JP2012055346A - Ultrasonic diagnostic system, robot for ultrasonograph and program - Google Patents

Ultrasonic diagnostic system, robot for ultrasonograph and program Download PDF

Info

Publication number
JP2012055346A
JP2012055346A JP2010198404A JP2010198404A JP2012055346A JP 2012055346 A JP2012055346 A JP 2012055346A JP 2010198404 A JP2010198404 A JP 2010198404A JP 2010198404 A JP2010198404 A JP 2010198404A JP 2012055346 A JP2012055346 A JP 2012055346A
Authority
JP
Japan
Prior art keywords
ultrasonic
image
probe
change amount
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010198404A
Other languages
Japanese (ja)
Other versions
JP5463554B2 (en
Inventor
Atsuo Takanishi
淳夫 高西
Ryu Nakadate
龍 中楯
Katsuya Oshida
克哉 大信田
Nobuki Matsunaga
宜樹 松永
Takashi Okada
孝 岡田
Takemitsu Harada
烈光 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Hitachi Ltd
Original Assignee
Waseda University
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Hitachi Aloka Medical Ltd filed Critical Waseda University
Priority to JP2010198404A priority Critical patent/JP5463554B2/en
Publication of JP2012055346A publication Critical patent/JP2012055346A/en
Application granted granted Critical
Publication of JP5463554B2 publication Critical patent/JP5463554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow an ultrasonic probe to quickly return to an optimum state for obtaining a desired ultrasonic image when the position and posture of the ultrasonic probe changes from the optimum state.SOLUTION: An ultrasonic diagnostic system 10 includes: the ultrasonic probe 14; an ultrasonic image generation means 15 for generating an ultrasonic image, base on a signal from the ultrasonic probe 14; a robot arm 17 for operating the ultrasonic probe 14; a storage means 20 which, when the ultrasonic probe 14 is moved within a prescribed range beforehand, stores the ultrasonic image at each position during the movement as a storage image 20A; a probe state change amount detection means 21 for obtaining change amounts with respect to the optimum position and optimum posture of the ultrasonic probe 14 for obtaining a target image T by comparing a present image N obtained at present with each storage image 20A; and an operation control means 22 for controlling the action of the robot arm 17 so as to allow the change amounts obtained by the probe state change amount detection means 21 to be zero.

Description

本発明は、超音波診断システム、超音波診断装置用ロボット、及びプログラムに係り、更に詳しくは、目標となる超音波画像が得られる最適状態にある超音波プローブが不意にずれたときに、得られる超音波画像の変化から、前記最適状態に対する超音波プローブの位置や姿勢の変化量を求めることのできる超音波診断システム、超音波診断装置用ロボット、及びプログラムに関する。   The present invention relates to an ultrasonic diagnostic system, a robot for an ultrasonic diagnostic apparatus, and a program. More specifically, the present invention is obtained when an ultrasonic probe in an optimum state where a target ultrasonic image is obtained is unexpectedly shifted. The present invention relates to an ultrasonic diagnostic system, an ultrasonic diagnostic apparatus robot, and a program that can determine the amount of change in the position and orientation of an ultrasonic probe with respect to the optimum state from changes in the ultrasonic image.

被検者の頸動脈上の皮膚部位に超音波プローブを当てることで得られた血管の超音波断層画像に基づき、疾患の早期発見に寄与する指標を求める超音波診断装置が知られている。この超音波診断装置としては、受信信号から、経時的に変化する血圧及び血流速等の各種データを検出し、当該データから血管の性状や心臓の機能等を評価する指標であるWI(Wave Intensity)を求めるものがある(例えば、特許文献1参照)。   2. Description of the Related Art There is known an ultrasonic diagnostic apparatus that obtains an index that contributes to early detection of a disease based on an ultrasonic tomographic image of a blood vessel obtained by applying an ultrasonic probe to a skin region on a carotid artery of a subject. This ultrasonic diagnostic apparatus detects various data such as blood pressure and blood flow rate that change with time from a received signal, and uses this data as an index for evaluating the properties of blood vessels and the function of the heart. There is a technique for obtaining (Intensity) (see, for example, Patent Document 1).

このような超音波診断装置にあっては、正確な測定を行うために、測定中は、血管の計測点がほぼ一定となるように、超音波プローブを測定者の手や所定の保持具でしっかりと保持しておく必要がある。   In such an ultrasonic diagnostic apparatus, in order to perform an accurate measurement, the ultrasonic probe is held by a measurer's hand or a predetermined holder so that the measurement point of the blood vessel becomes substantially constant during the measurement. It is necessary to hold it firmly.

ところで、特許文献2には、ロボットアームを使って超音波プローブを保持させ、当該超音波プローブが測定に最適となる血管上の位置に存在しない場合に、当該最適位置に前記超音波プローブを自動的に移動させるロボットシステムが開示されている。このロボットシステムは、超音波プローブを所定のピッチで自動的に移動させ、その際に得られるそれぞれの超音波画像について画像処理及び判定を行うことにより、前記最適位置の探索及び決定をし、当該最適位置に超音波プローブを導くようになっている。   Incidentally, in Patent Document 2, when an ultrasonic probe is held using a robot arm and the ultrasonic probe does not exist at a position on a blood vessel that is optimal for measurement, the ultrasonic probe is automatically set at the optimal position. A robot system that moves automatically is disclosed. This robot system automatically moves the ultrasonic probe at a predetermined pitch, searches and determines the optimum position by performing image processing and determination on each ultrasonic image obtained at that time, The ultrasonic probe is guided to the optimum position.

特開2001−299752号公報JP 2001-299752 A 特開2003−245280号公報JP 2003-245280 A

しかしながら、前記ロボットシステムでは、最適位置に超音波プローブが保持された状態で被検者が動くこと等により、超音波プローブが最適位置からずれてしまうと、最適位置の探索のための前述の処理を再度行わなければならず、最適位置を見つけ出すのに時間がかかるという不都合がある。すなわち、超音波プローブが最適位置からずれてしまうと、再度、超音波プローブを所定の範囲内で段階的に動かし、各ポイントで取得した超音波画像それぞれに対して、画像処理を行って最適位置か否かの判定を行わなければならず、超音波プローブを1回の動作で前記最適位置に戻すことができない。   However, in the robot system, when the subject moves while the ultrasound probe is held at the optimum position, the processing described above for searching for the optimum position is performed when the ultrasound probe is displaced from the optimum position. Must be performed again, and it takes time to find the optimum position. In other words, when the ultrasonic probe deviates from the optimal position, the ultrasonic probe is again moved stepwise within a predetermined range, and image processing is performed on each of the ultrasonic images acquired at each point to perform the optimal position. Whether or not the ultrasonic probe cannot be returned to the optimum position in one operation.

本発明は、このような不都合に着目して案出されたものであり、その目的は、超音波プローブの位置や姿勢が、所望の超音波画像が得られる最適状態から変化したときに、当該最適状態に超音波プローブを迅速に戻すための超音波診断システム、超音波診断装置用ロボット、及びプログラムを提供することにある。   The present invention has been devised by paying attention to such inconveniences, and the purpose of the present invention is when the position and orientation of the ultrasonic probe change from the optimum state where a desired ultrasonic image can be obtained. To provide an ultrasonic diagnostic system, a robot for an ultrasonic diagnostic apparatus, and a program for quickly returning an ultrasonic probe to an optimum state.

前記目的を達成するため、本発明に係る超音波診断システムは、超音波パルスの送波及びエコーの受波を行う超音波プローブと、当該超音波プローブからの信号により超音波画像を生成する超音波画像生成手段と、前記超音波プローブを動作させるプローブ動作手段と、所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像である現画像と前記各記憶画像との対比により、目標の超音波画像となる目標画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段と、当該プローブ状態変化量検出手段で求めた前記変化量がゼロになるように前記プローブ動作手段の動作制御を行う動作制御手段とを備える、という構成を採っている。   In order to achieve the above object, an ultrasonic diagnostic system according to the present invention includes an ultrasonic probe that transmits an ultrasonic pulse and receives an echo, and an ultrasonic wave that generates an ultrasonic image based on a signal from the ultrasonic probe. When the ultrasonic probe is moved in advance within a predetermined range, the ultrasonic image at each position during the movement is stored as a stored image. Storage means, and a current image, which is an ultrasonic image currently obtained, and the respective stored images are compared with the optimum position and posture of the ultrasonic probe from which a target image that becomes a target ultrasonic image is obtained. Probe state change amount detection means for obtaining a change amount, and controlling the operation of the probe operation means so that the change amount obtained by the probe state change amount detection means is zero. And a work control unit, and employs a configuration that.

また、前記記憶手段には、前記記憶画像として、前記最適位置を挟む所定範囲内で前記超音波プローブを前記最適姿勢と同一姿勢で直線移動させた際に、一定の移動間隔毎に得られた複数の前記超音波画像である対比用画像と、前記目標画像とが前記超音波プローブの位置に対応して記憶され、
前記プローブ状態変化量検出手段では、前記現画像内の所定部分に一致する部分を有する前記記憶画像が得られる前記超音波プローブの位置と、前記目標画像が得られる前記超音波プローブの位置との離間距離に基づいて前記変化量を求める、という構成を採っている。
Further, the storage means obtains, as the stored image, every predetermined movement interval when the ultrasonic probe is linearly moved in the same posture as the optimum posture within a predetermined range sandwiching the optimum position. A plurality of images for comparison, which are ultrasonic images, and the target image are stored corresponding to the position of the ultrasonic probe,
In the probe state change amount detecting means, a position of the ultrasonic probe from which the stored image having a portion matching a predetermined portion in the current image is obtained, and a position of the ultrasonic probe from which the target image is obtained. The configuration is such that the amount of change is obtained based on the separation distance.

ここで、前記プローブ状態変化量検出手段では、前記超音波画像の上下左右の4箇所の領域について、現画像を前記記憶画像と対比し、各領域それぞれについて前記離間距離を求めた上で、相互に直交する3本の座標軸のうちで前記超音波画像の画面を左右させる方向に延びるx軸回りの回転における前記変化量と、前記画面を上下させる方向に延びるy軸回りの回転における前記変化量と、前記画面を直交する方向に延びるz軸方向の並進における前記変化量とを求める、という構成を採ることが好ましい。   Here, in the probe state change amount detecting means, the current image is compared with the stored image for the four regions on the top, bottom, left, and right of the ultrasonic image, and the separation distance is obtained for each region. The amount of change in the rotation about the x axis extending in the direction of moving the screen of the ultrasonic image left and right among the three coordinate axes orthogonal to the axis, and the amount of change in the rotation about the y axis extending in the direction of moving the screen up and down And the amount of change in translation in the z-axis direction extending in a direction orthogonal to the screen is preferably adopted.

更に、前記プローブ状態変化量検出手段では、前記x軸方向及びy軸方向の並進における前記変化量と、前記z軸方向の回転における前記変化量とを求める、という構成も採用するとよい。   Furthermore, the probe state change amount detecting means may be configured to obtain the change amount in translation in the x-axis direction and the y-axis direction and the change amount in rotation in the z-axis direction.

また、本発明は、超音波診断装置の超音波プローブを保持して所定の空間内を動作させる超音波診断装置用ロボットにおいて、
前記超音波プローブを動作させるプローブ動作手段と、所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像と前記各記憶画像との対比により、目標の超音波画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段と、当該プローブ状態変化量検出手段で求めた前記変化量がゼロになるように前記プローブ動作手段の動作制御を行う動作制御手段とを備える、という構成を採っている。
Further, the present invention relates to an ultrasonic diagnostic apparatus robot that holds an ultrasonic probe of an ultrasonic diagnostic apparatus and operates in a predetermined space.
A probe operating means for operating the ultrasonic probe; a storage means for storing an ultrasonic image at each moving position as a stored image when the ultrasonic probe is moved in advance within a predetermined range; Probe state change amount detecting means for obtaining a change amount with respect to the optimum position and optimum posture of the ultrasonic probe from which a target ultrasonic image is obtained by comparing the obtained ultrasonic image and each stored image, and the probe An operation control means for controlling the operation of the probe operation means so that the change amount obtained by the state change amount detection means becomes zero is adopted.

更に、本発明は、所定の空間内で超音波診断装置の超音波プローブを移動させる超音波診断装置用ロボットの動作に関する処理を行うコンピュータを機能させるためのプログラムにおいて、
所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像と前記各記憶画像との対比により、目標の超音波画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段として前記コンピュータを機能させる、という構成を採っている。
Furthermore, the present invention provides a program for causing a computer to perform a process related to the operation of a robot for an ultrasonic diagnostic apparatus that moves an ultrasonic probe of the ultrasonic diagnostic apparatus within a predetermined space.
When the ultrasonic probe is moved in advance within a predetermined range, storage means for storing an ultrasonic image at each moving position as a stored image, a currently obtained ultrasonic image, and each stored image Thus, the computer is caused to function as probe state change amount detection means for obtaining a change amount with respect to the optimum position and posture of the ultrasound probe from which a target ultrasound image is obtained.

本発明によれば、被検者の不意な動き等によって、超音波プローブの位置や姿勢が、所望の超音波画像が得られる最適状態からずれた場合に、現在得られている超音波画像と記憶手段に予め記憶された記憶画像とを対比することで、前記最適状態からの超音波プローブの位置や姿勢の変化量が求められ、当該変化量をゼロにするように超音波プローブを動かすことができる。従って、このように超音波プローブが最適状態からずれた場合に、超音波プローブを被検者の皮膚上を段階的に動かしながら、その都度、最適状態か否かを判定する必要がなく、前記変化量に基づいて最適状態となるように超音波プローブを直接動かすことができ、超音波プローブの最適状態への迅速な復帰が可能となる。   According to the present invention, when the position or posture of the ultrasonic probe deviates from the optimum state where a desired ultrasonic image can be obtained due to unexpected movement of the subject, the currently obtained ultrasonic image and By comparing the stored image stored in advance in the storage means, the amount of change in the position and orientation of the ultrasound probe from the optimum state is obtained, and the ultrasound probe is moved so that the amount of change is zero. Can do. Therefore, when the ultrasonic probe deviates from the optimal state in this way, it is not necessary to determine whether or not the ultrasonic probe is in the optimal state each time while moving the ultrasonic probe stepwise on the subject's skin. The ultrasonic probe can be directly moved so as to be in an optimum state based on the amount of change, and the ultrasonic probe can be quickly returned to the optimum state.

本実施形態に係る超音波診断システムの概略構成図。1 is a schematic configuration diagram of an ultrasound diagnostic system according to the present embodiment. 記憶手段に記憶される記憶画像を概念的に示した説明図。Explanatory drawing which showed notionally the memory | storage image memorize | stored in a memory | storage means. マッチング対象領域及び探索領域を説明するための図。The figure for demonstrating a matching object area | region and a search area | region.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る超音波診断システムの概略構成図が示されている。この図において、超音波診断システム10は、被検者の体内の超音波画像を取得可能な超音波診断装置11と、超音波診断装置11に隣接して設けられた超音波診断装置用ロボット12(以下、単に「ロボット12」と称する)とからなる。   FIG. 1 shows a schematic configuration diagram of an ultrasonic diagnostic system according to the present embodiment. In this figure, an ultrasonic diagnostic system 10 includes an ultrasonic diagnostic apparatus 11 capable of acquiring an ultrasonic image in the body of a subject and an ultrasonic diagnostic apparatus robot 12 provided adjacent to the ultrasonic diagnostic apparatus 11. (Hereinafter simply referred to as “robot 12”).

前記超音波診断装置11は、超音波パルスの送波及びエコーの受波を行う超音波プローブ14(探触子)と、超音波プローブ14からの信号により超音波画像を生成する超音波画像生成手段15とを含む公知の構成となっており、ここでは、詳細な説明を省略する。   The ultrasonic diagnostic apparatus 11 generates an ultrasonic image based on an ultrasonic probe 14 (probe) that transmits ultrasonic pulses and receives echoes, and signals from the ultrasonic probe 14. It has a known configuration including the means 15, and detailed description thereof is omitted here.

前記ロボット12は、超音波プローブ14を保持して動作させるプローブ動作手段としてのロボットアーム17と、超音波画像生成手段15で生成された超音波画像に基づき各種処理を行う処理装置18とを備えて構成されている。   The robot 12 includes a robot arm 17 as a probe operating unit that holds and operates the ultrasonic probe 14, and a processing device 18 that performs various processes based on the ultrasonic image generated by the ultrasonic image generating unit 15. Configured.

前記ロボットアーム17は、図示省略したモータを含む各種部材によって6自由度の動作が可能となっており、所定空間内で超音波プローブ14を自動的に移動させるように動作する一方で、操作者の手で超音波プローブ14を動かせるようにもなっている。なお、このロボットアーム17は、公知の機構により構成されており、本発明の本質部分ではないため、詳細な説明を省略する。   The robot arm 17 can be operated with six degrees of freedom by various members including a motor (not shown), and operates to automatically move the ultrasonic probe 14 within a predetermined space. The ultrasonic probe 14 can be moved by the hand. The robot arm 17 is constituted by a known mechanism and is not an essential part of the present invention, and thus detailed description thereof is omitted.

前記処理装置18は、CPU等の演算処理装置及びメモリやハードディスク等の記憶装置等からなるコンピュータによって構成され、当該コンピュータを以下の各手段として機能させるためのプログラムがインストールされている。   The processing device 18 is configured by a computer including an arithmetic processing device such as a CPU and a storage device such as a memory and a hard disk, and a program for causing the computer to function as the following units is installed.

すなわち、前記処理装置18は、予め取得した複数の超音波画像を記憶する記憶手段20と、記憶手段20で記憶された超音波画像から、最適状態にある超音波プローブ14に対する位置及び姿勢の変化量を求めるプローブ状態変化量検出手段21と、プローブ状態変化量検出手段21で求めた変化量がゼロになるようにロボットアーム17の動作制御を行う動作制御手段22とを備えている。   That is, the processing device 18 stores a plurality of ultrasonic images acquired in advance, and changes in position and orientation with respect to the ultrasonic probe 14 in the optimum state from the ultrasonic images stored in the storage unit 20. Probe state change amount detecting means 21 for obtaining the amount, and operation control means 22 for controlling the operation of the robot arm 17 so that the change amount obtained by the probe state change amount detecting means 21 becomes zero.

前記記憶手段20には、図2に概念的に示されるように、超音波診断に最適となる体内断層部分が映る超音波画像である目標画像T(同図中網掛表示)と、当該目標画像Tが得られる最適位置の周囲の位置の体内断層部分の超音波画像である対比用画像Cとが、以下に説明する事前操作によって予め記憶される。なお、以下において、適宜、記憶手段20に記憶される目標画像T及び対比用画像Cを「記憶画像20A」と総称する。   As conceptually shown in FIG. 2, the storage unit 20 includes a target image T (shaded display in the figure) that is an ultrasonic image in which a tomographic part that is optimal for ultrasonic diagnosis is reflected, and the target image A contrast image C, which is an ultrasonic image of a tomographic part in the body around the optimum position where T is obtained, is stored in advance by a pre-operation described below. Hereinafter, the target image T and the comparison image C stored in the storage unit 20 will be collectively referred to as “stored image 20A” as appropriate.

前記目標画像Tは、操作者が超音波プローブ14を動かしながら、得られた超音波画像を目視することによって、超音波診断に最適となる位置を見つけ、スイッチ、マウス、キーボード等、図示しない操作手段を操作することで設定及び記憶される。なお、ロボット12によって超音波プローブ14を動かしながら、逐次得られた超音波画像を画像処理することによって、超音波診断に適正な超音波画像であるか否かを自動判定し、最適であると判定された超音波画像を目標画像Tとして記憶手段20に記憶してもよい。   For the target image T, an operator moves the ultrasonic probe 14 and visually observes the obtained ultrasonic image to find a position that is optimal for ultrasonic diagnosis. It is set and stored by operating the means. In addition, by moving the ultrasonic probe 14 by the robot 12 and performing image processing on the sequentially obtained ultrasonic images, it is automatically determined whether the ultrasonic image is appropriate for ultrasonic diagnosis, and is optimal. The determined ultrasonic image may be stored in the storage unit 20 as the target image T.

前記対比用画像Cは、次の手順によって記憶手段20に記憶される。すなわち、目標画像Tが設定された後、当該目標画像Tが得られる最適位置を中心とした一定範囲につき、ロボット12若しくは操作者の手により、超音波プローブ14でスキャンする。ここでは、超音波プローブ14が、目標画像Tが得られた際の最適姿勢と同一の姿勢のまま被検者の皮膚上を接触しながら、一定速度で直線移動される。この際、当該直線移動時の両端地点は、最適位置を中心として相互に等距離になるように設定される。そして、超音波プローブ14の接触によって得られた皮下の超音波画像が、一定時間毎に対比用画像Cとして記憶手段20に記憶される。つまり、対比用画像Cは、目標画像Tが得られる超音波プローブ14の最適位置を中心として、超音波プローブ14の一定の移動間隔毎に得られる超音波画像となる。なお、ここでの超音波プローブ14の移動距離となるスキャン幅は、ロボット10の動作に関する誤差や、超音波プローブ14を静止しておく際に想定される被検者の意図しない動きの幅等を考慮して予め定められる。また、対比用画像Cのフレーム間距離、すなわち、対比用画像Cを取得する際の超音波プローブ14の位置間隔は、画像解像度に応じて適宜決定される。更に、各対比用画像Cは、目標画像Tからの離間方向(正負)及び離間距離を対応させた上で、記憶手段20に記憶される。   The comparison image C is stored in the storage means 20 by the following procedure. That is, after the target image T is set, the ultrasonic probe 14 scans a certain range centering on the optimum position where the target image T is obtained by the robot 12 or the operator's hand. Here, the ultrasonic probe 14 is linearly moved at a constant speed while contacting the subject's skin with the same posture as the optimum posture when the target image T is obtained. At this time, both end points during the linear movement are set to be equidistant from each other with the optimum position as the center. Then, the subcutaneous ultrasonic image obtained by the contact of the ultrasonic probe 14 is stored in the storage unit 20 as a comparison image C at regular intervals. That is, the contrast image C is an ultrasound image obtained at every fixed movement interval of the ultrasound probe 14 around the optimum position of the ultrasound probe 14 from which the target image T is obtained. Here, the scan width that is the movement distance of the ultrasonic probe 14 is an error related to the operation of the robot 10, a width of an unintended movement of the subject assumed when the ultrasonic probe 14 is kept stationary, or the like. Is determined in advance. Further, the inter-frame distance of the comparison image C, that is, the position interval of the ultrasonic probe 14 when acquiring the comparison image C is appropriately determined according to the image resolution. Further, each comparison image C is stored in the storage unit 20 after the separation direction (positive / negative) and the separation distance from the target image T are associated with each other.

前記プローブ状態変化量検出手段21では、目標画像Tが得られる最適状態となっている超音波プローブ14の位置及び姿勢に対し、現在の超音波プローブ14の位置及び姿勢が、どの程度ずれているかを表す変化量が以下の手順で求められる。   In the probe state change amount detection means 21, how much the current position and posture of the ultrasonic probe 14 are deviated from the position and posture of the ultrasonic probe 14 in the optimum state where the target image T is obtained. The amount of change representing is obtained by the following procedure.

具体的には、先ず、現在の超音波プローブ14の位置及び姿勢により得られた超音波画像(以下、「現画像N」と称する。)が、超音波画像生成手段15から送られ、この現画像Nが、記憶手段20に記憶された各記憶画像20Aと対比される。   Specifically, first, an ultrasonic image obtained from the current position and orientation of the ultrasonic probe 14 (hereinafter referred to as “current image N”) is sent from the ultrasonic image generating means 15 and this current image is displayed. The image N is compared with each stored image 20 </ b> A stored in the storage unit 20.

この際、現画像Nにおいては、当該現画像N中の上下左右4箇所に、図3中実線枠で仮想的に表した所定範囲のマッチング対象領域Mが設定される。本実施形態においては、現画像が300×400ピクセルのところ、各マッチング対象領域Mが50×50ピクセルに設定されているが、マッチング対象領域Mの大きさは、特に限定されるものではない。なお、説明の便宜上、現画像N中で図3中上側のマッチング対象領域Mを第1の領域M1と称し、同下側のマッチング対象領域Mを第2の領域M2と称し、同左側のマッチング対象領域Mを第3の領域M3と称し、同右側のマッチング対象領域Mを第4の領域M4と称する。   At this time, in the current image N, matching target regions M within a predetermined range, which are virtually represented by solid line frames in FIG. In the present embodiment, when the current image is 300 × 400 pixels, each matching target area M is set to 50 × 50 pixels, but the size of the matching target area M is not particularly limited. For convenience of explanation, the upper matching target region M in FIG. 3 in the current image N is referred to as a first region M1, the lower matching target region M is referred to as a second region M2, and the left matching is performed. The target area M is referred to as a third area M3, and the matching target area M on the right side is referred to as a fourth area M4.

そして、現画像N中の各領域M1〜M4に存在する画像をテンプレートとして、記憶手段20に記憶された記憶画像20Aにそれぞれに対し、テンプレートマッチングが行われる。   Then, template matching is performed on each of the stored images 20 </ b> A stored in the storage unit 20 using images existing in the regions M <b> 1 to M <b> 4 in the current image N as templates.

すなわち、先ず、現画像N中の各領域M1〜M4の位置に対応するように、記憶画像20A中の上下左右4箇所に、図3中点線枠で仮想的に表した所定範囲の探索領域Sが設定される。この探索領域Sは、マッチング対象領域Mよりもやや広範囲に設定され、特に限定されるものではないが、本実施形態では60×60ピクセルの範囲内に設定されている。なお、説明の便宜上、記憶画像20A中で図3中上側の探索領域Sを第1の領域S1と称し、同下側の探索領域Sを第2の領域S2と称し、同左側の探索領域Sを第3の領域S3と称し、同右側の探索領域Sを第4の領域S4と称する。   That is, first, a search area S of a predetermined range virtually represented by a dotted frame in FIG. 3 is provided at four positions in the stored image 20A so as to correspond to the positions of the areas M1 to M4 in the current image N. Is set. The search area S is set to be slightly wider than the matching target area M and is not particularly limited, but is set within a range of 60 × 60 pixels in the present embodiment. For convenience of explanation, the upper search area S in FIG. 3 in the stored image 20A is referred to as a first area S1, the lower search area S is referred to as a second area S2, and the left search area S is referred to as a first area S1. Is referred to as a third region S3, and the search region S on the right side thereof is referred to as a fourth region S4.

次いで、現画像N中の第1の領域M1と、各記憶画像20A中にそれぞれ存在する第1の領域S1とが対比され、現画像N中の第1の領域M1と同一の画像情報を有する部分が第1の領域S1内に存在する記憶画像20A(以下、「第1のマッチング記憶画像」と称する。)が探索される。同様に、現画像N中の第2の領域M2と同一の画像情報を有する部分が第2の領域S2内に存在する記憶画像20A(以下、「第2のマッチング記憶画像」と称する。)が探索される。また、現画像N中の第3の領域M3と同一の画像情報を有する部分が第3の領域S3内に存在する記憶画像20A(以下、「第3のマッチング記憶画像」と称する。)が探索される。更に、現画像N中の第4の領域M4と同一の画像情報を有する部分が第4の領域S4内に存在する記憶画像20A(以下、「第4のマッチング記憶画像」と称する。)が探索される。つまり、前記最適状態に対して超音波プローブ14の位置及び姿勢が変化しなければ、第1〜第4のマッチング記憶画像は、全て目標画像Tとなる。一方、前記最適状態に対して超音波プローブ14の位置及び姿勢が変化すると、各マッチング記憶画像は、少なくとも一部が対比用画像Cになる。   Next, the first area M1 in the current image N and the first area S1 respectively present in each stored image 20A are compared, and have the same image information as the first area M1 in the current image N. A stored image 20A (hereinafter referred to as “first matching stored image”) in which the portion exists in the first area S1 is searched. Similarly, a stored image 20A (hereinafter referred to as “second matching stored image”) in which a portion having the same image information as the second region M2 in the current image N exists in the second region S2. Explored. Further, a stored image 20A (hereinafter referred to as “third matching stored image”) in which a portion having the same image information as the third region M3 in the current image N exists in the third region S3 is searched. Is done. Furthermore, a stored image 20A (hereinafter referred to as “fourth matching stored image”) in which a portion having the same image information as the fourth region M4 in the current image N exists in the fourth region S4 is searched. Is done. That is, if the position and posture of the ultrasonic probe 14 do not change with respect to the optimum state, the first to fourth matching storage images are all the target images T. On the other hand, when the position and posture of the ultrasonic probe 14 change with respect to the optimum state, at least a part of each matching storage image becomes a comparison image C.

次に、前述のマッチング結果により、前記最適状態に対する超音波プローブ14の6軸の変化量が求められる。   Next, the six-axis change amount of the ultrasonic probe 14 with respect to the optimum state is obtained from the above matching result.

なお、ここでは、図2及び図3に示されるように、相互に直交する3本の座標軸のうち、超音波画像の画面を左右させる方向に延びる軸をx軸とし、同画面を上下させる方向に延びる軸をy軸とし、同画面を直交する方向に延びる軸をz軸とする。   Here, as shown in FIG. 2 and FIG. 3, of the three coordinate axes orthogonal to each other, the axis extending in the direction of moving the screen of the ultrasound image is the x axis, and the direction of moving up and down the screen. The axis extending in the direction is the y axis, and the axis extending in the direction orthogonal to the screen is the z axis.

前記最適状態に対する超音波プローブ14のx軸回りの回転変化量ψxは、次式で求められる。

ψx=k1(Z−Z) (1)

ここで、k1は、予め設定された定数であり、Zは、前記第1のマッチング記憶画像に対応して記憶された当該マッチング記憶画像における目標画像Tからの離間距離(z軸方向の並進距離)であり、Zは、前記第2のマッチング記憶画像に対応して記憶された当該マッチング記憶画像における目標画像Tからの離間距離(z軸方向の並進距離)である。
The rotation change amount ψx around the x-axis of the ultrasonic probe 14 with respect to the optimum state is obtained by the following equation.

ψx = k1 (Z 1 −Z 2 ) (1)

Here, k1 is a preset constant, Z 1 is the translation of the first distance from the target image T in the matching storage image stored in correspondence with the matching stored image (z-axis direction Z 2 is a separation distance (translation distance in the z-axis direction) from the target image T in the matching storage image stored corresponding to the second matching storage image.

また、前記最適状態に対する超音波プローブ14のy軸回りの回転変化量ψyは、次式で求められる。

ψy=k2(Z−Z) (2)

ここで、k2は、予め設定された定数であり、Zは、前記第3のマッチング記憶画像に対応して記憶された当該マッチング記憶画像における目標画像Tからの離間距離(z軸方向の並進距離)であり、Zは、前記第4のマッチング記憶画像に対応して記憶された当該マッチング記憶画像における目標画像Tからの離間距離(z軸方向の並進距離)である。
Further, the rotation change amount ψy about the y-axis of the ultrasonic probe 14 with respect to the optimum state can be obtained by the following equation.

ψy = k2 (Z 3 −Z 4 ) (2)

Here, k2 is a preset constant, Z 3 is the translation of the third distance from the target image T in the matching storage image stored in correspondence with the matching stored image (z-axis direction Z 4 is a distance (translation distance in the z-axis direction) from the target image T in the matching storage image stored corresponding to the fourth matching storage image.

更に、前記最適状態に対する超音波プローブ14のx軸方向の並進変化量xは、次式で求められる。

x=(X+X)/2 (3)

ここで、Xは、現画像Nの第1の領域M1内における画像情報の目標画像Tに対するx軸方向の移動量(x軸方向の並進距離)であり、Xは、現画像Nの第2の領域M2内における画像情報の目標画像Tに対するx軸方向の移動量(x軸方向の並進距離)である。ここでは、テンプレートマッチングにより、現画像Nの第1及び第2の領域M1,M2それぞれの画像情報が、目標画像Tの第1及び第2の領域S1,S2内のどの部分に存在するか特定し、当該各画像情報について、目標画像Tに対するx軸方向の位置の差分をそれぞれ求め、それら各差分の平均がx軸回りの並進変化量xとなる。
Further, the translational change amount x in the x-axis direction of the ultrasonic probe 14 with respect to the optimum state is obtained by the following equation.

x = (X 1 + X 2 ) / 2 (3)

Wherein, X 1 is the amount of movement of the x-axis direction with respect to the target image T of the image information in the first area M1 of the current picture N (translation distance in the x-axis direction), X 2 is the current image N This is a movement amount (translation distance in the x-axis direction) in the x-axis direction with respect to the target image T of the image information in the second region M2. Here, by template matching, it is specified in which part in the first and second regions S1 and S2 of the target image T the image information of each of the first and second regions M1 and M2 of the current image N exists. Then, for each image information, a difference in position in the x-axis direction with respect to the target image T is obtained, and the average of these differences is the translation change amount x around the x-axis.

また、前記最適状態に対する超音波プローブ14のy軸方向の並進変化量yは、

y=Y (4)

となる。ここで、Yは、現画像Nの第2の領域M2内における画像情報の目標画像Tに対するy軸方向の移動量(y軸方向の並進距離)である。ここでは、テンプレートマッチングにより、現画像Nの第2の領域M2の画像情報が、目標画像Tの第2の領域S2内のどの部分に存在するか特定した後、当該画像情報について、目標画像Tに対するy軸方向の位置の差分を移動量Yとし、当該移動量Yがy軸回りの並進変化量yとなる。なお、ここでは、以下の理由により、皮膚に近い第1の領域M1は使用していない。すなわち、超音波プローブ14のy軸方向の上下運動は、皮下組織の圧縮によって生ずるが、超音波プローブ14から近い上側の第1の領域M1に相当する体内部分は、超音波プローブ14を皮膚に押し込んだときに移動、変形し易く、超音波プローブ14に対して移動しにくい。このため、第1の領域M1の画像情報は、超音波プローブ14が上下に動いても、超音波画像内であまり動かないため、下側の第2の領域M2のみを使用している。
The translational change amount y in the y-axis direction of the ultrasonic probe 14 with respect to the optimum state is

y = Y 2 (4)

It becomes. Here, Y 2 is the amount of movement of the y-axis direction with respect to the target image T of the image information in the second area M2 of the current picture N (translation distance in the y-axis direction). Here, after specifying by template matching in which part in the second region S2 of the target image T the image information of the second region M2 of the current image N exists, the target image T the difference between the position of the y-axis direction and the moving amount Y 2, the amount of movement Y 2 is the translational change amount y of y-axis with respect. Here, the first region M1 close to the skin is not used for the following reason. That is, the vertical movement of the ultrasonic probe 14 in the y-axis direction is caused by compression of the subcutaneous tissue, but the body part corresponding to the upper first region M1 close to the ultrasonic probe 14 places the ultrasonic probe 14 on the skin. It is easy to move and deform when pushed, and difficult to move relative to the ultrasonic probe 14. For this reason, the image information of the first region M1 uses only the lower second region M2 because it does not move so much in the ultrasound image even if the ultrasound probe 14 moves up and down.

更に、前記最適状態に対する超音波プローブのz軸回りの回転変化量ψzは、次式で求められる。

ψz=k3(X−X) (5)

ここで、k3は、予め設定された定数であり、X、Xは、上式(3)で用いた第1及び第2の領域M1,M2のx軸方向の移動量である。
なお、上式(5)に代え、以下の式(6)を用いてz軸回りの回転変化量ψzを求めることもできる。

ψz=k4(Y−Y) (6)

ここで、k4は、予め設定された定数であり、Yは、現画像Nの第3の領域M3における画像情報の目標画像Tに対するy軸方向の移動量(y軸方向の並進距離)であり、Yは、現画像Nの第4の領域M4における画像情報の目標画像Tに対するy軸方向の移動量(y軸方向の並進距離)である。ここでは、テンプレートマッチングにより、現画像Nの第3及び第4の領域M3,M4のそれぞれの画像情報が、目標画像Tの第3及び第4の領域S3,S4内のどの部分に存在するか特定し、当該各画像部分について、目標画像Tに対するy軸方向の位置の差分をそれぞれ求め、当該各差分の差に定数k4を乗じることで、z軸回りの回転変化量ψzが求められる。
Further, the rotation change amount ψz around the z-axis of the ultrasonic probe with respect to the optimum state can be obtained by the following equation.

ψz = k3 (X 1 −X 2 ) (5)

Here, k3 is a preset constant, and X 1 and X 2 are movement amounts in the x-axis direction of the first and second regions M1 and M2 used in the above equation (3).
Instead of the above equation (5), the following equation (6) can also be used to determine the rotation change amount ψz around the z axis.

ψz = k4 (Y 3 −Y 4 ) (6)

Here, k4 is a preset constant, Y 3 is a movement amount of the y-axis direction with respect to the target image T of the image information in the third region M3 of the current image N (translation distance in the y-axis direction) There, Y 4 is a movement amount of the y-axis direction with respect to the target image T of the image information in the fourth region M4 of the current image N (translation distance in the y-axis direction). Here, by template matching, in which part in the third and fourth regions S3 and S4 of the target image T each image information of the third and fourth regions M3 and M4 of the current image N exists. For each of the image portions, a difference in position in the y-axis direction with respect to the target image T is obtained, and a rotation change amount ψz around the z-axis is obtained by multiplying the difference between the differences by a constant k4.

また、前記最適状態に対する超音波プローブのz軸方向の並進変化量zは、

z=Z (7)

となる。ここで、Zは、上式(1)で用いた第1の領域M1のz軸方向の移動量である。なお、ここでは、前記第1〜第4の領域M1〜M4のうち、回転の影響を最も受け難い超音波プローブ14から一番近い第1の領域M1のみを使用している。
The translational change amount z in the z-axis direction of the ultrasonic probe with respect to the optimum state is

z = Z 1 (7)

It becomes. Here, Z 1 is the amount of movement of the z-axis direction of the first region M1 used in the above equation (1). Here, among the first to fourth regions M1 to M4, only the first region M1 closest to the ultrasonic probe 14 that is least affected by the rotation is used.

以上の各式により、超音波プローブ14の並進運動による前記最適状態からの位置の変化量である並進変化量x,y,zと、超音波プローブ14の回転運動による前記最適状態からの姿勢の変化量である回転変化量ψx,ψy,ψzとが6軸の変化量として求められる。   According to the above equations, the translational change amounts x, y, z, which are the change amounts of the position from the optimal state due to the translational motion of the ultrasonic probe 14, and the posture from the optimal state due to the rotational motion of the ultrasonic probe 14. Rotational change amounts ψx, ψy, ψz, which are change amounts, are obtained as six-axis change amounts.

前記動作制御手段22では、プローブ状態変化量検出手段21で求めた6軸の変化量がゼロになるように、フィードバック制御によりロボットアーム17を動作させるようになっている。   In the operation control means 22, the robot arm 17 is operated by feedback control so that the six-axis change amount obtained by the probe state change amount detection means 21 becomes zero.

従って、このような実施形態によれば、超音波プローブ14を被検者の皮膚に接触したまま、一定時間に亘って超音波プローブ14の静止状態を維持しながら所定の計測や診断を行う場合に、その途中で被検者が動いてしまい、超音波プローブ14の位置及び姿勢が最適状態からずれて目標画像Tが得られなくなっても、ロボット12を使って超音波プローブ14をダイレクトに最適状態に復帰させることができる。   Therefore, according to such an embodiment, when the ultrasonic probe 14 is in contact with the skin of the subject and predetermined measurement or diagnosis is performed while maintaining the stationary state of the ultrasonic probe 14 for a certain period of time. In addition, even if the subject moves in the middle and the position and posture of the ultrasonic probe 14 deviates from the optimum state and the target image T cannot be obtained, the ultrasonic probe 14 is directly optimized using the robot 12. It can be returned to the state.

なお、前記実施形態では、直交3軸における全ての位置及び姿勢についての前記変化量を求めているが、本発明はこれに限らず、超音波プローブ14と被検者との相対移動範囲が所定の方向に限定されている等の場合には、前述した各式を選択的に用い、最適状態に対する超音波プローブ14の位置、姿勢の変化量を限定した方向のみで求めるようにしてもよい。   In the embodiment, the amount of change for all positions and postures in the three orthogonal axes is obtained. However, the present invention is not limited to this, and the relative movement range between the ultrasonic probe 14 and the subject is predetermined. In such a case, the above-described equations may be selectively used to obtain the change amount of the position and posture of the ultrasonic probe 14 with respect to the optimum state only in the limited direction.

また、超音波画像内の所定部分がその面内で動く変化(in−plane)をもたらす超音波プローブ14の状態変化による変化量は、x軸及びy軸方向の並進変化量x,yとz軸回りの回転変化量ψzになる。一方、超音波画像内の所定部分がその面から飛び出す方向に動く変化(out−of−plane)をもたらす超音波プローブ14の状態変化による変化量は、x軸及びy軸方向の回転変化量ψx,ψyとz軸回りの並進変化量zになる。従って、in−planeをもたらす前記変化量と、out−of−planeをもたらす前記変化量との何れか一方のみを求め、これらの変化の何れか一方に特化したロボット12の制御も可能である。   Further, the amount of change due to the state change of the ultrasonic probe 14 that causes a change (in-plane) in which a predetermined portion in the ultrasonic image moves in the plane is the translational change amounts x, y, and z in the x-axis and y-axis directions. The rotational change amount ψz about the axis is obtained. On the other hand, the amount of change due to the state change of the ultrasonic probe 14 that causes a change (out-of-plane) in which a predetermined portion in the ultrasonic image moves out of the plane is the amount of change in rotation ψx in the x-axis and y-axis directions. , Ψy and the translational change amount z around the z-axis. Accordingly, it is possible to obtain only one of the amount of change that causes in-plane and the amount of change that causes out-of-plane, and to control the robot 12 specialized to one of these changes. .

更に、本実施形態では、マッチング対象領域M及び探索領域Sを各画像N,20Aの上下左右4箇所としたが、本発明はこれに限らず、マッチング対象領域M及び探索領域Sの数を更に増減してもよい。   Furthermore, in the present embodiment, the matching target area M and the search area S are four places in the top, bottom, left, and right of each image N, 20A, but the present invention is not limited to this, and the number of matching target areas M and search areas S is further increased. It may be increased or decreased.

また、前記プローブ状態変化量検出手段21は、ロボット12に適用しなくてもよく、超音波プローブ14をロボット12に保持させずに、前記変化量を図示しないモニタや音声で操作者に知らせるようにしてもよい。   Further, the probe state change amount detecting means 21 may not be applied to the robot 12, and the operator is notified of the change amount by a monitor or voice (not shown) without holding the ultrasonic probe 14 on the robot 12. It may be.

更に、前記記憶手段20と前記プローブ状態変化量検出手段21は、ロボット12の処理装置18内に設けたが、超音波診断装置11内に設けてもよいし、超音波診断装置11やロボット12とは別の装置として設けることもできる。   Further, although the storage unit 20 and the probe state change amount detection unit 21 are provided in the processing device 18 of the robot 12, they may be provided in the ultrasonic diagnostic device 11, or may be provided in the ultrasonic diagnostic device 11 or the robot 12. It can also be provided as a separate device.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 超音波診断システム
11 超音波診断装置
12 超音波診断装置用ロボット
14 超音波プローブ
15 超音波画像生成手段
17 ロボットアーム(プローブ動作手段)
20 記憶手段
20A 記憶画像
21 プローブ状態変化量検出手段
22 動作制御手段
C 対比用画像
N 現画像
T 目標画像
DESCRIPTION OF SYMBOLS 10 Ultrasonic diagnostic system 11 Ultrasonic diagnostic apparatus 12 Robot for ultrasonic diagnostic apparatus 14 Ultrasonic probe 15 Ultrasonic image generation means 17 Robot arm (probe operation means)
20 storage means 20A stored image 21 probe state change amount detection means 22 operation control means C comparison image N current image T target image

Claims (6)

超音波パルスの送波及びエコーの受波を行う超音波プローブと、当該超音波プローブからの信号により超音波画像を生成する超音波画像生成手段と、前記超音波プローブを動作させるプローブ動作手段と、所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像である現画像と前記各記憶画像との対比により、目標の超音波画像となる目標画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段と、当該プローブ状態変化量検出手段で求めた前記変化量がゼロになるように前記プローブ動作手段の動作制御を行う動作制御手段とを備えたことを特徴とする超音波診断システム。   An ultrasonic probe for transmitting an ultrasonic pulse and receiving an echo; an ultrasonic image generating means for generating an ultrasonic image based on a signal from the ultrasonic probe; and a probe operating means for operating the ultrasonic probe; Storage means for storing, as a stored image, an ultrasonic image at each position during the movement when the ultrasonic probe is moved in advance within a predetermined range, and a current image which is an ultrasonic image currently obtained Probe state change amount detecting means for obtaining a change amount with respect to an optimum position and optimum posture of the ultrasonic probe from which a target image that becomes a target ultrasonic image is obtained by comparing each stored image with the stored image, and the probe state change amount An ultrasonic diagnostic system comprising: an operation control unit that controls the operation of the probe operation unit so that the amount of change obtained by the detection unit becomes zero. 前記記憶手段には、前記記憶画像として、前記最適位置を挟む所定範囲内で前記超音波プローブを前記最適姿勢と同一姿勢で直線移動させた際に、一定の移動間隔毎に得られた複数の前記超音波画像である対比用画像と、前記目標画像とが前記超音波プローブの位置に対応して記憶され、
前記プローブ状態変化量検出手段では、前記現画像内の所定部分に一致する部分を有する前記記憶画像が得られる前記超音波プローブの位置と、前記目標画像が得られる前記超音波プローブの位置との離間距離に基づいて前記変化量を求めることを特徴とする請求項1記載の超音波診断システム。
In the storage means, a plurality of images obtained at fixed movement intervals when the ultrasonic probe is linearly moved in the same posture as the optimum posture within a predetermined range sandwiching the optimum position as the stored image. The comparison image, which is the ultrasonic image, and the target image are stored corresponding to the position of the ultrasonic probe,
In the probe state change amount detecting means, a position of the ultrasonic probe from which the stored image having a portion matching a predetermined portion in the current image is obtained, and a position of the ultrasonic probe from which the target image is obtained. The ultrasonic diagnostic system according to claim 1, wherein the amount of change is obtained based on a separation distance.
前記プローブ状態変化量検出手段では、前記超音波画像の上下左右の4箇所の領域について、現画像を前記記憶画像と対比し、各領域それぞれについて前記離間距離を求めた上で、相互に直交する3本の座標軸のうちで前記超音波画像の画面を左右させる方向に延びるx軸回りの回転における前記変化量と、前記画面を上下させる方向に延びるy軸回りの回転における前記変化量と、前記画面を直交する方向に延びるz軸方向の並進における前記変化量とを求めることを特徴とする請求項2記載の超音波診断システム。   In the probe state change amount detecting means, the current image is compared with the stored image for the four areas of the ultrasonic image in the upper, lower, left, and right directions, and the separation distance is obtained for each area, and then orthogonal to each other. Of the three coordinate axes, the amount of change in rotation about the x-axis extending in the direction of moving the screen of the ultrasonic image left and right, the amount of change in rotation about the y-axis extending in the direction of moving the screen up and down, The ultrasonic diagnostic system according to claim 2, wherein the amount of change in translation in the z-axis direction extending in a direction orthogonal to the screen is obtained. 前記プローブ状態変化量検出手段では、前記x軸方向及びy軸方向の並進における前記変化量と、前記z軸方向の回転における前記変化量とを求めることを特徴とする請求項2又は3記載の超音波診断システム。   The probe state change amount detection means obtains the change amount in the translation in the x-axis direction and the y-axis direction and the change amount in the rotation in the z-axis direction. Ultrasound diagnostic system. 超音波診断装置の超音波プローブを保持して所定の空間内を動作させる超音波診断装置用ロボットにおいて、
前記超音波プローブを動作させるプローブ動作手段と、所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像と前記各記憶画像との対比により、目標の超音波画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段と、当該プローブ状態変化量検出手段で求めた前記変化量がゼロになるように前記プローブ動作手段の動作制御を行う動作制御手段とを備えたことを特徴とする超音波診断装置用ロボット。
In the ultrasonic diagnostic apparatus robot that holds the ultrasonic probe of the ultrasonic diagnostic apparatus and operates in a predetermined space,
A probe operating means for operating the ultrasonic probe; a storage means for storing an ultrasonic image at each moving position as a stored image when the ultrasonic probe is moved in advance within a predetermined range; Probe state change amount detecting means for obtaining a change amount with respect to the optimum position and optimum posture of the ultrasonic probe from which a target ultrasonic image is obtained by comparing the obtained ultrasonic image and each stored image, and the probe An ultrasonic diagnostic apparatus robot, comprising: an operation control unit that controls the operation of the probe operation unit so that the change amount obtained by the state change amount detection unit becomes zero.
所定の空間内で超音波診断装置の超音波プローブを移動させる超音波診断装置用ロボットの動作に関する処理を行うコンピュータを機能させるためのプログラムにおいて、
所定範囲内で予め前記超音波プローブを移動させた際に、当該移動中の各位置での超音波画像を記憶画像として記憶する記憶手段と、現在得られている超音波画像と前記各記憶画像との対比により、目標の超音波画像が得られる前記超音波プローブの最適位置及び最適姿勢に対する変化量を求めるプローブ状態変化量検出手段として前記コンピュータを機能させることを特徴とするプログラム。
In a program for functioning a computer that performs processing related to the operation of a robot for an ultrasonic diagnostic apparatus that moves an ultrasonic probe of the ultrasonic diagnostic apparatus within a predetermined space,
When the ultrasonic probe is moved in advance within a predetermined range, storage means for storing an ultrasonic image at each moving position as a stored image, a currently obtained ultrasonic image, and each stored image A program that causes the computer to function as probe state change amount detection means for obtaining a change amount with respect to an optimum position and optimum posture of the ultrasound probe from which a target ultrasound image is obtained.
JP2010198404A 2010-09-04 2010-09-04 Ultrasonic diagnostic system, robot for ultrasonic diagnostic apparatus, and program Expired - Fee Related JP5463554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198404A JP5463554B2 (en) 2010-09-04 2010-09-04 Ultrasonic diagnostic system, robot for ultrasonic diagnostic apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198404A JP5463554B2 (en) 2010-09-04 2010-09-04 Ultrasonic diagnostic system, robot for ultrasonic diagnostic apparatus, and program

Publications (2)

Publication Number Publication Date
JP2012055346A true JP2012055346A (en) 2012-03-22
JP5463554B2 JP5463554B2 (en) 2014-04-09

Family

ID=46053181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198404A Expired - Fee Related JP5463554B2 (en) 2010-09-04 2010-09-04 Ultrasonic diagnostic system, robot for ultrasonic diagnostic apparatus, and program

Country Status (1)

Country Link
JP (1) JP5463554B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200534A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Ultrasonic probe support device, ultrasonic diagnostic device and ultrasonic diagnostic system
JP2016010523A (en) * 2014-06-30 2016-01-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and program
JPWO2021090390A1 (en) * 2019-11-06 2021-05-14
US11103214B2 (en) 2016-03-07 2021-08-31 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus using synthetic and moving aperture synthesis
CN113916979A (en) * 2021-09-17 2022-01-11 秒针信息技术有限公司 Workpiece defect detection method, device and system and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884740A (en) * 1994-09-16 1996-04-02 Toshiba Corp Treatment apparatus
JP2003245280A (en) * 2002-02-25 2003-09-02 Ichiro Sakuma Method for examining angioendothelial function
JP2008149044A (en) * 2006-12-20 2008-07-03 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic system
JP2009089736A (en) * 2007-10-03 2009-04-30 Toshiba Corp Ultrasonograph

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884740A (en) * 1994-09-16 1996-04-02 Toshiba Corp Treatment apparatus
JP2003245280A (en) * 2002-02-25 2003-09-02 Ichiro Sakuma Method for examining angioendothelial function
JP2008149044A (en) * 2006-12-20 2008-07-03 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic system
JP2009089736A (en) * 2007-10-03 2009-04-30 Toshiba Corp Ultrasonograph

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200534A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Ultrasonic probe support device, ultrasonic diagnostic device and ultrasonic diagnostic system
JP2016010523A (en) * 2014-06-30 2016-01-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and program
US11103214B2 (en) 2016-03-07 2021-08-31 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus using synthetic and moving aperture synthesis
JPWO2021090390A1 (en) * 2019-11-06 2021-05-14
WO2021090390A1 (en) * 2019-11-06 2021-05-14 株式会社Fuji Positional deviation amount measuring device for ultrasonic probe
CN113916979A (en) * 2021-09-17 2022-01-11 秒针信息技术有限公司 Workpiece defect detection method, device and system and computer readable storage medium

Also Published As

Publication number Publication date
JP5463554B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN109549667B (en) Ultrasonic transducer scanning system, method and ultrasonic imaging equipment
JP6843639B2 (en) Ultrasonic diagnostic device and ultrasonic diagnostic support device
Conti et al. Interface design and control strategies for a robot assisted ultrasonic examination system
JP5531239B2 (en) Puncture support system
US9538982B2 (en) User interface for ultrasound scanning system
JP5463554B2 (en) Ultrasonic diagnostic system, robot for ultrasonic diagnostic apparatus, and program
US11931202B2 (en) Ultrasound automatic scanning system, ultrasound diagnostic apparatus, ultrasound scanning support apparatus
JPWO2013161277A1 (en) Ultrasonic diagnostic apparatus and control method thereof
US20120116224A1 (en) System and method for ultrasound imaging
NL2028640B1 (en) Robotized imaging system
KR101656127B1 (en) Measuring apparatus and program for controlling the same
JP2015181767A (en) Ultrasonic measuring apparatus
WO2020047038A1 (en) Methods and apparatuses for collection of ultrasound data
CN111902095A (en) Treatment device
JP2007130063A (en) Ultrasonographic apparatus
US20130158403A1 (en) Method for Obtaining a Three-Dimensional Velocity Measurement of a Tissue
JP2014108311A (en) Ultrasonic image display device and control program thereof
JP6718520B2 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
US20200297308A1 (en) Ultrasound automatic scanning system, ultrasound diagnosis apparatus, and ultrasound scanning support apparatus
JP5999935B2 (en) Ultrasonic diagnostic equipment
EP4011297B1 (en) Ultrasonic diagnosis system and operation support method
JP2017038638A (en) Ultrasonic diagnostic equipment
US20180168536A1 (en) Intervolume lesion detection and image preparation
US20220296219A1 (en) System and methods for adaptive guidance for medical imaging
WO2014129203A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5463554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees