JP2012047627A - Radiation detection panel - Google Patents

Radiation detection panel Download PDF

Info

Publication number
JP2012047627A
JP2012047627A JP2010190726A JP2010190726A JP2012047627A JP 2012047627 A JP2012047627 A JP 2012047627A JP 2010190726 A JP2010190726 A JP 2010190726A JP 2010190726 A JP2010190726 A JP 2010190726A JP 2012047627 A JP2012047627 A JP 2012047627A
Authority
JP
Japan
Prior art keywords
side member
surface side
housing
radiation
radiation detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010190726A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Ota
恭義 大田
Haruyasu Nakatsugawa
晴康 中津川
Naoyuki Nishino
直行 西納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010190726A priority Critical patent/JP2012047627A/en
Publication of JP2012047627A publication Critical patent/JP2012047627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a constitution member from deforming, for example, warping and so on owing to temperature change, and to make it easy to determine whether a state suited to detection of radiation is entered.SOLUTION: A storage body 16 and a lid 18 constituting a housing 14 of an electronic cassette 10 are displaceable along a thickness of the housing 14, a scintillator 34 absorbing irradiating radiation and emitting light is attached on a side of the storage body 16, and a radiation detection part (TFT substrate) 42 which detects the light emitted from the scintillator 34 as an image is attached on a side of the lid 18. The housing 14 is switched to a maximum thickness state ((A) reference) or a minimum thickness state ((B) reference) with air pressure supplied into the housing from an air pressure generation device 28 connected to a connection part 22. When the electronic cassette 10 is not in use, the maximum thickness state in which the scintillator 34 and radiation detection part 42 are apart from each other is entered and when a radiation image is photographed, the minimum thickness state in which the scintillator 34 and radiation detector 42 come into contact with each other over the entire surfaces is entered.

Description

本発明は放射線検出パネルに係り、特に、被写体を透過した放射線を吸収して光を放出する光放出部及び当該光放出部から放出された光を検出する検出部を備えた放射線検出パネルに関する。   The present invention relates to a radiation detection panel, and more particularly, to a radiation detection panel including a light emission unit that absorbs radiation transmitted through a subject and emits light and a detection unit that detects light emitted from the light emission unit.

近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、照射されたX線やγ線、α線等の放射線を検出し、照射放射線量の分布を表す放射線画像のデータへ直接変換して出力するFPD(Flat Panel Detector)が実用化されており、このFPD等のパネル型の放射線検出器と、画像メモリを含む電子回路及び電源部を内蔵し、放射線検出器から出力される放射線画像データを画像メモリに記憶する可搬型の放射線検出パネル(以下、電子カセッテともいう)も実用化されている。なお、上記の放射線感応層としては、例えば照射された放射線をCsI:Tl、GOS(GdS:Tb)等のシンチレータ(蛍光体層)で光に一旦変換し、シンチレータから放出された光をPD(Photodiode)等から成る光検出部によって電荷へ再変換して蓄積する構成(間接変換方式)が知られている。放射線検出パネルは可搬性に優れているので、ストレッチャーやベッドに載せたまま被撮影者を撮影できると共に、放射線検出パネルの位置を変更することで撮影部位の調整も容易であるため、動けない被撮影者を撮影する場合にも柔軟に対処することができる。 In recent years, radiation sensitive layers have been arranged on TFT (Thin Film Transistor) active matrix substrates to detect irradiated X-rays, γ-rays, α-rays, and other radiation, and to radiation image data representing the distribution of irradiation dose. An FPD (Flat Panel Detector) that directly converts and outputs has been put into practical use. It incorporates a panel-type radiation detector such as this FPD, an electronic circuit including an image memory, and a power supply unit, and is output from the radiation detector. A portable radiation detection panel (hereinafter also referred to as an electronic cassette) that stores radiation image data in an image memory has been put into practical use. As the radiation sensitive layer, for example, irradiated radiation is once converted into light by a scintillator (phosphor layer) such as CsI: Tl, GOS (Gd 2 O 2 S: Tb), and emitted from the scintillator. There is known a configuration (indirect conversion method) in which light is reconverted into an electric charge and stored by a photodetection unit including a PD (Photodiode) or the like. Because the radiation detection panel is excellent in portability, the subject can be photographed while being placed on a stretcher or bed, and the position of the radiation detection panel can be easily adjusted to adjust the imaging part, so it cannot move. It is possible to flexibly cope with shooting of the subject.

上記に関連して特許文献1には、基板上に1次元又は2次元状に配置される複数の光電変換素子を有する光電変換部と、基板の外周部に配置される電極取り出し部を有するセンサパネルと、光電変換部上に配置され且つ放射線を光電変換素子が感知可能な光に変換する蛍光体から成るシンチレータパネルと、を有する放射線検出装置において、シンチレータパネルを交換可能とし、シンチレータパネルとセンサパネル面間を減圧密着させる機構を設けた技術が開示されている。   In relation to the above, Patent Document 1 discloses a sensor having a photoelectric conversion unit having a plurality of photoelectric conversion elements arranged one-dimensionally or two-dimensionally on a substrate, and an electrode extraction unit arranged on the outer periphery of the substrate. A scintillator panel comprising a panel and a scintillator panel made of a phosphor that is disposed on a photoelectric conversion unit and converts radiation into light that can be sensed by a photoelectric conversion element. There is disclosed a technique in which a mechanism for reducing pressure contact between panel surfaces is provided.

また特許文献2には、基板の上に2次元状に固体光検出素子が配されて成る固体光検出手段、固体光検出手段の外周に全周に亘り配置されたシール手段、シール手段を挟んで固体光検出手段と相対する側に配され、固体光検出手段及びシール手段と共に密閉空間を形成するカバー手段、及び、密閉空間内に配されたシンチレータが設けられた構成の放射線検出器において、密閉空間の内部を排気することでシンチレータと固体光検出素子とを密着させ、センサー面での鮮鋭度のばらつきを防止する技術が開示されている。   Further, in Patent Document 2, a solid-state light detection means in which solid-state light detection elements are two-dimensionally arranged on a substrate, a sealing means disposed around the entire periphery of the solid-state light detection means, and a sealing means are sandwiched. In the radiation detector having a configuration provided with a cover unit that is disposed on the side opposite to the solid-state light detection unit, and that forms a sealed space together with the solid-state light detection unit and the seal unit, and a scintillator disposed in the sealed space, A technique is disclosed in which the scintillator and the solid-state light detection element are brought into close contact with each other by exhausting the inside of the sealed space, thereby preventing variations in sharpness on the sensor surface.

また特許文献3には、上蓋と下蓋と密封部材とで囲まれた空間内を減圧し、前面増感紙と後面増感紙とでX線フィルムを密着保持するX線フィルム密着保持装置において、リンクを有する移動機構により、上蓋に対して下蓋を略平行状態で上方及び下方に移動可能に基台に支持し、上蓋に対し略平行に開閉可能とすることで、上蓋と下蓋とをその全周に亘って均一に密着させ、気密性の向上や小形化を実現する技術が開示されている。   Patent Document 3 discloses an X-ray film adhesion holding device that decompresses the space surrounded by the upper lid, the lower lid, and the sealing member, and holds the X-ray film in close contact with the front intensifying screen and the rear intensifying screen. The lower cover is supported by the base so that the lower cover can move upward and downward in a substantially parallel state with respect to the upper cover by the moving mechanism having the link, and can be opened and closed substantially parallel to the upper cover. Has been disclosed that achieves improvement in hermeticity and miniaturization by uniformly adhering to the entire circumference.

特開平9−257944号公報Japanese Patent Laid-Open No. 9-257944 特開2006−337184号公報JP 2006-337184 A 特開平5−113615号公報Japanese Patent Laid-Open No. 5-113615

間接変換方式の放射線検出パネルでは、シンチレータ(光放出部)とTFT基板から成る検出部を密着させる必要があり、放射線検出パネルの製造では、両者が貼り合わされた後に放射線検出パネルの筐体内に収容される。しかし、CsI等から成るシンチレータはアルミニウム等から成る基板に材料を蒸着することで形成される一方、TFT基板としてはガラス基板等が多用され、双方の基板材料の熱膨張率は著しく相違している。このため、温度変化に伴って基板の反り等の変形が生じ、放射線検出パネルによる放射線の検出精度が低下することがある、という問題があった。   In the indirect conversion type radiation detection panel, it is necessary to bring the scintillator (light emitting part) and the detection part made of the TFT substrate into close contact with each other. In the manufacture of the radiation detection panel, the two are attached and then housed in the casing of the radiation detection panel. Is done. However, a scintillator made of CsI or the like is formed by vapor-depositing a material on a substrate made of aluminum or the like, while a glass substrate or the like is frequently used as a TFT substrate, and the thermal expansion coefficients of both substrate materials are remarkably different. . For this reason, there has been a problem that deformation such as warping of the substrate occurs with a change in temperature and the detection accuracy of radiation by the radiation detection panel may be lowered.

上記の問題に対し、特許文献1〜3に記載の技術は、何れも筐体内を負圧状態(減圧状態)とすることで光放出部と検出部とを密着させるものであり、光放出部と検出部とを貼り合わせていないので温度変化に伴って部材が変形することは回避できる。しかしながら、特許文献1〜3に記載の技術では、一部部材の劣化等によって筐体の気密性が損なわれていると、光放出部と検出部との接触状態が変化して放射線の検出精度が低下する。そして、光放出部と検出部との接触状態が変化しても外観上の変化は生じないので、放射線の検出精度が低下した状態に気付かないまま放射線の検出が行われる事態が生じ得る、という問題がある。   In order to solve the above problem, the techniques described in Patent Documents 1 to 3 make the light emission part and the detection part in close contact with each other by setting the inside of the casing to a negative pressure state (decompression state). Since the sensor and the detection unit are not bonded together, it is possible to avoid deformation of the member with a temperature change. However, in the techniques described in Patent Documents 1 to 3, if the airtightness of the housing is impaired due to deterioration of some members or the like, the contact state between the light emitting unit and the detection unit changes, and the radiation detection accuracy Decreases. And, even if the contact state between the light emitting unit and the detection unit changes, no change in appearance occurs, so there may be a situation in which radiation detection is performed without noticing the state in which the detection accuracy of radiation has declined. There's a problem.

本発明は上記事実を考慮して成されたもので、温度変化に伴う構成部材の反り等の変形を防止することができ、放射線の検出に適した状態か否かの判断も容易な放射線検出パネルを得ることが目的である。   The present invention has been made in consideration of the above facts, and can prevent deformation such as warping of a structural member accompanying a temperature change, and can easily determine whether or not the state is suitable for radiation detection. The purpose is to obtain a panel.

上記目的を達成するために請求項1記載の発明に係る放射線検出パネルは、上面及び底面を有する形状で、前記上面が形成された上面側部材と前記底面が形成された底面側部材とが、前記上面と前記底面との間隔が変化するように相対的に変位可能とされた筐体と、前記筐体内に配置されかつ前記上面側部材及び前記底面側部材の一方に取付けられ、被写体を透過して前記上面又は前記底面に照射された放射線を吸収して光を放出する光放出部と、前記筐体内に配置されかつ前記上面側部材及び前記底面側部材の他方に取付けられ、前記光放出部から放出された光を検出すると共に、前記上面と前記底面との間隔の変化に伴い、前記光放出部と接している第1状態又は前記光放出部と離間している第2状態に切り替わる検出部と、を含んで構成されている。   In order to achieve the above object, a radiation detection panel according to claim 1 is a shape having an upper surface and a bottom surface, and an upper surface side member on which the upper surface is formed and a bottom surface side member on which the bottom surface is formed. A casing that is relatively displaceable so that a distance between the top surface and the bottom surface changes, and a casing that is disposed in the casing and is attached to one of the top surface side member and the bottom surface side member and transmits the subject. A light emitting portion that absorbs radiation emitted to the top surface or the bottom surface and emits light; and is disposed in the casing and attached to the other of the top surface side member and the bottom surface side member, and emits the light. The light emitted from the part is detected, and the first state in contact with the light emitting part or the second state separated from the light emitting part is switched in accordance with the change in the distance between the upper surface and the bottom surface. And a detection unit. It is.

請求項1記載の発明に係る放射線検出パネルは、筐体が上面及び底面を有する形状とされ、上面が形成された上面側部材と底面が形成された底面側部材とが、上面と底面との間隔が変化するように相対的に変位可能とされている。また、筐体内には光放出部が配置されており、光放出部は上面側部材及び底面側部材の一方に取付けられ、被写体を透過して上面又は底面に照射された放射線を吸収して光を放出する。更に、筐体内には検出部も配置されており、検出部は上面側部材及び底面側部材の他方に取付けられ、光放出部から放出された光を検出すると共に、上面と底面との間隔の変化に伴い、光放出部と接している第1状態又は光放出部と離間している第2状態に切り替わる。   In the radiation detection panel according to the first aspect of the present invention, the casing has a shape having an upper surface and a bottom surface, and the upper surface side member on which the upper surface is formed and the bottom surface side member on which the bottom surface is formed are formed between the upper surface and the bottom surface. Relative displacement is possible so that the interval changes. In addition, a light emitting portion is disposed in the housing, and the light emitting portion is attached to one of the upper surface side member and the bottom surface side member, and absorbs the radiation that has passed through the subject and has been irradiated on the upper surface or the bottom surface. Release. In addition, a detection unit is also disposed in the housing, and the detection unit is attached to the other of the upper surface side member and the bottom surface side member, detects light emitted from the light emission unit, and determines the distance between the upper surface and the bottom surface. With the change, the state is switched to the first state in contact with the light emitting unit or the second state separated from the light emitting unit.

このように、請求項1記載の発明では、光放出部と検出部が貼り合わされておらず、筐体の上面と底面との間隔が拡大するように上面側部材と底面側部材とが相対的に変位されている状態(第2状態)では光放出部と検出部が離間しているので、温度変化に伴って構成部材(光放出部又は検出部)に反り等の変形が生じることが防止される。また、筐体の上面と底面との間隔が縮小するように上面側部材と底面側部材とが相対的に変位されると、光放出部と検出部とが接している第1状態、すなわち放射線の検出に適した状態になる。従って、請求項1記載の発明では、光放出部と検出部との距離が筐体の上面と底面との間隔に応じて変化し、光放出部と検出部とが接している第1状態、すなわち放射線の検出に適した状態になっているか否かを、筐体の外観(筐体の上面と底面との間隔)から容易に判断することができるので、放射線の検出精度が低下した状態に気付かないまま放射線の検出が行われることを未然に防止することができる。   Thus, in the first aspect of the present invention, the light emitting portion and the detecting portion are not bonded together, and the upper surface side member and the bottom surface side member are relative to each other so that the distance between the upper surface and the bottom surface of the housing is increased. Since the light emitting unit and the detecting unit are separated from each other in the state (second state), the component member (the light emitting unit or the detecting unit) is prevented from being deformed due to temperature change. Is done. Further, when the upper surface side member and the bottom surface side member are relatively displaced so that the distance between the upper surface and the bottom surface of the housing is reduced, the first state in which the light emitting unit and the detection unit are in contact, that is, radiation It is in a state suitable for detection. Therefore, in the first aspect of the present invention, the distance between the light emitting unit and the detecting unit changes according to the distance between the upper surface and the bottom surface of the housing, and the first state in which the light emitting unit and the detecting unit are in contact with each other. In other words, it can be easily determined from the appearance of the housing (the distance between the top surface and the bottom surface of the housing) whether or not it is in a state suitable for radiation detection. It is possible to prevent the detection of radiation without being noticed.

なお、請求項1記載の発明のように、筐体の上面と底面との間隔が変化するように、筐体を構成する上面側部材と底面側部材とを相対的に変位可能とした場合、筐体の構成によっては、上面側部材と底面側部材との相対変位に伴って、光放出部と検出部との相対位置が筐体の上面や底面におよそ平行な方向に変化する位置ずれが生ずる可能性がある。これを考慮すると、請求項1記載の発明において、例えば請求項2に記載したように、上面側部材は、一方の面が筐体の上面を成す上面部材の外縁に全周に亘り、上面部材とおよそ直交する方向に沿って壁部が立設された形状とされ、底面側部材は、一方の面が筐体の底面を成す底面部材の外縁に全周に亘り、底面部材とおよそ直交する方向に沿って壁部が立設された形状とされ、筐体は、上面部材と底面部材とがおよそ平行に向い合い、かつ、上面側部材の壁部と底面側部材の壁部とが、前記全周に亘り上面及び底面におよそ平行な方向に沿った間隙を隔てて対向するように、上面側部材及び底面側部材が配置されて構成されていることが好ましい。   When the upper surface side member and the bottom surface side member constituting the housing are relatively displaceable so that the distance between the upper surface and the bottom surface of the housing changes as in the invention of claim 1, Depending on the configuration of the housing, there may be a positional deviation in which the relative position between the light emitting unit and the detecting unit changes in a direction approximately parallel to the top surface and the bottom surface of the housing in accordance with the relative displacement between the upper surface side member and the bottom surface side member. May occur. In consideration of this, in the first aspect of the present invention, for example, as described in the second aspect, the upper surface side member extends over the entire circumference of the outer edge of the upper surface member whose one surface forms the upper surface of the housing. The bottom surface side member has a shape in which the wall portion is erected along a direction approximately perpendicular to the bottom surface, and one surface of the bottom surface member is substantially orthogonal to the bottom surface member over the entire circumference of the outer edge of the bottom surface member forming the bottom surface of the housing. The wall portion is erected along the direction, and the housing has the upper surface member and the bottom surface member facing substantially parallel, and the wall portion of the upper surface side member and the wall portion of the bottom surface side member are It is preferable that the upper surface side member and the bottom surface side member are arranged so as to face each other with a gap along a direction substantially parallel to the upper surface and the bottom surface over the entire circumference.

