JP2012042121A - Refrigerant distributor, and refrigerating cycle device - Google Patents

Refrigerant distributor, and refrigerating cycle device Download PDF

Info

Publication number
JP2012042121A
JP2012042121A JP2010183534A JP2010183534A JP2012042121A JP 2012042121 A JP2012042121 A JP 2012042121A JP 2010183534 A JP2010183534 A JP 2010183534A JP 2010183534 A JP2010183534 A JP 2010183534A JP 2012042121 A JP2012042121 A JP 2012042121A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
passage
return
distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010183534A
Other languages
Japanese (ja)
Other versions
JP5567935B2 (en
Inventor
Michiharu Watabe
道治 渡部
Yutaka Enokitsu
豊 榎津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010183534A priority Critical patent/JP5567935B2/en
Publication of JP2012042121A publication Critical patent/JP2012042121A/en
Application granted granted Critical
Publication of JP5567935B2 publication Critical patent/JP5567935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distributor that does not result in large pressure loss and automatically returns distribution to be uniform, even if a refrigerant flow rate in each passage is non-uniform when a refrigerant passage is diverged into a plurality of passages.SOLUTION: In the refrigerant distributor, an inflow-side refrigerant passage 1 is connected on the upstream side of a passage branch part 9, and a plurality of outflow-side refrigerant passages 2 are connected on the downstream side of the passage branch part 9, and then a refrigerant flow which has flowed from the inflow-side refrigerant passage 1 is distributed to the plurality of outflow-side refrigerant passages 2. The distributor includes: a nozzle portion 7 having a passage-cross-section minimum part 6 on the downstream side of the inflow-side refrigerant passage 1 and on the upstream side of the passage branch part 9; and additionally a feedback passage 10 connecting with peripheries of the respective outflow-side refrigerant passages 2 and the downstream side of the passage-cross-section minimum part 6.

Description

本発明は冷媒分配器に関する。   The present invention relates to a refrigerant distributor.

ヒートポンプ給湯機又は空気調和装置における室内機や室外機に搭載される熱交換器は複数の流路構成となっており、熱交換器入口部に冷媒分配器を配置して各パスに冷媒を分配するようになっている。   Heat exchangers installed in indoor units and outdoor units in heat pump water heaters or air conditioners have multiple flow path configurations, and a refrigerant distributor is placed at the heat exchanger inlet to distribute refrigerant to each path. It is supposed to be.

この主の冷媒分配器に関する従来技術としては、例えば冷媒の分流には特開2000-111205号公報がある。   As a conventional technique related to this main refrigerant distributor, for example, Japanese Patent Laid-Open No. 2000-111205 discloses a refrigerant distribution.

特開2000-111205号公報JP 2000-111205 A

上記特許文献1は冷媒の均一な分配は可能であるが、流路断面積の小さい流路を複数設けることであえて圧力損失を発生させているので、エネルギロスが避けられなかった。   Although the above-mentioned Patent Document 1 can uniformly distribute the refrigerant, since a pressure loss is generated by providing a plurality of channels having a small channel cross-sectional area, energy loss cannot be avoided.

本発明の目的は、シンプルな構造でありながら圧力損失を抑え、冷媒を均一に熱交換器に分配することが可能な冷媒分配器を提供することにある。   An object of the present invention is to provide a refrigerant distributor capable of suppressing the pressure loss and distributing the refrigerant uniformly to the heat exchanger while having a simple structure.

本発明は、流路分岐部の上流側に流入側冷媒流路を接続するとともに、前記流路分岐部の下流側に複数の流出側冷媒流路を接続し、前記流入側冷媒流路から流入した冷媒流を複数の前記流出側冷媒流路へと分配する冷媒分配器において、前記流入側冷媒流路の下流側でかつ前記流路分岐部の上流側に流路断面積最小部を有するノズル部を備え、加えて各流出側冷媒流路の周辺部と前記流路断面積最小部の下流側とを接続する帰還流路を備えたことを特徴とする。   In the present invention, an inflow side refrigerant flow path is connected to the upstream side of the flow path branching section, and a plurality of outflow side refrigerant flow paths are connected to the downstream side of the flow path branching section. In the refrigerant distributor that distributes the refrigerant flow to the plurality of outflow side refrigerant channels, a nozzle having a minimum channel cross-sectional area on the downstream side of the inflow side refrigerant channel and on the upstream side of the channel branching portion And a return flow path that connects a peripheral portion of each outflow side refrigerant flow path and a downstream side of the flow path cross-sectional area minimum portion.

また上記においては、前記流出側冷媒流路の入口部の周辺に接続されている前記帰還流路の入口部を前記流出側冷媒流路の入口部の外側と内側の両方に備えた構成が好ましい。   Moreover, in the above, the structure provided with the inlet part of the said return flow path connected to the circumference | surroundings of the inlet part of the said outflow side refrigerant flow path in both the outer side and the inner side of the inlet part of the said outflow side refrigerant flow path is preferable. .

また上記においては、前記流路断面積最小部の下流側に接続されている前記帰還流路の出口部を前記流出側冷媒流路の本数以上備えた構成が好ましい。   Moreover, in the above, the structure provided with the exit part of the said return flow path connected to the downstream of the said flow path cross-sectional area minimum part more than the number of the said outflow side refrigerant flow paths is preferable.

また上記においては、前記帰還流路の出口部と前記帰還流路の入口部を前記ノズル部中心軸に対して同一方向に備えた構成が好ましい。   In the above, it is preferable that the outlet portion of the return channel and the inlet portion of the return channel are provided in the same direction with respect to the central axis of the nozzle portion.

また上記においては、前記帰還流路の出口部と前記流出側冷媒流路の入口部を前記ノズル部中心軸に対して異なる方向に備えた構成が好ましい。   Moreover, in the above, the structure provided with the exit part of the said return flow path and the inlet part of the said outflow side refrigerant | coolant flow path in a different direction with respect to the said nozzle part central axis is preferable.

本発明によれば、シンプルな構造でありながら圧力損失を抑え、冷媒を均一に熱交換器に分配することが可能な冷媒分配器及び冷凍サイクル装置を提供できる。   According to the present invention, it is possible to provide a refrigerant distributor and a refrigeration cycle apparatus that can suppress pressure loss and can evenly distribute refrigerant to heat exchangers with a simple structure.

一実施形態を備えた冷媒分配器の斜視図である。It is a perspective view of a refrigerant distributor provided with one embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 図1のC−C断面図である。It is CC sectional drawing of FIG. 本実施形態における冷媒の挙動を表す断面図である。It is sectional drawing showing the behavior of the refrigerant | coolant in this embodiment. 本実施形態を備えた冷媒分配器の本体部材を表す斜視図である。It is a perspective view showing the main body member of the refrigerant distributor provided with this embodiment. 本実施形態を備えた冷媒分配器の上蓋部材を表す斜視図である。It is a perspective view showing the upper cover member of a refrigerant distributor provided with this embodiment. 本実施形態を備えた冷媒分配器の外側部材を表す斜視図である。It is a perspective view showing the outer side member of the refrigerant distributor provided with this embodiment. 本実施形態を備えた冷媒分配器の組み立て状態を表す斜視図である。It is a perspective view showing the assembly state of the refrigerant distributor provided with this embodiment. 他の実施形態を備えた帰還流路の入口部の断面図である。It is sectional drawing of the inlet_port | entrance part of the return flow path provided with other embodiment. 他の実施形態を備えた帰還流路の出口部の断面図である。It is sectional drawing of the exit part of the return flow path provided with other embodiment. 一般的な冷凍サイクルを表した概略図である。It is the schematic showing a general refrigerating cycle. 一般的な分配器の構成図である。It is a block diagram of a general distributor.

近年、ヒートポンプ給湯機又は空気調和装置等の冷凍サイクル装置に搭載される蒸発器は熱効率を高めるために配管は細径化されているため複数の配管で構成されるようになってきている。そのため蒸発器に冷媒が流入される直前に取付けられた分配器で冷媒を複数の配管に流すために分流させている。   In recent years, an evaporator mounted on a refrigeration cycle apparatus such as a heat pump water heater or an air conditioner has been made up of a plurality of pipes because the pipes are reduced in diameter in order to increase thermal efficiency. For this reason, the distributor is split in order to flow through the plurality of pipes by a distributor attached immediately before the refrigerant flows into the evaporator.

ところが現状の分配器の構造では均等分配をすることができないという問題がある。   However, there is a problem that the current distributor structure cannot perform uniform distribution.

現状の分配器で仮に冷媒分配が不均一となってしまうと、流量が少なくなった配管内の乾き現象が加速され、結果的にエネルギーのロスとなってしまいその分冷却性能の低下を招く。したがって、均等な冷媒の分配は必須である。   If the distribution of refrigerant in the current distributor becomes non-uniform, the drying phenomenon in the pipe where the flow rate is reduced is accelerated, resulting in a loss of energy and a corresponding decrease in cooling performance. Therefore, uniform refrigerant distribution is essential.

さて、上記特許文献1に記載された一般的な冷凍サイクルを図12で説明し、一般的な分配器を図13で説明する。   Now, a general refrigeration cycle described in Patent Document 1 will be described with reference to FIG. 12, and a general distributor will be described with reference to FIG.

図12は一般的な冷凍サイクルを表した概略図である。   FIG. 12 is a schematic diagram showing a general refrigeration cycle.

図13は一般的な分配器の構成図である。   FIG. 13 is a configuration diagram of a general distributor.

図12において、暖房運転の場合は矢印で示すように圧縮機101から吐出された高温高圧の冷媒は四方弁102を経由して室内熱交換器103に流入して凝縮するとともに室内の空気と熱交換して、室内を暖房する。室内熱交換器103で液体となった冷媒は膨張弁104から冷媒回路105の流入管106を通って分配器107に流入する。分配器107は冷媒を複数の流出管108で分配した後、複数の室外熱交換器109に供給される。複数の室外熱交換器109で蒸発した冷媒は四方弁102を経由して圧縮機101に戻る。   In FIG. 12, in the case of heating operation, as indicated by an arrow, the high-temperature and high-pressure refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 103 via the four-way valve 102, condenses, and indoor air and heat. Replace and heat the room. The refrigerant that has become liquid in the indoor heat exchanger 103 flows into the distributor 107 from the expansion valve 104 through the inflow pipe 106 of the refrigerant circuit 105. The distributor 107 distributes the refrigerant through the plurality of outflow pipes 108 and then supplies the refrigerant to the plurality of outdoor heat exchangers 109. The refrigerant evaporated in the plurality of outdoor heat exchangers 109 returns to the compressor 101 via the four-way valve 102.

一方、冷房運転の場合は点線の矢印のように四方弁102の切り替えによって冷媒は逆流するので室内熱交換器103が蒸発器となるため室内を冷房することができる。   On the other hand, in the case of cooling operation, the refrigerant flows backward by switching the four-way valve 102 as indicated by the dotted arrow, so that the indoor heat exchanger 103 serves as an evaporator, so that the room can be cooled.

