JP2012050670A - Autonomous function type orthodontic wire - Google Patents

Autonomous function type orthodontic wire Download PDF

Info

Publication number
JP2012050670A
JP2012050670A JP2010195460A JP2010195460A JP2012050670A JP 2012050670 A JP2012050670 A JP 2012050670A JP 2010195460 A JP2010195460 A JP 2010195460A JP 2010195460 A JP2010195460 A JP 2010195460A JP 2012050670 A JP2012050670 A JP 2012050670A
Authority
JP
Japan
Prior art keywords
orthodontic wire
alloy
shape memory
orthodontic
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010195460A
Other languages
Japanese (ja)
Inventor
Takamitsu Takagi
隆光 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GC Corp
Original Assignee
GC Corp
GC Dental Industiral Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GC Corp, GC Dental Industiral Corp filed Critical GC Corp
Priority to JP2010195460A priority Critical patent/JP2012050670A/en
Publication of JP2012050670A publication Critical patent/JP2012050670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an orthodontic wire, to which shape can be provided preliminarily, and which has shape memory performance.SOLUTION: The orthodontic wire, of less than 0.5 mm in diameter, is formed of Ti-Ni shape memory alloy. Its tension varies since all the ranges are martensitic through operation to placement, or they are martensitic in operation, with a desired part being a parent phase range in placement, or there are two or more parent phase ranges of different shape recovery temperatures. By autonomous adjustment of functions in operation and placement, desired performance is partly or totally held in the autonomous function type orthodontic wire.

Description

本発明は、歯列の矯正治療器具として使用される形状記憶合金からなる歯列矯正ワイヤーに関する。   The present invention relates to an orthodontic wire made of a shape memory alloy used as an orthodontic treatment device for an orthodontics.

歯には持続的に弱い力が加わるとその方向に移動する性質があり、その性質を利用して、口腔内に歯列矯正ワイヤーと呼ばれている矯正装置を入れ、歯に一定の力を持続的にかけて人為的に動かし歯並びや噛み合わせを治療する歯列矯正が行われている。   Teeth have the property of moving in the direction when a weak force is applied continuously. By using this property, an orthodontic device called an orthodontic wire is placed in the oral cavity, and a constant force is applied to the teeth. Orthodontic treatment is carried out to treat teeth alignment and meshing by continuously moving artificially over time.

歯列矯正ワイヤーは、歯列や周囲の生体組織の診断状況に応じてそれぞれに適したワイヤーを用いることが必要であり、例えば、適度な剛性があることが望ましいケース,硬すぎず柔らかすぎず適度な柔軟性を有し、かつ、塑性変形せずに元の形状に戻る形状復元性を兼ね備えるバネ特性(弾性)を有することが望ましいケース、或いはその両方が求められるケース等が存在する。   For orthodontic wires, it is necessary to use appropriate wires according to the diagnosis status of the dentition and surrounding living tissue. For example, it is desirable that there should be appropriate rigidity, not too hard and not too soft. There are cases where it is desirable to have a spring characteristic (elasticity) that has moderate flexibility and also has a shape restoring property that returns to its original shape without plastic deformation, or a case where both are required.

歯列矯正ワイヤーは、ステンレス線や、Ti−Ni合金線等が用いられる。ステンレス線は剛性が高く歯列移動力に優れ、また意図的な変形によるベンディングテクニック加工が可能であるが、塑性変形を受け易い。一方、Ti−Ni合金線は、マルテンサイト変態の逆変態に付随して顕著な形状記憶効果を示し(例えば、特許文献1参照。)、逆変態後の母相での強変形によって誘起される応力誘起マルテンサイト変態に伴い、良好な超弾性を示すので(例えば、特許文献2参照。)近年広く実用化されている。   As the orthodontic wire, a stainless steel wire, a Ti—Ni alloy wire, or the like is used. Stainless steel wire has high rigidity and excellent dentition moving force, and can be subjected to bending technique processing by intentional deformation, but is susceptible to plastic deformation. On the other hand, the Ti—Ni alloy wire shows a remarkable shape memory effect accompanying the reverse transformation of the martensitic transformation (see, for example, Patent Document 1), and is induced by strong deformation in the matrix after the reverse transformation. Along with the stress-induced martensitic transformation, it exhibits good superelasticity (for example, see Patent Document 2), and has been widely put into practical use in recent years.

Ti−Ni合金をはじめとした形状記憶合金は、マルテンサイト変態の逆変態に付随して顕著な形状記憶効果を示し、マルテンサイト領域からの逆変態後の母相領域では、自発的な形状回復および良好なバネ特性(超弾性)を示すことが良く知られている。その超弾性は数多くの形状記憶合金の中でも特にTi−Ni合金およびTi−Ni−X合金(X=V,Cr,Co,Nb等)に顕著に現れる。   Shape memory alloys such as Ti-Ni alloys show a remarkable shape memory effect accompanying the reverse transformation of the martensite transformation, and spontaneous recovery of the shape in the parent phase region after the reverse transformation from the martensite region. It is well known that it exhibits good spring properties (superelasticity). The superelasticity is prominent in Ti—Ni alloys and Ti—Ni—X alloys (X = V, Cr, Co, Nb, etc.) among many shape memory alloys.

Ti−Ni−X合金の形状記憶効果および超弾性は、例えば、Ti−Ni−V合金に関して開示され(例えば、特許文献3,4参照)、Ti−Ni−Nb合金に関しても開示されている(例えば、特許文献5参照。)。本発明に用いられているようなTi−Ni−Nb合金はTi−Ni合金に比べ応力の温度ヒステリシスを応力付加によって大きくすることができる特長を示すために、原子炉配管継ぎ手などに実用化されている。   The shape memory effect and superelasticity of a Ti—Ni—X alloy are disclosed for example with respect to a Ti—Ni—V alloy (see, for example, Patent Documents 3 and 4), and also disclosed with respect to a Ti—Ni—Nb alloy (see FIG. For example, see Patent Document 5.) Ti-Ni-Nb alloys such as those used in the present invention have been put to practical use in reactor piping joints and the like in order to show the feature that the temperature hysteresis of stress can be increased by applying stress compared to Ti-Ni alloys. ing.

Ti−Ni超弾性合金の特徴は、合金の逆変態終了温度(Af温度)以上では、外部から変形を受けても、その外部拘束の解除と同時に元の形に復元し、その回復量は伸びひずみで約7%に達する(超弾性)ことである。即ち、合金のAf温度は生体温度(37℃近傍)以下としている。   The feature of Ti-Ni superelastic alloy is that when it is higher than the reverse transformation end temperature (Af temperature) of the alloy, even if it is deformed from the outside, it is restored to its original shape simultaneously with the release of the external restraint, and the recovery amount is increased. The strain reaches about 7% (superelasticity). That is, the Af temperature of the alloy is set to a living body temperature (around 37 ° C.) or lower.

超弾性を示すステント材料も提案されている(例えば、特許文献6,7参照。)。すなわち、体内挿入時生体温度で非形状記憶であって、バルーンによる形状復元後超弾性を示すステントの提案である。実施例ではTi−Ni合金およびTi−Ni−X合金(X=Cr,V,Cu,Fe,Coなど)からなるステントを強変形することで回復温度を上昇させることを述べている。しかし、ひずみ付加はスロット加工ステントをカテーテルに収納することでの強変形のみであり、これは歯列矯正ワイヤー用途として充分な効果は得られない。更に、Ti−Ni合金,Ti−Ni−X合金を用いたステントであって熱処理によって部分的に材料の剛性を変化させることも開示されている(例えば、特許文献8参照。)。具体的には、熱処理変化によって比較的剛性の高い超弾性部と低剛性の塑性変形部分(明細書中、超弾性が破壊される部分)を交互に連鎖させるとしており、本発明の意図する主旨,手段とは異なる。   A stent material exhibiting superelasticity has also been proposed (see, for example, Patent Documents 6 and 7). That is, it is a proposal of a stent that has non-shape memory at a living body temperature at the time of insertion into the body and exhibits superelasticity after shape restoration by a balloon. In the embodiment, it is described that the recovery temperature is raised by strongly deforming a stent made of a Ti—Ni alloy and a Ti—Ni—X alloy (X = Cr, V, Cu, Fe, Co, etc.). However, the addition of strain is only a strong deformation by accommodating the slotted stent in the catheter, and this does not have a sufficient effect as an orthodontic wire application. Furthermore, it is also disclosed that a stent using a Ti—Ni alloy or a Ti—Ni—X alloy changes the rigidity of the material partially by heat treatment (see, for example, Patent Document 8). Specifically, a superelastic portion having a relatively high rigidity and a plastically deformed portion having a low rigidity (a portion in which the superelasticity is broken in the specification) are alternately linked by a heat treatment change. , Different from means.

また、自律機能性に優れた合金も提案されているが(例えば、特許文献9,10参照。)、合金素子およびステントの開示に留まっており歯列矯正ワイヤーとなる極細線の提案はされていない。   Moreover, although the alloy excellent in autonomous function is also proposed (for example, refer patent documents 9 and 10), the proposal of the ultrafine wire used as an orthodontic wire has been carried out only in the disclosure of an alloy element and a stent. Absent.

従来の超弾性ワイヤーを用いた歯列矯正ワイヤーは、前記特長と同時に、口腔外操作時から常に超弾性状態であるためステンレス線に行うようなベンディングテクニックを用いる事はできない。また、口腔内で任意の形状に曲げながら留置を行うが、超弾性によるスプリングバックのため任意形状への操作性に欠けているという問題があった。   A conventional orthodontic wire using a super-elastic wire is in a super-elastic state from the time of extra-oral operation at the same time as the above-mentioned features, and therefore it is not possible to use a bending technique that is applied to a stainless steel wire. Moreover, although it indwells while bending in arbitrary shapes in an oral cavity, there existed a problem that the operativity to arbitrary shapes was missing because of the spring back by superelasticity.

米国特許第3174851号明細書US Pat. No. 3,174,851 特開昭58−161753号公報JP 58-161753 A 特開昭63−171844号公報JP-A-63-171844 特開昭63−14834号公報JP-A-63-14834 米国特許第4770725号明細書U.S. Pat. No. 4,770,725 特開昭61−106173号公報JP 61-106173 A 特開平11−99207号公報JP-A-11-99207 特表2003−505194号公報Special table 2003-505194 gazette 特開2006−328436号公報JP 2006-328436 A 特開2006−325613号公報JP 2006-325613 A

そこで、本発明の技術的課題は、事前の形状付与が可能であり、かつ、超弾性を有する歯列矯正ワイヤーを提供することにある。   Then, the technical subject of this invention is providing the orthodontic wire which can give shape in advance and has super elasticity.

本発明によれば、Ti−Ni系形状記憶合金を素材とした直径0.5mm以下の歯列矯正ワイヤーであって、操作から留置時は全ての領域がマルテンサイト領域、或いは操作時はマルテンサイト領域であり、留置時はその任意部を母相領域、或いは2つ以上の形状回復温度の異なる母相領域を有することにより張力が変化しており、操作・留置時に自律的な機能調整をすることで前記所要性能の一部或いは全てを保持する自律機能型歯列矯正ワイヤーが提供される。なお、本発明に用いるTi−Ni系形状記憶合金とは、たとえばTi−Ni合金、Ti−Ni−X合金(ここで、Xは、Fe,V,Cr,Co,Nb等の元素である)など、チタン(Ti)およびニッケル(Ni)を必須成分として含む形状記憶合金である。   According to the present invention, an orthodontic wire having a diameter of 0.5 mm or less made of a Ti—Ni-based shape memory alloy, and the entire region is martensite during operation or indwelling, or martensite during operation. The tension is changed by having a mother phase region or two or more mother phase regions having different shape recovery temperatures at the time of detention, and autonomous function adjustment is performed during operation and detention. Thus, an autonomous functional orthodontic wire that retains part or all of the required performance is provided. The Ti—Ni-based shape memory alloy used in the present invention is, for example, a Ti—Ni alloy or a Ti—Ni—X alloy (where X is an element such as Fe, V, Cr, Co, Nb). And a shape memory alloy containing titanium (Ti) and nickel (Ni) as essential components.

ここに、操作時の機能を全長の2/3以上(好ましくは4/5以上)をマルテンサイト領域とすることで、操作性に富み、ベンディングテクニック加工が可能な歯列矯正ワイヤーを提供することができる。また、留置時に任意の部位を母相領域とすることで、個別の歯列に応じた歯列矯正ワイヤーを提供することができる。更に、2つ以上の形状回復温度からなる母相領域とすることで、歯列矯正治療の過程で段階的に張力を変化させることが可能な歯列矯正ワイヤーを提供することができる。
To provide an orthodontic wire that is rich in operability and capable of bending technique processing by setting the function at the time of operation to 2/3 or more (preferably 4/5 or more) of the total length as a martensite region. Can do. Moreover, the orthodontic wire according to an individual dentition can be provided by making arbitrary site | parts into a mother phase area | region at the time of indwelling. Furthermore, an orthodontic wire capable of changing the tension stepwise in the course of orthodontic treatment can be provided by using a parent phase region composed of two or more shape recovery temperatures.

本発明によれば、操作性に富み、ベンディングテクニック加工が可能な歯列矯正ワイヤーを提供することができる。また、留置時に任意の部位を母相領域とすることで、個別の歯列に応じた歯列矯正ワイヤーを提供することができる。更に、2つ以上の形状回復温度からなる母相領域とすることで、歯列矯正治療の過程で段階的に張力を変化させることが可能な歯列矯正ワイヤーを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is rich in operativity and the orthodontic wire which can perform a bending technique process can be provided. Moreover, the orthodontic wire according to an individual dentition can be provided by making arbitrary site | parts into a mother phase area | region at the time of indwelling. Furthermore, an orthodontic wire capable of changing the tension stepwise in the course of orthodontic treatment can be provided by using a parent phase region composed of two or more shape recovery temperatures.

以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.

(ア)まず、熱処理・予ひずみ効果について説明する。
Ti−Ni系形状記憶合金の降伏応力は温度に依存する。生体温度での超弾性においても、その形状回復温度が低いほど降伏応力は高く、歯列移動力も大きい。本例として、Ti−47.6at%Ni−6Nb合金を用い、下記表2に示す条件で歯列矯正ワイヤーを作製した。即ち、歯列矯正ワイヤーを400℃、その後両端部のみを約550℃の各熱処理を行い、その後インストロン引張試験機により所要のひずみを付加した。42℃加温後、歯列矯正ワイヤー機能を調べた結果、37℃での歯列移動力の変化が認められた。また、表1に示すTi−49.4at%Ni−6Nb合金及びTi−45at%Ni−10V合金についても歯列矯正ワイヤーを作成し、熱処理・予歪効果を確認した。
(A) First, the heat treatment / pre-strain effect will be described.
The yield stress of Ti-Ni type shape memory alloy depends on temperature. Even in the superelasticity at the living body temperature, the lower the shape recovery temperature, the higher the yield stress and the greater the dentition moving force. As this example, an orthodontic wire was produced using a Ti-47.6 at% Ni-6Nb alloy under the conditions shown in Table 2 below. That is, each orthodontic wire was subjected to heat treatment at 400 ° C., and then both ends only at about 550 ° C., and then required strain was applied by an Instron tensile tester. As a result of examining the orthodontic wire function after heating at 42 ° C., a change in the orthodontic movement force at 37 ° C. was observed. In addition, orthodontic wires were prepared for the Ti-49.4 at% Ni-6Nb alloy and Ti-45 at% Ni-10V alloy shown in Table 1, and the heat treatment / pre-strain effect was confirmed.

Figure 2012050670

(イ)次に適用性について説明する。
歯列矯正ワイヤーの歯列模型上におけるベンディングテクニック加工操作性の検証を行った。本発明の37℃を越える形状回復温度を示す歯列矯正ワイヤーを、口腔内を模した37℃高温槽中で歯列模型上にて、ベンディングテクニック加工操作を行ったところ、マルテンサイト相に起因してスプリングバックが発生することなく加工操作を行う事ができた。その後、高温槽を42℃に加温後、本発明の歯列矯正ワイヤーは、所期の機能(一部マルテンサイト領域,一部母相領域,或いは全部母相領域または拡張力変化)を保持できた。
Figure 2012050670

(A) Next, the applicability will be described.
We verified the operability of bending technique processing on orthodontic wires. When the orthodontic wire having a shape recovery temperature exceeding 37 ° C. according to the present invention was subjected to a bending technique processing operation on a dental model in a 37 ° C. high-temperature bath simulating the oral cavity, it was caused by the martensite phase. As a result, the machining operation could be performed without the occurrence of springback. Then, after heating the high-temperature bath to 42 ° C, the orthodontic wire of the present invention retains the expected function (part of the martensite region, part of the mother phase region, or all of the mother phase region or expansion force change). did it.

この様に本発明によれば、これまで困難とされた材料設計により歯列および病変の状況に応じた歯列矯正特性を任意とすることが容易であり、新しい歯列矯正ワイヤーのデザイン化が可能である。なお、本発明に適用可能な合金は、形状記憶効果を示すTi−Ni系合金、Fe,Cr,V,Co,Nbなどの第3、第4元素を含むTi−Ni−X合金である。   Thus, according to the present invention, it is easy to make the orthodontic characteristics according to the dentition and the state of the lesion arbitrary by the material design that has been difficult so far, and a new orthodontic wire can be designed. Is possible. The alloy applicable to the present invention is a Ti—Ni alloy showing a shape memory effect, and a Ti—Ni—X alloy containing third and fourth elements such as Fe, Cr, V, Co, and Nb.

熱処理効果を用いる本発明に対しての好適合金は、時効によるR相出現が容易なTi−51at%Ni合金などのNi過剰側合金系である。また、予ひずみ効果を使う好適合金は、Ti−Ni−Nb合金またはTi−Ni−V合金であり、Nb量は添加効果が顕著な3at% 以上と言えるが、過度な添加は合金の加工性を悪くするため、好ましくは6〜9at%である。   A preferred alloy for the present invention using the heat treatment effect is a Ni-excess side alloy system such as a Ti-51 at% Ni alloy in which the R phase appears easily due to aging. A suitable alloy that uses the pre-strain effect is a Ti—Ni—Nb alloy or a Ti—Ni—V alloy, and it can be said that the amount of Nb is not less than 3 at% in which the effect of addition is remarkable. Is preferably 6 to 9 at%.

Claims (3)

Ti−Ni系形状記憶合金からなる直径0.5mm以下に加工された歯列矯正ワイヤーであって、操作から留置時はマルテンサイト領域であることを特徴とする自律機能型歯列矯正ワイヤー。   An autonomous orthodontic wire made of a Ti-Ni shape memory alloy and processed into an orthodontic wire having a diameter of 0.5 mm or less, which is a martensite region during operation and placement. Ti−Ni系形状記憶合金からなる直径0.5mm以下に加工された歯列矯正ワイヤーであって、操作時はマルテンサイト領域であり、留置時はその任意部を母相領域としたことを特徴とする自律機能型歯列矯正ワイヤー。   An orthodontic wire made of a Ti-Ni shape memory alloy and processed to a diameter of 0.5 mm or less, characterized in that it is a martensite region during operation and an arbitrary portion thereof as a parent phase region during placement. Autonomous functional orthodontic wire. Ti−Ni系形状記憶合金からなる直径0.5mm以下に加工された歯列矯正ワイヤーであって、操作時はマルテンサイト領域であり、留置時には2つ以上の形状回復温度からなる母相領域としたことを特徴とする自律機能型歯列矯正ワイヤー。   An orthodontic wire made of a Ti-Ni shape memory alloy and processed to a diameter of 0.5 mm or less, which is a martensite region during operation, and a parent phase region composed of two or more shape recovery temperatures during placement An autonomous functional orthodontic wire characterized by
JP2010195460A 2010-09-01 2010-09-01 Autonomous function type orthodontic wire Pending JP2012050670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195460A JP2012050670A (en) 2010-09-01 2010-09-01 Autonomous function type orthodontic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195460A JP2012050670A (en) 2010-09-01 2010-09-01 Autonomous function type orthodontic wire

Publications (1)

Publication Number Publication Date
JP2012050670A true JP2012050670A (en) 2012-03-15

Family

ID=45904745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195460A Pending JP2012050670A (en) 2010-09-01 2010-09-01 Autonomous function type orthodontic wire

Country Status (1)

Country Link
JP (1) JP2012050670A (en)

Similar Documents

Publication Publication Date Title
AU774230B2 (en) Medical instruments and devices and parts thereof using shape memory alloys
Miura et al. The super-elastic Japanese NiTi alloy wire for use in orthodontics part III. Studies on the Japanese NiTi alloy coil springs
EP2423338B1 (en) Shape setting a shape memory alloy dental arch
US10315012B2 (en) Titanium-niobium-hafnium alloy shape memory wire
JP2005508229A (en) Work-hardening pseudoelastic guidewire
EP2524675B1 (en) Device for correcting hallux valgus and method for producing device for correcting hallux valgus
WO2006104823A3 (en) Method for producing strain induced austenite
US9061124B2 (en) High-modulus superelastic alloy wire for medical and dental purposes
JP2002505382A (en) Pseudoelastic beta titanium alloy and its use
Kotha et al. An overview of orthodontic wires
JP4351560B2 (en) Balloon expandable superelastic stent
WO2013035269A1 (en) Super elastic zirconium alloy for biological use, medical instrument and glasses
WO2015022969A1 (en) MEDICAL Ti-Ni ALLOY
JP5143342B2 (en) Autonomous functional stent
JP2012050670A (en) Autonomous function type orthodontic wire
KR102657611B1 (en) Tube member having locally excellent bending property and method for manufacturing the same
JPS61193670A (en) Catheter
JPS5844047A (en) Orthodontic member
KR101969468B1 (en) Band structure using shape memory alloy
JP2935124B2 (en) Orthodontic appliance
JPH09271517A (en) Medical tube and catheter using the same
JP2023529482A (en) Tubular member having excellent local bendability and manufacturing method thereof
JP2016073589A (en) Multi-function stent
Abdelraouf Nitinol in dentistry
JP6887408B2 (en) Deformed nail straightener