請求項2記載の発明では、上面部材の外縁に全周に亘って立設された上面側部材の壁部、及び、底面部材の外縁に全周に亘って立設された底面側部材の壁部が、筐体の上面と底面との間隔の変化方向に各々沿うことになる。そして、上面側部材の壁部と底面側部材の壁部とが、上面部材又は底面部材の全周に亘り上面及び底面におよそ平行な方向に沿った間隙を隔てて対向するように上面側部材及び底面側部材が配置されているので、上面側部材と底面側部材との相対変位において、上面側部材の壁部と底面側部材の壁部とが干渉することで、上面側部材と底面側部材との相対位置が筐体の上面や底面におよそ平行な方向へ変化することが抑制される。従って、請求項2記載の発明によれば、上面側部材と底面側部材との相対変位に伴って、光放出部と検出部とに前記位置ずれが生ずることを抑制することができる。   According to the second aspect of the present invention, the wall portion of the upper surface side member erected over the entire circumference of the outer edge of the upper surface member, and the wall of the bottom surface side member erected over the entire periphery of the outer edge of the bottom surface member. The portions are along the changing direction of the distance between the upper surface and the bottom surface of the housing. The upper surface side member and the wall surface of the lower surface side member are opposed to each other with a gap along a direction approximately parallel to the upper surface and the bottom surface over the entire circumference of the upper surface member or the bottom surface member. Since the bottom surface side member is disposed, the wall portion of the top surface side member and the wall surface of the bottom surface side member interfere with each other in relative displacement between the top surface side member and the bottom surface side member. It is possible to suppress the relative position of the member from changing in a direction approximately parallel to the upper surface and the bottom surface of the housing. Therefore, according to the second aspect of the present invention, it is possible to suppress the occurrence of the positional deviation between the light emitting portion and the detecting portion due to the relative displacement between the upper surface side member and the bottom surface side member.

また、請求項1又は請求項2記載の発明において、例えば請求項3に記載したように、光放出部には、放射線の照射面内又は光放出面内の第1位置に、照射面内の第1位置に照射される放射線又は光放出面内の第1位置から放出される光を遮蔽する遮蔽部が設けられており、検出部には、受光面内のうち第1位置に対して一定の位置関係の第2位置に、受光面内の第2位置に照射される光を遮光する遮光部が設けられていることが好ましい。これにより、検出部が光放出部から放出された光を画像として検出する場合、検出部によって検出された画像上の前記第1位置に対応する位置には遮蔽部による放射線又は光の遮蔽によって濃度変化が生じ、前記画像上の前記第2位置に対応する位置にも遮光部による遮光によって濃度変化が生じる。このため、画像に生じた双方の濃度変化の位置関係が、第1位置と第2位置との位置関係に対応している否かに基づいて、光放出部と検出部とに位置ずれが生じたか否かを判別したり、位置ずれの方向や位置ずれの量を検出することが可能となる。   In the invention according to claim 1 or claim 2, for example, as described in claim 3, the light emitting portion has a radiation irradiation surface or a first position in the light emission surface within the irradiation surface. A shielding part is provided for shielding radiation emitted to the first position or light emitted from the first position in the light emitting surface, and the detecting part is constant with respect to the first position in the light receiving surface. It is preferable that a light-shielding portion that shields light irradiated to the second position in the light-receiving surface is provided at the second position in the positional relationship. Thereby, when the detection unit detects the light emitted from the light emitting unit as an image, the position corresponding to the first position on the image detected by the detection unit has a density due to radiation or light shielding by the shielding unit. A change occurs, and a density change also occurs at a position corresponding to the second position on the image due to light shielding by the light shielding portion. For this reason, a positional shift occurs between the light emitting unit and the detecting unit based on whether the positional relationship between the two density changes occurring in the image corresponds to the positional relationship between the first position and the second position. It is possible to determine whether or not, or to detect the direction of displacement and the amount of displacement.

また、請求項1〜請求項3の何れかに記載の発明において、例えば請求項4に記載したように、上面側部材と底面側部材との間隙を密封する密封手段と、筐体の内部と外部とを選択的に連通させる連通手段と、を設けることが好ましい。上記の密封手段によって上面側部材と底面側部材との間隙を密封することで、本発明に係る放射線検出パネルを手術時の撮影に用いたり、必要に応じて殺菌洗浄することが可能となる。但し、上面側部材と底面側部材との間隙を密封した場合、筐体の内部空間に密封された空気が、筐体の上面と底面との間隔が変化するように上面側部材と底面側部材とを相対的に変位させる際の抵抗となる。これに対し、筐体の内部と外部とを選択的に連通させる連通手段を設けた場合、上面側部材と底面側部材とを相対的に変位させる際にのみ筐体の内部と外部とを連通させることが可能となり、筐体の密閉性を維持しつつ上面側部材と底面側部材との相対的に変位させることも容易に実現することができる。   Further, in the invention according to any one of claims 1 to 3, for example, as described in claim 4, a sealing means for sealing a gap between the upper surface side member and the bottom surface side member, It is preferable to provide communication means for selectively communicating with the outside. By sealing the gap between the upper surface side member and the bottom surface side member by the above-described sealing means, the radiation detection panel according to the present invention can be used for imaging during surgery or sterilized and cleaned as necessary. However, when the gap between the upper surface side member and the lower surface side member is sealed, the air sealed in the internal space of the housing changes so that the distance between the upper surface and the bottom surface of the housing changes. It becomes a resistance when these are displaced relatively. On the other hand, when the communication means for selectively communicating the inside and the outside of the housing is provided, the inside and the outside of the housing are communicated only when the upper surface side member and the bottom surface side member are relatively displaced. Therefore, it is possible to easily displace the upper surface side member and the bottom surface side member relative to each other while maintaining the sealing property of the housing.

なお、請求項1〜請求項4の何れかに記載の発明において、上面側部材と底面側部材とを相対的に変位させ、光放出部と検出部とが接している第1状態又は光放出部と検出部とが離間している第2状態に切り替えることは、例えば請求項5に記載したように、上面側部材と底面側部材との間隙を密封する密封手段と、筐体の内部空間が空気圧発生装置と連通するように空気圧発生装置を接続するための接続部と、を設け、接続部に接続された空気圧発生装置によって発生された空気圧を接続部を介して筐体の内部空間に導入することによって実現することができる。この場合、筐体の内部空間に負圧を導入することで、上面側部材と底面側部材とは筐体の上面と底面の間隔が縮小する方向へ相対的に変位し、筐体の内部空間に正圧を導入することで、上面側部材と底面側部材とは筐体の上面と底面の間隔が拡大する方向へ相対的に変位することになる。   In the invention according to any one of claims 1 to 4, the first state in which the upper surface side member and the lower surface side member are relatively displaced and the light emitting portion and the detecting portion are in contact with each other, or the light emission Switching to the second state in which the part and the detection part are separated from each other includes, for example, a sealing unit that seals a gap between the upper surface side member and the lower surface side member, and an internal space of the housing. A connecting portion for connecting the air pressure generating device so that the air pressure generating device communicates with the air pressure generating device, and the air pressure generated by the air pressure generating device connected to the connecting portion is passed through the connecting portion to the internal space of the housing. It can be realized by introducing. In this case, by introducing a negative pressure into the internal space of the housing, the upper surface side member and the bottom surface side member are relatively displaced in a direction in which the space between the upper surface and the bottom surface of the housing is reduced, and the internal space of the housing By introducing positive pressure into the upper surface member, the upper surface side member and the bottom surface side member are relatively displaced in the direction in which the distance between the upper surface and the bottom surface of the housing increases.

また、請求項1〜請求項5の何れかに記載の発明において、例えば請求項6に記載したように、筐体の上面と底面との間隔が拡大する方向へ上面側部材及び底面側部材を付勢する付勢手段を設けることが好ましい。上面側部材と底面側部材とを相対的に変位させ、光放出部と検出部とが接している第1状態又は光放出部と検出部とが離間している第2状態に切り替えることは、請求項5に記載したように筐体の内部空間に空気圧を導入する以外に、上面側部材と底面側部材とを相対的に変位させる力を手、或いは治具等によって上面側部材及び底面側部材の外面に加えることによっても実現可能であるが、特にこの態様で上記の付勢手段を設ければ、筐体の上面と底面との間隔が拡大する方向へ上面側部材及び底面側部材を相対的に変位させることを、付勢手段の付勢力によって容易に実現できるので好ましい。   Moreover, in the invention according to any one of claims 1 to 5, for example, as described in claim 6, the upper surface side member and the bottom surface side member are arranged in a direction in which the interval between the upper surface and the bottom surface of the housing is increased. It is preferable to provide a biasing means for biasing. The upper surface side member and the bottom surface side member are relatively displaced, and switching to the first state in which the light emitting unit and the detecting unit are in contact or the second state in which the light emitting unit and the detecting unit are separated from each other, In addition to introducing air pressure into the internal space of the housing as described in claim 5, the force that relatively displaces the upper surface side member and the lower surface side member by hand or a jig or the like is used. Although it can also be realized by adding to the outer surface of the member, in particular, if the above-described urging means is provided in this aspect, the upper surface side member and the bottom surface side member are moved in the direction in which the distance between the upper surface and the bottom surface of the housing is increased. The relative displacement is preferable because it can be easily realized by the urging force of the urging means.

また、請求項1〜請求項6の何れかに記載の発明において、例えば請求項7に記載したように、少なくとも上面と底面との間隔が拡大する方向へ上面側部材と底面側部材とが相対的に変位された場合に、上面側部材と底面側部材との相対位置を、相対的に変位された後の相対位置に保持する保持手段が設けられていることが好ましい。   Further, in the invention according to any one of claims 1 to 6, for example, as described in claim 7, the upper surface side member and the bottom surface side member are relatively relative to each other in a direction in which the distance between the upper surface and the bottom surface is increased. It is preferable that there is provided holding means for holding the relative position between the upper surface side member and the bottom surface side member at the relative position after the relative displacement when the upper surface side member and the lower surface side member are displaced.

上面側部材と底面側部材との相対位置を保持することは、例えば請求項5に記載したように、筐体の内部空間に導入した空気圧によって上面側部材と底面側部材とを相対的に変位させる態様であれば、上面側部材と底面側部材とを相対的に変位させた後も空気圧の導入を継続する等によっても実現可能であるが、本発明に係る放射線検出パネルが可搬性を有する構成である場合、空気圧発生装置との接続を解除できないために可搬性が損なわれるという問題が生ずる。これに対し、本発明に係る放射線検出パネルに上記の保持手段を設ければ、筐体の内部空間に導入した空気圧によって上面側部材と底面側部材とを相対的に変位させる態様であっても空気圧発生装置との接続を解除することが可能となり、本発明に係る放射線検出パネルに可搬性を持たせることが可能となる。   Maintaining the relative position between the upper surface side member and the lower surface side member is, for example, as described in claim 5, wherein the upper surface side member and the bottom surface side member are relatively displaced by air pressure introduced into the internal space of the housing. If it is an aspect to be made, it can be realized by continuing to introduce air pressure after the upper surface side member and the bottom surface side member are relatively displaced, but the radiation detection panel according to the present invention has portability. In the case of the configuration, there is a problem that the portability is impaired because the connection with the air pressure generation device cannot be released. On the other hand, if the radiation detection panel according to the present invention is provided with the above-described holding means, the top surface side member and the bottom surface side member may be relatively displaced by the air pressure introduced into the internal space of the housing. The connection with the air pressure generator can be released, and the radiation detection panel according to the present invention can be made portable.

また、請求項7記載の発明において、上面側部材と底面側部材との間隙を密封する密封手段と、筐体の内部と外部とを選択的に連通させる連通手段と、が設けられている場合、保持手段は、例えば請求項8に記載したように、上面側部材と底面側部材とが相対的に変位されている間は連通手段によって筐体の内部と外部とを連通させ、上面側部材と底面側部材とが相対的に変位された後は連通手段による筐体の内部と外部との連通を遮断することで、上面側部材と底面側部材との相対位置を前記相対的に変位された後の相対位置に保持するように構成することができる。   Further, in the invention according to claim 7, a sealing means for sealing a gap between the upper surface side member and the bottom surface side member and a communication means for selectively communicating the inside and the outside of the housing are provided. The holding means communicates the inside and the outside of the housing by the communicating means while the upper surface side member and the bottom surface side member are relatively displaced, as described in claim 8, for example, After the relative displacement between the bottom surface side member and the bottom surface side member, the relative position between the top surface side member and the bottom surface side member is relatively displaced by blocking communication between the inside and outside of the housing by the communication means. It can comprise so that it may hold | maintain in the relative position after.

また、請求項1、請求項3〜請求項8の何れかに記載の発明において、筐体は、例えば請求項9に記載したように、上面側部材と底面側部材との間に設けられ、上面側部材と底面側部材との間隙を密封すると共に、上面側部材と底面側部材との相対変位に伴う前記間隙の大きさの変化に応じて伸縮する伸縮部材が設けられた構成であってもよい。   Further, in the invention according to any one of claims 1 to 3 to 8, the housing is provided between the upper surface side member and the lower surface side member, for example, as described in claim 9, The gap between the upper surface side member and the bottom surface side member is sealed, and an expansion / contraction member is provided that expands and contracts according to a change in the size of the gap due to relative displacement between the upper surface side member and the bottom surface side member. Also good.

また、請求項1〜請求項9の何れかに記載の発明において、例えば請求項10に記載したように、光放出部と検出部との間には光放出部と検出部とを光学的に結合する光結合部材が設けられており、第1状態において、検出部は光結合部材を介して光放出部と接するように構成してもよい。   In the invention according to any one of claims 1 to 9, for example, as described in claim 10, the light emitting portion and the detecting portion are optically arranged between the light emitting portion and the detecting portion. An optical coupling member to be coupled is provided, and in the first state, the detection unit may be configured to contact the light emitting unit via the optical coupling member.

また、請求項1〜請求項10の何れかに記載の発明において、例えば請求項11に記載したように、検出部が光放出部と接している第1状態での筐体の厚みが、照射された放射線を感光材料に画像として記録する構成のカセッテにおける筐体の厚みと同サイズとされていることが好ましい。これにより、本発明に係る放射線検出パネルを上記構成の旧来のカセッテと同様に取り扱うことができ、本発明に係る放射線検出パネルの取扱い性が向上する。   Further, in the invention according to any one of claims 1 to 10, for example, as described in claim 11, the thickness of the housing in the first state in which the detection unit is in contact with the light emitting unit is irradiated. It is preferable that the size of the cassette is configured to be the same as the thickness of the casing in the cassette configured to record the radiation on the photosensitive material as an image. Thereby, the radiation detection panel according to the present invention can be handled in the same manner as the conventional cassette having the above configuration, and the handleability of the radiation detection panel according to the present invention is improved.

また、請求項1〜請求項11の何れかに記載の発明において、検出手段は、例えば請求項12に記載したように、光放出部に対して放射線の到来方向上流側に配置されていることが好ましい。上記のように、検出手段を光放出部に対して放射線の到来方向上流側に配置することで、検出手段を光放出部に対して放射線の到来方向下流側に配置した場合よりも検出手段の受光量が増大し、光放出部から放出された光を検出する検出手段における検出の感度を向上させることができる。   Further, in the invention according to any one of claims 1 to 11, the detection means is disposed upstream of the light emission direction with respect to the light emitting portion as described in claim 12, for example. Is preferred. As described above, by disposing the detection means upstream of the radiation arrival direction with respect to the light emitting portion, the detection means is disposed more downstream than when the detection means is disposed downstream of the light emission portion in the radiation arrival direction. The amount of received light increases, and the detection sensitivity in the detection means for detecting the light emitted from the light emitting part can be improved.

以上説明したように本発明は、上面及び底面を有する形状で、上面が形成された上面側部材と底面が形成された底面側部材とが、上面と底面との間隔が変化するように相対的に変位可能とされた筐体と、筐体内に配置されかつ上面側部材及び底面側部材の一方に取付けられ、被写体を透過した放射線を吸収して光を放出する光放出部と、筐体内に配置されかつ上面側部材及び底面側部材の他方に取付けられ、光放出部から放出された光を検出すると共に、筐体の上面と底面との間隔の変化に伴い、光放出部と接している第1状態又は光放出部と離間している第2状態に切り替わる検出部と、を備えているので、温度変化に伴う構成部材の反り等の変形を防止することができ、放射線の検出に適した状態か否かの判断も容易になる、という優れた効果を有する。   As described above, the present invention has a shape having an upper surface and a bottom surface, and the upper surface member on which the upper surface is formed and the lower surface member on which the bottom surface is formed are relatively arranged so that the distance between the upper surface and the bottom surface changes. A housing that is displaceable, a light emitting portion that is disposed in the housing and attached to one of the upper surface side member and the bottom surface side member, absorbs radiation that has passed through the subject, and emits light; and It is arranged and attached to the other of the upper surface side member and the bottom surface side member, detects light emitted from the light emitting portion, and contacts the light emitting portion as the distance between the upper surface and the bottom surface of the housing changes. A detection unit that switches to a first state or a second state that is spaced apart from the light emitting unit, so that deformation such as warping of a component due to a temperature change can be prevented and suitable for detection of radiation It is easy to judge whether or not It has an effect.

実施形態で説明した電子カセッテを一部破断して示す斜視図である。It is a perspective view which shows the electronic cassette demonstrated by embodiment partially fractured | ruptured. 第1実施形態に係る電子カセッテの構成を示す断面図である。It is sectional drawing which shows the structure of the electronic cassette concerning 1st Embodiment. (A)はシンチレータの光放出面上及び放射線検出器の受光面上の遮蔽部材の位置を示す斜視図、(B),(C)は放射線画像の一例を各々示すイメージ図である。(A) is a perspective view which shows the position of the shielding member on the light emission surface of a scintillator, and the light-receiving surface of a radiation detector, (B), (C) is an image figure which shows an example of a radiographic image, respectively. 電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of an electronic cassette. コンソール及び放射線発生装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical system of a console and a radiation generator. 第2実施形態に係る電子カセッテの構成を示す断面図である。It is sectional drawing which shows the structure of the electronic cassette concerning 2nd Embodiment. 第3実施形態に係る電子カセッテの構成を示す断面図である。It is sectional drawing which shows the structure of the electronic cassette concerning 3rd Embodiment. 第4実施形態に係る電子カセッテの構成を示す断面図である。It is sectional drawing which shows the structure of the electronic cassette concerning 4th Embodiment. 第5実施形態に係る電子カセッテの構成を示す断面図である。It is sectional drawing which shows the structure of the electronic cassette concerning 5th Embodiment. 第5実施形態に係る電子カセッテの連通切替部の構成を示す側面図である。It is a side view which shows the structure of the communication switching part of the electronic cassette concerning 5th Embodiment. 第5実施形態に係る電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of the electronic cassette concerning 5th Embodiment.

以下、図面を参照して本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
図1には、本発明に係る放射線検出パネルの一例としての電子カセッテ10が示されている。電子カセッテ10は、放射線Xを透過させる材料から成り、全体形状がおよそ直方体状で、矩形状の上面が被写体を透過した放射線Xが照射される照射面12とされた筐体14を備えている。筐体14内には、被写体を透過した放射線Xの到来方向に沿って、照射面12側から、本発明の検出手段としての放射線検出部(TFT基板)42や、本発明の光放出部としてのシンチレータ34等が順に配置されている。
[First Embodiment]
FIG. 1 shows an electronic cassette 10 as an example of a radiation detection panel according to the present invention. The electronic cassette 10 is made of a material that transmits the radiation X, and includes a housing 14 that has an overall shape of approximately a rectangular parallelepiped, and a rectangular upper surface serving as an irradiation surface 12 that is irradiated with the radiation X transmitted through the subject. . In the housing 14, the radiation detection unit (TFT substrate) 42 as the detection means of the present invention and the light emission unit of the present invention are arranged from the irradiation surface 12 side along the arrival direction of the radiation X transmitted through the subject. The scintillators 34 and the like are arranged in order.

電子カセッテ10の照射面12には、複数個のLEDから成り、電子カセッテ10の動作モード(例えば「レディ状態」や「データ送信中」等)やバッテリの残容量の状態等の動作状態を表示するための表示部12Aが設けられている。なお、表示部12AはLED以外の発光素子で構成してもよいし、液晶ディスプレイや有機ELディスプレイ等の表示手段で構成してもよい。また、表示部12Aは照射面12以外の部位に設けてもよい。   The irradiation surface 12 of the electronic cassette 10 is composed of a plurality of LEDs, and displays the operation state of the electronic cassette 10 such as the operation mode (for example, “ready state” and “data transmitting”) and the remaining battery capacity. A display unit 12A is provided. The display unit 12A may be composed of a light emitting element other than an LED, or may be composed of display means such as a liquid crystal display or an organic EL display. Further, the display unit 12 </ b> A may be provided at a site other than the irradiation surface 12.

図2に示すように、電子カセッテ10の筐体14は収納体16及び蓋体18を含んで構成されている。収納体16は例えばABS樹脂等から成り、矩形状で一方の面が筐体14の底面を成す底板16Aの外縁に、筐体14の底面とおよそ直交する方向に沿った第1側壁16Bが、底板16Aの外縁の全周に亘って立設されたおよそ箱型の形状である。また蓋体18についても、矩形状で一方の面が筐体14の上面(照射面12)を成す天板18Aの外縁に、かつ筐体14の上面とおよそ直交する方向に沿った第2側壁18Bが、天板18Aの外縁の全周に亘って立設されたおよそ箱型の形状である。なお、蓋体18の第2側壁18Bは例えばABS樹脂等から構成され、天板18Aは例えばカーボン等から構成される。これにより、天板18Aによる放射線Xの吸収を抑制しつつ、天板18Aの強度が確保される。   As shown in FIG. 2, the housing 14 of the electronic cassette 10 includes a storage body 16 and a lid body 18. The storage body 16 is made of, for example, ABS resin, and the first side wall 16B along the direction substantially orthogonal to the bottom surface of the housing 14 is formed on the outer edge of the bottom plate 16A having a rectangular shape and one surface forming the bottom surface of the housing 14. The bottom plate 16A has an approximately box-like shape standing over the entire periphery of the outer edge. The lid 18 is also rectangular and has a second side wall along the outer edge of the top plate 18 </ b> A whose one surface forms the upper surface (irradiation surface 12) of the housing 14 and in a direction approximately perpendicular to the upper surface of the housing 14. 18B is an approximately box-shaped shape that is erected over the entire circumference of the outer edge of the top plate 18A. The second side wall 18B of the lid 18 is made of, for example, ABS resin, and the top plate 18A is made of, for example, carbon. Thereby, the intensity | strength of the top plate 18A is ensured, suppressing absorption of the radiation X by the top plate 18A.

なお、実施形態における「上」は底板16A側から見て天板18A側の方向を意味し、「下」は天板18A側から見て底板16A側の方向を意味する。   In the embodiment, “upper” means the direction on the top plate 18A side when viewed from the bottom plate 16A side, and “lower” means the direction on the bottom plate 16A side when viewed from the top plate 18A side.

また、蓋体18の天板18Aは収納体16の底板16Aよりもサイズが大きくされており、筐体14は、蓋体18の天板18Aによって収納体16の開口部が覆われ、収納体16の第1側壁16Bの外周側に位置する蓋体18の第2側壁18Bが、第1側壁16Bと間隙を隔てて対向するように、収納体16と蓋体18とが嵌め合わされた嵌め合い構造とされている。これにより、筐体14は上面と底面とがおよそ平行とされている。そして筐体14は、収納体16と蓋体18とが筐体14の上面及び底面とおよそ直交する筐体14の厚み方向(放射線Xの到来方向)に沿って相対的に変位可能とされており、収納体16と蓋体18との相対変位に伴い、図2(A)と図2(B)を比較しても明らかなように、筐体14の厚みが変化する。   Further, the top plate 18A of the lid body 18 is larger in size than the bottom plate 16A of the storage body 16, and the housing 14 is covered with the opening portion of the storage body 16 by the top plate 18A of the lid body 18. The fitting body 16 and the lid body 18 are fitted together so that the second side wall 18B of the lid body 18 located on the outer peripheral side of the first side wall 16B of the 16 faces the first side wall 16B with a gap. It is structured. As a result, the top surface and the bottom surface of the housing 14 are approximately parallel. The housing 14 is relatively displaceable along the thickness direction of the housing 14 (the arrival direction of the radiation X) in which the housing body 16 and the lid body 18 are approximately orthogonal to the upper surface and the bottom surface of the housing 14. As the storage body 16 and the lid body 18 are relatively displaced, the thickness of the housing 14 changes as is apparent from a comparison between FIGS. 2 (A) and 2 (B).

上記構成の筐体14は請求項2に記載の筐体の一例である。また、収納体16は本発明の底面側部材(より詳しくは請求項2に記載の底面側部材)の一例であり、底板16Aは請求項2に記載の底面部材の一例、第1側壁16Bは請求項2に記載の底面側部材の壁部の一例である。また、蓋体18は本発明の上面側部材(より詳しくは請求項2に記載の上面側部材)の一例であり、天板18Aは請求項2に記載の上面部材の一例、第2側壁18Bは請求項2に記載の上面側部材の壁部の一例である。   The casing 14 having the above configuration is an example of a casing according to claim 2. The storage body 16 is an example of a bottom surface side member of the present invention (more specifically, a bottom surface side member according to claim 2), the bottom plate 16A is an example of the bottom surface member of claim 2, and the first side wall 16B is It is an example of the wall part of the bottom face side member of Claim 2. The lid 18 is an example of the upper surface side member of the present invention (more specifically, the upper surface side member described in claim 2), and the top plate 18A is an example of the upper surface member of claim 2, and the second side wall 18B. These are an example of the wall part of the upper surface side member of Claim 2.

また、収納体16の第1側壁16Bの上端部には、収納体16の外側へ向けて突出する突起16Cが設けられており、蓋体18の第2側壁18Bの下端部から所定距離隔てた位置には、蓋体18の内側へ向けて突出する突起18Cが設けられている。これにより、筐体14の上面と底面とが離間する方向への収納体16と蓋体18との相対変位は、突起16Cと突起18Cとが当接する位置(図2(A)に示す位置(最大厚み状態と称する))迄に制限されている。また、筐体14の上面と底面とが接近する方向への収納体16と蓋体18との相対変位は、収納体16の第1側壁16Bの上端部が蓋体18の天板18Aに当接する位置(図2(B)に示す位置(最小厚み状態と称する))迄に制限されている。なお、この状態での筐体14の厚みは、照射された放射線を感光材料に画像として記録する構成の旧来のカセッテにおける筐体の厚みと同サイズとされている(請求項11記載の発明に相当する構成)。   In addition, a protrusion 16C that protrudes toward the outside of the storage body 16 is provided at the upper end portion of the first side wall 16B of the storage body 16, and is separated from the lower end portion of the second side wall 18B of the lid body 18 by a predetermined distance. At the position, a protrusion 18 </ b> C that protrudes toward the inside of the lid 18 is provided. Thereby, the relative displacement between the housing body 16 and the lid body 18 in the direction in which the upper surface and the bottom surface of the housing 14 are separated from each other is a position where the protrusion 16C and the protrusion 18C abut (the position shown in FIG. 2A ( It is limited to the maximum thickness state))). The relative displacement between the housing 16 and the lid 18 in the direction in which the upper surface and the bottom surface of the housing 14 approach each other is such that the upper end of the first side wall 16B of the housing 16 contacts the top plate 18A of the lid 18. The position is limited to the contact position (the position shown in FIG. 2B (referred to as the minimum thickness state)). The thickness of the casing 14 in this state is the same size as the thickness of the casing in a conventional cassette configured to record the irradiated radiation as an image on the photosensitive material. Corresponding configuration).

また、本実施形態に係る電子カセッテ10では、筐体14内に配置された放射線検出部(TFT基板)42とシンチレータ34が貼り合わされておらず、放射線検出部(TFT基板)42は蓋体18の天板18A(の裏面(照射面12と反対側の面))にスペーサ44を介して取付けられている一方、シンチレータ34は支持基板36上に形成され、この支持基板36は収納体16の底板16Aに取付けられた基台40の天板の上面に取付けられている。このため、放射線検出部(TFT基板)42とシンチレータ34との距離は収納体16と蓋体18との相対変位に応じて変化し、図2(A)に示すように筐体14が最大厚み状態の場合は、放射線検出部(TFT基板)42とシンチレータ34とが所定距離を隔てて離間し、図2(B)に示すように筐体14が最小厚み状態の場合は、放射線検出部(TFT基板)42とシンチレータ34とが全面に亘って密着される。なお、基台40の天板の下面には制御基板46が取付けられており、制御基板46と放射線検出部(TFT基板)42とはフレキシブルケーブル48を介して電気的に接続されている。   Further, in the electronic cassette 10 according to the present embodiment, the radiation detection unit (TFT substrate) 42 and the scintillator 34 disposed in the housing 14 are not bonded together, and the radiation detection unit (TFT substrate) 42 is the lid 18. The scintillator 34 is formed on a support substrate 36, and is attached to the top plate 18 A (the back surface (surface opposite to the irradiation surface 12)) of the storage board 16. It is attached to the upper surface of the top plate of the base 40 attached to the bottom plate 16A. For this reason, the distance between the radiation detection unit (TFT substrate) 42 and the scintillator 34 changes according to the relative displacement between the storage body 16 and the lid 18, and the casing 14 has the maximum thickness as shown in FIG. In the case of the state, the radiation detection unit (TFT substrate) 42 and the scintillator 34 are separated from each other by a predetermined distance. When the casing 14 is in the minimum thickness state as shown in FIG. (TFT substrate) 42 and scintillator 34 are in close contact with each other. A control substrate 46 is attached to the lower surface of the top plate of the base 40, and the control substrate 46 and the radiation detection unit (TFT substrate) 42 are electrically connected via a flexible cable 48.

なお、本実施形態では、筐体14が最小厚み状態のときに、収納体16の第1側壁16Bの上端部が蓋体18の天板18Aに当接し、かつ、放射線検出部(TFT基板)42とシンチレータ34とが密着しているが、収納体16の第1側壁16Bの上端部が蓋体18の天板18Aに当接することは必須ではなく、筐体14は、筐体14の上面と底面とが接近する方向への収納体16と蓋体18との相対変位が、放射線検出部(TFT基板)42とシンチレータ34とが密着する位置迄に制限されると共に、この最小厚み状態において、収納体16の第1側壁16Bの上端部が蓋体18の天板18Aに当接していない構成であってもよい。   In the present embodiment, when the casing 14 is in the minimum thickness state, the upper end portion of the first side wall 16B of the storage body 16 abuts on the top plate 18A of the lid 18 and the radiation detection unit (TFT substrate). 42 and the scintillator 34 are in close contact with each other, but it is not essential that the upper end portion of the first side wall 16B of the storage body 16 abuts on the top plate 18A of the lid body 18. The relative displacement between the storage body 16 and the lid 18 in the direction in which the bottom surface and the bottom surface approach each other is limited to a position where the radiation detector (TFT substrate) 42 and the scintillator 34 come into close contact with each other, and in this minimum thickness state The upper end portion of the first side wall 16B of the storage body 16 may not be in contact with the top plate 18A of the lid body 18.

また、蓋体18の第2側壁18Bの下端部のうち蓋体18の内側に相当する位置には、収納体16の第1側壁16Bに密着するシール部材20が取付けられている。シール部材20は、図2(A),(B)に示すように、収納体16と蓋体18とが相対変位された場合にも第1側壁16Bに密着している状態を維持する。このように、収納体16の第1側壁16Bと蓋体18の第2側壁18Bとの間隙がシール部材20によって密封されることで、筐体14の内部空間の防水性・気密性が確保されるので、本実施形態に係る電子カセッテ10を、血液やその他の雑菌が付着する可能性がある手術時の撮影に用いたり、必要に応じて殺菌洗浄することが可能となる。なお、上記のシール部材20は請求項4,5,8に記載の密封手段の一例である。   A seal member 20 that is in close contact with the first side wall 16B of the storage body 16 is attached to a position corresponding to the inside of the lid body 18 in the lower end portion of the second side wall 18B of the lid body 18. As shown in FIGS. 2A and 2B, the seal member 20 maintains a state of being in close contact with the first side wall 16 </ b> B even when the storage body 16 and the lid body 18 are relatively displaced. As described above, the gap between the first side wall 16B of the storage body 16 and the second side wall 18B of the lid body 18 is sealed by the sealing member 20, so that the waterproof and airtightness of the internal space of the housing 14 is ensured. Therefore, it becomes possible to use the electronic cassette 10 according to the present embodiment for photographing at the time of surgery where blood or other bacteria may adhere, or to sterilize and wash as necessary. The sealing member 20 is an example of a sealing means according to claims 4, 5 and 8.

また、収納体16の第1側壁16Bのうち底板16Aに近い位置には、電子カセッテ10を空気圧発生装置28と接続するための接続部22が設けられている。接続部22には筐体14内を筐体14外と連通するための孔が穿設されており、この孔に対し、筐体14の外側には、空気圧発生装置28と接続するホース30の先端部に取付けられたコネクタ32と嵌合するコネクタ24が取付けられており、筐体14の内側には、通常は閉鎖しておりピン26Aが押圧されている間のみ開放状態となるバルブ26が取付けられている。バルブ26のピン26Aはコネクタ24側へ突出しており、コネクタ32の内側には、コネクタ24と嵌合された状態でピン26Aを押圧する押圧部32Aが設けられている。   Further, a connection portion 22 for connecting the electronic cassette 10 to the air pressure generator 28 is provided at a position near the bottom plate 16A in the first side wall 16B of the storage body 16. A hole for communicating the inside of the housing 14 with the outside of the housing 14 is formed in the connection portion 22. The hose 30 connected to the air pressure generator 28 is connected to the outside of the housing 14 with respect to this hole. A connector 24 to be fitted to the connector 32 attached to the distal end portion is attached, and a valve 26 that is normally closed and opened only while the pin 26A is pressed is provided inside the housing 14. Installed. The pin 26 </ b> A of the valve 26 protrudes toward the connector 24, and a pressing portion 32 </ b> A that presses the pin 26 </ b> A while being fitted to the connector 24 is provided inside the connector 32.

これにより、コネクタ24とコネクタ32とが嵌合されると、押圧部32Aによってピン26Aが押圧されてバルブ26が開放状態となることで、筐体14の内部空間はホース30を介して空気圧発生装置28と連通される。本実施形態では、この状態で空気圧発生装置28によって筐体14の内部空間に負圧又は正圧が供給されることで、筐体14の上面と底面とが接近する方向又は上面と底面とが離間する方向へ収納体16と蓋体18とが相対的に変位される。また、コネクタ24とコネクタ32との嵌合が解除されると、押圧部32Aによるピン26Aの押圧も解除されることでバルブ26が閉鎖状態に戻り、筐体14の内部空間と空気圧発生装置28等の外部との連通も遮断される。   Thus, when the connector 24 and the connector 32 are fitted, the pin 26A is pressed by the pressing portion 32A and the valve 26 is opened, so that the internal space of the housing 14 generates air pressure via the hose 30. In communication with the device 28. In this embodiment, the negative pressure or the positive pressure is supplied to the internal space of the housing 14 by the air pressure generator 28 in this state, so that the top surface and the bottom surface of the housing 14 approach each other or the top surface and the bottom surface are moved. The storage body 16 and the lid body 18 are relatively displaced in the direction of separation. When the fitting between the connector 24 and the connector 32 is released, the pressure of the pin 26A by the pressing portion 32A is also released, so that the valve 26 returns to the closed state, and the internal space of the housing 14 and the air pressure generator 28 are restored. Communication with the outside such as is also cut off.

なお、接続部22は請求項5に記載の接続部の一例であり、バルブ26は請求項4,8に記載の連通手段の一例、コネクタ32の押圧部32Aは請求項7(詳しくは請求項8)に記載の保持手段の一例である。   The connection portion 22 is an example of a connection portion described in claim 5, the valve 26 is an example of communication means described in claims 4 and 8, and the pressing portion 32A of the connector 32 is claimed in claim 7 (specifically, claims). It is an example of the holding means as described in 8).

また、シンチレータ34は、被写体を透過した筐体14の照射面12に照射され、蓋体18の天板18A及び放射線検出部(TFT基板)42を透過して照射された放射線Xを吸収して光を放出する。シンチレータ34としては、例えばCsI:Tlや、CsI:Na(ナトリウム賦活ヨウ化セシウム)、CsBr、GOS(GdS:Tb)を用いることができるが、これらの材料に限られるものではない。シンチレータ34としてCsI等を用いる場合には、シンチレータ34を柱状結晶構造部を有する構成とすることが好ましい。これにより、シンチレータ34が放射線を吸収することで発生された光は、柱状結晶構造部において、柱状結晶の間隙に案内されて放射線検出部(TFT基板)42側へ放出されることで、放出される光の拡散が抑制されるので、電子カセッテ10で検出される放射線画像のボケを抑制することができる。 Further, the scintillator 34 absorbs the radiation X irradiated to the irradiation surface 12 of the casing 14 that has passed through the subject and transmitted through the top plate 18A and the radiation detection unit (TFT substrate) 42 of the lid 18. Emit light. As the scintillator 34, for example, CsI: Tl, CsI: Na (sodium-activated cesium iodide), CsBr, GOS (Gd 2 O 2 S: Tb) can be used, but the material is not limited to these materials. . When CsI or the like is used as the scintillator 34, it is preferable that the scintillator 34 has a columnar crystal structure portion. Thereby, the light generated by the scintillator 34 absorbing the radiation is emitted by being guided to the gap between the columnar crystals and being emitted to the radiation detection unit (TFT substrate) 42 side in the columnar crystal structure portion. Therefore, the blur of the radiation image detected by the electronic cassette 10 can be suppressed.

またシンチレータ34としてCsI等を用いる場合、シンチレータ34の形成にあたって蒸着を行う必要があるので、支持基板36としては耐熱性の高い材料が望ましく、例えば放射線の透過率が高くて低コストという観点からアルミニウムが好適である。一方、シンチレータ34としてGOSを用いる場合は、シンチレータ34の形成にあたって蒸着が不要となるので、支持基板36としては耐熱性の低い材料、例えば合成樹脂等も利用可能である。   Further, when CsI or the like is used as the scintillator 34, it is necessary to perform vapor deposition for forming the scintillator 34. Therefore, the support substrate 36 is preferably made of a material having high heat resistance. Is preferred. On the other hand, when GOS is used as the scintillator 34, vapor deposition is not necessary for forming the scintillator 34. Therefore, a material having low heat resistance, such as a synthetic resin, can be used as the support substrate 36.

なお本実施形態では、例として図3(A)に示すように、シンチレータ34の放射線検出部(TFT基板)42との対向面(放射線Xが照射されかつ光を放出する照射/光放出面)のうちの端部に、照射/光放出面に照射される放射線及び照射/光放出面から放出される光の少なくとも一方を遮蔽する遮蔽部材38が設けられている。   In the present embodiment, as shown in FIG. 3A as an example, the surface of the scintillator 34 facing the radiation detection unit (TFT substrate) 42 (irradiation / light emission surface that emits light X and emits light). The shielding member 38 which shields at least one of the radiation irradiated to an irradiation / light emission surface and the light emitted from an irradiation / light emission surface is provided in the edge part.

また放射線検出部42は、シンチレータ34から放出された光を画像として検出するものであり、図4に示すように、フォトダイオード(PD:PhotoDiode)等から成る光電変換部50、薄膜トランジスタ(TFT:Thin Film Transistor)52及び蓄積容量(本実施形態では光電変換部50を構成する電極対が蓄積容量として機能する)を備えた画素部54が、平板状で平面視における外形形状が矩形状とされた絶縁性基板56上にマトリクス状に複数形成されたTFTアクティブマトリクス基板(以下、「TFT基板」という)で構成されている。   The radiation detection unit 42 detects light emitted from the scintillator 34 as an image. As shown in FIG. 4, the photoelectric detection unit 50 including a photodiode (PD: PhotoDiode), a thin film transistor (TFT: Thin). The pixel unit 54 having a film transistor 52 and a storage capacitor (in this embodiment, the electrode pair constituting the photoelectric conversion unit 50 functions as a storage capacitor) has a flat plate shape and a rectangular outer shape in plan view. A plurality of TFT active matrix substrates (hereinafter referred to as “TFT substrates”) formed in a matrix on the insulating substrate 56 are used.

なお本実施形態では、例として図3(A)に示すように、放射線検出部(TFT基板)42のシンチレータ34との対向面(シンチレータ34から放出された光を受光する受光面)のうち、シンチレータ34の照射/光放出面上の遮蔽部材38の配置位置に対応する位置(端部)に、照射面に照射される光を遮光する遮光部材58が設けられている。   In the present embodiment, as shown in FIG. 3A as an example, of the surface facing the scintillator 34 of the radiation detection unit (TFT substrate) 42 (the light receiving surface that receives light emitted from the scintillator 34), A light shielding member 58 for shielding light irradiated on the irradiation surface is provided at a position (end) corresponding to the arrangement position of the shielding member 38 on the irradiation / light emission surface of the scintillator 34.

また、本実施形態では、シンチレータ34の放射線照射面側に放射線検出部(TFT基板)42が配置されているが、光放出部(シンチレータ)と検出部(放射線検出部)をこのような位置関係で配置する方式は「裏面照射」と称する(請求項12記載の発明に相当する構成)。「裏面照射」は、光放出部(シンチレータ)の放射線照射面と反対側に検出部(放射線検出部)を配置する「表面照射」と比較して、検出部(放射線検出部)の受光量が増大し、結果として放射線検出パネル(電子カセッテ)の感度が向上する。   In the present embodiment, the radiation detection unit (TFT substrate) 42 is disposed on the radiation irradiation surface side of the scintillator 34. However, the light emission unit (scintillator) and the detection unit (radiation detection unit) have such a positional relationship. The method of disposing is referred to as “back surface irradiation” (configuration corresponding to the invention of claim 12). `` Backside irradiation '' means that the amount of light received by the detection unit (radiation detection unit) is smaller than that of `` front side irradiation '' where the detection unit (radiation detection unit) is placed on the opposite side of the radiation irradiation surface of the light emitting unit (scintillator). As a result, the sensitivity of the radiation detection panel (electronic cassette) is improved.

光電変換部50は、上部電極と下部電極との間に、シンチレータ34から放出された光を吸収し、吸収した光に応じた電荷を発生する光電変換膜が配置されて構成されている。光電変換膜を構成する材料は光を吸収して電荷を発生する材料であればよく、例えば、アモルファスシリコンや有機光電変換材料等を用いることができる。光電変換膜をアモルファスシリコンで構成した場合、シンチレータ34から放出された光を広い波長域に亘って吸収するように構成することができる。但し、アモルファスシリコンから成る光電変換膜の形成には蒸着を行う必要があるので、絶縁性基板56としては耐熱性の高い基板、例えばガラス基板等を用いる必要がある。   The photoelectric conversion unit 50 is configured such that a photoelectric conversion film that absorbs light emitted from the scintillator 34 and generates a charge corresponding to the absorbed light is disposed between the upper electrode and the lower electrode. The material constituting the photoelectric conversion film may be any material that absorbs light and generates electric charge. For example, amorphous silicon, an organic photoelectric conversion material, or the like can be used. When the photoelectric conversion film is composed of amorphous silicon, the light emitted from the scintillator 34 can be configured to absorb over a wide wavelength range. However, since it is necessary to perform vapor deposition for forming a photoelectric conversion film made of amorphous silicon, it is necessary to use a substrate having high heat resistance, such as a glass substrate, as the insulating substrate 56.

一方、光電変換膜を有機光電変換材料で構成した場合は、主に可視光域で高い吸波を示す吸収スペクトルが得られ、光電変換膜によるシンチレータ34から放出された光以外の電磁波の吸収が殆ど無くなるので、X線やγ線等の放射線が光電変換膜で吸収されることで発生するノイズを抑制できる。また、有機光電変換材料から成る光電変換膜は、インクジェットヘッド等の液滴吐出ヘッドを用いて有機光電変換材料を被形成体上に付着させることで形成させることができ、被形成体に対して耐熱性は要求されない。   On the other hand, when the photoelectric conversion film is composed of an organic photoelectric conversion material, an absorption spectrum showing high absorption mainly in the visible light region is obtained, and absorption of electromagnetic waves other than light emitted from the scintillator 34 by the photoelectric conversion film is obtained. Since it almost disappears, it is possible to suppress noise generated when radiation such as X-rays and γ-rays is absorbed by the photoelectric conversion film. In addition, a photoelectric conversion film made of an organic photoelectric conversion material can be formed by adhering an organic photoelectric conversion material onto a target body using a droplet discharge head such as an inkjet head. Heat resistance is not required.

なお、光電変換膜に適用可能な有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ34の材料としてCsI(Ti)を用いた場合には、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜で発生する電荷量をほぼ最大にすることができる。光電変換膜に適用可能な有機光電変換材料については、特開2009−32854号公報に詳細に記載されているため説明を省略する。   Examples of organic photoelectric conversion materials applicable to the photoelectric conversion film include quinacridone-based organic compounds and phthalocyanine-based organic compounds. For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, when quinacridone is used as the organic photoelectric conversion material and CsI (Ti) is used as the material of the scintillator 34, the difference between the peak wavelengths is within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film can be substantially maximized. The organic photoelectric conversion material applicable to the photoelectric conversion film is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, and thus the description thereof is omitted.

TFT52は、ゲート電極、ゲート絶縁膜及び活性層(チャネル層)が積層され、更に活性層上にソース電極とドレイン電極が間隔を隔てて形成されている。また、活性層は非晶質酸化物で構成されている。活性層を構成する非晶質酸化物としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In−Ga−Zn−O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。TFT52の活性層を非晶質酸化物で形成した場合、X線やγ線等の放射線を吸収しないか、吸収したとしても極めて微量に留まるため、ノイズの発生を効果的に抑制することができる。 In the TFT 52, a gate electrode, a gate insulating film, and an active layer (channel layer) are stacked, and a source electrode and a drain electrode are formed on the active layer with a gap therebetween. The active layer is made of an amorphous oxide. As the amorphous oxide constituting the active layer, an oxide containing at least one of In, Ga, and Zn (for example, an In—O system) is preferable, and at least two of In, Ga, and Zn are used. Oxides containing (for example, In—Zn—O, In—Ga, and Ga—Zn—O) are more preferable, and oxides including In, Ga, and Zn are particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and InGaZnO is particularly preferable. 4 is more preferable. When the active layer of the TFT 52 is formed of an amorphous oxide, it does not absorb radiation such as X-rays or γ-rays, or even if it is absorbed, the amount of noise remains very small. .

また、絶縁性基板56は放射線の吸収が少ないものであればよい。ここで、TFT52の活性層を構成する非晶質酸化物や、光電変換部50の光電変換膜を構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板56としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、合成樹脂製の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このような合成樹脂製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。なお、絶縁性基板56には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。   The insulating substrate 56 may be any substrate that absorbs little radiation. Here, both the amorphous oxide constituting the active layer of the TFT 52 and the organic photoelectric conversion material constituting the photoelectric conversion film of the photoelectric conversion unit 50 can be formed at a low temperature. Therefore, the insulating substrate 56 is not limited to a substrate having high heat resistance such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate made of synthetic resin, aramid, or bionanofiber can also be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc. A conductive substrate can be used. By using such a flexible substrate made of synthetic resin, it is possible to reduce the weight, which is advantageous for carrying around, for example. The insulating substrate 56 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.

なお、アラミドは200度以上の高温プロセスを適用できるため、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドはITO(indium tin oxide)やガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて基板を薄型化できる。なお、超薄型ガラス基板とアラミドを積層して絶縁性基板56を形成してもよい。   Since aramid can be applied at a high temperature process of 200 ° C. or more, the transparent electrode material can be cured at a high temperature to reduce the resistance, and can be applied to automatic mounting of a driver IC including a solder reflow process. Moreover, since aramid has a thermal expansion coefficient close to that of ITO (indium tin oxide) or a glass substrate, there is little warping after manufacturing and it is difficult to break. In addition, aramid can make a substrate thinner than a glass substrate or the like. Note that the insulating substrate 56 may be formed by stacking an ultrathin glass substrate and aramid.

また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60−70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3−7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて絶縁性基板56を薄型化できる。   The bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as an acrylic resin or an epoxy resin in bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible, compared to glass substrates, etc. The insulating substrate 56 can be thinned.

また、図4に示すように、放射線検出部(TFT基板)42には、一定方向(行方向)に沿って延設され個々のTFT52をオンオフさせるための複数本のゲート配線60と、前記一定方向と交差する方向(列方向)に沿って延設され、蓄積容量(光電変換部50の上部電極と下部電極の間)に蓄積された電荷をオン状態のTFT52を介して読み出すための複数本のデータ配線62が設けられている。   Further, as shown in FIG. 4, the radiation detection unit (TFT substrate) 42 has a plurality of gate wirings 60 extending in a certain direction (row direction) for turning on / off individual TFTs 52, and the certain constants. A plurality of lines extending along the direction (column direction) intersecting the direction and for reading out the charge accumulated in the storage capacitor (between the upper electrode and the lower electrode of the photoelectric conversion unit 50) through the TFT 52 in the on state. Data wiring 62 is provided.

放射線検出部42の個々のゲート配線60はゲート線ドライバ64に接続されており、個々のデータ配線62は信号処理部66に接続されている。被写体を透過した放射線(被写体の画像情報を担持した放射線)が電子カセッテ10に照射されると、シンチレータ34の照射/光放出面上の各位置に対応する部分からは、前記各位置における放射線の照射量に応じた光量の光が放出され、個々の画素部54の光電変換部50では、シンチレータ34のうちの対応する部分から放出された光の光量に応じた大きさの電荷が発生され、この電荷が個々の画素部54の蓄積容量(光電変換部50の上部電極と下部電極の間)に蓄積される。   Individual gate lines 60 of the radiation detection unit 42 are connected to a gate line driver 64, and individual data lines 62 are connected to a signal processing unit 66. When the electronic cassette 10 is irradiated with radiation that has passed through the subject (radiation that carries image information of the subject), radiation corresponding to each position on the irradiation / light emission surface of the scintillator 34 is emitted from each position. A light amount corresponding to the irradiation amount is emitted, and the photoelectric conversion unit 50 of each pixel unit 54 generates a charge having a magnitude corresponding to the light amount emitted from the corresponding part of the scintillator 34. This electric charge is accumulated in the storage capacitor of each pixel unit 54 (between the upper electrode and the lower electrode of the photoelectric conversion unit 50).

上記のようにして個々の画素部54の蓄積容量に電荷が蓄積されると、個々の画素部54のTFT52は、ゲート線ドライバ64からゲート配線60を介して供給される信号により行単位で順にオンされ、TFT52がオンされた画素部54の蓄積容量に蓄積されている電荷は、アナログの電気信号としてデータ配線62を伝送されて信号処理部66に入力される。従って、個々の画素部54の蓄積容量に蓄積された電荷は行単位で順に読み出される。   When charges are accumulated in the storage capacitors of the individual pixel portions 54 as described above, the TFTs 52 of the individual pixel portions 54 are sequentially supplied in units of rows by signals supplied from the gate line driver 64 via the gate wiring 60. The charges stored in the storage capacitor of the pixel unit 54 that is turned on and the TFT 52 is turned on are transmitted as an analog electric signal through the data wiring 62 and input to the signal processing unit 66. Therefore, the charges accumulated in the accumulation capacitors of the individual pixel portions 54 are sequentially read out in units of rows.

信号処理部66は、個々のデータ配線62毎に設けられた増幅器及びサンプルホールド回路を備えており、個々のデータ配線62を伝送された電気信号は増幅器で増幅された後にサンプルホールド回路に保持される。また、サンプルホールド回路の出力側にはマルチプレクサ、A/D(アナログ/デジタル)変換器が順に接続されており、個々のサンプルホールド回路に保持された電気信号はマルチプレクサに順に(シリアルに)入力され、A/D変換器によってデジタルの画像データへ変換される。なお、上述したゲート線ドライバ64及び信号処理部66と、以下で説明する電子カセッテ10の各構成要素は制御基板46に各々搭載されている。   The signal processing unit 66 includes an amplifier and a sample hold circuit provided for each data wiring 62, and an electric signal transmitted through each data wiring 62 is amplified by the amplifier and then held in the sample hold circuit. The In addition, a multiplexer and an A / D (analog / digital) converter are connected in order to the output side of the sample and hold circuit, and the electrical signals held in the individual sample and hold circuits are sequentially (serially) input to the multiplexer. The digital image data is converted by an A / D converter. The gate line driver 64 and the signal processing unit 66 described above and the components of the electronic cassette 10 described below are mounted on the control board 46, respectively.

信号処理部66には画像メモリ68が接続されており、信号処理部66のA/D変換器から出力された画像データは画像メモリ68に順に記憶される。画像メモリ68は複数フレーム分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ68に順次記憶される。   An image memory 68 is connected to the signal processing unit 66, and image data output from the A / D converter of the signal processing unit 66 is stored in the image memory 68 in order. The image memory 68 has a storage capacity capable of storing image data for a plurality of frames. Every time a radiographic image is captured, the image data obtained by the imaging is sequentially stored in the image memory 68.

画像メモリ68は電子カセッテ10全体の動作を制御するカセッテ制御部70と接続されている。カセッテ制御部70はマイクロコンピュータを含んで構成されており、CPU70A、ROM及びRAMを含むメモリ70B、HDD(Hard Disk Drive)やフラッシュメモリ等から成る不揮発性の記憶部70Cを備えている。   The image memory 68 is connected to a cassette control unit 70 that controls the operation of the entire electronic cassette 10. The cassette control unit 70 includes a microcomputer, and includes a CPU 70A, a memory 70B including a ROM and a RAM, a nonvolatile storage unit 70C including an HDD (Hard Disk Drive), a flash memory, and the like.

また、カセッテ制御部70には無線通信部72が接続されている。無線通信部72は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g/n等に代表される無線LAN(Local Area Network)規格に対応しており、無線通信による外部機器との間での各種情報の伝送を制御する。カセッテ制御部70は、無線通信部72を介してコンソール80(後述)と無線通信が可能とされており、コンソール80との間で各種情報の送受信が可能とされている。   A wireless communication unit 72 is connected to the cassette control unit 70. The wireless communication unit 72 corresponds to a wireless local area network (LAN) standard represented by IEEE (Institute of Electrical and Electronics Engineers) 802.11a / b / g / n, etc. Control the transmission of various information between them. The cassette control unit 70 can wirelessly communicate with a console 80 (described later) via the wireless communication unit 72, and can transmit and receive various types of information to and from the console 80.

また、カセッテ制御部70には筐体14の収納体16と蓋体18との変位を検出する変位検出部76が接続されており、変位検出部76による検出結果はカセッテ制御部70に入力される。変位検出部76は、少なくとも、筐体14の収納体16と蓋体18とが最小厚み状態に相当する位置関係か否かを検出可能な構成であればよく、例えば、収納体16の第1側壁16Bの上端部が蓋体18の天板18Aに当接しているか否かを検出するリミットスイッチ等で構成することができるが、これに限られるものではなく、例えば筐体14の収納体16と蓋体18との相対位置を連続的に検出可能なリニアエンコーダ等で構成することも可能である。   The cassette control unit 70 is connected to a displacement detection unit 76 that detects the displacement between the housing body 16 and the lid 18 of the housing 14, and the detection result by the displacement detection unit 76 is input to the cassette control unit 70. The The displacement detector 76 may be configured to detect at least whether or not the housing body 16 of the housing 14 and the lid body 18 are in a positional relationship corresponding to the minimum thickness state. Although it can be configured by a limit switch or the like that detects whether or not the upper end portion of the side wall 16B is in contact with the top plate 18A of the lid 18, the present invention is not limited to this. It is also possible to comprise a linear encoder or the like that can continuously detect the relative position between the cover 18 and the lid 18.

また、電子カセッテ10には電源部74が設けられており、上述した各種電子回路(ゲート線ドライバ64や信号処理部66、画像メモリ68、無線通信部72、カセッテ制御部70等)は電源部74と各々接続され(図示省略)、電源部74から供給された電力によって作動する。電源部74は、電子カセッテ10の可搬性を損なわないようにバッテリ(二次電池)を内蔵しており、充電されたバッテリから各種電子回路へ電力を供給する。   The electronic cassette 10 is provided with a power supply unit 74, and the various electronic circuits (gate line driver 64, signal processing unit 66, image memory 68, wireless communication unit 72, cassette control unit 70, etc.) described above are power supply units. 74 are connected to each other (not shown), and are operated by electric power supplied from the power supply unit 74. The power supply unit 74 incorporates a battery (secondary battery) so as not to impair the portability of the electronic cassette 10, and supplies power from the charged battery to various electronic circuits.

図5に示すように、コンソール80はコンピュータから成り、装置全体の動作を司るCPU104、制御プログラムを含む各種プログラム等が予め記憶されたROM106、各種データを一時的に記憶するRAM108、及び、各種データを記憶するHDD110を備え、これらはバスを介して互いに接続されている。またバスには、通信I/F部132及び無線通信部118が接続され、ディスプレイ100がディスプレイドライバ112を介して接続され、更に、操作パネル102が操作入力検出部114を介して接続されている。   As shown in FIG. 5, the console 80 is composed of a computer, the CPU 104 that controls the operation of the entire apparatus, the ROM 106 that stores various programs including a control program in advance, the RAM 108 that temporarily stores various data, and various data Are connected to each other via a bus. In addition, a communication I / F unit 132 and a wireless communication unit 118 are connected to the bus, the display 100 is connected via the display driver 112, and the operation panel 102 is further connected via the operation input detection unit 114. .

通信I/F部132は接続端子80A、通信ケーブル82及び接続端子84Aを介して放射線発生装置84と接続されている。コンソール80(のCPU104)は、放射線発生装置84との間での曝射条件等の各種情報の送受信を通信I/F部132経由で行う。無線通信部118は電子カセッテ10の無線通信部72と無線通信を行う機能を備えており、コンソール80(のCPU104)は電子カセッテ10との間の画像データ等の各種情報の送受信を無線通信部118経由で行う。また、ディスプレイドライバ112はディスプレイ100への各種情報を表示させるための信号を生成・出力し、コンソール80(のCPU104)はディスプレイドライバ112を介して操作メニューや撮影された放射線画像等をディスプレイ100に表示させる。また、操作パネル102は複数のキーを含んで構成され、各種の情報や操作指示が入力される。操作入力検出部114は操作パネル102に対する操作を検出し、検出結果をCPU104へ通知する。   The communication I / F unit 132 is connected to the radiation generator 84 via the connection terminal 80A, the communication cable 82, and the connection terminal 84A. The console 80 (the CPU 104 thereof) transmits / receives various information such as exposure conditions to / from the radiation generation apparatus 84 via the communication I / F unit 132. The wireless communication unit 118 has a function of performing wireless communication with the wireless communication unit 72 of the electronic cassette 10, and the console 80 (CPU 104 thereof) transmits and receives various information such as image data to and from the electronic cassette 10. 118. Further, the display driver 112 generates and outputs signals for displaying various information on the display 100, and the console 80 (CPU 104 of the console 80) displays an operation menu, a captured radiation image, and the like on the display 100 via the display driver 112. Display. The operation panel 102 includes a plurality of keys, and various information and operation instructions are input. The operation input detection unit 114 detects an operation on the operation panel 102 and notifies the CPU 104 of the detection result.

また、放射線発生装置84は、放射線源130と、コンソール80との間で曝射条件等の各種情報の送受信を行う通信I/F部132と、コンソール80から受信した曝射条件(この曝射条件には管電圧や管電流の情報が含まれている)に基づいて放射線源130を制御する線源制御部134と、を備えている。   Further, the radiation generator 84 includes a communication I / F unit 132 that transmits and receives various information such as an exposure condition between the radiation source 130 and the console 80, and an exposure condition (this exposure) received from the console 80. And a radiation source controller 134 for controlling the radiation source 130 based on the condition (including information on tube voltage and tube current).

次に本実施形態の作用を説明する。本実施形態に係る電子カセッテ10は放射線検出部(TFT基板)42とシンチレータ34が貼り合わされておらず、また電子カセッテ10が撮影に使用されずに保管されている間、筐体14は図2(A)に示す最大厚み状態とされ、放射線検出部(TFT基板)42とシンチレータ34とは所定距離を隔てて離間している状態で維持される。このため、放射線検出部42のTFT基板を構成する材料とシンチレータ34の支持基板36を構成する材料の熱膨張率が著しく相違していたとしても、温度変化に伴って何れかの基板に反り等の変形が生じることが防止される。また、筐体14が最大厚み状態となっていることで、電子カセッテ10の管理者(例えば放射線技師等)は、電子カセッテ10が保管に適した状態(放射線検出部(TFT基板)42とシンチレータ34とが離間している状態)となっていることを、筐体14の外観(厚み寸法)から容易に認識することができる。   Next, the operation of this embodiment will be described. In the electronic cassette 10 according to the present embodiment, the radiation detection unit (TFT substrate) 42 and the scintillator 34 are not bonded to each other, and the housing 14 is stored in FIG. The maximum thickness state shown in (A) is maintained, and the radiation detector (TFT substrate) 42 and the scintillator 34 are maintained in a state of being separated by a predetermined distance. For this reason, even if the coefficient of thermal expansion of the material constituting the TFT substrate of the radiation detection unit 42 and the material constituting the support substrate 36 of the scintillator 34 are significantly different, warping of any of the substrates with a change in temperature, etc. Is prevented from occurring. In addition, since the casing 14 is in the maximum thickness state, an administrator of the electronic cassette 10 (for example, a radiation engineer) is in a state in which the electronic cassette 10 is suitable for storage (a radiation detection unit (TFT substrate) 42 and a scintillator). 34 can be easily recognized from the appearance (thickness dimension) of the housing 14.

なお、電子カセッテ10が撮影に使用されずに保管されている間、コネクタ24にはコネクタ32が嵌合されないので、バルブ26は閉鎖状態で維持され、筐体14内の空気は筐体14内に密封された状態のまま維持される。これにより、電子カセッテ10が撮影に使用されずに保管されている間、筐体14の厚みを縮小しようとする外力が加わったとしても、筐体14内に密封された空気によって前記外力に抗する反力が生ずることで、筐体14の厚みが変化することが防止され、放射線検出部(TFT基板)42とシンチレータ34とは離間している状態のまま維持される。   Since the connector 32 is not fitted to the connector 24 while the electronic cassette 10 is stored without being used for photographing, the valve 26 is maintained in a closed state, and the air in the housing 14 is kept in the housing 14. The sealed state is maintained. Thus, even when an external force is applied to reduce the thickness of the housing 14 while the electronic cassette 10 is stored without being used for photographing, the external force is resisted by the air sealed in the housing 14. As a result of the reaction force, the thickness of the housing 14 is prevented from changing, and the radiation detection unit (TFT substrate) 42 and the scintillator 34 are maintained apart from each other.

また、電子カセッテ10を使用して放射線画像の撮影を行う場合、撮影者(例えば放射線技師等)は、放射線画像撮影の準備作業として、ホース30の先端部に取付けられたコネクタ32を撮影に使用する電子カセッテ10のコネクタ24に嵌合させることで、撮影に使用する電子カセッテ10を空気圧発生装置28と接続した後に、空気圧発生装置28によって負圧を発生させる。これにより、まずコネクタ32の押圧部32Aによってバルブ26のピン26Aが押圧され、バルブ26が開放状態に切り替わることで、筐体14の内部空間がホース30を介して空気圧発生装置28と連通される。そして、空気圧発生装置28によって発生された負圧が筐体14の内部空間に導入されることで、筐体14は、筐体14の上面と底面とが接近する方向へ収納体16及び蓋体18が相対的に変位されて図2(B)に示す最小厚み状態(厚みが旧来のカセッテにおける筐体の厚みと同サイズ)になり、放射線検出部(TFT基板)42とシンチレータ34が全面に亘って密着される。   When radiographing is performed using the electronic cassette 10, a photographer (for example, a radiographer or the like) uses the connector 32 attached to the tip of the hose 30 for radiographing as preparation work for radiographic imaging. The electronic cassette 10 used for photographing is connected to the air pressure generator 28 by being fitted to the connector 24 of the electronic cassette 10 to be generated, and then the air pressure generator 28 generates a negative pressure. Thereby, first, the pin 26A of the valve 26 is pressed by the pressing portion 32A of the connector 32, and the valve 26 is switched to the open state, whereby the internal space of the housing 14 is communicated with the air pressure generator 28 via the hose 30. . Then, the negative pressure generated by the air pressure generator 28 is introduced into the internal space of the housing 14, so that the housing 14 has the housing 16 and the lid in a direction in which the upper surface and the bottom surface of the housing 14 approach each other. 18 is displaced relatively to the minimum thickness state shown in FIG. 2B (the thickness is the same as the thickness of the casing in the conventional cassette), and the radiation detector (TFT substrate) 42 and the scintillator 34 are placed over the entire surface. It adheres over.

なお、電子カセッテ10の筐体14は、収納体16の第1側壁16Bと蓋体18の第2側壁18Bとが間隙を隔てて対向するように、収納体16と蓋体18とが嵌め合わされた嵌め合い構造である。また、第1側壁16Bと第2側壁18Bとの間隙にはシール部材20も設けられている。このため、収納体16及び蓋体18が筐体14の上面と底面とが接近する方向へ相対的に変位される際にも、収納体16と蓋体18とが上面や底面とおよそ平行な方向へ相対的に変位することは抑制され、放射線検出部(TFT基板)42とシンチレータ34とはおよそ一定の位置関係で密着される。   The housing 14 of the electronic cassette 10 is fitted with the housing body 16 and the lid body 18 so that the first side wall 16B of the housing body 16 and the second side wall 18B of the lid body 18 face each other with a gap therebetween. It is a fitting structure. A seal member 20 is also provided in the gap between the first side wall 16B and the second side wall 18B. For this reason, even when the storage body 16 and the lid body 18 are relatively displaced in the direction in which the upper surface and the bottom surface of the housing 14 approach each other, the storage body 16 and the lid body 18 are approximately parallel to the upper surface and the bottom surface. Relative displacement in the direction is suppressed, and the radiation detector (TFT substrate) 42 and the scintillator 34 are in close contact with each other in a substantially fixed positional relationship.

また、筐体14が最小厚み状態になると、撮影者は、電子カセッテ10が撮影に適した状態(放射線検出部(TFT基板)42とシンチレータ34とが全面に亘って密着している状態)となったことを筐体14の外観(厚み寸法)から認識し、コネクタ24とコネクタ32との嵌合を解除することで、電子カセッテ10と空気圧発生装置28との接続を解除する。これにより、コネクタ32の押圧部32Aによるバルブ26のピン26Aの押圧が解除され、バルブ26が閉鎖状態に切り替わることで、筐体14内の空気は筐体14内に密封された状態となる。従って、電子カセッテ10が撮影に使用されている間、筐体14の厚みを拡大しようとする外力が加わったとしても、筐体14内に密封された空気によって前記外力に抗する反力が生ずることで、筐体14の厚みが変化することが防止され、放射線検出部(TFT基板)42とシンチレータ34とは全面に亘って密着している状態のまま維持される。   When the casing 14 is in the minimum thickness state, the photographer is in a state where the electronic cassette 10 is suitable for photographing (a state where the radiation detection unit (TFT substrate) 42 and the scintillator 34 are in close contact with each other). Recognizing this from the appearance (thickness dimension) of the housing 14 and releasing the fitting between the connector 24 and the connector 32, the connection between the electronic cassette 10 and the air pressure generator 28 is released. Thereby, the pressing of the pin 26A of the valve 26 by the pressing portion 32A of the connector 32 is released, and the valve 26 is switched to the closed state, so that the air in the housing 14 is sealed in the housing 14. Therefore, even when an external force is applied to increase the thickness of the casing 14 while the electronic cassette 10 is used for photographing, a reaction force against the external force is generated by the air sealed in the casing 14. As a result, the thickness of the housing 14 is prevented from changing, and the radiation detection unit (TFT substrate) 42 and the scintillator 34 are maintained in close contact with each other.

そして撮影者は、筐体14が最小厚み状態(筐体14の厚みが旧来のカセッテにおける筐体の厚みと同サイズ)となった電子カセッテ10を、今回の撮影部位に応じた位置・向きに配置する。これにより、放射線画像撮影の準備作業が完了する。   Then, the photographer places the electronic cassette 10 in which the casing 14 is in the minimum thickness state (the thickness of the casing 14 is the same as the thickness of the casing in the conventional cassette) in the position / orientation corresponding to the current imaging region. Deploy. Thereby, the preparation work for radiographic imaging is completed.

一方、電子カセッテ10では、筐体14が最小厚み状態になると、筐体14が最小厚み状態になったことが変位検出部76によって検出され、この検出結果がカセッテ制御部70へ出力される。カセッテ制御部70では、筐体14が最小厚み状態になったことが変位検出部76によって検出されると、記憶部70Cに予め記憶されている自カセッテのカセッテIDを読み出し、読み出した自カセッテのカセッテIDを、撮影可能な状態になったことを表す準備完了信号と共に、無線通信部72を通じてコンソール80へ送信する。   On the other hand, in the electronic cassette 10, when the casing 14 is in the minimum thickness state, the displacement detection unit 76 detects that the casing 14 is in the minimum thickness state, and the detection result is output to the cassette control unit 70. In the cassette control unit 70, when the displacement detection unit 76 detects that the casing 14 is in the minimum thickness state, the cassette ID of the own cassette stored in the storage unit 70C is read, and the read out cassette's cassette ID is read out. The cassette ID is transmitted to the console 80 through the wireless communication unit 72 together with a preparation completion signal indicating that the photographing is ready.

コンソール80では、電子カセッテ10からカセッテID及び準備完了信号を受信すると、受信したカセッテIDをHDD110等に登録した後に、曝射開始を指示する指示信号を放射線発生装置84へ送信する。これにより、放射線発生装置84は放射線源130から放射線を射出させる。   When the console 80 receives the cassette ID and the preparation completion signal from the electronic cassette 10, the console 80 transmits an instruction signal for instructing the start of exposure to the radiation generation apparatus 84 after registering the received cassette ID in the HDD 110 or the like. As a result, the radiation generator 84 emits radiation from the radiation source 130.

放射線源130から射出された放射線は被写体を透過して電子カセッテ10の照射面12に照射され、蓋体18の天板18A及び放射線検出部(TFT基板)42を透過してシンチレータ34の照射/光放出面に照射される。シンチレータ34は照射/光放出面に照射された放射線を吸収し、吸収した放射線量に応じた光量の光を放出するが、シンチレータ34の照射/光放出面の端部には遮蔽部材38が設けられているので、遮蔽部材38に照射された放射線及び光の少なくとも一方が遮蔽部材38によって遮蔽される。これにより、電子カセッテ10を使用して撮影された放射線画像には、遮蔽部材38に対応するマークが端部に現れる。   The radiation emitted from the radiation source 130 passes through the subject and is irradiated onto the irradiation surface 12 of the electronic cassette 10, passes through the top plate 18 </ b> A of the lid 18 and the radiation detection unit (TFT substrate) 42, and is applied to the scintillator 34. The light emitting surface is irradiated. The scintillator 34 absorbs radiation applied to the irradiation / light emission surface and emits light of a light amount corresponding to the absorbed radiation dose. A shielding member 38 is provided at the end of the irradiation / light emission surface of the scintillator 34. Therefore, at least one of the radiation and light applied to the shielding member 38 is shielded by the shielding member 38. Thereby, in the radiographic image image | photographed using the electronic cassette 10, the mark corresponding to the shielding member 38 appears in an edge part.

また、シンチレータ34から放出された光は放射線検出部(TFT基板)42の受光面に照射され、放射線検出部(TFT基板)42は受光面に照射された光を画像として検出するが、放射線検出部(TFT基板)42の受光面の端部には遮光部材58が設けられているので、遮光部材58に照射された光が遮光部材58によって遮光される。これにより、電子カセッテ10を使用して撮影された放射線画像には、遮光部材58に対応するマークも端部に現れる。   The light emitted from the scintillator 34 is applied to the light receiving surface of the radiation detecting unit (TFT substrate) 42, and the radiation detecting unit (TFT substrate) 42 detects the light applied to the light receiving surface as an image. Since the light shielding member 58 is provided at the end of the light receiving surface of the portion (TFT substrate) 42, the light irradiated to the light shielding member 58 is shielded by the light shielding member 58. Thereby, in the radiographic image image | photographed using the electronic cassette 10, the mark corresponding to the light shielding member 58 also appears in an edge part.

本実施形態では、放射線検出部(TFT基板)42の受光面のうち、シンチレータ34の照射/光放出面上の遮蔽部材38の配置位置に対応する位置に遮光部材58が設けられている。このため、筐体14の上面や底面とおよそ平行な方向への位置ずれが生じていない状態で放射線検出部(TFT基板)42とシンチレータ34とが密着された場合には、例として図3(A)に示すように、遮蔽部材38に対応するマークと遮光部材58に対応するマークとが放射線画像上で重なる。また、放射線検出部(TFT基板)42とシンチレータ34との密着に際して筐体14の上面や底面とおよそ平行な方向への位置ずれが生じていた場合には、例として図3(B)に示すように、遮蔽部材38に対応するマークの位置と遮光部材58に対応するマークの位置とにずれが生ずる。   In the present embodiment, a light shielding member 58 is provided at a position corresponding to the arrangement position of the shielding member 38 on the irradiation / light emission surface of the scintillator 34 in the light receiving surface of the radiation detection unit (TFT substrate) 42. For this reason, when the radiation detection part (TFT substrate) 42 and the scintillator 34 are in close contact with each other in a state where there is no positional shift in a direction approximately parallel to the top surface and bottom surface of the housing 14, as an example, FIG. As shown in A), the mark corresponding to the shielding member 38 and the mark corresponding to the shielding member 58 overlap on the radiation image. In addition, when the radiation detector (TFT substrate) 42 and the scintillator 34 are in close contact with each other in the case where there is a positional shift in a direction approximately parallel to the upper surface or the bottom surface of the housing 14, an example is shown in FIG. As described above, a deviation occurs between the mark position corresponding to the shielding member 38 and the mark position corresponding to the light shielding member 58.

これにより、撮影者は、電子カセッテ10からコンソール80へ送信された放射線画像のデータに基づいてディスプレイ110に表示された放射線画像を視認することで、放射線検出部(TFT基板)42とシンチレータ34との位置ずれの有無を確認することができる。そして、位置ずれが生じていると判断した場合、撮影者は、例えば電子カセッテ10に空気圧発生装置28を再度接続し、筐体14を一旦最大厚み状態にした後に最小厚み状態に戻す等のように、位置ずれを解消するための対策を講ずることができる。   Thus, the radiographer visually recognizes the radiographic image displayed on the display 110 based on the radiographic image data transmitted from the electronic cassette 10 to the console 80, so that the radiation detection unit (TFT substrate) 42, the scintillator 34, It is possible to confirm the presence or absence of misalignment. If the photographer determines that the positional deviation has occurred, the photographer reconnects the air pressure generator 28 to the electronic cassette 10 to return the housing 14 to the minimum thickness state after the housing 14 is once set to the maximum thickness state, etc. In addition, it is possible to take measures to eliminate the positional deviation.

なお、遮蔽部材38と遮光部材58との位置関係は、位置ずれが生じていない状態で対応するマークが放射線画像上で重なる位置関係に限られるものではなく、形状も図3に示したような矩形状に限られるものではない。遮蔽部材38及び遮光部材58の形状・位置関係は、放射線画像を目視して位置ずれの有無を確認可能であればよく、適宜変更可能である。   The positional relationship between the shielding member 38 and the shielding member 58 is not limited to the positional relationship in which the corresponding marks overlap on the radiation image in a state where no positional deviation occurs, and the shape is as shown in FIG. It is not limited to a rectangular shape. The shape / position relationship between the shielding member 38 and the shielding member 58 may be changed as appropriate as long as the presence / absence of the positional deviation can be confirmed by viewing the radiation image.

また、放射線検出部(TFT基板)42とシンチレータ34との位置ずれは、シンチレータ34の照射/光放出面内における発光効率のばらつきに応じて放射線画像を補正する等の画像処理を行う場合に問題になる。このため、遮蔽部材38及び遮光部材58は、図3に示したような矩形状に代えて、放射線検出部(TFT基板)42とシンチレータ34との位置ずれの方向及び位置ずれ量を検出可能なように形状を相違させてもよい。この場合、放射線画像上の各マークの位置関係に基づいて位置ずれの方向及び位置ずれ量を検出し、シンチレータ34の発光効率のばらつきを画素単位で補正するための補正データを、検出結果に基づき放射線画像に対して相対的にずらして補正を行えばよい。これにより、位置ずれを解消するための対策を講ずることを省略することも可能となる。   Further, the positional deviation between the radiation detection unit (TFT substrate) 42 and the scintillator 34 is a problem when performing image processing such as correcting the radiation image according to the variation in the light emission efficiency within the irradiation / light emission surface of the scintillator 34. become. For this reason, the shielding member 38 and the shielding member 58 can detect the direction and the amount of positional deviation between the radiation detector (TFT substrate) 42 and the scintillator 34 instead of the rectangular shape as shown in FIG. As such, the shapes may be different. In this case, based on the detection result, correction data for detecting the direction and amount of positional deviation based on the positional relationship between the marks on the radiographic image, and correcting variations in the light emission efficiency of the scintillator 34 in units of pixels. What is necessary is just to correct | amend relatively with respect to a radiographic image. Thereby, it is possible to omit taking measures for eliminating the positional deviation.

また、放射線画像の撮影が終了すると、撮影者は電子カセッテ10を空気圧発生装置28と再び接続し、空気圧発生装置28によって正圧を発生させる。これにより、筐体14の内部空間がホース30を介して空気圧発生装置28と連通される。また、空気圧発生装置28によって発生された正圧が筐体14の内部空間に導入されることで、筐体14の上面と底面とが離間する方向へ収納体16及び蓋体18が相対的に変位される。これにより、筐体14は電子カセッテ10の保管に適した最大厚み状態(図2(A)参照)に戻ることになる。   When the radiographic image capturing is completed, the photographer reconnects the electronic cassette 10 to the air pressure generator 28, and the air pressure generator 28 generates a positive pressure. Thereby, the internal space of the housing 14 is communicated with the air pressure generator 28 via the hose 30. Further, the positive pressure generated by the air pressure generator 28 is introduced into the internal space of the housing 14, so that the storage body 16 and the lid 18 are relatively moved in a direction in which the upper surface and the bottom surface of the housing 14 are separated from each other. Displaced. As a result, the housing 14 returns to the maximum thickness state suitable for storing the electronic cassette 10 (see FIG. 2A).

〔第2実施形態〕
次に本発明の第2実施形態について説明する。なお、第1実施形態と同一の部分には同一の符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, and description is abbreviate | omitted.

図6にしめすように、本第2実施形態に係る電子カセッテ150は、放射線検出部(TFT基板)42の受光面に光結合部材152が設けられている点で第1実施形態で説明した電子カセッテ10と相違している。本第2実施形態では、筐体14が最小厚み状態になると、シンチレータ34と放射線検出部(TFT基板)42とが光結合部材152を介して密着された状態(図6(B)に示す状態)となり、光結合部材152は、この状態でシンチレータ34と放射線検出部(TFT基板)42とを光学的に結合する。本実施形態では光結合部材152をゲル、オイルカップリング等の柔軟性を有する材料で構成している。   As shown in FIG. 6, the electronic cassette 150 according to the second embodiment is the electronic cassette described in the first embodiment in that an optical coupling member 152 is provided on the light receiving surface of the radiation detection unit (TFT substrate) 42. It is different from the cassette 10. In the second embodiment, when the casing 14 is in the minimum thickness state, the scintillator 34 and the radiation detection unit (TFT substrate) 42 are in close contact via the optical coupling member 152 (the state shown in FIG. 6B). The optical coupling member 152 optically couples the scintillator 34 and the radiation detection unit (TFT substrate) 42 in this state. In this embodiment, the optical coupling member 152 is made of a flexible material such as gel or oil coupling.

本第2実施形態に係る電子カセッテ150は、光結合部材152が設けられていることで、シンチレータ34から放出された光を検出する放射線検出部(TFT基板)42による光検出効率が向上するので、第1実施形態で説明した電子カセッテ10よりも放射線の検出感度が向上する。なお、上記の光結合部材152は請求項10に記載の光結合部材の一例である。   In the electronic cassette 150 according to the second embodiment, since the optical coupling member 152 is provided, the light detection efficiency by the radiation detection unit (TFT substrate) 42 that detects the light emitted from the scintillator 34 is improved. The radiation detection sensitivity is improved as compared with the electronic cassette 10 described in the first embodiment. The optical coupling member 152 is an example of the optical coupling member according to claim 10.

〔第3実施形態〕
次に本発明の第3実施形態について説明する。なお、第1実施形態及び第2実施形態と同一の部分には同一の符号を付し、説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment and 2nd Embodiment, and description is abbreviate | omitted.

図7に示すように、本第3実施形態に係る電子カセッテ154は、シンチレータ34が形成された支持基板36が、蓋体18の天板18A(の裏面(照射面12と反対側の面))にスペーサ44を介して取付けられている。また、受光面に光結合部材152が設けられた放射線検出部(TFT基板)42は基台40の天板の上面に取付けられている。本第3実施形態に係る電子カセッテ154は、放射線検出部(TFT基板)42がシンチレータ34の放射線照射面と反対側に位置しており、「表面照射」に相当する位置関係となっている。このため、第1実施形態で説明した電子カセッテ10や第2実施形態で説明した電子カセッテ150(放射線検出部(TFT基板)42とシンチレータ34が「裏面照射」に相当する位置関係の電子カセッテ)と比較して放射線の検出感度は低下するが、本発明はこのような構成も権利範囲に含まれる。   As shown in FIG. 7, in the electronic cassette 154 according to the third embodiment, the support substrate 36 on which the scintillator 34 is formed is such that the top plate 18A of the lid 18 (the back surface (the surface opposite to the irradiation surface 12)). ) Through a spacer 44. The radiation detector (TFT substrate) 42 having the light coupling member 152 on the light receiving surface is attached to the top surface of the top plate of the base 40. In the electronic cassette 154 according to the third embodiment, the radiation detection unit (TFT substrate) 42 is located on the opposite side to the radiation irradiation surface of the scintillator 34 and has a positional relationship corresponding to “surface irradiation”. For this reason, the electronic cassette 10 described in the first embodiment and the electronic cassette 150 described in the second embodiment (the electronic cassette having a positional relationship in which the radiation detection unit (TFT substrate) 42 and the scintillator 34 correspond to “backside irradiation”). However, the present invention includes such a configuration within the scope of the right.

〔第4実施形態〕
次に本発明の第4実施形態について説明する。なお、第1実施形態及び第2実施形態とと同一の部分には同一の符号を付し、説明を省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment and 2nd Embodiment, and description is abbreviate | omitted.

図8に示すように、本第4実施形態に係る電子カセッテ156は、蓋体18の天板18Aが収納体16の底板16Aとおよそ同じサイズとされており、第1〜第3実施形態では蓋体18の第2側壁18Bに設けられていた突起18Cが省略されている。また、第1〜第3実施形態では収納体16の第1側壁16Bの上端部に設けられていた突起16Cと、蓋体18の第2側壁18Bと収納体16の第1側壁16Bとの間に設けられていたシール部材20も省略されている。   As shown in FIG. 8, in the electronic cassette 156 according to the fourth embodiment, the top plate 18A of the lid 18 is approximately the same size as the bottom plate 16A of the storage body 16, and in the first to third embodiments, The protrusion 18C provided on the second side wall 18B of the lid 18 is omitted. Further, in the first to third embodiments, between the protrusion 16C provided on the upper end portion of the first side wall 16B of the storage body 16, and the second side wall 18B of the lid 18 and the first side wall 16B of the storage body 16. Also, the seal member 20 provided in the is omitted.

そして、蓋体18の第2側壁18Bの下端部と収納体16の第1側壁16Bの上端部との間には、蛇腹状の伸縮部材158が筐体14の側面の全周に亘って設けられている。伸縮部材158は、上端部が蓋体18の第2側壁18Bの下端部に密着され、下端部が収納体16の第1側壁16Bの上端部に密着されており、これにより、筐体14の内部空間の防水性・気密性が確保されている。なお、上記のシール部材20は請求項4,5,8に記載の密封手段の一例かつ請求項9に記載の伸縮部材の一例である。   Between the lower end of the second side wall 18B of the lid 18 and the upper end of the first side wall 16B of the storage body 16, a bellows-like elastic member 158 is provided over the entire circumference of the side surface of the housing 14. It has been. The expandable member 158 has an upper end that is in close contact with the lower end of the second side wall 18B of the lid 18 and a lower end that is in close contact with the upper end of the first side wall 16B of the storage body 16. The interior space is waterproof and airtight. The sealing member 20 is an example of a sealing means according to claims 4, 5, and 8 and an example of an expansion / contraction member according to claim 9.

本第4実施形態に係る電子カセッテ156は、第1〜第3実施形態で説明した電子カセッテと比較して、収納体16及び蓋体18が筐体14の上面と底面とが接近する方向へ相対的に変位される際に、収納体16と蓋体18とが上面や底面とおよそ平行な方向へ相対的に変位し易く、放射線検出部(TFT基板)42とシンチレータ34との位置ずれが生じ易いが、本発明はこのような構成も権利範囲に含まれる。   In the electronic cassette 156 according to the fourth embodiment, the storage body 16 and the lid 18 are closer to the top surface and the bottom surface of the housing 14 than the electronic cassettes described in the first to third embodiments. When relatively displaced, the storage body 16 and the lid body 18 are relatively easily displaced in a direction approximately parallel to the top surface and the bottom surface, and the positional deviation between the radiation detection unit (TFT substrate) 42 and the scintillator 34 is displaced. Such a configuration is also included in the scope of the right of the present invention although it is likely to occur.

〔第5実施形態〕
次に本発明の第5実施形態について説明する。なお、第1〜第3実施形態と同一の部分には同一の符号を付し、説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st-3rd embodiment, and description is abbreviate | omitted.

図9に示すように、本第5実施形態に係る電子カセッテ160は接続部22が省略されている。また、収納体16の底板16Aと蓋体18の天板18Aの間には、筐体14の上面と底面とが離間する方向へ収納体16及び蓋体18を付勢する圧縮コイルばね162が、筐体14内の複数箇所に設けられている。なお、圧縮コイルばね162は請求項6に記載の付勢手段の一例である。   As shown in FIG. 9, the connection part 22 is omitted from the electronic cassette 160 according to the fifth exemplary embodiment. Further, a compression coil spring 162 that urges the storage body 16 and the cover body 18 in a direction in which the upper surface and the bottom surface of the housing 14 are separated from each other is provided between the bottom plate 16A of the storage body 16 and the top plate 18A of the cover body 18. Are provided at a plurality of locations in the housing 14. The compression coil spring 162 is an example of an urging means according to claim 6.

また図10に示すように、本第5実施形態に係る電子カセッテ160は、収納体16の底板16Aに、テーパ状の傾斜面を有する孔164が穿設されており(図10(B)参照)、この孔164に対応する位置に連通切替部166が設けられている。連通切替部166は、孔164と同様にテーパ状の傾斜面が形成された栓部材168と、ソレノイド等から成り栓部材168を底板16Aにおよそ垂直な方向へ移動させるアクチュエータ170と、を備えている。   As shown in FIG. 10, in the electronic cassette 160 according to the fifth embodiment, a hole 164 having a tapered inclined surface is formed in the bottom plate 16A of the housing 16 (see FIG. 10B). ), A communication switching portion 166 is provided at a position corresponding to the hole 164. The communication switching unit 166 includes a plug member 168 having a tapered inclined surface like the hole 164, and an actuator 170 made of a solenoid or the like that moves the plug member 168 in a direction substantially perpendicular to the bottom plate 16A. Yes.

アクチュエータ170は、非通電時には、図示しない付勢手段の付勢力により、栓部材168が孔164内へ入り込んで栓部材168の傾斜面が孔164の傾斜面に密着する第1位置(図10(A)参照)に栓部材168を位置させる。この状態では、筐体14の内部空間と筐体14の外部との連通が遮断され、筐体14内の空気は筐体14内に密封される。またアクチュエータ170は、通電されると、前記付勢手段の付勢力に抗して、栓部材168が孔164内から離脱して栓部材168の傾斜面が孔164の傾斜面と離間する第2位置(図10(A)参照)へ栓部材168を移動させる。この状態では、筐体14の内部空間と筐体14の外部とが連通される。   When the actuator 170 is not energized, a biasing force of a biasing means (not shown) causes the plug member 168 to enter the hole 164 and the inclined surface of the plug member 168 closely contacts the inclined surface of the hole 164 (FIG. 10 ( The stopper member 168 is positioned at A). In this state, communication between the internal space of the housing 14 and the outside of the housing 14 is blocked, and the air in the housing 14 is sealed in the housing 14. When the actuator 170 is energized, the plug member 168 is detached from the hole 164 against the urging force of the urging means, and the inclined surface of the plug member 168 is separated from the inclined surface of the hole 164. The stopper member 168 is moved to a position (see FIG. 10A). In this state, the internal space of the housing 14 communicates with the outside of the housing 14.

図11に示すように、連通切替部166はカセッテ制御部70に接続されており、連通切替部166のアクチュエータ170の動作はカセッテ制御部70によって制御される。またカセッテ制御部70には操作部172も接続されている。操作部172は、筐体14の照射面12等に設けられ、筐体14の厚みを変化させる際に撮影者によって操作されるスイッチ(図示省略)を含んで構成されている。   As shown in FIG. 11, the communication switching unit 166 is connected to the cassette control unit 70, and the operation of the actuator 170 of the communication switching unit 166 is controlled by the cassette control unit 70. An operation unit 172 is also connected to the cassette control unit 70. The operation unit 172 includes a switch (not shown) that is provided on the irradiation surface 12 of the housing 14 and is operated by the photographer when the thickness of the housing 14 is changed.

次に本第5実施形態の作用を説明する。本第5実施形態に係る電子カセッテ160は、撮影に使用されずに保管されている間、筐体14が図9(A)に示す最大厚み状態とされ、放射線検出部(TFT基板)42とシンチレータ34とは離間状態で維持される。これにより、温度変化に伴って放射線検出部(TFT基板)42やシンチレータ34の支持基板36に反り等の変形が生じることが防止される。また、電子カセッテ160の管理者は、電子カセッテ160が保管に適した状態(放射線検出部(TFT基板)42とシンチレータ34とが離間している状態)となっていることを、筐体14の外観(厚み寸法)から容易に認識することができる。   Next, the operation of the fifth embodiment will be described. In the electronic cassette 160 according to the fifth embodiment, the housing 14 is in the maximum thickness state shown in FIG. 9A while being stored without being used for imaging, and the radiation detection unit (TFT substrate) 42 and The scintillator 34 is maintained in a separated state. This prevents deformation such as warpage from occurring in the radiation detector (TFT substrate) 42 and the support substrate 36 of the scintillator 34 due to temperature changes. In addition, the administrator of the electronic cassette 160 confirms that the electronic cassette 160 is in a state suitable for storage (a state in which the radiation detection unit (TFT substrate) 42 and the scintillator 34 are separated from each other). It can be easily recognized from the appearance (thickness dimension).

また、電子カセッテ160は、圧縮コイルばね162により、筐体14の上面と底面とが離間する方向へ収納体16及び蓋体18が付勢されている。また、電子カセッテ160が撮影に使用されずに保管されている間は、栓部材168が第1位置に位置され、筐体14内の空気は筐体14内に密封された状態のまま維持される。これにより、電子カセッテ160が撮影に使用されずに保管されている間、筐体14の厚みを縮小しようとする外力が加わっても、圧縮コイルばね162の付勢力や筐体14内に密封された空気によって生ずる反力により、筐体14の厚みが変化することが防止され、放射線検出部(TFT基板)42とシンチレータ34とは離間している状態のまま維持される。   In the electronic cassette 160, the housing body 16 and the lid body 18 are urged by the compression coil spring 162 in a direction in which the upper surface and the bottom surface of the housing 14 are separated from each other. In addition, while the electronic cassette 160 is stored without being used for photographing, the plug member 168 is positioned at the first position, and the air in the housing 14 is kept sealed in the housing 14. The As a result, while the electronic cassette 160 is stored without being used for photographing, even if an external force is applied to reduce the thickness of the casing 14, the biasing force of the compression coil spring 162 and the casing 14 are sealed. The thickness of the housing 14 is prevented from changing due to the reaction force generated by the air, and the radiation detection unit (TFT substrate) 42 and the scintillator 34 are kept apart.

電子カセッテ160を使用して放射線画像の撮影を行う場合、撮影者は、放射線画像撮影の準備作業として、電子カセッテ160の筐体14を把持し、操作部172のスイッチを押圧することでスイッチをオンしながら、筐体14の厚みを縮小する外力を加える操作を行う。カセッテ制御部70は、操作部172のスイッチがオンされている間、アクチュエータ170に通電する。これにより、撮影者が筐体14の厚みを縮小する外力を加えている間、栓部材168が第2位置(図10(B)参照)に位置し、筐体14の内部空間と筐体14の外部とが連通されている状態で維持され、撮影者が加えた外力によって筐体14の厚みが縮小される。   When radiographing is performed using the electronic cassette 160, the photographer grips the casing 14 of the electronic cassette 160 and presses the switch of the operation unit 172 as preparation work for radiographic imaging. While turning on, an operation of applying an external force to reduce the thickness of the casing 14 is performed. The cassette control unit 70 energizes the actuator 170 while the switch of the operation unit 172 is on. Thus, while the photographer applies an external force that reduces the thickness of the casing 14, the plug member 168 is positioned at the second position (see FIG. 10B), and the internal space of the casing 14 and the casing 14 are positioned. The thickness of the casing 14 is reduced by the external force applied by the photographer.

また撮影者は、筐体14が図9(B)に示す最小厚み状態になり、放射線検出部(TFT基板)42とシンチレータ34が全面に亘って密着されると、操作部172のスイッチの押圧を解除することでスイッチをオフさせる。カセッテ制御部70は、操作部172のスイッチがオフされるとアクチュエータ170への通電を停止させる。これにより、栓部材168が第1位置(図10(A)参照)へ移動され、筐体14の内部空間と筐体14の外部との連通が遮断されることで、筐体14内の空気は筐体14内に密封された状態となる。従って、電子カセッテ160が撮影に使用されている間、筐体14の厚みを拡大しようとする外力が加わったとしても、筐体14内に密封された空気によって前記外力に抗する反力が生ずることで、筐体14の厚みが変化することが防止され、放射線検出部(TFT基板)42とシンチレータ34とは全面に亘って密着している状態のまま維持される。   The photographer presses the switch of the operation unit 172 when the casing 14 is in the minimum thickness state shown in FIG. 9B and the radiation detection unit (TFT substrate) 42 and the scintillator 34 are in close contact with each other. The switch is turned off by releasing. The cassette control unit 70 stops energization of the actuator 170 when the switch of the operation unit 172 is turned off. As a result, the plug member 168 is moved to the first position (see FIG. 10A), and communication between the internal space of the housing 14 and the outside of the housing 14 is blocked, so that the air in the housing 14 is blocked. Is sealed in the housing 14. Accordingly, even when an external force is applied to increase the thickness of the casing 14 while the electronic cassette 160 is used for photographing, a reaction force against the external force is generated by the air sealed in the casing 14. As a result, the thickness of the housing 14 is prevented from changing, and the radiation detection unit (TFT substrate) 42 and the scintillator 34 are maintained in close contact with each other.

放射線画像の撮影が終了すると、撮影者は、操作部172のスイッチを押圧することでスイッチをオンさせる。この間、カセッテ制御部70はアクチュエータ170に通電し、栓部材168が第2位置(図10(B)参照)に位置し、筐体14の内部空間と筐体14の外部とが連通される。これにより、電子カセッテ160の筐体14は、圧縮コイルばね162の付勢力により、筐体14の上面と底面とが離間する方向へ収納体16及び蓋体18が相対的に変位され、図9(A)に示す最大厚み状態に戻る。そして筐体14が最大厚み状態に戻ると、撮影者は操作部172のスイッチの押圧を解除する。これにより、筐体14内の空気が筐体14内に密封され、電子カセッテ160は保管に適した状態(筐体14に外力が加わっても放射線検出部(TFT基板)42とシンチレータ34との離間が維持される状態)に戻ることになる。   When the radiographic image capturing is completed, the photographer turns on the switch by pressing the switch of the operation unit 172. During this time, the cassette control unit 70 energizes the actuator 170, the plug member 168 is positioned at the second position (see FIG. 10B), and the internal space of the housing 14 and the outside of the housing 14 are communicated. As a result, the housing 14 and the lid 18 of the casing 14 of the electronic cassette 160 are relatively displaced in a direction in which the upper surface and the bottom surface of the casing 14 are separated by the urging force of the compression coil spring 162. It returns to the maximum thickness state shown in (A). When the casing 14 returns to the maximum thickness state, the photographer releases the pressing of the switch of the operation unit 172. Thereby, the air in the housing 14 is sealed in the housing 14, and the electronic cassette 160 is in a state suitable for storage (even if an external force is applied to the housing 14, the radiation detection unit (TFT substrate) 42 and the scintillator 34 The state in which the separation is maintained).

なお、第1〜第4実施形態で説明した電子カセッテ10, 150,154,156に、第5実施形態で説明した圧縮コイルばね162や連通切替部166を設け、筐体14の収納体16と蓋体18の相対変位を、空気圧発生装置28で発生した空気圧を筐体14内に導入すること、及び、撮影者等が筐体14に外力を加えること、の何れでも実現可能に構成してもよい。   The electronic cassettes 10, 150, 154, 156 described in the first to fourth embodiments are provided with the compression coil spring 162 and the communication switching unit 166 described in the fifth embodiment, The relative displacement of the lid 18 can be realized by either introducing the air pressure generated by the air pressure generator 28 into the housing 14 or applying an external force to the housing 14 by a photographer or the like. Also good.

また、第1,2,4,5実施形態では、シンチレータ34が形成された支持基板36を基台40の天板の上面に取付ける一方、制御基板46を基台40の天板の下面に取付けた態様を説明したが、これに限定されるものではなく、例えば基台40を省略し、シンチレータ34が形成された支持基板36及び制御基板46を、スペーサ等を介して収納体16の底板16Aに取付けるようにしてもよい。これにより、電子カセッテの筐体の厚みをより薄くすることも可能となる。   In the first, second, fourth, and fifth embodiments, the support substrate 36 on which the scintillator 34 is formed is attached to the upper surface of the top plate of the base 40, while the control substrate 46 is attached to the lower surface of the top plate of the base 40. However, the present invention is not limited to this. For example, the base 40 is omitted, and the support substrate 36 and the control substrate 46 on which the scintillator 34 is formed are connected to the bottom plate 16A of the storage body 16 via a spacer or the like. You may make it attach to. Thereby, the thickness of the casing of the electronic cassette can be further reduced.

但し、この構成ではシンチレータ34と制御基板46との距離がより小さくなるので、制御基板46から放射される熱がシンチレータ34に悪影響を及ぼす恐れがある(例えばシンチレータ34に温度むらが生じ、これに伴いシンチレータ34の発光効率にむらが生ずる等)。このため、シンチレータ34と制御基板46との間に、制御基板46からシンチレータ34への熱伝導を遮断する断熱性を有するシート材、或いは、制御基板46から放射された熱をシンチレータ34の受熱面と平行な方向へ伝導させて排熱する熱伝導異方性を有するシート材、或いは、制御基板46から放射された熱をシンチレータ34の受熱面の全面に亘っておよそ均一に伝導させるための熱伝導性の高いシート材を設けることが好ましい。   However, in this configuration, since the distance between the scintillator 34 and the control board 46 becomes smaller, the heat radiated from the control board 46 may adversely affect the scintillator 34 (for example, temperature unevenness occurs in the scintillator 34, As a result, the light emission efficiency of the scintillator 34 is uneven). Therefore, between the scintillator 34 and the control board 46, a sheet material having a heat insulating property that blocks heat conduction from the control board 46 to the scintillator 34, or heat radiated from the control board 46 receives heat from the scintillator 34. Sheet material having heat conduction anisotropy that conducts heat in a direction parallel to the heat, or heat for conducting heat radiated from the control board 46 substantially uniformly over the entire heat receiving surface of the scintillator 34. It is preferable to provide a highly conductive sheet material.

10, 150,154,156,160 電子カセッテ
12 照射面
14 筐体
16 収納体
18 蓋体
20 シール部材
26 バルブ
28 空気圧発生装置
34 シンチレータ
38 遮蔽部材
42 放射線検出部
58 遮光部材
70 カセッテ制御部
152 光結合部材
158 伸縮部材
166 連通切替部
10, 150, 154, 156, 160 Electronic cassette 12 Irradiation surface 14 Housing 16 Housing 18 Lid 20 Seal member 26 Valve 28 Air pressure generator 34 Scintillator 38 Shielding member 42 Radiation detection part 58 Light shielding member 70 Cassette control part 152 Light Coupling member 158 Telescopic member 166 Communication switching unit

Claims (12)

上面及び底面を有する形状で、前記上面が形成された上面側部材と前記底面が形成された底面側部材とが、前記上面と前記底面との間隔が変化するように相対的に変位可能とされた筐体と、
前記筐体内に配置されかつ前記上面側部材及び前記底面側部材の一方に取付けられ、被写体を透過して前記上面又は前記底面に照射された放射線を吸収して光を放出する光放出部と、
前記筐体内に配置されかつ前記上面側部材及び前記底面側部材の他方に取付けられ、前記光放出部から放出された光を検出すると共に、前記上面と前記底面との間隔の変化に伴い、前記光放出部と接している第1状態又は前記光放出部と離間している第2状態に切り替わる検出部と、
を含む放射線検出パネル。
A shape having an upper surface and a bottom surface, and an upper surface side member on which the upper surface is formed and a bottom surface side member on which the bottom surface is formed are relatively displaceable so that a distance between the upper surface and the bottom surface changes. And a housing
A light emitting portion disposed in the housing and attached to one of the upper surface side member and the bottom surface side member, which absorbs radiation irradiated to the upper surface or the bottom surface through a subject and emits light;
It is disposed in the casing and is attached to the other of the upper surface side member and the bottom surface side member, detects light emitted from the light emitting portion, and changes in the distance between the upper surface and the bottom surface, A detection unit that switches to a first state in contact with the light emitting unit or a second state that is separated from the light emitting unit;
Including radiation detection panel.
前記上面側部材は、一方の面が前記上面を成す上面部材の外縁に全周に亘り、前記上面部材とおよそ直交する方向に沿って壁部が立設された形状とされ、
前記底面側部材は、一方の面が前記底面を成す底面部材の外縁に全周に亘り、前記底面部材とおよそ直交する方向に沿って壁部が立設された形状とされ、
前記筐体は、前記上面部材と前記底面部材とがおよそ平行に向い合い、かつ、前記上面側部材の前記壁部と前記底面側部材の前記壁部とが、前記全周に亘り前記上面及び前記底面におよそ平行な方向に沿った間隙を隔てて対向するように、前記上面側部材及び前記底面側部材が配置されて構成されている請求項1記載の放射線検出パネル。
The upper surface side member has a shape in which a wall portion is erected along a direction substantially orthogonal to the upper surface member over the entire circumference of an outer edge of the upper surface member whose one surface forms the upper surface.
The bottom surface side member has a shape in which a wall portion is erected along a direction substantially perpendicular to the bottom surface member over the entire circumference of the outer edge of the bottom surface member where one surface forms the bottom surface.
In the housing, the upper surface member and the bottom surface member face each other substantially in parallel, and the wall portion of the upper surface side member and the wall portion of the bottom surface side member extend over the entire circumference. The radiation detection panel according to claim 1, wherein the top surface side member and the bottom surface side member are arranged so as to face each other with a gap along a direction substantially parallel to the bottom surface.
前記光放出部には、放射線の照射面内又は光放出面内の第1位置に、前記照射面内の前記第1位置に照射される放射線又は前記光放出面内の前記第1位置から放出される光を遮蔽する遮蔽部が設けられており、
前記検出部には、受光面内のうち前記第1位置に対して一定の位置関係の第2位置に、前記受光面内の前記第2位置に照射される光を遮光する遮光部が設けられている請求項1又は請求項2記載の放射線検出パネル。
The light emitting unit emits radiation irradiated to the first position in the irradiation surface or the first position in the light emission surface at a first position in the radiation irradiation surface or in the light emission surface. A shielding part for shielding the light to be
The detection unit is provided with a light shielding unit that shields light applied to the second position in the light receiving surface at a second position in the light receiving surface having a fixed positional relationship with respect to the first position. The radiation detection panel according to claim 1 or 2.
前記上面側部材と前記底面側部材との間隙を密封する密封手段と、
前記筐体の内部と外部とを選択的に連通させる連通手段と、
を更に備えた請求項1〜請求項3の何れか1項記載の放射線検出パネル。
Sealing means for sealing a gap between the upper surface side member and the bottom surface side member;
Communication means for selectively communicating the inside and the outside of the housing;
The radiation detection panel according to any one of claims 1 to 3, further comprising:
前記上面側部材と前記底面側部材との間隙を密封する密封手段と、
前記筐体の内部空間が空気圧発生装置と連通するように前記空気圧発生装置を接続するための接続部と、
を更に備え、
前記接続部に接続された前記空気圧発生装置によって発生された空気圧が前記接続部を介して前記内部空間に導入されることで、前記上面側部材と前記底面側部材とが相対的に変位される請求項1〜請求項4の何れか1項記載の放射線検出パネル。
Sealing means for sealing a gap between the upper surface side member and the bottom surface side member;
A connecting portion for connecting the air pressure generating device such that an internal space of the housing communicates with the air pressure generating device;
Further comprising
Air pressure generated by the air pressure generating device connected to the connection portion is introduced into the internal space via the connection portion, so that the upper surface side member and the bottom surface side member are relatively displaced. The radiation detection panel of any one of Claims 1-4.
前記上面と前記底面との間隔が拡大する方向へ前記上面側部材及び前記底面側部材を付勢する付勢手段を更に備えた請求項1〜請求項5の何れか1項記載の放射線検出パネル。   The radiation detection panel according to claim 1, further comprising an urging unit that urges the upper surface side member and the bottom surface side member in a direction in which a distance between the upper surface and the bottom surface is increased. . 少なくとも前記上面と前記底面との間隔が拡大する方向へ前記上面側部材と前記底面側部材とが相対的に変位された場合に、前記上面側部材と前記底面側部材との相対位置を、前記相対的に変位された後の相対位置に保持する保持手段を更に備えた請求項1〜請求項6の何れか1項記載の放射線検出パネル。   When the top surface side member and the bottom surface side member are relatively displaced in a direction in which at least the distance between the top surface and the bottom surface is increased, the relative position between the top surface side member and the bottom surface side member is The radiation detection panel according to any one of claims 1 to 6, further comprising holding means for holding at a relative position after being relatively displaced. 前記上面側部材と前記底面側部材との間隙を密封する密封手段と、
前記筐体の内部と外部とを選択的に連通させる連通手段と、
を更に備え、
前記保持手段は、前記上面側部材と前記底面側部材とが相対的に変位されている間は前記連通手段によって前記筐体の内部と外部とを連通させ、前記上面側部材と前記底面側部材とが相対的に変位された後は前記連通手段による前記筐体の内部と外部との連通を遮断することで、前記上面側部材と前記底面側部材との相対位置を前記相対的に変位された後の相対位置に保持する請求項7記載の放射線検出パネル。
Sealing means for sealing a gap between the upper surface side member and the bottom surface side member;
Communication means for selectively communicating the inside and the outside of the housing;
Further comprising
While the upper surface side member and the bottom surface side member are relatively displaced, the holding means allows the inside and the outside of the housing to communicate with each other by the communication means, and the upper surface side member and the bottom surface side member And the relative position of the upper surface side member and the lower surface side member is relatively displaced by blocking communication between the inside and the outside of the housing by the communication means. The radiation detection panel according to claim 7, wherein the radiation detection panel is held at a relative position after the operation.
前記上面側部材と前記底面側部材との間に設けられ、前記上面側部材と前記底面側部材との間隙を密封すると共に、前記上面側部材と前記底面側部材との相対変位に伴う前記間隙の大きさの変化に応じて伸縮する伸縮部材を更に備えた請求項1、請求項3〜請求項8の何れか1項記載の放射線検出パネル。   The gap is provided between the upper surface side member and the bottom surface side member, seals the gap between the upper surface side member and the bottom surface side member, and is accompanied by relative displacement between the upper surface side member and the bottom surface side member. The radiation detection panel according to claim 1, further comprising an expansion / contraction member that expands and contracts in accordance with a change in the size of the radiation detection panel. 前記光放出部と前記検出部との間には、前記光放出部と前記検出部とを光学的に結合する光結合部材が設けられており、前記第1状態において、前記検出部は前記光結合部材を介して前記光放出部と接する請求項1〜請求項9の何れか1項記載の放射線検出パネル。   An optical coupling member that optically couples the light emission unit and the detection unit is provided between the light emission unit and the detection unit. In the first state, the detection unit is the light The radiation detection panel according to claim 1, wherein the radiation detection panel is in contact with the light emitting portion via a coupling member. 前記検出部が前記光放出部と接している前記第1状態での前記筐体の厚みが、照射された放射線を感光材料に画像として記録する構成のカセッテにおける筐体の厚みと同サイズとされている請求項1〜請求項10の何れか1項記載の放射線検出パネル。   The thickness of the casing in the first state where the detection unit is in contact with the light emitting unit is the same size as the thickness of the casing in a cassette configured to record the irradiated radiation as an image on a photosensitive material. The radiation detection panel according to any one of claims 1 to 10. 前記検出手段は、前記光放出部に対して放射線の到来方向上流側に配置されている請求項1〜請求項11の何れか1項記載の放射線検出パネル。   The radiation detection panel according to claim 1, wherein the detection unit is disposed upstream of the light emitting unit in the direction of arrival of radiation.
JP2010190726A 2010-08-27 2010-08-27 Radiation detection panel Pending JP2012047627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190726A JP2012047627A (en) 2010-08-27 2010-08-27 Radiation detection panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190726A JP2012047627A (en) 2010-08-27 2010-08-27 Radiation detection panel

Publications (1)

Publication Number Publication Date
JP2012047627A true JP2012047627A (en) 2012-03-08

Family

ID=45902675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190726A Pending JP2012047627A (en) 2010-08-27 2010-08-27 Radiation detection panel

Country Status (1)

Country Link
JP (1) JP2012047627A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169625A (en) * 2014-03-10 2015-09-28 富士フイルム株式会社 Portable type radiographic device
JP2015169592A (en) * 2014-03-10 2015-09-28 富士フイルム株式会社 Portable type radiographic device and housing
GB2526662A (en) * 2014-04-09 2015-12-02 Canon Kk Radiation imaging apparatus and radiation imaging system
JP2017203729A (en) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 Portable radiographic imaging apparatus
EP3324212A1 (en) * 2016-11-17 2018-05-23 General Electric Company Scintillator sealing for solid state x-ray detector
WO2018093908A1 (en) * 2016-11-17 2018-05-24 General Electric Company Scintillator sealing for solid state x-ray detector
JP2020153995A (en) * 2020-05-28 2020-09-24 富士フイルム株式会社 Radiation image imaging device and heat diffusion method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823365B2 (en) 2014-03-10 2017-11-21 Fujifilm Corporation Portable radiographic image capturing apparatus
JP2015169592A (en) * 2014-03-10 2015-09-28 富士フイルム株式会社 Portable type radiographic device and housing
US10649103B2 (en) 2014-03-10 2020-05-12 Fujifilm Corporation Portable radiographic image capturing apparatus
JP2015169625A (en) * 2014-03-10 2015-09-28 富士フイルム株式会社 Portable type radiographic device
US10024980B2 (en) 2014-04-09 2018-07-17 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
GB2526662B (en) * 2014-04-09 2017-10-04 Canon Kk Radiation imaging apparatus and radiation imaging system
GB2526662A (en) * 2014-04-09 2015-12-02 Canon Kk Radiation imaging apparatus and radiation imaging system
JP2017203729A (en) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 Portable radiographic imaging apparatus
EP3324212A1 (en) * 2016-11-17 2018-05-23 General Electric Company Scintillator sealing for solid state x-ray detector
WO2018093908A1 (en) * 2016-11-17 2018-05-24 General Electric Company Scintillator sealing for solid state x-ray detector
US10299744B2 (en) 2016-11-17 2019-05-28 General Electric Company Scintillator sealing for solid state x-ray detector
CN110178052A (en) * 2016-11-17 2019-08-27 通用电气公司 Scintillator for solid-state X-ray detector seals
US10631801B2 (en) 2016-11-17 2020-04-28 General Electric Company Scintillator sealing for solid state X-ray detector
CN110178052B (en) * 2016-11-17 2023-09-05 通用电气公司 Scintillator seal for solid state X-ray detector
JP2020153995A (en) * 2020-05-28 2020-09-24 富士フイルム株式会社 Radiation image imaging device and heat diffusion method
JP7084445B2 (en) 2020-05-28 2022-06-14 富士フイルム株式会社 Radiation imaging device and heat diffusion method

Similar Documents

Publication Publication Date Title
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
JP6033363B2 (en) Radiation detection panel
US8946634B2 (en) Radiographic image capture device
JP5702220B2 (en) Radiography equipment
US20160178757A1 (en) Radiographic image capture device
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
JP2012047627A (en) Radiation detection panel
JP5653829B2 (en) Radiographic apparatus, radiographic system, and radiographic method
JP5666412B2 (en) Radiation image detection apparatus, radiation image detection method, and program
JP5507415B2 (en) Radiation imaging device
JP2011133860A (en) Radiographic imaging apparatus
JP2013088324A (en) Radiological imaging device
JP5623316B2 (en) Radiation imaging apparatus and manufacturing method
JP2012132703A (en) Electronic cassette
WO2012014543A1 (en) Radiation detector panel
WO2012165155A1 (en) Radiographic imaging device
WO2013015267A1 (en) Radiographic equipment
JP5453219B2 (en) Radiation imaging equipment
JP2011133859A (en) Radiographic imaging apparatus
JP2012013682A (en) Radiographic image photographing device
JP2013011553A (en) Radiographic system, radiographic apparatus and radiographic method
JP2012118050A (en) Radiographic device
JP2012093188A (en) Radiation detecting panel
JP2012247402A (en) Radiographic apparatus
JP5496938B2 (en) Radiation image processing system, program, and defective pixel correction method