図13において、矢印で示すように流入管106に流入した冷媒は圧力室107aに入り、この圧力室107aから複数に分岐された冷媒流路107bに流入する。流入した冷媒合流分岐107cで一旦合流する(図13では冷媒合流分岐107cが2箇所設けられている)。冷媒合流分岐107cを出た冷媒は出口合流部107dで合流して流出管108を通って室外熱交換器109へと流れる。   In FIG. 13, the refrigerant that has flowed into the inflow pipe 106 enters the pressure chamber 107a as shown by an arrow, and flows into the refrigerant flow path 107b branched into a plurality of branches from the pressure chamber 107a. The refrigerant merge branch 107c that has flowed in once joins (in FIG. 13, two refrigerant merge branches 107c are provided). The refrigerant that has exited the refrigerant junction branch 107 c joins at the outlet junction 107 d and flows to the outdoor heat exchanger 109 through the outflow pipe 108.

このような分配器107は、均一な冷媒の分配は可能であるものの、流路断面積の小さい流路を複数設けているので圧力損失が大きく、エネルギロスが発生してしまう。しかも、構造が複雑となり、その分製作コストの高騰に繋がる。   Although such a distributor 107 can uniformly distribute the refrigerant, since a plurality of channels having a small channel cross-sectional area are provided, the pressure loss is large and energy loss occurs. In addition, the structure becomes complicated, leading to an increase in production costs.

そこで、本発明の発明者らはフルイディクス(流体素子)を応用し、シンプルな構造でエネルギロスの少ない分配器を種々検討した結果以下のごとき実施例を得た。   Accordingly, the inventors of the present invention applied fluidics (fluid elements) and studied various distributors with a simple structure and low energy loss. As a result, the following embodiments were obtained.

本発明の一実施例を図1から図9を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は一実施形態を備えた冷媒分配器の斜視図である。   FIG. 1 is a perspective view of a refrigerant distributor including an embodiment.

図2は図1のA−A断面図である。   2 is a cross-sectional view taken along the line AA in FIG.

図3は図1のB−B断面図である。   3 is a cross-sectional view taken along the line BB of FIG.

図4は図1のC−C断面図である。   4 is a cross-sectional view taken along the line CC of FIG.

図5は本実施形態における冷媒の挙動を表す断面図である。   FIG. 5 is a cross-sectional view showing the behavior of the refrigerant in the present embodiment.

図6は本実施形態を備えた冷媒分配器の本体部材を表す斜視図である。   FIG. 6 is a perspective view showing a main body member of the refrigerant distributor provided with this embodiment.

図7は本実施形態を備えた冷媒分配器の上蓋部材を表す斜視図である。   FIG. 7 is a perspective view showing the upper cover member of the refrigerant distributor provided with this embodiment.

図8は本実施形態を備えた冷媒分配器の外側部材を表す斜視図である。   FIG. 8 is a perspective view showing an outer member of the refrigerant distributor provided with this embodiment.

図9は本実施形態を備えた冷媒分配器の組み立て状態を表す斜視図である。   FIG. 9 is a perspective view showing an assembled state of the refrigerant distributor including the present embodiment.

図1において、1つの流入側冷媒流路1と複数の流出側冷媒流路2が冷媒分配器本体3に接続されている。本実施例では流出側冷媒流路2が3つの場合を示している。   In FIG. 1, one inflow side refrigerant flow path 1 and a plurality of outflow side refrigerant flow paths 2 are connected to a refrigerant distributor body 3. In the present embodiment, the case where there are three outflow side refrigerant flow paths 2 is shown.

図2において、流入側冷媒流路1の下流にはノズル部7が配置されている。ノズル部7は流路断面積がゆるやかに減少する縮流部4と流路断面積最小部6、そして流路断面積が急拡大する流路拡大部5を有している。流路拡大部5の下流側には突起部8を有した流路分岐部9が接続されており、さらに下流側には3本の流出側冷媒流路2が接続されている(なお、図2は図1をA−A線で断面しているので流出側冷媒流路が2本のみ見えている)。11は外側入り口部、12は内側入り口分、10は帰還流路、13は出口部であるが、その詳細は後で述べる。   In FIG. 2, a nozzle portion 7 is disposed downstream of the inflow side refrigerant flow path 1. The nozzle portion 7 includes a contracted flow portion 4 where the flow path cross-sectional area gradually decreases, a flow path cross-sectional area minimum portion 6, and a flow path expanding portion 5 where the flow path cross-sectional area rapidly increases. A flow path branching section 9 having a protrusion 8 is connected to the downstream side of the flow path expanding section 5, and three outflow side refrigerant flow paths 2 are connected to the downstream side (see FIG. 2 is a cross-sectional view of FIG. 1 taken along line AA, so that only two outflow-side refrigerant channels are visible). Reference numeral 11 denotes an outer entrance portion, 12 denotes an inner entrance portion, 10 denotes a return flow path, and 13 denotes an exit portion, the details of which will be described later.

図3は帰還流路10の入口部が接続されている流出側冷媒流路2の入口面の断面図である。図4は帰還流路10の出口部13が接続されている流路断面積最小部6の下流側の流路断面図である。   FIG. 3 is a cross-sectional view of the inlet surface of the outflow side refrigerant flow channel 2 to which the inlet portion of the return flow channel 10 is connected. FIG. 4 is a channel cross-sectional view on the downstream side of the channel cross-sectional area minimum portion 6 to which the outlet portion 13 of the return channel 10 is connected.

図3において、3本の流出側冷媒流路2の中心点は流路分岐部9を中心とした1つの円上に120度ごとに配置されている。図2に示した流路分岐部9の突起部8を中心として3つの流出側冷媒流路2が取り付けられている。これらの流出側冷媒流路2の中心点を結ぶ円の外側と内側には、それぞれ帰還流路10の外側入口部11と内側入口部12が位置している。   In FIG. 3, the center points of the three outflow-side refrigerant channels 2 are arranged every 120 degrees on one circle centering on the channel branching portion 9. Three outflow-side refrigerant flow paths 2 are attached around the protrusion 8 of the flow path branching section 9 shown in FIG. The outer inlet portion 11 and the inner inlet portion 12 of the return flow path 10 are located on the outer side and the inner side of the circle connecting the center points of the outflow side refrigerant flow paths 2, respectively.

帰還流路10の外側入口部11および内側入口部12は、それぞれ流出側冷媒流路2の入口部と同一平面上に設置されている。帰還流路10は主冷媒流路の外側を通って、図2に示す流路断面積最小部6の下流側に設置した帰還流路10の出口部13へと接続されている。   The outer inlet portion 11 and the inner inlet portion 12 of the return channel 10 are installed on the same plane as the inlet portion of the outflow side refrigerant channel 2. The return flow path 10 passes through the outside of the main refrigerant flow path and is connected to the outlet portion 13 of the return flow path 10 installed on the downstream side of the flow path cross-sectional area minimum portion 6 shown in FIG.

図4において、1本の帰還流路10を構成する帰還流路10の外側入口部11と内側入口部12と出口部13は、ノズル部7の中心軸に対して同一方向にある。本例では帰還流路10の本数が6本であるため、図4の主冷媒流路の中心点と図3における流路分岐部9の中心点のそれぞれを中心として60度ごとに帰還流路10の出口部13と外側入口部11および内側入口部12が配置されている。   In FIG. 4, the outer inlet portion 11, the inner inlet portion 12, and the outlet portion 13 of the return flow path 10 constituting one return flow path 10 are in the same direction with respect to the central axis of the nozzle section 7. In this example, since the number of the return flow paths 10 is 6, the return flow paths every 60 degrees centering on the center point of the main refrigerant flow path in FIG. 4 and the center point of the flow path branching portion 9 in FIG. Ten outlet portions 13, an outer inlet portion 11, and an inner inlet portion 12 are arranged.

主冷媒流路での冷媒流の挙動を図5に従って説明する。   The behavior of the refrigerant flow in the main refrigerant flow path will be described with reference to FIG.

図5において、流入側冷媒流路1の下流側は縮流部4となっており、流路断面積が徐々に小さくなる。連続の式で表される関係により、流路断面積が小さくなると流速が増加するため、流入側冷媒流路1から流入した冷媒流は、動圧が増加すると同時に静圧が低下する。静圧はやがて流路断面積最小部6で最小となり、同時に冷媒流の持つ運動量が最大となる。運動量が大きくなると慣性力が強まるため、流路断面積最小部6の下流側の流路拡大部5では流れが壁面に沿って拡大せずに剥離を起こす。   In FIG. 5, the downstream side of the inflow-side refrigerant flow path 1 is a contraction portion 4, and the flow path cross-sectional area gradually decreases. Due to the relationship expressed by the continuous equation, the flow velocity increases as the flow path cross-sectional area decreases, so that the static pressure of the refrigerant flow that flows in from the inflow side refrigerant flow path 1 decreases simultaneously with the increase in dynamic pressure. The static pressure eventually becomes minimum at the flow path cross-sectional area minimum portion 6, and at the same time, the momentum of the refrigerant flow becomes maximum. As the momentum increases, the inertial force increases, so that the flow does not expand along the wall surface in the flow path expanding section 5 on the downstream side of the flow path cross-sectional area minimum section 6, thus causing separation.

これにより、冷媒流は流路拡大部5の中心部のみ流速が速い墳流状態となる。流路拡大部5を通過した冷媒墳流14Aはその下流側にある流路分岐部9(図2に示す)に到達し、冷媒墳流14Aが突起部8に衝突することで冷媒流が3本の流出側冷媒流路3へと分岐する。   As a result, the refrigerant flow is in a turbulent state where only the central portion of the flow path expanding portion 5 has a high flow velocity. The refrigerant flow 14A that has passed through the flow path expanding section 5 reaches the flow path branching section 9 (shown in FIG. 2) on the downstream side, and the refrigerant flow 14A collides with the protrusion 8 so that the refrigerant flow is 3 Branches to the outflow side refrigerant flow path 3 of the book.

帰還流路10での冷媒流の挙動について説明する。   The behavior of the refrigerant flow in the return flow path 10 will be described.

流路分岐部9の流路断面積は流路断面積最小部6よりも大きいため、静圧が高い状態にある。流路断面積最小部6の下流側と流路分岐部9は帰還流路10で接続されているため、帰還流路10の外側入口部11と内側入口部12の静圧は流路断面積最小部6の静圧に近くなる。   Since the flow path cross-sectional area of the flow path branching portion 9 is larger than the flow path cross-sectional area minimum portion 6, the static pressure is high. Since the downstream side of the minimum flow path cross-sectional area 6 and the flow path branching section 9 are connected by the return flow path 10, the static pressure at the outer inlet section 11 and the inner inlet section 12 of the return flow path 10 is the flow path cross-sectional area. It becomes close to the static pressure of the minimum part 6.

これにより、流路分岐部9で分岐した冷媒墳流14Aの一部は流出側冷媒流路2へと流れずに、静圧の低い帰還流路10の外側入口部11と内側入口部12へと流入し、やがて流路断面積最小部6の下流側に接続している帰還流路10の出口部13から流出する。   As a result, a part of the refrigerant flow 14A branched at the flow path branching section 9 does not flow to the outflow side refrigerant flow path 2, but to the outer inlet section 11 and the inner inlet section 12 of the return flow path 10 having a low static pressure. And then flows out from the outlet portion 13 of the return flow path 10 connected to the downstream side of the flow path cross-sectional area minimum portion 6.

冷媒分配に不均一が発生し、ノズル部7から流出した冷媒墳流14Aが流出側冷媒流路2Aへと向かって偏向する場合の動作について、図5を用いて説明する。
流出側冷媒流路2Aへと向かって冷媒流路14Aが偏向すると、流出側冷媒流路2Aの冷媒流量が多くなり、3つの流出側冷媒流路2の冷媒流量に不均一が生じる。冷媒流量に不均一が発生すると、6本の帰還流路10へと流入する冷媒流量比が変化する。帰還流路10へと流入した冷媒流はやがて流路断面積最小部6の下流側に設けた帰還流路10の出口部13から流出する。この時、6本の帰還流路10の出口部13それぞれの流量比が異なっているため、流量の多い帰還流路10の出口部13からの冷媒流は運動量が大きく、流量の少ない帰還流路10の出口部13からの冷媒流は運動量が小さくなる。
The operation when the refrigerant distribution is non-uniform and the refrigerant flow 14A flowing out from the nozzle portion 7 is deflected toward the outflow-side refrigerant flow path 2A will be described with reference to FIG.
When the refrigerant flow path 14A is deflected toward the outflow side refrigerant flow path 2A, the refrigerant flow rate in the outflow side refrigerant flow path 2A increases, and the refrigerant flow rates in the three outflow side refrigerant flow paths 2 become uneven. When nonuniformity occurs in the refrigerant flow rate, the ratio of the refrigerant flow rate flowing into the six return flow paths 10 changes. The refrigerant flow that has flowed into the return flow path 10 eventually flows out from the outlet section 13 of the return flow path 10 provided on the downstream side of the flow path cross-sectional area minimum portion 6. At this time, since the flow rate ratios of the outlet portions 13 of the six return flow paths 10 are different, the refrigerant flow from the outlet section 13 of the return flow path 10 having a high flow rate has a large momentum and a low flow rate. The refrigerant flow from the 10 outlet portions 13 has a small momentum.

これにより、流路断面積最小部6から流出した冷媒墳流14Bは、6本の帰還流路10の出口部13から流出する冷媒流の運動量比に応じた流体力を受ける。ここで、流量の多い帰還流路10の出口部13から流出する冷媒流の流出方向は冷媒墳流14Bの偏向方向と向かい合っているため、偏向した冷媒墳流14Bはノズル部7の中心軸上に戻されるような修正力を受けることになる。この一連の動作により、冷媒墳流14Aの向きは常に3つの流出側冷媒流路2へと均等に冷媒が分配されるよう調整される。   As a result, the refrigerant flow 14B that has flowed out of the flow path cross-sectional area minimum portion 6 receives a fluid force corresponding to the momentum ratio of the refrigerant flow that flows out of the outlet portions 13 of the six return flow paths 10. Here, since the outflow direction of the refrigerant flow flowing out from the outlet portion 13 of the return flow path 10 having a large flow rate faces the deflection direction of the refrigerant flow 14B, the deflected refrigerant flow 14B is on the central axis of the nozzle portion 7. It will receive a correction force that will be returned to. By this series of operations, the direction of the refrigerant flow 14A is adjusted so that the refrigerant is evenly distributed to the three outflow-side refrigerant channels 2 at all times.

帰還流路10の内側入口部12について説明する。   The inner inlet 12 of the return channel 10 will be described.

帰還流路10の外側入口部11のみを設けた場合、冷媒墳流14Bが大きく偏向しなければ、冷媒墳流14Bの向きを修正するだけの十分な帰還流路10の流量差は得られない。結果的に冷媒墳流14Bは大きく振動することになり、分配が均一に戻るまでの応答時間が遅くなる。   When only the outer inlet portion 11 of the return flow path 10 is provided, a sufficient flow rate difference in the return flow path 10 for correcting the direction of the refrigerant flow 14B cannot be obtained unless the refrigerant flow 14B is largely deflected. . As a result, the refrigerant flow 14B vibrates greatly, and the response time until the distribution returns to uniform is delayed.

これに対して、帰還流路10の外側入口部11に加えて内側入口部12を設けているので、冷媒墳流14Aがわずかに偏向しただけでも帰還流路10の流量差を大きくすることが可能となる。これにより、帰還流路10の外側入口部11のみを設置した場合よりも素早く冷媒分配の均一化を実現する。   On the other hand, since the inner inlet portion 12 is provided in addition to the outer inlet portion 11 of the return flow path 10, the flow rate difference of the return flow path 10 can be increased even if the refrigerant flow 14A is slightly deflected. It becomes possible. Thereby, the uniform distribution of the refrigerant is realized more quickly than when only the outer inlet 11 of the return flow path 10 is installed.

帰還流路10の本数について説明する。   The number of return flow paths 10 will be described.

一般的に、帰還流路10を用いて冷媒墳流の制御をおこなう装置は流路が二次元的な構造となっており、多くの場合で流出側冷媒流路は2本で、流出側冷媒流路の本数と帰還流路の本数は同数である。しかし、本例では流出側冷媒流路2の本数以上の6本の帰還流路10を設け、流路拡大部5の内壁面のどの部分へ向かって冷媒墳流14Aが曲がったとしても、大きな修正力が得られるようにしている。   Generally, an apparatus that controls refrigerant flow using the return flow path 10 has a two-dimensional flow path, and in many cases, there are two outflow side refrigerant paths and the outflow side refrigerant. The number of flow paths is the same as the number of return flow paths. However, in this example, six return flow paths 10 that are equal to or more than the number of outflow-side refrigerant flow paths 2 are provided, and no matter which part of the inner wall surface of the flow path expanding portion 5 is bent, The corrective power is obtained.

冷媒分配器本体3の構成を図6から図9を用いて説明する。   The configuration of the refrigerant distributor body 3 will be described with reference to FIGS.

本例に示す冷媒分配器本体3は本体部材15、上蓋部材16、外側部材17の3つの部材で構成されている。本体部材15は図2に示すように縮流部4、流路断面積最小部6、流路拡大部5で構成されるノズル部7を有し、流路拡大部5の下流端が開放された形状となっている。流路断面積最小部6の下流側内壁面と本体部材15の外壁面は帰還流路10を構成する6つの穴が貫通している。上蓋部材16は円板に流路分岐部9となる突起部8を加えた構成となっており、表面には流出側冷媒流路2の入口部となる3つの穴と、帰還流路10の外側入口部11と内側入口部12となる12箇所の穴があいている。   The refrigerant distributor main body 3 shown in this example is composed of three members: a main body member 15, an upper lid member 16, and an outer member 17. As shown in FIG. 2, the main body member 15 has a nozzle portion 7 composed of a contracted portion 4, a channel cross-sectional area minimum portion 6, and a channel expanding portion 5, and the downstream end of the channel expanding portion 5 is opened. It has a different shape. Six holes constituting the return channel 10 pass through the inner wall surface on the downstream side of the channel cross-sectional area minimum portion 6 and the outer wall surface of the main body member 15. The upper lid member 16 has a configuration in which a protrusion 8 serving as a flow path branching portion 9 is added to a disk, and three holes serving as inlet portions of the outflow side refrigerant flow path 2 are formed on the surface, and the return flow path 10 is provided. There are twelve holes for the outer inlet 11 and the inner inlet 12.

外側部材17は円柱の内側をくりぬいた形状に、帰還流路10を構成する6本の溝と、流出側冷媒流路2を接続するための3つの穴を加えた構成となっている。   The outer member 17 has a configuration in which the inner side of the cylinder is hollowed out, and six grooves constituting the return flow path 10 and three holes for connecting the outflow side refrigerant flow path 2 are added.

図9に示すように本体部材15に上蓋部材16で蓋をし、さらにその外から外側部材17を被せるだけで、複雑な形状の冷媒分配器をきわめて単純な構造で得ることが可能となる。   As shown in FIG. 9, it is possible to obtain a complex-shaped refrigerant distributor with an extremely simple structure by simply covering the main body member 15 with the upper cover member 16 and then covering the main body member 15 with the outer member 17 from the outside.

本発明の第2の実施形態を図10と図11を用いて説明する。   A second embodiment of the present invention will be described with reference to FIGS.

第2の実施例は、第1の実施例と帰還流路10の入口部11,12および出口部13の位置が異なっている。   The second embodiment differs from the first embodiment in the positions of the inlet portions 11 and 12 and the outlet portion 13 of the return flow path 10.

図10は流出側冷媒流路2の入口部の流路断面図である。   FIG. 10 is a channel cross-sectional view of the inlet portion of the outflow side refrigerant channel 2.

流出側冷媒流路2の外側入口部11と内側入口部12は3つの流出側冷媒流路2の外側と内側に設置される。   The outer inlet portion 11 and the inner inlet portion 12 of the outflow side refrigerant flow path 2 are installed on the outer side and the inner side of the three outflow side refrigerant flow paths 2.

図11は帰還流路10の出口部13が接続されている流路断面積最小部6の下流側の流路断面図である。   FIG. 11 is a channel cross-sectional view on the downstream side of the channel cross-sectional area minimum portion 6 to which the outlet portion 13 of the return channel 10 is connected.

図10、図11において、帰還流路10の出口部13は、ノズル中心軸に対して帰還流路10の入口部11,12と異なる方向に設置されている。図10と図11を比較すると、帰還流路10は、流出側冷媒流路2Aと隣り合った別の流出側冷媒流路2Cに最も近い1対の帰還流路10の外側入口部11Dと内側入口部12Eが出口部13Bに接続する構成となっている。本例では、流出側冷媒流路の数が3つなので、帰還流路の本数も3本となる。また、帰還流路10の出口部13は、帰還流路10の入口部11,12の位置を主冷媒流路の中心を基準として、反時計回りに60度回転させた位置に配置する。   10 and 11, the outlet portion 13 of the return flow path 10 is installed in a direction different from the inlet portions 11 and 12 of the return flow path 10 with respect to the nozzle central axis. Comparing FIG. 10 and FIG. 11, the return flow path 10 is located on the inner side of the outer inlet portion 11D and the inner side of the pair of return flow paths 10 closest to another outflow side refrigerant flow path 2C adjacent to the outflow side refrigerant flow path 2A. The inlet 12E is connected to the outlet 13B. In this example, since the number of outflow-side refrigerant channels is three, the number of return channels is also three. Further, the outlet portion 13 of the return flow path 10 is disposed at a position obtained by rotating the positions of the inlet portions 11 and 12 of the return flow path 10 by 60 degrees counterclockwise with respect to the center of the main refrigerant flow path.

冷媒分配に不均一が発生した場合の動作を図10,図11に従って説明する。   The operation when nonuniformity occurs in the refrigerant distribution will be described with reference to FIGS.

冷媒噴流が流出側流路2Cへ向かって偏向し、冷媒分配に不均一が発生すると、帰還流路10の入口部11D,12Eから流入する冷媒流の流量が増加する。これにより、帰還流路10の入口部11D,12Eと繋がっている出口部13Bから流出する冷媒流量が多くなる。帰還流路10の出口部13Bから流出した冷媒流は冷媒噴流を押し、冷媒噴流は流出側冷媒流路2Aへ向かって曲がるような力を受ける。以上の仕組みにより、冷媒噴流は3つの流出側冷媒流路を回転するように偏向するため、3つの流出側冷媒流路の時間平均流量が等しくなり、結果として均等分配が達成される。   When the refrigerant jet is deflected toward the outflow side flow path 2C and nonuniformity occurs in the refrigerant distribution, the flow rate of the refrigerant flow flowing in from the inlet portions 11D and 12E of the return flow path 10 increases. Thereby, the refrigerant | coolant flow volume which flows out out of the exit part 13B connected with inlet part 11D, 12E of the return flow path 10 increases. The refrigerant flow that flows out from the outlet portion 13B of the return flow path 10 pushes the refrigerant jet, and the refrigerant jet receives a force that bends toward the outflow side refrigerant flow path 2A. With the above mechanism, the refrigerant jet is deflected so as to rotate the three outflow side refrigerant passages, so that the time average flow rates of the three outflow side refrigerant passages become equal, and as a result, equal distribution is achieved.

以上のごとく、本実施形態によればノズル部から流出した冷媒墳流が意図せずにノズル部下流側の内壁面に向かって偏向する。その結果、複数の流出側冷媒流路から流出する冷媒流量に不均一が発生した場合、各流出側冷媒流路の流量比に対応して帰還流路の流量比が変化する。各帰還流路の流量比が変化すると、冷媒流量が多い帰還流路の出口部からの冷媒流がノズル部出口の冷媒墳流を押すため、ノズル部から流出する冷媒墳流の向きが修正される。この動作により、ノズルから流出する冷媒墳流は常に各流出側冷媒流路に対して均等に分配される。加えて、上記従来に比べて流路断面積が小さくなる部分が短いため、圧力損失を必要最小限に抑え、エネルギロスを低減させることができる。   As described above, according to the present embodiment, the refrigerant flow flowing out from the nozzle portion is unintentionally deflected toward the inner wall surface on the downstream side of the nozzle portion. As a result, when non-uniformity occurs in the flow rate of the refrigerant flowing out from the plurality of outflow side refrigerant channels, the flow rate ratio of the return channel changes corresponding to the flow rate ratio of each outflow side refrigerant channel. When the flow rate ratio of each return flow path changes, the refrigerant flow from the exit of the return flow path with a large refrigerant flow pushes the refrigerant flow at the outlet of the nozzle, so the direction of the refrigerant flow flowing out from the nozzle is corrected. The By this operation, the refrigerant flow flowing out from the nozzle is always evenly distributed to each outflow side refrigerant flow path. In addition, since the portion where the cross-sectional area of the flow path becomes smaller than the conventional one is short, the pressure loss can be minimized and the energy loss can be reduced.

このように本実施形態によれば、フルイディクス(流体素子)の効果を最大限に発揮した冷媒分配器を提供できる。   As described above, according to the present embodiment, it is possible to provide a refrigerant distributor that maximizes the effects of fluidics (fluid elements).

1…流入側冷媒流路、2…流出側冷媒流路、3…冷媒分配器本体、4…縮流部、5…流路拡大部、6…流路断面積最小部、7…ノズル部、8…突起部、9…流路分岐部、10…帰還流路、11…帰還流路の外側入口部、12…帰還流路の内側入口部、13…帰還流路の出口部、14…冷媒墳流、15…本体部材、16…上蓋部材、17…外側部材。   DESCRIPTION OF SYMBOLS 1 ... Inflow side refrigerant | coolant flow path, 2 ... Outflow side refrigerant | coolant flow path, 3 ... Refrigerant distributor main body, 4 ... Condensation part, 5 ... Channel expansion part, 6 ... Channel cross-sectional area minimum part, 7 ... Nozzle part, DESCRIPTION OF SYMBOLS 8 ... Projection part, 9 ... Flow path branching part, 10 ... Return flow path, 11 ... Outer entrance part of return flow path, 12 ... Inner entrance part of return flow path, 13 ... Outlet part of return flow path, 14 ... Refrigerant Soryu, 15 ... main body member, 16 ... upper lid member, 17 ... outer member.

Claims (6)

流路分岐部の上流側に流入側冷媒流路を接続するとともに、前記流路分岐部の下流側に複数の流出側冷媒流路を接続し、前記流入側冷媒流路から流入した冷媒流を複数の前記流出側冷媒流路へと分配する冷媒分配器において、
前記流入側冷媒流路の下流側でかつ前記流路分岐部の上流側に流路断面積最小部を有するノズル部を備え、加えて各流出側冷媒流路の周辺部と前記流路断面積最小部の下流側とを接続する帰還流路を備えたことを特徴とする冷媒分配器。
An inflow side refrigerant flow path is connected to the upstream side of the flow path branching section, a plurality of outflow side refrigerant flow paths are connected to the downstream side of the flow path branching section, and the refrigerant flow flowing in from the inflow side refrigerant flow path is In the refrigerant distributor for distributing to the plurality of outflow side refrigerant flow paths,
A nozzle portion having a flow path cross-sectional area minimum portion on the downstream side of the inflow side refrigerant flow path and on the upstream side of the flow path branching section; in addition, a peripheral portion of each outflow side refrigerant flow path and the flow path cross-sectional area A refrigerant distributor comprising a return flow path connecting the downstream side of the minimum part.
請求項1記載の冷媒分配器において、
前記流出側冷媒流路の入口部の周辺に接続されている前記帰還流路の入口部を前記流出側冷媒流路の入口部の外側と内側の両方に備えたことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
A refrigerant distributor comprising an inlet portion of the return flow passage connected to a periphery of an inlet portion of the outflow side refrigerant passage on both an outer side and an inner side of the inlet portion of the outflow side refrigerant passage. .
請求項1記載の冷媒分配器において、
前記流路断面積最小部の下流側に接続されている前記帰還流路の出口部を前記流出側冷媒流路の本数以上備えたことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
A refrigerant distributor comprising an outlet portion of the return flow path connected to a downstream side of the flow path cross-sectional area minimum portion, which is equal to or more than the number of the outflow side refrigerant flow paths.
請求項1記載の冷媒分配器において、
前記帰還流路の出口部と前記帰還流路の入口部を前記ノズル部中心軸に対して同一方向に備えたことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
A refrigerant distributor comprising an outlet part of the return flow path and an inlet part of the return flow path in the same direction with respect to the central axis of the nozzle part.
請求項1記載の冷媒分配器において、
前記帰還流路の出口部と前記流出側冷媒流路の入口部を前記ノズル部中心軸に対して異なる方向に備えたことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
A refrigerant distributor comprising an outlet part of the return flow path and an inlet part of the outflow side refrigerant flow path in different directions with respect to the central axis of the nozzle part.
請求項1〜5のいずれか一項に記載の冷媒分配器を有することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the refrigerant distributor according to any one of claims 1 to 5.
JP2010183534A 2010-08-19 2010-08-19 Refrigerant distributor and refrigeration cycle apparatus Expired - Fee Related JP5567935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183534A JP5567935B2 (en) 2010-08-19 2010-08-19 Refrigerant distributor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183534A JP5567935B2 (en) 2010-08-19 2010-08-19 Refrigerant distributor and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2012042121A true JP2012042121A (en) 2012-03-01
JP5567935B2 JP5567935B2 (en) 2014-08-06

Family

ID=45898663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183534A Expired - Fee Related JP5567935B2 (en) 2010-08-19 2010-08-19 Refrigerant distributor and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5567935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090016A (en) * 2015-11-16 2017-05-25 ダイキン工業株式会社 Refrigerant flow divider
US11592239B2 (en) * 2014-07-22 2023-02-28 Hamilton Sundstrand Space Systems International, Inc. Flow distributor for heat transfer plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110473U (en) * 1984-06-25 1986-01-22 株式会社東芝 flow divider
JPS61189160U (en) * 1985-05-17 1986-11-26
JPH08200889A (en) * 1995-01-20 1996-08-06 Sanyo Electric Co Ltd Cooler for vending machine
JPH08313116A (en) * 1995-05-23 1996-11-29 Toshiba Corp Air conditioner
JPH10170103A (en) * 1996-12-04 1998-06-26 Matsushita Seiko Co Ltd Flow distributing pipe for air conditioner
WO1999046544A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Coolant distributor, and air conditioner using it
JP2000111205A (en) * 1998-10-07 2000-04-18 Hitachi Ltd Distributor and air conditioner
JP2002039644A (en) * 2000-07-27 2002-02-06 Tensei Kogyo Kk Refrigerant divider
JP2005246348A (en) * 2004-03-08 2005-09-15 Tokyo Electron Ltd Liquid supply mechanism and liquid supply method, and development processor and development method
WO2007094422A1 (en) * 2006-02-15 2007-08-23 Gac Corporation Heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110473U (en) * 1984-06-25 1986-01-22 株式会社東芝 flow divider
JPS61189160U (en) * 1985-05-17 1986-11-26
JPH08200889A (en) * 1995-01-20 1996-08-06 Sanyo Electric Co Ltd Cooler for vending machine
JPH08313116A (en) * 1995-05-23 1996-11-29 Toshiba Corp Air conditioner
JPH10170103A (en) * 1996-12-04 1998-06-26 Matsushita Seiko Co Ltd Flow distributing pipe for air conditioner
WO1999046544A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Coolant distributor, and air conditioner using it
JP2000111205A (en) * 1998-10-07 2000-04-18 Hitachi Ltd Distributor and air conditioner
JP2002039644A (en) * 2000-07-27 2002-02-06 Tensei Kogyo Kk Refrigerant divider
JP2005246348A (en) * 2004-03-08 2005-09-15 Tokyo Electron Ltd Liquid supply mechanism and liquid supply method, and development processor and development method
WO2007094422A1 (en) * 2006-02-15 2007-08-23 Gac Corporation Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592239B2 (en) * 2014-07-22 2023-02-28 Hamilton Sundstrand Space Systems International, Inc. Flow distributor for heat transfer plate
JP2017090016A (en) * 2015-11-16 2017-05-25 ダイキン工業株式会社 Refrigerant flow divider

Also Published As

Publication number Publication date
JP5567935B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
EP3051245B1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
EP3217135B1 (en) Layered header, heat exchanger, and air-conditioning device
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
JP2013148309A (en) Coolant distributor and refrigeration cycle device including the same
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
US20150204586A1 (en) Heat Pump Non-Reversing Valve Arrangement
JP6188926B2 (en) Laminated header, heat exchanger, and air conditioner
EP3088831B1 (en) Heat exchanger and air conditioning apparatus
JP2017044428A (en) Heat exchanger, split flow component and heat exchanging device
JP2018194251A (en) Heat exchanger
JP5567935B2 (en) Refrigerant distributor and refrigeration cycle apparatus
JP2014081149A (en) Refrigerant distributor and refrigeration cycle device including the same
JP6639865B2 (en) Indoor unit of air conditioner
WO2014155518A1 (en) Expansion valve and cooling cycle device using same
JP2021124226A (en) Microchannel heat exchanger and air conditioner
JP2012141108A (en) Flow divider, and refrigeration cycle device
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP6319272B2 (en) Refrigerant shunt
KR101424263B1 (en) air-conditioner
JP2011144968A (en) Refrigerating cycle device
KR102033937B1 (en) Flow disturbance device and Air conditioner having the same
JP2013185757A (en) Refrigerant distributor, and heat pump device
JP5896876B2 (en) Refrigerant distributor and refrigeration cycle apparatus equipped with the same
JP6207724B2 (en) Header distributor, heat exchanger, air conditioner, and header distributor manufacturing method
JP2015034669A (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5567935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees