatures. In order to evaluate the reactivity in the steady state, the above gas mixture was allowed to flow for 2 hours at room temperature, and the CO conversion rate was measured at room temperature (28 ° C.).
[Comparative Example 1]

比較例1として、実施例1に示した手順のうち<水の添加および水素処理>において、水を加えずに同様の調製および測定を行った結果、室温(28℃)において、CO転換率は0%であった。
[実施例2]
As Comparative Example 1, the same preparation and measurement was performed without adding water in <Addition of water and hydrogen treatment> in the procedure shown in Example 1. As a result, at room temperature (28 ° C.), the CO conversion rate was 0%.
[Example 2]

鉄を0.7wt%含有するアルミナ担体(触媒学会参照触媒JRC-ALO-5)を用いて、実施例1の手順で触媒を調製し、CO酸化活性を評価したところ、室温(28℃)でCO転換率100%を示した。
[実施例3〜6]
Using an alumina support containing 0.7 wt% of iron (catalyst society reference catalyst JRC-ALO-5), a catalyst was prepared by the procedure of Example 1 and evaluated for CO oxidation activity. The conversion rate was 100%.
[Examples 3 to 6]

水添加後の水素処理の適正温度を評価するため、実施例1の方法を用いて、150(実施例3)、200(実施例4)、250(実施例5)、300(実施例6)℃で水素処理し、室温でのCO転換率を評価した。焼成および還元温度は200℃とした。担体にはJRC-ALO-5を用い、白金仕込み量は0.25wt%(白金量50g/Lのジニトロジアミン白金水溶液0.0501mL)とした。結果を図5に示す。200〜250℃の処理温度において、高いCO転換率を示した。
[実施例7〜8]
150 (Example 3), 200 (Example 4), 250 (Example 5), 300 (Example 6) using the method of Example 1 to evaluate the proper temperature for hydrogen treatment after water addition Hydrogen treatment was performed at ℃, and CO conversion at room temperature was evaluated. The firing and reduction temperature was 200 ° C. JRC-ALO-5 was used as the carrier, and the amount of platinum charged was 0.25 wt% (0.0501 mL of dinitrodiamine platinum aqueous solution with a platinum amount of 50 g / L). The results are shown in FIG. A high CO conversion was exhibited at a treatment temperature of 200 to 250 ° C.
[Examples 7 to 8]

還元時の適正温度を評価するため、実施例1の方法を用いて、150(実施例7)、200(実施例4)250(実施例8)℃で還元し、室温でのCO転換率を評価した。焼成および水素処理温度は200℃とした。担体にはJRC-ALO-5を用い、白金仕込み量は0.25wt%(白金量50g/Lのジニトロジアミン白金水溶液0.0501mL)とした。結果を図6に示す。200℃の還元温度において、高いCO転換率を示した。
[実施例9〜10]
In order to evaluate the appropriate temperature at the time of reduction, using the method of Example 1, reduction was performed at 150 (Example 7), 200 (Example 4) and 250 (Example 8) ° C., and the CO conversion rate at room temperature was determined. evaluated. The firing and hydrogen treatment temperature was 200 ° C. JRC-ALO-5 was used as the carrier, and the amount of platinum charged was 0.25 wt% (0.0501 mL of dinitrodiamine platinum aqueous solution with a platinum amount of 50 g / L). The results are shown in FIG. A high CO conversion was exhibited at a reduction temperature of 200 ° C.
[Examples 9 to 10]

焼成時の適正温度を評価するため、実施例1の方法を用いて、100(実施例9)、200(実施例4)、300(実施例10)℃で焼成し、室温でのCO転換率を評価した。還元および水素処理温度は200℃とした。担体にはJRC-ALO-5を用い、白金仕込み量は0.25wt%(白金量50g/Lのジニトロジアミン白金水溶液0.0501mL)とした。結果を図7に示す。200℃の焼成温度において、高いCO転換率を示した。
[実施例11]
In order to evaluate the proper temperature during firing, the method of Example 1 was used to fire at 100 (Example 9), 200 (Example 4), 300 (Example 10) ° C., and CO conversion rate at room temperature Evaluated. The reduction and hydrotreating temperature was 200 ° C. JRC-ALO-5 was used as the carrier, and the amount of platinum charged was 0.25 wt% (0.0501 mL of dinitrodiamine platinum aqueous solution with a platinum amount of 50 g / L). The results are shown in FIG. A high CO conversion was exhibited at a firing temperature of 200 ° C.
[Example 11]

実施例1の方法を用いて、白金担持量5(実施例2)、1(実施例11)、0.25(実施例4)wt%の触媒を調製し、50〜-40℃の間でCO酸化活性を評価したところ、5および1wt%ではこの温度範囲で、CO転換率100%を示した(図8)。
[比較例2]
Using the method of Example 1, platinum loadings of 5 (Example 2), 1 (Example 11), and 0.25 (Example 4) wt% catalysts were prepared and CO oxidation between 50--40 ° C. When the activity was evaluated, CO conversion was 100% in this temperature range at 5 and 1 wt% (FIG. 8).
[Comparative Example 2]

低温でのCO酸化活性の高い触媒の比較例として、金1.5wt%/チタニア(World Gold Coucil Au-Ti #02-6)触媒のCO酸化活性を実施例1と同様の方法で評価した。反応試験の前処理として、33.3mL/minの乾燥空気気流中、200℃で30分間加熱した。結果を図8に示す。10℃付近で50%転換率が得られたが、今回調製した1wt%の白金触媒には及ばなかった。
[比較例3]
As a comparative example of a catalyst having high CO oxidation activity at a low temperature, the CO oxidation activity of a gold 1.5 wt% / titania (World Gold Coucil Au-Ti # 02-6) catalyst was evaluated in the same manner as in Example 1. As a pretreatment for the reaction test, heating was performed at 200 ° C. for 30 minutes in a dry air stream of 33.3 mL / min. The results are shown in FIG. A conversion rate of 50% was obtained at around 10 ° C., but not as high as the 1 wt% platinum catalyst prepared this time.
[Comparative Example 3]

市販の白金5wt%/アルミナ触媒を実施例1におけるCO酸化活性評価と同様の方法で評価した結果を示す(図8)。反応試験の前処理として、33.3mL/minの水素気流中、200℃で30分間加熱した。転換率は17%以下の低い値を示した。   The results of evaluating a commercially available platinum 5 wt% / alumina catalyst by the same method as the CO oxidation activity evaluation in Example 1 are shown (FIG. 8). As a pretreatment for the reaction test, heating was performed at 200 ° C. for 30 minutes in a hydrogen stream of 33.3 mL / min. The conversion rate was as low as 17% or less.

以上、実施例1〜11、比較例1〜3で調製した試料を用いた室温(28℃)におけるCO転換率(%)を表1に示す。   Table 1 shows the CO conversion rate (%) at room temperature (28 ° C.) using the samples prepared in Examples 1 to 11 and Comparative Examples 1 to 3.

[実施例12] [Example 12]

白金源として塩化白金酸水溶液を用い、実施例1の方法で触媒を作製した。白金担持量は3wt%とした。この触媒のPROX触媒性能を評価するため、固定床流通式触媒活性評価装置にて、CO 1%、O2 0.5%、H2 98.5%の混合ガス33.3mL/minを流して、反応活性(CO、O2の転換率)およびCO酸化選択性を種々の温度において評価した。ただし、COおよびO2の転換率(%)は、触媒層通過前の混合ガスのCOおよびO2の濃度を[CO]0、[O2]0、通過後の処理ガスのCOおよびO2の濃度を[CO]、[O2]とした時、それぞれ、{1-([CO]/ [CO]0)}*100、および、{1-([O2]/ [O2]0)}*100で表される。また、CO酸化選択性は、消費されたO2のうちの何割がCOの酸化に使われたかを示す量であり、1/2×([CO]0-[CO])/([O2]0-[O2])で定義される。また、定常状態の反応性を評価するため、室温で2時間、上記混合ガスを流通させた後、温度を変化させて触媒反応を評価した。図9に結果を示す。室温から100℃の温度領域において、反応率およびCO酸化選択性ともに高い値を示した。
[比較例4]
A catalyst was prepared by the method of Example 1 using an aqueous chloroplatinic acid solution as a platinum source. The amount of platinum supported was 3 wt%. To evaluate the PROX catalyst performance of the catalyst, in a fixed bed flow catalytic activity evaluation device, CO 1%, O 2 0.5 %, by flowing a mixed gas 33.3 mL / min of H 2 98.5%, reaction activity (CO , O2 conversion) and CO oxidation selectivity were evaluated at various temperatures. However, conversion of CO and O 2 (%) is the concentration of CO and O 2 mixed gas before the catalyst layer pass [CO] 0, [O 2 ] 0, the processing gas after passing the CO and O 2 When the concentrations of [CO] and [O 2 ] are {1-([CO] / [CO] 0 )} * 100 and {1-([O 2 ] / [O 2 ] 0, respectively. )} * 100. The CO oxidation selectivity is an amount indicating what percentage of the consumed O 2 was used for the oxidation of CO, 1/2 × ([CO] 0- [CO]) / ([O 2] 0 - defined by [O 2]). In order to evaluate the reactivity in the steady state, the mixed gas was circulated at room temperature for 2 hours, and then the temperature was changed to evaluate the catalytic reaction. FIG. 9 shows the result. In the temperature range from room temperature to 100 ° C, both the reaction rate and CO oxidation selectivity were high.
[Comparative Example 4]

市販の白金5wt%/アルミナ触媒(比較例3の試料)を実施例12と同様の手順で評価した結果を示す(図10)。50℃以下では、CO酸化選択性は高いものの、活性は低い。また、100℃では高い活性を示すが、CO酸化選択性は40%程度と低い値となった。   The result of evaluating a commercially available platinum 5 wt% / alumina catalyst (sample of Comparative Example 3) in the same procedure as in Example 12 is shown (FIG. 10). Below 50 ° C, the CO oxidation selectivity is high, but the activity is low. Moreover, although high activity was exhibited at 100 ° C., the CO oxidation selectivity was as low as about 40%.

Claims (16)

酸化物担体上の白金分散物を、水で湿潤させ、水素気流中100〜300℃の温度下で熱処理することを特徴とする酸化触媒調製法。   A method for preparing an oxidation catalyst, characterized in that a platinum dispersion on an oxide support is wetted with water and heat-treated in a hydrogen stream at a temperature of 100 to 300 ° C. 前記熱処理の温度範囲が、150〜250℃であることを特徴とする請求項1に記載の酸化触媒調製法。   The oxidation catalyst preparation method according to claim 1, wherein the temperature range of the heat treatment is 150 to 250 ° C. 前記酸化物担体が、アルミナ、ジルコニア、シリカおよびチタニアからなる群から選ばれる少なくとも1種の金属酸化物であることを特徴とする請求項1又は2に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to claim 1 or 2, wherein the oxide carrier is at least one metal oxide selected from the group consisting of alumina, zirconia, silica and titania. 前記酸化物担体上の白金分散物が、
白金前駆体と酸化物担体を分散媒中で混合する工程、
前記混合物を乾燥させる工程、
乾燥された結果物を酸化雰囲気で焼成する工程、
焼成された結果物を還元雰囲気で還元する工程、
を順次おこなって作製されることを特徴とする酸化触媒調製法。
The platinum dispersion on the oxide support is
Mixing a platinum precursor and an oxide carrier in a dispersion medium;
Drying the mixture;
Baking the dried result in an oxidizing atmosphere;
Reducing the fired product in a reducing atmosphere;
A method for preparing an oxidation catalyst, which is produced by sequentially performing steps.
前記乾燥された結果物の焼成は、100〜400℃でおこなうことを特徴とする請求項4に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to claim 4, wherein the dried product is calcined at 100 to 400 ° C. 前記焼成された結果物の還元は、100〜400℃でおこなうことを特徴とする請求項4に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to claim 4, wherein the reduction of the calcined result is performed at 100 to 400 ° C. 前記酸化物担体が、助触媒成分を含有するものであることを特徴とする請求項4から6のいずれか一項に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to any one of claims 4 to 6, wherein the oxide carrier contains a promoter component. 前記混合物は、さらに助触媒成分が添加されているものであることを特徴とする請求項4から6のいずれか一項に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to any one of claims 4 to 6, wherein the mixture further contains a promoter component. 前記助触媒成分が、遷移金属であることを特徴とする請求項7又は8に記載の酸化触媒調製法。   The method for preparing an oxidation catalyst according to claim 7 or 8, wherein the promoter component is a transition metal. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒。   An oxidation catalyst prepared by the method according to any one of claims 1 to 9. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒の存在下で、炭化水素、又は一酸化炭素を酸化反応させることを特徴とする炭化水素又は一酸化炭素の酸化方法。   A method for oxidizing hydrocarbons or carbon monoxide, comprising subjecting hydrocarbons or carbon monoxide to an oxidation reaction in the presence of the oxidation catalyst prepared by the method according to any one of claims 1 to 9. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒の存在下で、一酸化炭素含有水素の一酸化炭素を選択的に酸化させることを特徴とする一酸化炭素の酸化方法。   A method for oxidizing carbon monoxide, comprising selectively oxidizing carbon monoxide containing carbon monoxide in the presence of the oxidation catalyst prepared by any one of the methods according to claim 1. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒を用いた、燃料電池用一酸化炭素濃度低減装置。   A carbon monoxide concentration reducing device for a fuel cell, using the oxidation catalyst prepared by the method according to claim 1. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒を用いた、一酸化炭素センサー。   A carbon monoxide sensor using the oxidation catalyst prepared by any one of claims 1 to 9. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒を用いた、内燃機関排ガス浄化装置。   An exhaust gas purification apparatus for an internal combustion engine using the oxidation catalyst prepared by the method according to any one of claims 1 to 9. 請求項1〜9に記載のいずれかの方法により調製した酸化触媒を用いた、エチレン分解製品。   The ethylene decomposition product using the oxidation catalyst prepared by the method according to any one of claims 1 to 9.
JP2010201168A 2010-09-08 2010-09-08 Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst Expired - Fee Related JP5531212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201168A JP5531212B2 (en) 2010-09-08 2010-09-08 Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201168A JP5531212B2 (en) 2010-09-08 2010-09-08 Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst

Publications (2)

Publication Number Publication Date
JP2012055826A true JP2012055826A (en) 2012-03-22
JP5531212B2 JP5531212B2 (en) 2014-06-25

Family

ID=46053581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201168A Expired - Fee Related JP5531212B2 (en) 2010-09-08 2010-09-08 Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst

Country Status (1)

Country Link
JP (1) JP5531212B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081458A (en) * 2010-09-14 2012-04-26 Tokyo Metropolitan Univ Catalyst composition for catalytic combustion reaction of ethylene and method for decomposing ethylene by using the same
CN105214687A (en) * 2015-10-16 2016-01-06 上海纳米技术及应用国家工程研究中心有限公司 A kind of propane low-temperature catalytic oxidation carried noble metal ruthenium catalyst and preparation
JP2017023889A (en) * 2015-07-15 2017-02-02 太陽化学株式会社 Ethylene decomposition agent
JP2017113721A (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposer
WO2018123787A1 (en) * 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst
WO2019027057A1 (en) * 2017-08-04 2019-02-07 国立大学法人北海道大学 Catalyst for oxidative decomposition and use of same
JP2019027765A (en) * 2017-08-04 2019-02-21 日立アプライアンス株式会社 refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363295A (en) * 1976-11-19 1978-06-06 Matsushita Electric Ind Co Ltd Production of catalyst
JPH10249198A (en) * 1997-03-10 1998-09-22 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas and production thereof
JP2007111695A (en) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363295A (en) * 1976-11-19 1978-06-06 Matsushita Electric Ind Co Ltd Production of catalyst
JPH10249198A (en) * 1997-03-10 1998-09-22 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas and production thereof
JP2007111695A (en) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081458A (en) * 2010-09-14 2012-04-26 Tokyo Metropolitan Univ Catalyst composition for catalytic combustion reaction of ethylene and method for decomposing ethylene by using the same
JP2017023889A (en) * 2015-07-15 2017-02-02 太陽化学株式会社 Ethylene decomposition agent
CN105214687A (en) * 2015-10-16 2016-01-06 上海纳米技术及应用国家工程研究中心有限公司 A kind of propane low-temperature catalytic oxidation carried noble metal ruthenium catalyst and preparation
JP2017113721A (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposer
WO2017110856A1 (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposition agent
WO2018123787A1 (en) * 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst
JP2018103103A (en) * 2016-12-26 2018-07-05 太陽化学株式会社 Method for producing low-temperature oxidation catalyst
WO2019027057A1 (en) * 2017-08-04 2019-02-07 国立大学法人北海道大学 Catalyst for oxidative decomposition and use of same
JP2019027765A (en) * 2017-08-04 2019-02-21 日立アプライアンス株式会社 refrigerator
JPWO2019027057A1 (en) * 2017-08-04 2020-08-13 国立大学法人北海道大学 Oxidative decomposition catalyst and its use
JP7285518B2 (en) 2017-08-04 2023-06-02 国立大学法人北海道大学 Oxidative decomposition catalyst and its use

Also Published As

Publication number Publication date
JP5531212B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
Ri et al. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation
JP5531212B2 (en) Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst
Luengnaruemitchai et al. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
JP4125038B2 (en) Process for the preparation of supported catalysts containing Pt or Pt alloys
CN109794241B (en) Cerium oxide selective coating supported palladium catalyst and preparation method thereof
CN110479280B (en) CO low-temperature selective methanation Ni-ZrO 2 /NiAl 2 O 4 Catalyst, preparation method and application thereof
CN109201048A (en) A kind of monatomic catalyst and preparation method thereof
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4984678B2 (en) CO oxidation method
CN113996293B (en) Cerium lanthanum solid solution supported iridium catalyst, preparation method and application thereof
Wang et al. Selective catalytic reduction of NO by CO over MOF-based CuOx@ ZIF-67 catalysts and reaction mechanism
CN111482172B (en) Composite nano material of CuO/defect titanium dioxide and application thereof
CN102658137A (en) Cerium-zirconium-palladium nanopowder catalyst and preparation and application thereof
EP1254712A1 (en) A noble metal-containing supported catalyst and a process for its preparation
EP2823887B1 (en) Oxidation catalyst and exhaust gas purification method using same
CN114308063B (en) PtCo/Co 3 O 4-x -Al 2 O 3 Multi-interface structure catalyst and preparation method and application thereof
CN114602458B (en) Mn (VO 3 ) 2 /V 2 O 5 Catalyst, preparation method and application thereof
CN114768859B (en) Nickel-silicon catalyst suitable for methane dry reforming and preparation method thereof
CN106582638A (en) Preparation method of (Au,Rh)-Cex/Al2O3 applied to NO+CO reaction
WO2015151477A1 (en) Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus
JP4120862B2 (en) Catalyst for CO shift reaction
CN112892554A (en) Two-dimensional layered material with diatomic active phase and preparation method and application thereof
CN106881086B (en) The preparation of gallate spinel supported nanometer gold catalyst and catalyst and application
Du et al. A novel MnTi mixed oxide catalyst engineered by metal–organic framework precursor for enhancing NOx removal performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5531212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees