JP2012052848A5 - Probe, microscope with probe - Google Patents

Probe, microscope with probe Download PDF

Info

Publication number
JP2012052848A5
JP2012052848A5 JP2010193960A JP2010193960A JP2012052848A5 JP 2012052848 A5 JP2012052848 A5 JP 2012052848A5 JP 2010193960 A JP2010193960 A JP 2010193960A JP 2010193960 A JP2010193960 A JP 2010193960A JP 2012052848 A5 JP2012052848 A5 JP 2012052848A5
Authority
JP
Japan
Prior art keywords
single crystal
light
probe
probe according
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010193960A
Other languages
Japanese (ja)
Other versions
JP2012052848A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010193960A priority Critical patent/JP2012052848A/en
Priority claimed from JP2010193960A external-priority patent/JP2012052848A/en
Publication of JP2012052848A publication Critical patent/JP2012052848A/en
Publication of JP2012052848A5 publication Critical patent/JP2012052848A5/en
Pending legal-status Critical Current

Links

Description

本発明は、ローブ、プローブを備えた顕微鏡に関し、特に近接場光を用いた分光装置等で用いるローブおよびそのプローブを備えた顕微鏡に関するものである。 The present invention, probe relates microscope having a probe, to a microscope having a probe of probe and its used in particular near-field spectrometer using light or the like.

本発明は、上記課題に鑑み、従来の散乱型近接場光プローブのように電場増強を示す波長領域だけでなく、可視光の長波長領域においても電場増強を示すローブおよびプローブを備えた顕微鏡の提供を目的とする。 In view of the above problems, not only the wavelength region showing the electric field enhancement as in the conventional scattering-type near-field optical probe, the probe and probe illustrating the electric field enhancement even in the long wavelength region of visible light and an object thereof is to provide a microscope equipped.

本発明のプローブは、端部に金属単結晶を備え、
記先端部に光を照射することで前記先端部に近接場光が発生することを特徴とする。
また、本発明の顕微鏡は、上記したプローブと、
試料を支持する支持部材と、
前記先端部に発生した近接場光と試料との相互作用によって生じる散乱光あるいは発光を検出する検出器と、有することを特徴とする。
Probes of the present invention comprises a metallic single crystal above end,
Near-field light, characterized in that generated in the tip portion by irradiating light to the front Kisaki end.
Further, the sensible Bikagami of the present invention includes a probe as described above,
A support member for supporting the sample;
And a detector for detecting scattered light or light emission generated by the interaction between the near-field light generated at the tip and the sample .

本発明によれば、従来の散乱型近接場光プローブのように電場増強を示す波長領域だけでなく、可視光の長波長領域においても電場増強を示すローブおよびプローブを備えた顕微鏡を実現することができる。 According to the present invention, not only the wavelength region showing the electric field enhancement as in the conventional scattering-type near-field optical probe, sensible with the probe and probe illustrating the electric field enhancement even in the long wavelength region of visible light A micro-mirror can be realized.

次いで、溶液加熱手段12としてマントルヒーター、溶液温度計測器11としてテフロン(登録商標)をコートした熱電対を用い、溶液温度をモニターして溶液温度が90℃で一定になるように温度調節器13で調節しながら加熱した。
上記反応はドラフト内で行い、基板8上に形成される平板状の金単結晶14が所望の大きさになるように反応時間、ドラフト排気量を調節し、基板8上に数十〜数百μmの大きさの平板状の金単結晶14を得た。
平板状の金単結晶14は水洗後、5分間酸素プラズマ処理をした後、窒素雰囲気下において30分間300℃で熱処理した。
このようにして得た平板状の金単結晶のSEM像を、図1(c)に示す。ここでは一辺が約200μmの大きさの正三角形の平板状の金単結晶が得られた。
Next, a mantle heater is used as the solution heating means 12, and a thermocouple coated with Teflon (registered trademark) is used as the solution temperature measuring device 11, and the temperature controller 13 is monitored so that the solution temperature becomes constant at 90 ° C. Heated while adjusting.
The above reaction is performed in a draft, and the reaction time and the draft exhaust amount are adjusted so that the flat gold single crystal 14 formed on the substrate 8 has a desired size. A plate-like gold single crystal 14 having a size of μm was obtained.
The flat gold single crystal 14 was washed with water, subjected to oxygen plasma treatment for 5 minutes, and then heat-treated at 300 ° C. for 30 minutes in a nitrogen atmosphere.
An SEM image of the flat gold single crystal thus obtained is shown in FIG. Here, an equilateral triangular flat gold single crystal having a side of about 200 μm was obtained.

このようにして作製した平板状の金単結晶の電場増強効果を検証した。
図6の図中に示す平板状の金単結晶は一辺が約5μmの正三角形の形状をしている。
この平板状の金単結晶上に1wt%のポリスチレン溶液をスピンコーティングして約100nmの膜厚のポリスチレン薄膜を形成させ、平板状の金単結晶の(111)面上と結晶先端部においてラマン測定を行った。
測定には励起波長780nmのレーザー、100×NA0.9の対物レンズを使用し、露光時間20s、積算回数3回の条件でラマンスペクトルを取得した。
入射光は平板状の金単結晶の(111)面に垂直な方向から入射し、入射光の偏光方向は結晶の頂角を二等分する軸と平行な方向とした。
ポリスチレンは1000cm -1 付近にベンゼン骨格振動の強いラマンピークが観測される。
平板状の金単結晶の(111)面上と結晶先端部で1000cm -1 におけるラマン強度を比較すると、結晶先端部においてポリスチレンのラマン強度が約7.4倍強くなっていることが示された。
このように、正三角形の平板状の金単結晶を散乱型近接場光プローブとして用いることで、平板状の金単結晶先端において電場増強効果を得ることができることが実証できた。
平板状の金単結晶プローブは顕微鏡下でマイクロマニュピレータを使いて平板状の金単結晶をエポキシによりチューニングフォーク先端に固定することにより作製できる。
The electric field enhancement effect of the flat gold single crystal thus produced was verified.
The flat gold single crystal shown in FIG. 6 has an equilateral triangle shape with a side of about 5 μm.
A 1 wt% polystyrene solution is spin-coated on this flat gold single crystal to form a polystyrene thin film having a thickness of about 100 nm, and Raman measurement is performed on the (111) plane of the flat gold single crystal and at the tip of the crystal. Went.
For the measurement, a laser having an excitation wavelength of 780 nm and an objective lens of 100 × NA 0.9 were used, and a Raman spectrum was obtained under the conditions of an exposure time of 20 s and an integration number of three.
Incident light was incident from a direction perpendicular to the (111) plane of the flat gold single crystal, and the polarization direction of the incident light was parallel to the axis that bisects the apex angle of the crystal.
In polystyrene, a Raman peak with strong benzene skeleton vibration is observed in the vicinity of 1000 cm −1 .
Comparing the Raman intensity at 1000 cm −1 between the (111) plane of the flat gold single crystal and the crystal tip, it was shown that the Raman intensity of polystyrene was about 7.4 times stronger at the crystal tip. .
Thus, it was demonstrated that the electric field enhancement effect can be obtained at the tip of the flat gold single crystal by using the equilateral triangular flat gold single crystal as the scattering near-field optical probe.
A flat gold single crystal probe can be prepared by fixing a flat gold single crystal to the tip of a tuning fork with epoxy using a micromanipulator under a microscope.

比較例1
比較例1として、一般的に用いられる円錐形の金プローブと、本発明の平板状の金単結晶プローブを用いて色素(Oil Blue N)を添加したポリスチレン薄膜の近接場ラマン測定を行った例について説明する。
まず、514nm励起で近接場ラマン測定を行った。この測定では、添加した色素から蛍光が発生するため、どちらのプローブを用いた場合においてもポリスチレン固有のラマンスペクトルは確認しづらい。
そこで、蛍光を回避するために励起光を780nmに変更した。
一般的に用いられる円錐形金プローブを用いた近接場ラマン測定においては色素からの蛍光を抑えることはできたものの、図3(a)に示すように780nmにおいては電場増強効果がほとんど得られない。そのため、ポリスチレン薄膜からのラマン信号は微弱である。
一方、本発明の平板状の金単結晶プローブを用いた近接場ラマン測定においては、色素からの蛍光を抑え、かつ図3(b)に示すように電場増強効果も得られるため、ポリスチレン薄膜からのラマン信号をS/Nよく検出することが可能となる。
[ Comparative Example 1 ]
As Comparative Example 1 , a near-field Raman measurement was performed on a polystyrene thin film to which a dye (Oil Blue N) was added using a commonly used conical gold probe and a flat gold single crystal probe of the present invention. Will be described.
First, near-field Raman measurement was performed with 514 nm excitation. In this measurement, fluorescence is generated from the added dye, so that it is difficult to confirm the Raman spectrum specific to polystyrene, regardless of which probe is used.
Therefore, in order to avoid fluorescence, the excitation light was changed to 780 nm.
In near-field Raman measurement using a commonly used conical gold probe, although fluorescence from the dye could be suppressed, as shown in FIG. 3 (a), almost no electric field enhancement effect was obtained at 780 nm. . Therefore, the Raman signal from the polystyrene thin film is weak.
On the other hand, in the near-field Raman measurement using the flat gold single crystal probe of the present invention, the fluorescence from the dye is suppressed and the electric field enhancement effect is also obtained as shown in FIG. Can be detected with good S / N.

[実施例
実施例として、平板状の金単結晶の膜厚が電場増強度に与える影響についてFDTD計算を行った例について説明する。
図7に、結晶を一辺1μmの正三角形とし、膜厚を10nm、20nm、100nmと変えた時の、結晶先端における電場増強度をFDTDにより計算した結果を示す。
グラフの横軸は入射光の波長、縦軸はプローブ直下5nm位置における電場増強度|E/E02を示している。
これによると金単結晶の膜厚を薄くしていくと可視光の長波長側800nm付近のプラズモン共鳴ピークが著しく増大することがわかった。
このように、可視光域の長波長側の励起光を用いて高感度な近接場ラマン分光を行う場合は、膜厚が薄い金単結晶を用いることが有利であることが示された。
[Example 2 ]
As Example 2 , an example in which the FDTD calculation is performed on the influence of the thickness of the flat gold single crystal on the electric field enhancement will be described.
FIG. 7 shows the results of calculating the electric field enhancement at the tip of the crystal by FDTD when the crystal is an equilateral triangle having a side of 1 μm and the film thickness is changed to 10 nm, 20 nm, and 100 nm.
The horizontal axis of the graph indicates the wavelength of incident light, and the vertical axis indicates the electric field enhancement intensity | E / E 0 | 2 at a position 5 nm directly below the probe.
According to this, it was found that as the thickness of the gold single crystal is reduced, the plasmon resonance peak near 800 nm on the long wavelength side of visible light is remarkably increased.
Thus, it has been shown that it is advantageous to use a gold single crystal with a small film thickness when performing high-sensitivity near-field Raman spectroscopy using excitation light on the long wavelength side in the visible light region.

Claims (8)

端部に金属単結晶を備え、
記先端部に光を照射することで前記先端部に近接場光が発生することを特徴とするプローブ。
Comprising a metallic single crystal above end,
Features and to pulp lobes that near-field light is generated at the tip by irradiating light to the front Kisaki end.
前記金属単結晶が、角をなす2辺が交わって形成された鋭角の頂点を有する平板状の形状を有することを特徴とする請求項1に記載のプローブ。2. The probe according to claim 1, wherein the metal single crystal has a flat plate shape having acute vertexes formed by intersecting two sides forming an angle. 前記先端部に、前記鋭角の頂点を二等分する軸に対して平行な電界成分を有する光が照射された際に、可視光の長波長領域において電場増強を示すことを特徴とする請求項2に記載のプローブ。The electric field enhancement is exhibited in a long wavelength region of visible light when the tip portion is irradiated with light having an electric field component parallel to an axis that bisects the acute vertex. 2. The probe according to 2. 記金属単結晶、金の単結晶であることを特徴とする請求項1から3のいずれか1項に記載のプローブ。 Before Kikin genus single crystal, probe according to item 1 any one of claims 1 to 3, characterized in that the gold single crystal. 前記金の単結晶は主面が(111)面からなり、該(111)面の方向から見た前記単結晶の形状が正三角形であることを特徴とする請求項に記載のプローブ。 Single crystals of the gold consists of main surface (111) plane, probe according to claim 4, the shape of the single crystal as seen from the direction of the (111) plane is equal to or is an equilateral triangle. 記単結晶厚さの、前記単結晶の一辺の長さに対する比の値が10以上100以下であることを特徴とする請求項に記載のプローブ。 Previous thickness of Kitan crystal, the probe of claim 5, the value of the ratio to the length of one side of the single crystal is characterized in that 10 or more 100 or less. 前記金属単結晶のプラズモン共鳴ピークが、550nm以上600nm以下の範囲と600nm以上の範囲とにあることを特徴とする請求項4から6のいずれか1項に記載のプローブ。The probe according to any one of claims 4 to 6, wherein the plasmon resonance peak of the metal single crystal is in a range of 550 nm to 600 nm and a range of 600 nm or more. 求項1からのいずれか1項に記載のプローブと、
試料を支持する支持部材と、
前記先端部に発生した近接場光と試料との相互作用によって生じる散乱光あるいは発光を検出する検出器と、有することを特徴とする顕微鏡。
And probe according to any one of Motomeko 1 7,
A support member for supporting the sample;
Detector and, microscope you, comprising detecting the scattered light or light emitting caused by the interaction between the near-field light and the sample generated in the tip portion.
JP2010193960A 2010-08-31 2010-08-31 Scattering near-field optical probe and near-field optical microscope including the same Pending JP2012052848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193960A JP2012052848A (en) 2010-08-31 2010-08-31 Scattering near-field optical probe and near-field optical microscope including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193960A JP2012052848A (en) 2010-08-31 2010-08-31 Scattering near-field optical probe and near-field optical microscope including the same

Publications (2)

Publication Number Publication Date
JP2012052848A JP2012052848A (en) 2012-03-15
JP2012052848A5 true JP2012052848A5 (en) 2013-10-10

Family

ID=45906339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193960A Pending JP2012052848A (en) 2010-08-31 2010-08-31 Scattering near-field optical probe and near-field optical microscope including the same

Country Status (1)

Country Link
JP (1) JP2012052848A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179905B2 (en) * 2012-12-18 2017-08-23 学校法人早稲田大学 Optical device and analyzer
KR101466807B1 (en) * 2013-07-29 2014-11-28 포항공과대학교 산학협력단 Tuning-fork based near field probe for mesuring spectral and near-field microscopy using the same, spectral analytical method using near-field microscopy
CN113406361B (en) * 2021-03-22 2023-08-15 季华实验室 Microscope needle tip for near field optical field regulation and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206435A (en) * 1997-01-16 1998-08-07 Canon Inc Method for manufacturing probe and probe
JP4505596B2 (en) * 2004-05-27 2010-07-21 独立行政法人産業技術総合研究所 Biochip substrate manufacturing method, manufacturing apparatus thereof, and manufactured biochip
JP4451252B2 (en) * 2004-09-02 2010-04-14 エスアイアイ・ナノテクノロジー株式会社 Near-field microscope probe, manufacturing method thereof, and scanning probe microscope using the probe
JP2007078451A (en) * 2005-09-13 2007-03-29 Canon Inc Prism with metal membrane and spectral analyzer using the same
US7572300B2 (en) * 2006-03-23 2009-08-11 International Business Machines Corporation Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth
JP5256433B2 (en) * 2007-12-25 2013-08-07 ナノフォトン株式会社 Scattering near-field microscope
JP2009150899A (en) * 2009-01-30 2009-07-09 Hitachi Ltd Device for generating near-field light

Similar Documents

Publication Publication Date Title
Gunnarsson et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering
Myroshnychenko et al. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study
Imura et al. Visualization of localized intense optical fields in single gold− nanoparticle assemblies and ultrasensitive Raman active sites
Jayawardhana et al. Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism
TWI531786B (en) Raman detecting system
JP2011075348A (en) Method for manufacturing test piece
Andrade et al. Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips
Gartia et al. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate
Jin et al. Large-area nanogap plasmon resonator arrays for plasmonics applications
Cade et al. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering
Díaz-Núñez et al. On the large near-field enhancement on nanocolumnar gold substrates
Awada et al. High resolution scanning near field mapping of enhancement on SERS substrates: Comparison with photoemission electron microscopy
Chen et al. Improved SERS Intensity from Silver‐Coated Black Silicon by Tuning Surface Plasmons
Qin et al. Deep Fano resonance with strong polarization dependence in gold nanoplate–nanosphere heterodimers
Erkızan et al. LIPSS for SERS: Metal coated direct laser written periodic nanostructures for surface enhanced Raman spectroscopy
JP2012052848A5 (en) Probe, microscope with probe
Zhai et al. Controllable preparation of the Au–MoS 2 nano-array composite: optical properties study and SERS application
JP7247493B2 (en) Substrate for surface-enhanced Raman analysis
Mandal et al. Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced Raman scattering
TWI530451B (en) Bowl-metal nanostructure array
González Mora et al. Microsphere-based cantilevers for polarization-resolved and femtosecond SNOM
Toma et al. Fabrication and characterization of a nanoantenna-based Raman device for ultrasensitive spectroscopic applications
Beermann et al. Surface enhanced Raman microscopy with metal nanoparticle arrays
Pale et al. Fluorescence-enhancing plasmonic silver nanostructures using azopolymer lithography
JP2012052848A (en) Scattering near-field optical probe and near-field optical microscope including the same