JP2012040058A - Blood component concentration measuring device and method for the same - Google Patents

Blood component concentration measuring device and method for the same Download PDF

Info

Publication number
JP2012040058A
JP2012040058A JP2010181413A JP2010181413A JP2012040058A JP 2012040058 A JP2012040058 A JP 2012040058A JP 2010181413 A JP2010181413 A JP 2010181413A JP 2010181413 A JP2010181413 A JP 2010181413A JP 2012040058 A JP2012040058 A JP 2012040058A
Authority
JP
Japan
Prior art keywords
blood
light
purification circuit
light emitting
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010181413A
Other languages
Japanese (ja)
Other versions
JP5535002B2 (en
Inventor
Masatomi Sasaki
正富 佐々木
Masaru Imai
勝 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP2010181413A priority Critical patent/JP5535002B2/en
Priority to CN201110233282.6A priority patent/CN102426159B/en
Publication of JP2012040058A publication Critical patent/JP2012040058A/en
Application granted granted Critical
Publication of JP5535002B2 publication Critical patent/JP5535002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3181Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blood component concentration measuring device capable of correctly and stably measuring the concentration of blood components in a blood purification circuit.SOLUTION: The blood component concentration measuring device 1 has: a sensor 60 having a light-emitting unit for making a light incident on blood in the blood purification circuit 20 and a light-receiving unit for detecting a light having transmitted through the blood in the blood purification circuit 20; and a calculator 72 for extracting a frequency component of the frequency F equal to the pulse of the blood generated in the blood purification circuit 20 by driving a blood pump 30 on the basis of variation in time of optical strength detected by the light-receiving unit and calculating oxygen concentration on the basis of the frequency component. The sensor 60 is provided on the blood purification circuit 20 so as to be positioned downstream of the blood pump 30.

Description

本発明は、血液浄化療法等において、血液中の酸素飽和濃度などの血液成分の濃度を測定する血液成分濃度測定装置及び血液成分濃度測定方法に関する。   The present invention relates to a blood component concentration measuring apparatus and a blood component concentration measuring method for measuring the concentration of blood components such as oxygen saturation concentration in blood in blood purification therapy and the like.

血液浄化療法は、体内から取り出された血液中の有害物質や不要物質を、膜や吸着剤を用いて除去して体内に戻す療法で、血液透析、血液濾過透析、血液濾過、血液吸着などの種類がある。   Blood purification therapy is a therapy that removes harmful substances and unnecessary substances in the blood taken out from the body using a membrane or adsorbent and returns them to the body, such as hemodialysis, hemofiltration dialysis, blood filtration, blood adsorption, etc. There are types.

例えば血液透析療法中の患者の管理は、血圧変動と全身症状の両方を観察することで行われている。例えば透析中の患者の血圧低下は、除水に伴う循環血流量の減少が主原因とされているため、各種血液量測定モニターを用いて患者の血液量をモニタリングしながら、透析治療が行われている。しかし、この循環血液量測定モニターは、患者の全身症状を示すものでないため、全身症状である呼吸状態や血液循環動態を把握することはできない。   For example, management of patients during hemodialysis is performed by observing both blood pressure fluctuations and systemic symptoms. For example, the decrease in blood pressure in patients undergoing dialysis is mainly caused by a decrease in circulating blood flow accompanying water removal, so dialysis treatment is performed while monitoring the patient's blood volume using various blood volume measurement monitors. ing. However, since this circulatory blood volume measurement monitor does not show the patient's systemic symptoms, it cannot grasp the respiratory state and blood circulation dynamics that are systemic symptoms.

一般に患者の呼吸は血液循環に大きな影響を与えており、特に、循環血液量が減少している患者では、呼吸変動が大きくなると報告されている(非特許文献1)。全身症状の一つの呼吸状態を把握する手段として、血液中の動脈血酸素飽和度(SpO2)を測定する方法がある。血液中の動脈血酸素飽和度を計測する装置として、経皮的酸素飽和度モニター(パルスオキシメータ)が広く知られており、これは、例えば指先に付けた発光部と受光部を用いて血液中に光を入射させ、その透過光を検出し、その光信号を分析することで、血液中の動脈血酸素飽和度を算出することができる。この経皮的酸素飽和度モニターは、検出した光強度の波形から、動脈血に関係する人体の拍動の周期成分を抽出して最終的に酸素飽和度を算出している(特許文献1参照)。人体の拍動の周期成分を抽出するのは、この拍動の周期成分では、酸素濃度に応じて変動する赤色光(R)と赤外光(IR)透過光量の変動比率が大きく、酸素飽和度をより正確に算出できるからである。よって、この測定方法では、酸素飽和度を算出する際に、光強度の波形から人体の拍動の周期を把握する必要がある。 In general, patient breathing has a great influence on blood circulation, and it is reported that respiratory fluctuations increase particularly in patients whose circulating blood volume is reduced (Non-patent Document 1). As a means for grasping one respiratory state of systemic symptoms, there is a method for measuring arterial oxygen saturation (SpO 2 ) in blood. As a device for measuring arterial oxygen saturation in blood, a transcutaneous oxygen saturation monitor (pulse oximeter) is widely known, and for example, it uses a light emitting part and a light receiving part attached to a fingertip in blood. By making light incident on the light, detecting the transmitted light, and analyzing the optical signal, the arterial oxygen saturation in the blood can be calculated. This percutaneous oxygen saturation monitor extracts the periodic component of the pulsation of the human body related to arterial blood from the detected light intensity waveform, and finally calculates the oxygen saturation (see Patent Document 1). . The periodic component of the pulsation of the human body is extracted because the rhythmic component of the pulsation has a large variation ratio of the amount of transmitted red light (R) and infrared light (IR) that varies depending on the oxygen concentration, and oxygen saturation. This is because the degree can be calculated more accurately. Therefore, in this measurement method, when calculating the oxygen saturation, it is necessary to grasp the cycle of the pulsation of the human body from the waveform of the light intensity.

しかしながら、この測定方法では、例えば寒さや痙攣等により患者に末梢循環不全等が生じると、光強度の波形における拍動の周期成分が相対的に弱くなるため、検出した光強度の波形から拍動の周期を正確に把握するのが困難になり、その結果酸素飽和度が正確に測定できないことがある。  However, in this measurement method, for example, if peripheral circulatory insufficiency or the like occurs in a patient due to, for example, cold or convulsions, the pulsation periodic component in the light intensity waveform becomes relatively weak. It is difficult to accurately grasp the period of oxygen, and as a result, the oxygen saturation may not be accurately measured.

患者の状態に影響されずに血液中の酸素飽和度を測定する手段として、体外循環を行う血液浄化回路にポンプ部手前に酸素飽和度モニターを設置することが報告されている(非特許文献1、2参照)。しかしながら、この場合では、例えば血液浄化回路特有の外乱等の影響を受けて、人体の拍動の周期の把握が正確かつ安定的に行われない可能性がある。   As a means of measuring oxygen saturation in blood without being affected by the patient's condition, it has been reported that an oxygen saturation monitor is installed in front of the pump unit in a blood purification circuit that performs extracorporeal circulation (Non-patent Document 1). 2). However, in this case, there is a possibility that the pulsation cycle of the human body may not be accurately and stably determined due to, for example, disturbances specific to the blood purification circuit.

特公昭53−26437号公報Japanese Patent Publication No.53-26437

丸山一男:呼吸と循環、循環制御 1998年、19(4)、P・484−488Kazuo Maruyama: Respiration, Circulation, Circulation Control 1998, 19 (4), P.484-488 今井勝、他:日本医工学治療学会 医工学治療 2006年、18(2)、P・85−93Masaru Imai, et al .: Japanese Society for Medical Engineering and Treatment Medical Engineering Treatment 2006, 18 (2), P.85-93

本発明は、従来技術の有する前記課題を解決すべくなされたものであり、その目的とするところは、患者の状態の影響を受けにくい血液浄化回路において、血液中の酸素飽和度などの血液成分の濃度を正確かつ安定的に測定できる血液成分濃度測定装置及び血液成分濃度測定方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to provide blood components such as oxygen saturation in blood in a blood purification circuit that is not easily affected by the patient's condition. It is an object to provide a blood component concentration measuring apparatus and a blood component concentration measuring method capable of accurately and stably measuring the concentration of blood.

上記目的を達成する本発明は、体内から取り出された血液を浄化して体内に戻すための血液浄化回路において血液中の所定の血液成分の濃度を測定する血液成分濃度測定装置であって、前記血液浄化回路の血液中に光を入射する発光部と、前記血液浄化回路の血液中を透過した前記光を検出する受光部と、前記受光部により検出された光強度の時間変化から、前記血液浄化回路の血液ポンプの駆動により前記血液浄化回路内に生じる血液の拍動に対応する前記光強度の時間変化の周期成分を抽出し、当該周期成分に基づいて所定の血液成分の濃度を算出する算出部と、を有し、前記発光部及び前記受光部は、前記血液浄化回路の前記血液ポンプの下流側に設けられているものである。   The present invention for achieving the above object is a blood component concentration measuring apparatus for measuring the concentration of a predetermined blood component in blood in a blood purification circuit for purifying blood taken out from the body and returning it to the body, From the light emission part which injects light into the blood of the blood purification circuit, the light receiving part which detects the light transmitted through the blood of the blood purification circuit, and the time change of the light intensity detected by the light receiving part, the blood Extracting a periodic component of the time change of the light intensity corresponding to the pulsation of blood generated in the blood purification circuit by driving a blood pump of the purification circuit, and calculating a concentration of a predetermined blood component based on the periodic component And the light emitting unit and the light receiving unit are provided downstream of the blood pump of the blood purification circuit.

本発明によれば、血液浄化回路では、血液ポンプの駆動により血液の拍動が生じる。この血液浄化回路内の血液の拍動を用いて、周期的に変化する光強度から血液成分の濃度を算出することにより、当該血液成分の濃度を正確かつ安定的に測定できる。また、発光部と受光部が、血液の拍動の乱れが少ない血液浄化回路の血液ポンプの下流側に設けられるので、血液成分の濃度の算出がより正確かつ安定的に行われる。   According to the present invention, in the blood purification circuit, blood pulsation is generated by driving the blood pump. Using the pulsation of blood in the blood purification circuit, the concentration of the blood component can be measured accurately and stably by calculating the concentration of the blood component from the periodically changing light intensity. Further, since the light emitting part and the light receiving part are provided on the downstream side of the blood pump of the blood purification circuit with less disturbance of blood pulsation, the concentration of blood components can be calculated more accurately and stably.

前記血液浄化回路は、前記血液ポンプの下流側に血液を浄化する血液浄化器を有し、前記発光部と前記受光部は、前記血液浄化回路の前記血液ポンプと前記血液浄化器の間に設けられていてもよい。   The blood purification circuit includes a blood purifier that purifies blood downstream of the blood pump, and the light emitting unit and the light receiving unit are provided between the blood pump and the blood purifier of the blood purification circuit. It may be done.

前記血液浄化回路は、前記血液ポンプと前記血液浄化器の間に動脈側ドリップチャンバーを有している場合、前記発光部と前記受光部は、前記血液浄化回路の前記血液ポンプと前記動脈側ドリップチャンバーの間に設けられていてもよい。   When the blood purification circuit has an arterial drip chamber between the blood pump and the blood purifier, the light emitting unit and the light receiving unit are connected to the blood pump and the arterial drip of the blood purification circuit. It may be provided between the chambers.

前記血液ポンプは、前記血液浄化回路の流路に接続され他の部分よりも径が大きいチューブを有するチューブポンプであり、前記発光部と前記受光部は、前記血液ポンプのチューブに設けられていてもよい。   The blood pump is a tube pump having a tube connected to the flow path of the blood purification circuit and having a larger diameter than other parts, and the light emitting unit and the light receiving unit are provided in a tube of the blood pump. Also good.

以上の血液成分濃度測定装置は、前記発光部と前記受光部を前記血液浄化回路に固定する固定部材を有していてもよい。   The blood component concentration measuring apparatus described above may have a fixing member that fixes the light emitting unit and the light receiving unit to the blood purification circuit.

前記固定部材は、前記発光部と前記受光部を前記血液浄化回路に押し付けて固定するものであってもよい。   The fixing member may be configured to press and fix the light emitting unit and the light receiving unit against the blood purification circuit.

血液成分濃度測定装置は、前記血液浄化回路の前記発光部と前記受光部が固定される部分を覆う流路カバーを有し、前記固定部材は、前記流路カバーを外側から押さえていてもよい。   The blood component concentration measuring apparatus may include a flow path cover that covers a portion where the light emitting part and the light receiving part of the blood purification circuit are fixed, and the fixing member may hold the flow path cover from the outside. .

前記流路カバーは、前記血液浄化回路の前記発光部と前記受光部が固定された部分を圧迫し、弾力性を有していてもよい。   The flow path cover may be elastic by compressing a portion of the blood purification circuit where the light emitting portion and the light receiving portion are fixed.

前記流路カバーは、前記血液浄化回路の前記発光部と前記受光部が固定された部分を外部の光が入らないように覆っていてもよい。   The flow path cover may cover a portion of the blood purification circuit where the light emitting unit and the light receiving unit are fixed so that external light does not enter.

前記流路カバーは、前記血液浄化回路に対し取り外し自在に構成されていてもよい。   The flow path cover may be configured to be removable from the blood purification circuit.

血液成分濃度測定装置は、前記発光部と前記受光部を保持する保持部材をさらに有し、前記固定部材の前記血液浄化回路側の面には、前記保持部材を収容する凹部が形成されていてもよい。   The blood component concentration measuring apparatus further includes a holding member that holds the light emitting portion and the light receiving portion, and a concave portion that accommodates the holding member is formed on a surface of the fixing member on the blood purification circuit side. Also good.

前記保持部材と前記固定部材との間には、弾力性のある部材が介在されていてもよい。   An elastic member may be interposed between the holding member and the fixing member.

前記固定部材は、前記血液浄化回路に対し取り外し自在に構成されていてもよい。   The fixing member may be configured to be removable from the blood purification circuit.

前記発光部と前記受光部は、前記血液浄化回路において気泡が滞留しない部分に設けられていてもよい。   The light emitting unit and the light receiving unit may be provided in a portion where bubbles do not stay in the blood purification circuit.

前記発光部は、波長850nm〜1000nmの光(赤外光)を発する第1発光部と、波長500nm〜700nmの光(赤色光)を発する第2発光部を備え、前記血液成分の濃度が血液中の酸素飽和度であってもよい。   The light emitting unit includes a first light emitting unit that emits light (infrared light) having a wavelength of 850 nm to 1000 nm and a second light emitting unit that emits light (red light) having a wavelength of 500 nm to 700 nm, and the concentration of the blood component is blood Medium oxygen saturation may be used.

別の観点による本発明は、体内から取り出された血液を浄化して体内に戻すための血液浄化回路において血液中の所定の血液成分の濃度を測定する血液成分濃度測定方法であって、前記血液浄化回路の血液ポンプの下流側の血液中に光を入射し、前記血液浄化回路の血液中を透過した前記光を検出する工程と、前記検出された光強度の時間変化から、血液ポンプの駆動により前記血液浄化回路内に生じる血液の拍動に対応する前記光強度の時間変化の周期成分を抽出し、当該周期成分に基づいて所定の血液成分の濃度を算出する工程と、を有するものである。   According to another aspect of the present invention, there is provided a blood component concentration measurement method for measuring a concentration of a predetermined blood component in blood in a blood purification circuit for purifying blood taken out from the body and returning it to the body. The step of detecting the light that has entered the blood downstream of the blood pump of the purification circuit and transmitted through the blood of the blood purification circuit, and the driving of the blood pump from the time change of the detected light intensity Extracting a periodic component of the light intensity corresponding to the pulsation of blood generated in the blood purification circuit, and calculating a concentration of a predetermined blood component based on the periodic component. is there.

本発明によれば、血液浄化療法時の血液成分の濃度測定を正確かつ安定的に行うことができる。この結果、例えば患者の症状発現の前兆となる所定の血液成分の濃度変化を正確かつ確実に把握することができる。よって、症状発現前に患者に対する早期処置が可能となり、患者QOLの著しい向上を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the density | concentration measurement of the blood component at the time of blood purification therapy can be performed correctly and stably. As a result, for example, it is possible to accurately and reliably grasp a change in the concentration of a predetermined blood component that is a precursor to the onset of the patient's symptoms. Therefore, early treatment of the patient can be performed before the onset of symptoms, and the patient QOL can be significantly improved.

血液浄化装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the blood purification apparatus. センサ部が設けられた血液ポンプのチューブの説明図である。It is explanatory drawing of the tube of the blood pump provided with the sensor part. センサ部の構成の概略を示す断面図である。It is sectional drawing which shows the outline of a structure of a sensor part. センサ部の構成の概略を示す横面図である。It is a side view which shows the outline of a structure of a sensor part. 血液の酸素飽和度測定の主な工程を示すフローチャートである。It is a flowchart which shows the main processes of the oxygen saturation measurement of blood. ピロー状の流路に設けられたセンサ部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the sensor part provided in the pillow-shaped flow path. 実施例1で測定された酸素飽和度の推移を示すグラフである。2 is a graph showing a transition of oxygen saturation measured in Example 1. FIG. 実施例2で測定された酸素飽和度の推移を示すグラフである。6 is a graph showing the transition of oxygen saturation measured in Example 2. 比較例1におけるセンサ部の位置を示す血液浄化回路の説明図である。It is explanatory drawing of the blood purification circuit which shows the position of the sensor part in the comparative example 1. 比較例1のセンサ部の構成を示す説明図である。It is explanatory drawing which shows the structure of the sensor part of the comparative example 1. 比較例1で測定された酸素飽和度の推移を示すグラフである。6 is a graph showing a transition of oxygen saturation measured in Comparative Example 1.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る血液成分濃度測定装置1が搭載される血液浄化装置10の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the configuration of a blood purification apparatus 10 on which a blood component concentration measuring apparatus 1 according to the present embodiment is mounted.

図1に示すように血液浄化装置10は、体内から取り出した血液を浄化させて体内に戻すための血液浄化回路20を有している。   As shown in FIG. 1, the blood purification apparatus 10 has a blood purification circuit 20 for purifying blood taken out from the body and returning it to the body.

血液浄化回路20には、血液と接するため生体適合性に優れた軟質素材が用いられ、特に、フタル酸ジエチルヘキシル(DOP)入り塩化ビニルアルコール、2−エチルヘキシルトリメート(TOTM)入り塩化ビニルアルコール、シリコンゴムが好適である。   The blood purification circuit 20 uses a soft material that is in contact with blood and has excellent biocompatibility. In particular, vinyl chloride alcohol containing diethylhexyl phthalate (DOP), vinyl chloride alcohol containing 2-ethylhexyltrimate (TOTM), Silicon rubber is preferred.

血液浄化回路20には、血液を圧送して血流を生じさせる血液ポンプ30、回路内の気泡を取り除く動脈側ドリップチャンバー31、血液を浄化処理する血液浄化器32、血液浄化器32の下流側に設けられる静脈側ドリップチャンバー33などが設けられている。   The blood purification circuit 20 includes a blood pump 30 that pumps blood to generate a blood flow, an arterial drip chamber 31 that removes bubbles in the circuit, a blood purifier 32 that purifies blood, and a downstream side of the blood purifier 32. And the like are provided in the vein drip chamber 33 and the like.

血液ポンプ30は、例えばチューブポンプであり、複数のローラを有する回転体が回転し、複数のローラが順次一定の間隔で血液浄化回路20の流路(チューブ)を扱いて血液に拍動を生じさせながら血液を圧送できる。血液ポンプ30は、図2に示すように血液浄化回路20の他の流路21aよりも径が大きいポンプチューブである流路21bを有している。   The blood pump 30 is, for example, a tube pump, and a rotating body having a plurality of rollers rotates, and the plurality of rollers sequentially handle the flow path (tube) of the blood purification circuit 20 at regular intervals to cause pulsation in the blood. Blood can be pumped. As shown in FIG. 2, the blood pump 30 has a flow path 21b that is a pump tube having a larger diameter than the other flow paths 21a of the blood purification circuit 20.

血液ポンプ30の駆動により生じる血液の拍動の周期は、回転体の回転数(ポンプの回転数)とローラの数により設定される。血液ポンプ30の駆動は、図1に示すポンプ制御部40により制御される。血液ポンプ30による血液の拍動の周期Fは、例えばポンプ制御部40から後述の血液成分濃度測定装置1の算出部62に出力できる。   The cycle of blood pulsation generated by driving the blood pump 30 is set by the number of rotations of the rotating body (number of rotations of the pump) and the number of rollers. The driving of blood pump 30 is controlled by pump control unit 40 shown in FIG. The pulsation period F of blood by the blood pump 30 can be output from the pump control unit 40 to the calculation unit 62 of the blood component concentration measuring apparatus 1 described later, for example.

動脈側ドリップチャンバー31は、例えば血液ポンプ30と血液浄化器32の間の流路21に設けられている。   The arterial drip chamber 31 is provided in the flow path 21 between the blood pump 30 and the blood purifier 32, for example.

血液浄化器32は、血液浄化回路20の動脈側ドリップチャンバー31の下流側に設けられている。血液浄化器32には、血液中の有害物質や不要物質などの所定成分を分離する中空糸膜や所定成分を吸着する吸着材などが設けられている。   The blood purifier 32 is provided on the downstream side of the arterial drip chamber 31 of the blood purification circuit 20. The blood purifier 32 is provided with a hollow fiber membrane that separates predetermined components such as harmful substances and unnecessary substances in blood, an adsorbent that adsorbs the predetermined components, and the like.

血液成分濃度測定装置1は、例えばセンサ部60と、センサ制御部61と、算出部62を有している。   The blood component concentration measuring apparatus 1 includes, for example, a sensor unit 60, a sensor control unit 61, and a calculation unit 62.

センサ部60は、例えば、血液ポンプ30と動脈側ドリップチャンバー31との間であって図2に示すように血液ポンブ30の流路21bに設けられている。なお、センサ部60が設けられる血液ポンプ30の流路21bの肉厚は、4mm以下、より好ましくは3mm以下に設定されている。こうして、流路21bは、例えば、ショアA硬度が30〜70程度に設定され、血液浄化回路20の他の部分21aよりも柔軟に形成されている。また、流路21bは、反射光を効率的に受光するために、上述のように内径が血液浄化回路20の他の流路21aよりも大きくなっている。例えば他の流路21aの内径が3.5mm程度に対し、流路21bの内径は5mm以上になっている。   The sensor unit 60 is provided, for example, between the blood pump 30 and the artery-side drip chamber 31 and in the flow path 21b of the blood pump 30 as shown in FIG. In addition, the thickness of the flow path 21b of the blood pump 30 provided with the sensor unit 60 is set to 4 mm or less, more preferably 3 mm or less. Thus, the flow path 21b is set to have a Shore A hardness of about 30 to 70, for example, and is formed more flexibly than the other part 21a of the blood purification circuit 20. Further, the flow path 21b has an inner diameter larger than that of the other flow paths 21a of the blood purification circuit 20 as described above in order to efficiently receive the reflected light. For example, the inner diameter of the flow path 21b is 5 mm or more, while the inner diameter of the other flow path 21a is about 3.5 mm.

例えばセンサ部60は、図3に示すように血液浄化回路20の血液中に光を入射する発光部70と、血液中を透過した光を検出する受光部71と、発光部70と受光部71を保持する保持部材72と、発光部70と受光部71を流路21bに固定する固定部材73と、発光部70と受光部71が固定された部分の流路21bを覆う流路カバー74を有している。   For example, as shown in FIG. 3, the sensor unit 60 includes a light emitting unit 70 that enters light into the blood of the blood purification circuit 20, a light receiving unit 71 that detects light transmitted through the blood, a light emitting unit 70, and a light receiving unit 71. A holding member 72 that holds the light emitting unit 70 and the light receiving unit 71 in the flow channel 21b, and a flow channel cover 74 that covers the flow channel 21b in the portion where the light emitting unit 70 and the light receiving unit 71 are fixed. Have.

流路カバー74は、例えば不透明の材質で弾力性を有している。図4に示すように流路カバー74は、2つに分割されており、それぞれが板状に形成され、内側に流路21bの形状に適合する半円柱状の凹部が形成されている。これにより、流路カバー74は、血液浄化回路20の流路21bを両側から挟み込んで覆って、流路21bを圧迫固定できる。また、流路カバー74は、流路21bに対し取り外し可能になる。さらに、流路カバー74は、発光部70と受光部71が固定された部分の流路21bを外部の光が入いらないように覆っている。   The flow path cover 74 is made of, for example, an opaque material and has elasticity. As shown in FIG. 4, the flow path cover 74 is divided into two parts, each of which is formed in a plate shape, and a semi-cylindrical recess that conforms to the shape of the flow path 21 b is formed inside. Thereby, the flow path cover 74 can press and fix the flow path 21b by sandwiching and covering the flow path 21b of the blood purification circuit 20 from both sides. Further, the flow path cover 74 can be removed from the flow path 21b. Further, the flow path cover 74 covers the flow path 21b where the light emitting unit 70 and the light receiving unit 71 are fixed so that external light does not enter.

流路カバー74には、図3に示すように例えば発光部70と受光部71が嵌め込まれ、当該発光部70と受光部71の光が通過する2つの貫通孔80が設けられている。貫通孔80は、血液浄化回路20の流路方向Xに沿って設けられている。また、貫通孔80は、図4に示すように流路21bに対し直角方向Yの中央に設けられている。   As shown in FIG. 3, for example, a light emitting unit 70 and a light receiving unit 71 are fitted in the flow path cover 74, and two through holes 80 through which light from the light emitting unit 70 and the light receiving unit 71 passes are provided. The through hole 80 is provided along the flow path direction X of the blood purification circuit 20. Further, as shown in FIG. 4, the through hole 80 is provided in the center in the direction Y perpendicular to the flow path 21b.

図3に示すように保持部材72は、例えば薄板状に形成され、表面に発光部70と受光部71を流路方向Xに沿って所定の間隔で保持している。   As shown in FIG. 3, the holding member 72 is formed in a thin plate shape, for example, and holds the light emitting unit 70 and the light receiving unit 71 on the surface thereof at a predetermined interval along the flow path direction X.

固定部材73は、例えば四角状の一対の平板部100と、当該平板部100同士を固定する締結部材101を有している。   The fixing member 73 includes, for example, a pair of rectangular flat plate portions 100 and a fastening member 101 that fixes the flat plate portions 100 to each other.

平板部100は、例えば流路カバー74よりも剛性のある例えば金属により形成されている。一方の平板部100の内側中央には、凹部102が形成され、当該凹部102に保持部材72が嵌め込まれて位置決めされている。保持部材72と平板部100の凹部102の底面との間には、弾力性のある緩衝シート103が介在されている。   The flat plate portion 100 is formed of, for example, metal that is more rigid than the flow path cover 74, for example. A concave portion 102 is formed at the inner center of one flat plate portion 100, and a holding member 72 is fitted and positioned in the concave portion 102. An elastic buffer sheet 103 is interposed between the holding member 72 and the bottom surface of the recess 102 of the flat plate portion 100.

上記流路カバー74や緩衝シート103には、弾性を有する軟質素材が用いられており、ショアA硬度が1〜85、特に4〜70程度に設定されている(JIS K 7215準拠)。具体的には、シリコンゴム、ブチルゴム、アクリルゴム、ウレタンゴムなどが用いられている。   The flow path cover 74 and the buffer sheet 103 are made of an elastic soft material, and have a Shore A hardness of 1 to 85, particularly about 4 to 70 (conforming to JIS K 7215). Specifically, silicon rubber, butyl rubber, acrylic rubber, urethane rubber or the like is used.

一対の平板部100は、流路カバー74を両側から挟んで、締結部材101により互いに内側に締め付けられることによって、流路カバー74を外側から押さえている。これにより、保持部材72の発光部70と受光部71が貫通孔80に嵌め込まれた状態で流路21bの表面に接触し押し付けられる。また、締結部材101の締め付けを弛めることによって、固定部材73を流路21bや流路カバー74から取り外すことができる。なお。流路カバー74による流路21bの最終的な圧迫固定率は、100〜175%であることが好ましい。圧迫固定率とは、圧迫されていない状態の測定部40の径をDとし、圧迫によって変動した径をΔdとした場合に、(D+Δd)/D×100(%)で表したものである。なお、圧迫固定できれば、上記方法にこだわる必要はない。   The pair of flat plate portions 100 press the flow path cover 74 from the outside by being clamped inward by the fastening member 101 with the flow path cover 74 sandwiched from both sides. Accordingly, the light emitting portion 70 and the light receiving portion 71 of the holding member 72 are brought into contact with and pressed against the surface of the flow path 21b in a state where the light emitting portion 70 and the light receiving portion 71 are fitted in the through hole 80. Moreover, the fixing member 73 can be removed from the flow path 21b and the flow path cover 74 by loosening the tightening of the fastening member 101. Note that. The final compression fixation rate of the flow path 21b by the flow path cover 74 is preferably 100 to 175%. The compression fixation rate is expressed by (D + Δd) / D × 100 (%), where D is the diameter of the measurement unit 40 in an uncompressed state and Δd is the diameter that has changed due to compression. It is not necessary to stick to the above method as long as it can be compressed and fixed.

締結部材101は、例えばネジやナットからなり、平板部100の四隅に設けられている。   The fastening member 101 is made of, for example, a screw or a nut, and is provided at the four corners of the flat plate portion 100.

発光部70は、発光用のLEDまたはレーザーダイオードを備えており、少なくとも二種類の波長の光を発することができる。例えば発光部70は、血液による影響の少ない500nm以上の波長の光を発し、血液中の酸化ヘモグロビンに吸収され易い波長850nm〜1000nmの第1の光(赤外光)を発する第1発光部70aと、血液中の還元ヘモグロビンに吸収され易い波長500〜700nmの第2の光(赤色光)を発する第2発光部70bを有している。   The light emitting unit 70 includes a light emitting LED or laser diode, and can emit light of at least two types of wavelengths. For example, the light emitting unit 70 emits light having a wavelength of 500 nm or more that is less affected by blood, and emits first light (infrared light) having a wavelength of 850 nm to 1000 nm that is easily absorbed by oxyhemoglobin in blood. And a second light emitting unit 70b that emits second light (red light) having a wavelength of 500 to 700 nm that is easily absorbed by reduced hemoglobin in blood.

センサ部60が設けられた血液浄化回路20の流路21bは、当該流路21bに気泡が滞留しないようになっており、例えば、上下方向に向けられている。これにより、センサ部60による光の検出が気泡に邪魔されることがなく適正に行われる。なお、センサ部60のある流路21bは、鉛直方向に対し傾斜していてもよい。   The flow path 21b of the blood purification circuit 20 provided with the sensor unit 60 is configured such that bubbles do not stay in the flow path 21b and is directed in the vertical direction, for example. Thereby, the detection of the light by the sensor part 60 is performed appropriately without being disturbed by bubbles. In addition, the flow path 21b with the sensor unit 60 may be inclined with respect to the vertical direction.

センサ制御部61は、センサ部60における発光と受光を制御している。センサ部60の受光部71で受光された光は、センサ制御部61に出力される。センサ制御部61は、当該光の情報を算出部62に出力できる。   The sensor control unit 61 controls light emission and light reception in the sensor unit 60. The light received by the light receiving unit 71 of the sensor unit 60 is output to the sensor control unit 61. The sensor control unit 61 can output the light information to the calculation unit 62.

算出部62は、例えば信号処理回路やコンピュータにより構成され、血液ポンプ30の駆動により血液浄化回路20内に血液の拍動が生じ、受光部71により検出された光強度の時間変化(波形)から、血液の拍動に対応する周期成分を抽出し、当該周期成分に基づいて所定の血液成分の濃度としての血液酸素飽和度を算出できる。   The calculation unit 62 is configured by, for example, a signal processing circuit or a computer, and blood pulsation is generated in the blood purification circuit 20 by driving the blood pump 30, and the time change (waveform) of the light intensity detected by the light receiving unit 71 is calculated. The periodic component corresponding to the pulsation of blood can be extracted, and the blood oxygen saturation as the concentration of a predetermined blood component can be calculated based on the periodic component.

次に、以上のように構成された血液成分濃度測定装置1で行われる血液酸素飽和度測定について説明する。図5は、当該血液酸素飽和度測定の主な工程を示すフローチャートである。例えば血液浄化装置10における血液浄化処理中は、血液ポンプ30により血液が圧送され、血液浄化回路20内に血液が流れている。このとき血液ポンプ30のローラの駆動により、血液浄化回路20内に所定の周期Fの血液の拍動が生じる。そして、この血液浄化処理中に、センサ部60において発光部70から血液浄化回路20内の血液中に光が連続的に入射される(図5の工程S1)。このとき、第1発光部70aと第2発光部70bの発光が交互に行われ、血液中の酸化ヘモグロビンに吸収され易い波長の第1の光と、血液中の還元ヘモグロビンに吸収され易い波長の第2の光が血液中に交互に入射される。この発光の周期は、拍動の周期Fより十分に短く設定されている。   Next, blood oxygen saturation measurement performed by the blood component concentration measuring apparatus 1 configured as described above will be described. FIG. 5 is a flowchart showing the main steps of the blood oxygen saturation measurement. For example, during blood purification processing in the blood purification apparatus 10, blood is pumped by the blood pump 30, and blood flows in the blood purification circuit 20. At this time, the pulsation of blood having a predetermined period F occurs in the blood purification circuit 20 by driving the roller of the blood pump 30. During the blood purification process, light is continuously incident on the blood in the blood purification circuit 20 from the light emitting unit 70 in the sensor unit 60 (step S1 in FIG. 5). At this time, light emission of the first light emitting unit 70a and the second light emitting unit 70b is alternately performed, and the first light having a wavelength that is easily absorbed by oxyhemoglobin in blood and the wavelength that is easily absorbed by reduced hemoglobin in blood. The second light is incident on the blood alternately. The light emission period is set to be sufficiently shorter than the pulsation period F.

発光部70から発光された光は、血液中で反射し、受光部71で検出される(図5の工程S2)。受光部71の光信号は、算出部62に出力される。算出部62では、先ず受光部71の出力信号から、第1の光と第2の光の光強度がそれぞれ抽出される。これにより、第1の光の光強度の時間変化と、第2の光の光強度の時間変化が求められる(図5の工程S3)。また、ポンプ制御部40から算出部62に、血液浄化回路20における血液の拍動の周期Fが提供される(図5の工程S4)。なお、血液の拍動の周期Fは、ポンプ制御部40から、センサ制御部61を経由して算出部62に出力されてもよい。この拍動の周期Fは、血液ポンプ30のポンプ回転数とローラ数の駆動設定から計算により得てもよいし、ポンプ回転数をモニタリングすることにより得てもよい。また、拍動の周期Fは、血液ポンプ30の出口部分で圧力変動をモニタリングすることにより得てもよい。そして、ポンプ制御部40から得た血液の拍動の周期Fを用いて、第1の光と第2の光の光強度の時間変化から、上記拍動の周期Fに対応した周期成分のみが抽出される。次に、第1の光と第2の光の周期Fに対応した周期成分の強度比が求められ、予め求められている当該第1の光の光強度と第2の光の光強度との強度比と、血液酸素飽和度との関係式を用いて、前記第1の光と第2の光の周期Fに対応した周期成分の強度比から血液酸素飽和度が算出される(図5の工程S5)。なお、拍動の周期Fは第1の光あるいは第2の光の光強度の時間変化から求めても良い。   The light emitted from the light emitting unit 70 is reflected in the blood and detected by the light receiving unit 71 (step S2 in FIG. 5). The optical signal of the light receiving unit 71 is output to the calculating unit 62. In the calculation unit 62, first, the light intensities of the first light and the second light are extracted from the output signal of the light receiving unit 71, respectively. Thereby, the time change of the light intensity of the first light and the time change of the light intensity of the second light are obtained (step S3 in FIG. 5). Further, the pump control unit 40 provides the calculation unit 62 with the blood pulsation cycle F in the blood purification circuit 20 (step S4 in FIG. 5). The pulsation period F of blood may be output from the pump control unit 40 to the calculation unit 62 via the sensor control unit 61. The pulsation period F may be obtained by calculation from the drive setting of the pump speed and the number of rollers of the blood pump 30, or may be obtained by monitoring the pump speed. The pulsation period F may be obtained by monitoring pressure fluctuations at the outlet of the blood pump 30. Then, using the period F of the blood pulsation obtained from the pump control unit 40, only the periodic component corresponding to the period F of the pulsation is obtained from the temporal change in the light intensity of the first light and the second light. Extracted. Next, the intensity ratio of the periodic component corresponding to the period F of the first light and the second light is obtained, and the light intensity of the first light and the light intensity of the second light obtained in advance are calculated. Using the relational expression between the intensity ratio and the blood oxygen saturation, the blood oxygen saturation is calculated from the intensity ratio of the periodic components corresponding to the period F of the first light and the second light (FIG. 5). Step S5). The pulsation period F may be obtained from the temporal change in the light intensity of the first light or the second light.

本実施の形態によれば、血液浄化回路20において、血液ポンプ30の駆動により安定した周期の血液の拍動が生じる。そして、発光部70及び受光部71により血液浄化回路20の血液を通過した光の強度を検出し、前記血液ポンプ30の駆動により生じる血液の拍動の周期Fを用いて、前記光の強度から血液酸素飽和度を算出している。これにより、血液酸素飽和度を正確かつ安定的に測定できる。また、発光部70と受光部71が、血液の拍動の乱れが少ない血液浄化回路20の血液ポンプ30の下流側に設けられるので、血液酸素飽和度の算出がより正確かつ安定的に行われる。   According to the present embodiment, blood pulsation with a stable cycle is generated by driving blood pump 30 in blood purification circuit 20. Then, the intensity of light that has passed through the blood of the blood purification circuit 20 is detected by the light emitting unit 70 and the light receiving unit 71, and the intensity of the light is calculated using the period F of blood pulsation generated by driving the blood pump 30. Blood oxygen saturation is calculated. Thereby, blood oxygen saturation can be measured accurately and stably. Further, since the light emitting unit 70 and the light receiving unit 71 are provided on the downstream side of the blood pump 30 of the blood purification circuit 20 with less disturbance of blood pulsation, the blood oxygen saturation can be calculated more accurately and stably. .

発光部70と受光部71は、血液浄化回路20の血液ポンプ30と血液浄化器32の間に設けられているので、血液浄化回路20で血液の拍動の乱れが少ない部分で光の検出を行うことができる。よって、血液ポンプ30の駆動による血液の拍動の周期Fと、発光部70及び受光部71による光強度を用いた血液酸素飽和度の算出がより正確かつ安定的に行われる。   Since the light emitting unit 70 and the light receiving unit 71 are provided between the blood pump 30 and the blood purifier 32 of the blood purification circuit 20, light detection is performed in a portion where the blood pulsation is less disturbed in the blood purification circuit 20. It can be carried out. Therefore, the blood oxygen saturation is calculated more accurately and stably using the blood pulsation period F by driving the blood pump 30 and the light intensity by the light emitting unit 70 and the light receiving unit 71.

さらに発光部70と受光部71は、血液浄化回路20の血液ポンプ30と動脈ドリップチャンバー31の間に設けられているので、血液浄化回路20で血液の拍動の乱れがさらに少ない部分で光の検出を行うことができる。よって、血液ポンプ30の駆動による血液の拍動の周期Fと、発光部70及び受光部71による光強度を用いた血液酸素飽和度の算出がさらに正確かつ安定的に行われる。   Further, since the light emitting unit 70 and the light receiving unit 71 are provided between the blood pump 30 and the arterial drip chamber 31 of the blood purification circuit 20, light is transmitted at a portion where the disturbance of blood pulsation is further reduced in the blood purification circuit 20. Detection can be performed. Therefore, the blood oxygen saturation is calculated more accurately and stably using the blood pulsation period F by driving the blood pump 30 and the light intensity by the light emitting unit 70 and the light receiving unit 71.

また発光部70と受光部71は、他の流路21aよりも径が大きい血液ポンプ30のチューブである流路21bに設けられているので、血液浄化回路20で血液の拍動の乱れが最も少ない部分で光の検出を行うことができる。よって、血液ポンプ30の駆動による血液の拍動の周期Fと、発光部70及び受光部71による光強度を用いた血液酸素飽和度の算出がさらに正確かつ安定的に行われる。また、流路21bの径が大きく、発光部70から入射された光が血液中で十分に反射するので、当該反射光を効率的に受光し、光強度の検出を効率的かつ確実に行うことができる。   Further, since the light emitting unit 70 and the light receiving unit 71 are provided in the flow channel 21b which is a tube of the blood pump 30 having a larger diameter than the other flow channel 21a, the blood pulsation is most disturbed in the blood purification circuit 20. Light can be detected with a small portion. Therefore, the blood oxygen saturation is calculated more accurately and stably using the blood pulsation period F by driving the blood pump 30 and the light intensity by the light emitting unit 70 and the light receiving unit 71. Moreover, since the diameter of the flow path 21b is large and the light incident from the light emitting unit 70 is sufficiently reflected in the blood, the reflected light is efficiently received and the light intensity is detected efficiently and reliably. Can do.

血液成分濃度測定装置1は、発光部70と受光部71を流路21bに流路カバー74を介して固定する固定部材73を有しているので、発光部70及び受光部71が流路21bに対しずれることがなく、血流に対する光の発光や受光を正確かつ安定的に行うことができる。   Since the blood component concentration measuring apparatus 1 has the fixing member 73 that fixes the light emitting unit 70 and the light receiving unit 71 to the channel 21b via the channel cover 74, the light emitting unit 70 and the light receiving unit 71 are connected to the channel 21b. Therefore, light can be emitted and received with respect to the bloodstream accurately and stably.

固定部材73は、発光部70と受光部71を血液浄化回路20側に押し付けて固定しているので、発光部70及び受光部71と流路21bが常に接触し、血流に対する光の発光や受光を正確かつ安定的に行うことができる。   Since the fixing member 73 presses and fixes the light emitting unit 70 and the light receiving unit 71 to the blood purification circuit 20 side, the light emitting unit 70, the light receiving unit 71, and the flow path 21b are always in contact with each other. Light can be received accurately and stably.

血液成分濃度測定装置1は、血液浄化回路20の発光部70と受光部71が固定される部分の流路21bを覆う流路カバー74を有し、固定部材73は、流路カバー74を外側から押さえている。これにより、外部の振動や流路21b自体の振動などの外乱が血液の拍動に影響することを抑制できる。   The blood component concentration measuring apparatus 1 has a flow path cover 74 that covers the flow path 21b of a portion to which the light emitting section 70 and the light receiving section 71 of the blood purification circuit 20 are fixed, and the fixing member 73 has the flow path cover 74 outside. Hold from. Thereby, it can suppress that disturbances, such as external vibration and the vibration of flow path 21b itself, affect the pulsation of blood.

流路カバー74は、発光部70と受光部71が固定された部分の流路21bを圧迫し、弾力性を有しているので、血液の拍動を抑制しない程度に流路21b自体の動きを規制できる。これにより、例えば長時間の体外循環により生じる血液浄化回路20の振動より発光部70及び受光部71と流路21bが位置ずれすることを防止できる。よって、発光部70と受光部71による光の強度の検出を正確かつ安定的に行うことができる。   Since the flow path cover 74 presses the flow path 21b where the light emitting unit 70 and the light receiving unit 71 are fixed and has elasticity, the flow of the flow path 21b itself is not suppressed to the extent that blood pulsation is not suppressed. Can be regulated. Thereby, it is possible to prevent the light emitting unit 70, the light receiving unit 71, and the flow path 21b from being displaced due to, for example, vibration of the blood purification circuit 20 caused by long-term extracorporeal circulation. Therefore, the light intensity can be detected accurately and stably by the light emitting unit 70 and the light receiving unit 71.

流路カバー74は、発光部70と受光部71が固定された部分の流路21bを外部の光が入らないように覆っているので、外部自然光によるノイズを防ぐことができ、受光部71により検出された光の強度に基づく血液酸素飽和度を正確かつ安定的に行うことができる。また、本実施の形態では、流路カバー74が流路21bに密着しているので、流路21b内から外部への光の散乱も防止され、発光部70と受光部71による血液への発光と受光が効率的かつ確実に行われる。   The channel cover 74 covers the portion of the channel 21b where the light emitting unit 70 and the light receiving unit 71 are fixed so that external light does not enter, so that noise due to external natural light can be prevented. Blood oxygen saturation based on the detected light intensity can be accurately and stably performed. In this embodiment, since the flow path cover 74 is in close contact with the flow path 21b, scattering of light from the flow path 21b to the outside is also prevented, and light emission to the blood by the light emitting unit 70 and the light receiving unit 71 is prevented. And light reception is performed efficiently and reliably.

流路カバー74は、血液浄化回路20に対し取り外し自在に構成されているので、血液浄化回路20の適正な部分に発光部70や受光部71を取り付けることができる。   Since the flow path cover 74 is configured to be removable from the blood purification circuit 20, the light emitting unit 70 and the light receiving unit 71 can be attached to appropriate portions of the blood purification circuit 20.

血液成分濃度測定装置1は、発光部70と受光部71を保持する保持部材72を有し、固定部材73の血液浄化回路20側の面には、保持部材72を収容する凹部103が形成されている。これにより、発光部70と受光部71を固定部材73にしっかり固定することができ、位置ずれしないので、発光部70及び受光部71による光の強度の検出を正確かつ安定的に行うことができる。   The blood component concentration measuring apparatus 1 includes a holding member 72 that holds the light emitting unit 70 and the light receiving unit 71, and a concave portion 103 that accommodates the holding member 72 is formed on the surface of the fixing member 73 on the blood purification circuit 20 side. ing. Accordingly, the light emitting unit 70 and the light receiving unit 71 can be firmly fixed to the fixing member 73 and are not displaced, so that the light intensity detection by the light emitting unit 70 and the light receiving unit 71 can be accurately and stably performed. .

保持部材72と固定部材73との間には、弾力性のある緩衝シート103が介在されているので、発光部70と受光部71を適正な力で流路21に押し付けることができる。また外部から固定部材73に伝わった振動などを吸収し、当該振動が血液の拍動に影響することを抑制できる。なお、緩衝シート103を流路カバー74と保持部材72との間に入れて緩衝度合いを調整してもよい。   Since the elastic buffer sheet 103 is interposed between the holding member 72 and the fixing member 73, the light emitting unit 70 and the light receiving unit 71 can be pressed against the flow path 21 with an appropriate force. Further, it is possible to absorb vibration transmitted from the outside to the fixing member 73 and to suppress the vibration from affecting the pulsation of blood. The buffer sheet 103 may be inserted between the flow path cover 74 and the holding member 72 to adjust the degree of buffering.

固定部材73は、血液浄化回路20に対し取り外し自在に構成されているので、必要に応じて血液浄化回路20の適正な部分に発光部70や受光部71を取り付けることができる。   Since the fixing member 73 is configured to be detachable from the blood purification circuit 20, the light emitting unit 70 and the light receiving unit 71 can be attached to appropriate portions of the blood purification circuit 20 as necessary.

センサ部60は、血液浄化回路20の気泡が滞留しない部分に設けられているので、例えば治療中の圧力の変化や気温の変化により、血液浄化回路20内に微小気泡が発生しても、微小気泡がセンサ部60に留まることはない。この結果、気泡により入射光が影響を受けることがなく、酸素飽和度測定をより正確に行うことができる。   Since the sensor unit 60 is provided in a portion where the bubbles of the blood purification circuit 20 do not stay, even if micro bubbles are generated in the blood purification circuit 20 due to a change in pressure or a change in temperature during treatment, for example, Air bubbles do not stay in the sensor unit 60. As a result, incident light is not affected by the bubbles, and oxygen saturation measurement can be performed more accurately.

発光部70は、波長850nm〜1000nmの光を発する第1発光部と、波長500〜700nmの光を発する第2発光部を備え、各光を用いて、血液中の酸素飽和度を測定している。かかる場合、酸素飽和度の精度よく測定できる。   The light emitting unit 70 includes a first light emitting unit that emits light with a wavelength of 850 nm to 1000 nm and a second light emitting unit that emits light with a wavelength of 500 to 700 nm, and measures oxygen saturation in blood using each light. Yes. In such a case, the oxygen saturation can be measured with high accuracy.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。酸素飽和度モニターの反射型を用いて説明したが、発光部70と受光部71を血液浄化回路20を挟んだ対向する位置に設置して、透過型酸素飽和度モニターを用いることも可能である。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. Although the description has been made using the reflection type of the oxygen saturation monitor, it is also possible to use a transmission type oxygen saturation monitor by installing the light emitting unit 70 and the light receiving unit 71 at opposite positions across the blood purification circuit 20. . It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば以上の実施の形態では、センサ部60が血液ポンプ30のポンプチューブである流路21bに設置されていたが、血液ポンプ30より下流側であれば血液浄化回路20の他の部分に設定されていてもよい。また、例えば図6に示すようにセンサ部60が設けられる血液浄化回路20の流路21cが、軟質で径が大きいピロー状に形成されていてもよい。流路21cには、例えば血液と接するため生体適合性に優れた軟質素材が用いられ、特に、フタル酸ジエチルヘキシル(DOP)入り塩化ビニルアルコール、2−エチルヘキシルトリメート(TOTM)入り塩化ビニルアルコール、シリコンゴムが好適である。また、流路21cの肉厚は、4mm以下、より好ましくは3mm以下に設定されている。こうして、流路21cは、ショアA硬度が30〜70程度に設定され、血液浄化回路20の流路21の他の部分よりも柔軟に形成されている。また、流路21cは、反射光を効率的に受光するために、内径が血液浄化回路20の他の部分よりも大きくなっており、例えば他の部分の内径が3.5mm程度に対し、流路21cの内径は5mm以上になっている。   For example, in the above embodiment, the sensor unit 60 is installed in the flow path 21b that is the pump tube of the blood pump 30, but if it is downstream from the blood pump 30, it is set in another part of the blood purification circuit 20. It may be. For example, as shown in FIG. 6, the flow path 21c of the blood purification circuit 20 provided with the sensor unit 60 may be formed in a pillow shape that is soft and has a large diameter. For the channel 21c, for example, a soft material excellent in biocompatibility because it comes into contact with blood is used. Particularly, vinyl chloride alcohol containing diethylhexyl phthalate (DOP), vinyl chloride alcohol containing 2-ethylhexyltrimate (TOTM), Silicon rubber is preferred. The wall thickness of the channel 21c is set to 4 mm or less, more preferably 3 mm or less. Thus, the channel 21c is set to have a Shore A hardness of about 30 to 70, and is formed more flexibly than the other part of the channel 21 of the blood purification circuit 20. Further, the flow path 21c has an inner diameter larger than that of the other part of the blood purification circuit 20 in order to efficiently receive the reflected light. For example, the inner diameter of the other part is about 3.5 mm. The inner diameter of the path 21c is 5 mm or more.

上記実施の形態において、血液浄化回路20のセンサ部60が設置された流路21bが上下方向、または傾斜され、気泡が上方に血液と共に流れるように設置されていたが、気泡に影響を受けにくい他の構造として、例えば血液浄化回路20が水平に設置されても、発光部70と受光部71を血液浄化回路20の下面若しくは側面に配置し、当該発光部70と受光部71の近くに気泡が滞留しないようにしてもよい。例えば発光部70と受光部71のある水平面から3mm以上上方まで気泡が滞留しないように血液浄化回路20の径や、発光部70及び受光部71の位置を設定してもよい。   In the above-described embodiment, the flow path 21b in which the sensor unit 60 of the blood purification circuit 20 is installed is installed in such a way that it is vertically or inclined so that the bubbles flow with the blood upward. As another structure, for example, even when the blood purification circuit 20 is installed horizontally, the light emitting unit 70 and the light receiving unit 71 are arranged on the lower surface or side surface of the blood purification circuit 20, and bubbles are formed near the light emitting unit 70 and the light receiving unit 71. May not stay. For example, the diameter of the blood purification circuit 20 and the positions of the light emitting unit 70 and the light receiving unit 71 may be set so that bubbles do not stay 3 mm or more above the horizontal plane where the light emitting unit 70 and the light receiving unit 71 are located.

固定部材73や流路カバー74は、他の構成であってもよく、一体化していてもよい。また一対の固定部材73の片同士が一端側で連結され、当該連結部を軸に回動できるようにしてもよい。この場合、血液浄化回路20を、固定部材73の二つの片の間に入れて挟み込み、固定部材73の2つの片を閉めて互いに固定することによって、血液浄化回路20を固定してもよい。流路カバー74も固定部材73と同様に2つの片同士が一端側で連結され、当該連結部を軸に回動できるようにしてもよい。   The fixing member 73 and the flow path cover 74 may have other configurations or may be integrated. Alternatively, the pair of fixing members 73 may be connected to each other at one end side so that the connecting portion can be rotated about the axis. In this case, the blood purification circuit 20 may be fixed by inserting the blood purification circuit 20 between two pieces of the fixing member 73 and closing the two pieces of the fixing member 73 and fixing them together. Similarly to the fixing member 73, the two pieces may be connected to each other at one end side so that the flow path cover 74 can be rotated about the connecting portion.

以上の実施の形態では、血液中に酸素飽和度を測定する例であったが、本発明は、酸素飽和度以外の血糖などの血液成分の濃度を測定する場合にも適用できる。   In the above embodiment, the oxygen saturation is measured in the blood. However, the present invention can also be applied to the case of measuring the concentration of blood components such as blood glucose other than oxygen saturation.

以下、本発明を実施例にしたがって具体的に説明するが、本説明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely according to an Example, this description is not limited to these.

(実施例1)
実施例1は、図1に示したようにセンサ部60を血液ポンプ30の下流側(血液ポンプ30と動脈側ドリップチャンバー31の間)に設定し、図6に示すようにセンサ部60の流路21cをピロー状に形成した血液成分濃度測定装置1を使用した。具体的には、センサ部60として、反射型センサーであるマシモSETラディカルパルスオキシメータを用い、ラディカルにおける酸化ヘモグロビンと還元ヘモグロビンの吸光度割合を測定する発光部70の赤色光と赤外光の波長は、それぞれ660nmと905nmを使用した。
Example 1
In the first embodiment, as shown in FIG. 1, the sensor unit 60 is set downstream of the blood pump 30 (between the blood pump 30 and the arterial drip chamber 31), and as shown in FIG. The blood component concentration measuring apparatus 1 in which the path 21c was formed in a pillow shape was used. Specifically, the sensor unit 60 is a reflective sensor Masimo SET radical pulse oximeter, and the wavelengths of red light and infrared light of the light emitting unit 70 for measuring the absorbance ratio of oxygenated hemoglobin and reduced hemoglobin in the radical are as follows. 660 nm and 905 nm, respectively.

ピロー状の流路21cとして、透析用血液回路(日本工業規格 JIS T 3248 )の陰圧検出部分(縦15.6mm、横36.7mm、高さ15.9mm、硬度52(ショアA硬度)を用いた。固定部材73における、発光部70及び受光部71側の平板部100には、縦40mm、横78mm、厚さ10mmのもの用い、その反対側の平板部100には、縦40mm、横78mm、厚さ3mmのものを用いた。固定部材73及び流路カバー74により、ピロー状の流路21cを挟み込み、107%の圧迫固定率で圧迫固定した。   As a pillow-shaped flow path 21c, a negative pressure detection part (vertical 15.6 mm, horizontal 36.7 mm, height 15.9 mm, hardness 52 (Shore A hardness) of a blood circuit for dialysis (Japanese Industrial Standard JIS T 3248) In the fixing member 73, the flat plate portion 100 on the light emitting portion 70 and light receiving portion 71 side is 40 mm long, 78 mm wide, and 10 mm thick, and the opposite flat plate portion 100 is 40 mm long, horizontal. 78 mm and 3 mm thickness was used The pillow-shaped flow path 21c was sandwiched between the fixing member 73 and the flow path cover 74, and was compressed and fixed at a compression fixation rate of 107%.

流路カバー74には、シリコン素材を用いた。発光部70及び受光部71側の流路カバー74の片は、縦30mm 横50mm、厚み6mmとした。当該流路カバー74の片には、6mmΦの穴を開け貫通孔80とした。反対側の流路カバー74の片は、縦30mm 横50mm、厚み8mmとした。また、緩衝シート103は、縦25mm、横30mm、厚み1.5mmとした。緩衝シート103の硬度は、14(ショアA硬度)、流路カバー74の硬度は、32(ショアA硬度)であった。なお、センサ部60における血液の流れは、下から上である。   A silicon material was used for the flow path cover 74. The pieces of the flow path cover 74 on the light emitting unit 70 and the light receiving unit 71 side had a length of 30 mm, a width of 50 mm, and a thickness of 6 mm. A hole of 6 mmΦ was formed in the piece of the flow path cover 74 to form a through hole 80. The piece of the flow path cover 74 on the opposite side was 30 mm long, 50 mm wide, and 8 mm thick. The buffer sheet 103 was 25 mm long, 30 mm wide, and 1.5 mm thick. The buffer sheet 103 had a hardness of 14 (Shore A hardness), and the flow path cover 74 had a hardness of 32 (Shore A hardness). The blood flow in the sensor unit 60 is from bottom to top.

酸素飽和度の測定は、マシモ社製情報解析ソフトVer.1.7.0 Sat partnerにより行った。測定時の透析条件としては、血液流量200mL/分、透析液流量500mL/分、透析液温度36.4℃から36.8℃で行った。   The measurement of oxygen saturation was performed using information analysis software Ver. 1.7.0 Performed by Sat partner. The dialysis conditions at the time of measurement were blood flow rate 200 mL / min, dialysate flow rate 500 mL / min, and dialysate temperature 36.4 ° C. to 36.8 ° C.

透析処理時、除水により患者の酸素飽和度が一旦低下することが起こる。その時に血液濃度測定装置1を用いて行われた酸素飽和度および血圧の測定結果を図7に示した。図7に示すように、実施例1の血液濃度測定装置1を用いて測定された酸素飽和度は、時間と共に明確にかつ滑らかに低下しており、当該測定が正確かつ安定的に行われている。また、図7のグラフ中の(4)の圧力測定時には、患者の圧力が低下している。実施例1の酸素飽和度測定によれば、(4)の圧力測定時に向けて次第に酸素飽和度が低下していくことが正確に把握できるため、この患者の圧力低下を事前に正確に予測することができる。この実施例1の場合、センサ部60を用いて、血液ポンプ30の陽圧の拍動による光強度の周期的な波形も安定しており周期成分を確実に測定することができ、その周期成分から計算された酸素飽和度は、図7に示す様に、ばらつきが少ない結果が得られた。   During dialysis, the patient's oxygen saturation temporarily decreases due to water removal. FIG. 7 shows the results of measurement of oxygen saturation and blood pressure performed using the blood concentration measuring apparatus 1 at that time. As shown in FIG. 7, the oxygen saturation measured using the blood concentration measurement apparatus 1 of Example 1 clearly and smoothly decreases with time, and the measurement is performed accurately and stably. Yes. In addition, when the pressure is measured (4) in the graph of FIG. 7, the patient's pressure is reduced. According to the oxygen saturation measurement of Example 1, since it can be accurately grasped that the oxygen saturation gradually decreases toward the pressure measurement of (4), the pressure drop of the patient is accurately predicted in advance. be able to. In the case of the first embodiment, using the sensor unit 60, the periodic waveform of the light intensity due to the pulsation of the positive pressure of the blood pump 30 is stable, and the periodic component can be reliably measured. As shown in FIG. 7, the oxygen saturation calculated from (1) showed little variation.

拍動波形の内容成分である、拍動成分と非拍動成分の割合を表す還流指標(%)(Perfusion Index 以下 PIと略す)は10.0±1.5と拍動成分の割合が高い数値が得られた。一般にPIが0.2以上が好ましく、数値が高い程、測定精度が高いと言われているが、この事からも本実施例1の酸素飽和度測定値が拍動成分から精度よく得られた数値であることが確認できた。以上、酸素飽和度の精度向上により、生体反応である酸素飽和度の変動が明確に把握でき、血液透析治療中における酸素飽和度が明らかに低下の8分後に血圧(収縮期血圧)低下が出現したことを確認できた(図7)。   Perfusion index (%) representing the ratio of pulsating components to non-pulsating components, which is the content component of the pulsating waveform (Perfusion Index, hereinafter referred to as PI) is 10.0 ± 1.5, which is a high proportion of pulsating components A numerical value was obtained. In general, PI is preferably 0.2 or more, and it is said that the higher the numerical value, the higher the measurement accuracy. From this, the oxygen saturation measurement value of Example 1 was obtained from the pulsation component with high accuracy. It was confirmed that it was a numerical value. As described above, by improving the accuracy of oxygen saturation, it is possible to clearly grasp fluctuations in oxygen saturation, which is a biological reaction, and blood pressure (systolic blood pressure) decreases 8 minutes after the oxygen saturation is clearly decreased during hemodialysis treatment. It was confirmed that this was done (FIG. 7).

(実施例2)
実施例2は、図1に示したようにセンサ部60を血液ポンプ30の下流側(血液ポンプ30と動脈側ドリップチャンバー31の間)に設定し、図3及び図4に示すように血液ポンプ30のポンプチューブである流路21bにセンサ部60を設けた血液成分濃度測定装置1を使用した。具体的には、センサ部60として、反射型センサーであるマシモSETラディカルパルスオキシメータを用い、ラディカルにおける酸化ヘモグロビンと還元ヘモグロビンの吸光度割合を測定する発光部70の赤色光と赤外光の波長は、それぞれ660nmと905nmを使用した。
(Example 2)
In the second embodiment, as shown in FIG. 1, the sensor unit 60 is set downstream of the blood pump 30 (between the blood pump 30 and the arterial drip chamber 31), and as shown in FIGS. The blood component concentration measuring apparatus 1 provided with the sensor unit 60 in the flow path 21b which is 30 pump tubes was used. Specifically, the sensor unit 60 is a reflective sensor Masimo SET radical pulse oximeter, and the wavelengths of red light and infrared light of the light emitting unit 70 for measuring the absorbance ratio of oxygenated hemoglobin and reduced hemoglobin in the radical are as follows. 660 nm and 905 nm, respectively.

血液ポンプ30の流路21bとして、透析用血液回路(日本工業規格 JIS T 3248 )の血液ポンプ用チューブ部分(内径8.0mm、外径12.0mm、長さ325mm:硬度45(ショアA硬度))を用いた。固定部材73における、発光部70及び受光部71側の平板部100には、縦40mm、横44mm、厚さ10mmのもの用い、その反対側の平板部100には、縦40mm、横44mm、厚さ3mmのものを用いた。固定部材73及び流路カバー74により、流路21bを挟み込み、103%の圧迫固定率で圧迫固定した。   As the flow path 21b of the blood pump 30, the blood pump tube portion (inner diameter 8.0 mm, outer diameter 12.0 mm, length 325 mm) of dialysis blood circuit (Japanese Industrial Standard JIS T 3248): hardness 45 (Shore A hardness) ) Was used. In the fixing member 73, the flat plate portion 100 on the light emitting portion 70 and the light receiving portion 71 side has a length of 40 mm, a width of 44 mm, and a thickness of 10 mm, and the opposite flat plate portion 100 has a length of 40 mm, a width of 44 mm, and a thickness. The one with a thickness of 3 mm was used. The flow path 21b was sandwiched between the fixing member 73 and the flow path cover 74, and was compressed and fixed at a compression fixation rate of 103%.

流路カバー74には、シリコン素材を用いた。発光部70及び受光部71側の流路カバー74の片は、縦30mm、横44mm、厚み5mmとした。当該流路カバー74の片には、6mmΦの穴を開け貫通孔80とした。反対側の流路カバー74の片は、縦30mm、横44mm、厚み6mmとした。また、緩衝シート103は、縦25mm、横30mm、厚み1.5mmとした。緩衝シート103の硬度は、14(ショアA硬度)、流路カバー74の硬度は、32(ショアA硬度)であった。なお、センサ部60における血液の流れは、下から上である。   A silicon material was used for the flow path cover 74. The pieces of the flow path cover 74 on the light emitting unit 70 and light receiving unit 71 side had a length of 30 mm, a width of 44 mm, and a thickness of 5 mm. A hole of 6 mmΦ was formed in the piece of the flow path cover 74 to form a through hole 80. The piece of the flow path cover 74 on the opposite side was 30 mm long, 44 mm wide, and 6 mm thick. The buffer sheet 103 was 25 mm long, 30 mm wide, and 1.5 mm thick. The buffer sheet 103 had a hardness of 14 (Shore A hardness), and the flow path cover 74 had a hardness of 32 (Shore A hardness). The blood flow in the sensor unit 60 is from bottom to top.

酸素飽和度の測定は、マシモ社製情報解析ソフトVer.1.7.0 Sat partnerにより行った。測定時の透析条件としては、血液流量200mL/分、透析液流量500mL/分、透析液温度36.4℃から36.8℃で行った。   The measurement of oxygen saturation was performed using information analysis software Ver. 1.7.0 Performed by Sat partner. The dialysis conditions at the time of measurement were blood flow rate 200 mL / min, dialysate flow rate 500 mL / min, and dialysate temperature 36.4 ° C. to 36.8 ° C.

透析処理時、除水により患者の酸素飽和度が低下した時に実施例2の血液濃度測定装置1を用いて行われた酸素飽和度および血圧の測定結果を図8に示した。図8に示すように、実施例2の血液濃度測定装置1を用いて測定された酸素飽和度は、時間と共に明確にかつ滑らかに低下しており、当該測定が正確かつ安定的に行われている。また、図8のグラフ中の(4)の血圧測定時には、患者の血圧が低下している。実施例2の酸素飽和度測定によれば、(4)の血圧測定時に向けて次第に酸素飽和度が低下していくことが正確に把握できるため、この患者の血圧低下を事前に正確に予測することができる。この実施例2の場合、センサ部60は、血液ポンプ30の拍動による圧送の直後であり、且つ、同一回路径であり、回路特有の外乱等の影響も少なく、血液ポンプ30の周波性成分を確実に測定することができた。また、実施例2と実施例1を比較した場合、実施例2では、酸素飽和度の測定時のばらつきは減少し、ノイズの減少も確認した。実施例2が血液浄化回路20におけるセンサ部60を設置する場所としてより好ましいことが判明した。   FIG. 8 shows the results of measurement of oxygen saturation and blood pressure performed using the blood concentration measurement apparatus 1 of Example 2 when the oxygen saturation of the patient was reduced due to water removal during dialysis. As shown in FIG. 8, the oxygen saturation measured using the blood concentration measurement apparatus 1 of Example 2 clearly and smoothly decreases with time, and the measurement is performed accurately and stably. Yes. In addition, when the blood pressure is measured (4) in the graph of FIG. 8, the blood pressure of the patient is decreased. According to the oxygen saturation measurement of Example 2, since it can be accurately grasped that the oxygen saturation gradually decreases toward the blood pressure measurement of (4), this patient's blood pressure decrease is accurately predicted in advance. be able to. In the case of the second embodiment, the sensor unit 60 is immediately after pumping by the pulsation of the blood pump 30 and has the same circuit diameter, and is less affected by disturbances peculiar to the circuit. Was able to be measured reliably. Moreover, when Example 2 and Example 1 were compared, in Example 2, the variation | variation at the time of a measurement of oxygen saturation decreased, and the reduction of noise was also confirmed. It turned out that Example 2 is more preferable as a place to install the sensor unit 60 in the blood purification circuit 20.

実施例2の場合、実施例1でも表したPIが15.0±2.0とかなり高値を示し、センサ部60を設置する場所としての信頼性が実施例1よりも高いことが確認できた。   In the case of Example 2, the PI represented in Example 1 also showed a considerably high value of 15.0 ± 2.0, and it was confirmed that the reliability as the place where the sensor unit 60 is installed is higher than that of Example 1. .

図8に示すように、実施例2により、血液透析治療中における酸素飽和度が明らかに低下の10分後に血圧(収縮期血圧)低下が出現したことを確認できた。   As shown in FIG. 8, according to Example 2, it was confirmed that a decrease in blood pressure (systolic blood pressure) appeared 10 minutes after the apparent decrease in oxygen saturation during hemodialysis treatment.

一般に、血液透析治療の除水に伴う循環血液量の変化に対し、正常時には自律神経による血管収縮により血圧の恒常性が維持されるが、異常時には自律神経バランスがくずれ、肺血流量減少、呼吸性変動の影響により、酸素飽和度減少及び血圧低下が起こると言われている。本発明における血液成分濃度測定装置1により、血液透析治療における循環血液量変化への対応が出来なくなった体の不調において、呼吸性変動の影響による血圧低下を確実に予測することができる。   In general, blood pressure homeostasis is maintained by vasoconstriction due to autonomic nerves during normal times against changes in circulating blood volume associated with water removal during hemodialysis treatment, but when abnormal, autonomic nerve balance is disrupted, pulmonary blood flow decreases, breathing It is said that oxygen saturation decreases and blood pressure decreases due to the influence of sex fluctuation. With the blood component concentration measuring apparatus 1 according to the present invention, it is possible to reliably predict a decrease in blood pressure due to the influence of respiratory fluctuations in the state of the body that is unable to cope with changes in circulating blood volume in hemodialysis treatment.

(比較例1)
比較例1は、図9に示すようにセンサ部120を血液ポンプ30の上流側(血液ポンプ30と患者の脱血穿刺部の間)に設定し、図10に示したようにセンサ部120が設けられる血液浄化回路20の流路21dをピロー状に形成した血液成分濃度測定装置を使用した。センサ部120は、発光部130と、受光部131と、発光部130と受光部131の保持部133と、緩衝シート132と、これらの収納部134を備え、発光部130と受光部131がピロー状の流路21dに接触されている。具体的には、センサ部120として、反射型センサーであるマシモSETラディカルパルスオキシメータを用い、ラディカルにおける酸化ヘモグロビンと還元ヘモグロビンの吸光度割合を測定する発光部130の赤色光と赤外光の波長は、それぞれ660nmと905nmを使用した。
(Comparative Example 1)
In Comparative Example 1, as shown in FIG. 9, the sensor unit 120 is set upstream of the blood pump 30 (between the blood pump 30 and the blood removal puncture unit of the patient). A blood component concentration measuring device in which the flow path 21d of the blood purification circuit 20 provided was formed in a pillow shape was used. The sensor unit 120 includes a light emitting unit 130, a light receiving unit 131, a holding unit 133 for the light emitting unit 130 and the light receiving unit 131, a buffer sheet 132, and a storage unit 134 for the light emitting unit 130 and the light receiving unit 131. Is in contact with the channel 21d. Specifically, as a sensor unit 120, a reflection type sensor Masimo SET radical pulse oximeter is used, and the wavelengths of red light and infrared light of the light emitting unit 130 for measuring the absorbance ratio of oxidized hemoglobin and reduced hemoglobin in the radical are as follows. 660 nm and 905 nm, respectively.

ピロー状の流路21dとして、透析用血液回路(日本工業規格 JIS T 3248 )の陰圧検出部分(縦15.6mm、横36.7mm、高さ15.9mm、硬度52(ショアA硬度))を用いた。収納部134(縦31.0mm、横71.0mm、高さ31.0mm、板厚み5.0mm)内で、発光部130、受光部131によりピロー状の流路21dを挟み込み、125%の圧迫固定率で圧迫固定した。保持部132は、シリコン素材を用い、縦25mm横30mm、厚み2.5mm、15(ショアA硬度)とした。発光部130、受光部131のある部分には6mmΦの穴を開け光路とした。   As a pillow-shaped flow path 21d, a negative pressure detection part (length 15.6 mm, width 36.7 mm, height 15.9 mm, hardness 52 (Shore A hardness)) of a blood circuit for dialysis (Japanese Industrial Standard JIS T 3248) Was used. Inside the storage part 134 (length 31.0 mm, width 71.0 mm, height 31.0 mm, plate thickness 5.0 mm), the pillow-shaped flow path 21d is sandwiched between the light emitting part 130 and the light receiving part 131, and the pressure is 125%. Compression was fixed at a fixed rate. The holding part 132 is made of a silicon material and has a length of 25 mm, a width of 30 mm, a thickness of 2.5 mm, and 15 (Shore A hardness). A hole with a diameter of 6 mm was formed in a portion where the light emitting unit 130 and the light receiving unit 131 were provided to form an optical path.

酸素飽和度の測定は、マシモ社製情報ソフトフィジオログを用いて行った。測定時の透析条件としては、血液流量200mL/分、透析液流量500mL/分、透析液温度36.4℃から36.8℃で行った。なお、センサ部120における血液の流れは水平であり、センサ部120は血液浄化回路20の下面に配置した。   The oxygen saturation was measured using an information soft physiolog manufactured by Masimo. The dialysis conditions at the time of measurement were blood flow rate 200 mL / min, dialysate flow rate 500 mL / min, and dialysate temperature 36.4 ° C. to 36.8 ° C. The blood flow in the sensor unit 120 is horizontal, and the sensor unit 120 is disposed on the lower surface of the blood purification circuit 20.

図11に酸素飽和度および血圧の測定結果を示した。血液ポンプ30の拍動により、測定部では陰圧となり拍動波形が乱れ、周期成分が確実には得られにくくなった。その結果、酸素飽和度のばらつきが大きくなり、変化を的確に捉えにくくなり、酸素飽和度の変化による血圧低下を予測が難しくなった。   FIG. 11 shows the measurement results of oxygen saturation and blood pressure. Due to the pulsation of the blood pump 30, a negative pressure was generated in the measurement unit, and the pulsation waveform was disturbed, making it difficult to reliably obtain a periodic component. As a result, variations in oxygen saturation increased, making it difficult to accurately grasp changes, and it became difficult to predict blood pressure reduction due to changes in oxygen saturation.

拍動成分の割合を示すPIにおいて1.0±0.5と数値が低くなり、実施例と比べ、センサ部120の設置箇所における測定は安定性に欠けることが判明した。   In PI indicating the ratio of the pulsating component, the numerical value is low as 1.0 ± 0.5, and it has been found that the measurement at the installation location of the sensor unit 120 lacks stability compared to the example.

本発明は、血液中の老廃物等の有害物質を除去する血液浄化療法において広く応用可能である。血液成分の濃度測定が血液浄化回路を介して行えるので、特殊な測定部位を血液浄化回路内に取り付ける必要なく、また血液に触れないので、経済的になおかつ安全に使用できる。   The present invention is widely applicable in blood purification therapy for removing harmful substances such as waste products in blood. Since the blood component concentration can be measured via the blood purification circuit, it is not necessary to install a special measurement site in the blood purification circuit, and since it does not touch the blood, it can be used economically and safely.

1 血液成分濃度測定装置
20 血液浄化回路
30 血液ポンプ
31 動脈側ドリップチャンバー
32 血液浄化器
33 静脈側ドリップチャンバー
40 ポンプ制御部
60 センサ部
61 センサ制御部
62 算出部
70 発光部
71 受光部
72 保持部材
73 固定部材
74 流路カバー
F 周期
DESCRIPTION OF SYMBOLS 1 Blood component density | concentration measuring apparatus 20 Blood purification circuit 30 Blood pump 31 Arterial drip chamber 32 Blood purifier 33 Vein side drip chamber 40 Pump control part 60 Sensor part 61 Sensor control part 62 Calculation part 70 Light emission part 71 Light receiving part 72 Holding member 73 Fixing member 74 Flow path cover F Period

Claims (16)

体内から取り出された血液を浄化して体内に戻すための血液浄化回路において血液中の所定の血液成分の濃度を測定する血液成分濃度測定装置であって、
前記血液浄化回路の血液中に光を入射する発光部と、
前記血液浄化回路の血液中を透過した前記光を検出する受光部と、
前記受光部により検出された光強度の時間変化から、前記血液浄化回路の血液ポンプの駆動により前記血液浄化回路内に生じる血液の拍動に対応する前記光強度の時間変化の周期成分を抽出し、当該周期成分に基づいて所定の血液成分の濃度を算出する算出部と、を有し、
前記発光部及び前記受光部は、前記血液浄化回路の前記血液ポンプの下流側に設けられている、血液成分濃度測定装置。
A blood component concentration measuring device for measuring a concentration of a predetermined blood component in blood in a blood purification circuit for purifying blood taken out from the body and returning it to the body,
A light-emitting unit for entering light into the blood of the blood purification circuit;
A light receiving unit for detecting the light transmitted through the blood of the blood purification circuit;
Extracting a periodic component of the time change of the light intensity corresponding to the pulsation of blood generated in the blood purification circuit by driving the blood pump of the blood purification circuit from the time change of the light intensity detected by the light receiving unit. A calculation unit for calculating a concentration of a predetermined blood component based on the periodic component,
The blood component concentration measuring apparatus, wherein the light emitting unit and the light receiving unit are provided on the downstream side of the blood pump of the blood purification circuit.
前記血液浄化回路は、前記血液ポンプの下流側に血液を浄化する血液浄化器を有し、
前記発光部と前記受光部は、前記血液浄化回路における前記血液ポンプと前記血液浄化器の間に設けられている、請求項1に記載の血液成分濃度測定装置。
The blood purification circuit has a blood purifier for purifying blood downstream of the blood pump,
The blood component concentration measuring device according to claim 1, wherein the light emitting unit and the light receiving unit are provided between the blood pump and the blood purifier in the blood purification circuit.
前記血液浄化回路は、前記血液ポンプと前記血液浄化器の間に動脈側ドリップチャンバーを有し、
前記発光部と前記受光部は、前記血液浄化回路における前記血液ポンプと前記動脈側ドリップチャンバーの間に設けられている、請求項2に記載の血液成分濃度測定装置。
The blood purification circuit has an arterial drip chamber between the blood pump and the blood purifier,
The blood component concentration measuring apparatus according to claim 2, wherein the light emitting unit and the light receiving unit are provided between the blood pump and the arterial drip chamber in the blood purification circuit.
前記血液ポンプは、前記血液浄化回路の流路に接続され他の部分よりも径が大きいチューブを有するチューブポンプであり、
前記発光部と前記受光部は、前記血液ポンプのチューブに設けられている、請求項1〜3のいずれかに記載の血液成分濃度測定装置。
The blood pump is a tube pump having a tube connected to the flow path of the blood purification circuit and having a diameter larger than that of other parts,
The blood component concentration measuring device according to claim 1, wherein the light emitting unit and the light receiving unit are provided in a tube of the blood pump.
前記発光部と前記受光部を前記血液浄化回路に固定する固定部材を有する、請求項1〜4のいずれかに記載の血液成分濃度測定装置。   The blood component concentration measuring apparatus according to claim 1, further comprising a fixing member that fixes the light emitting unit and the light receiving unit to the blood purification circuit. 前記固定部材は、前記発光部と前記受光部を前記血液浄化回路に押し付けて固定する、請求項5に記載の血液成分濃度測定装置。   The blood component concentration measuring device according to claim 5, wherein the fixing member presses and fixes the light emitting unit and the light receiving unit against the blood purification circuit. 前記血液浄化回路の前記発光部と前記受光部が固定される部分を覆う流路カバーを有し、
前記固定部材は、前記流路カバーを外側から押さえている、請求項5又は6に記載の血液成分濃度測定装置。
A flow path cover covering a portion to which the light emitting part and the light receiving part of the blood purification circuit are fixed;
The blood component concentration measuring apparatus according to claim 5 or 6, wherein the fixing member presses the flow path cover from the outside.
前記流路カバーは、前記血液浄化回路の前記発光部と前記受光部が固定された部分を圧迫し、弾力性を有する、請求項7に記載の血液成分濃度測定装置。   8. The blood component concentration measuring device according to claim 7, wherein the flow path cover presses a portion where the light emitting portion and the light receiving portion of the blood purification circuit are fixed, and has elasticity. 前記流路カバーは、前記血液浄化回路の前記発光部と前記受光部が固定された部分を外部の光が入らないように覆っている、請求項7又は8に記載の血液成分濃度測定装置。   9. The blood component concentration measurement apparatus according to claim 7, wherein the flow path cover covers a portion where the light emitting unit and the light receiving unit of the blood purification circuit are fixed so that external light does not enter. 前記流路カバーは、前記血液浄化回路に対し取り外し自在に構成されている、請求項7〜9のいずれかに記載の血液成分濃度測定装置。   The blood component concentration measuring device according to any one of claims 7 to 9, wherein the flow path cover is configured to be detachable from the blood purification circuit. 前記発光部と前記受光部を保持する保持部材をさらに有し、
前記固定部材の前記血液浄化回路側の面には、前記保持部材を収容する凹部が形成されている、請求項5〜10のいずれかに記載の血液成分濃度測定装置。
A holding member for holding the light emitting unit and the light receiving unit;
The blood component concentration measuring apparatus according to any one of claims 5 to 10, wherein a concave portion for accommodating the holding member is formed on a surface of the fixing member on the blood purification circuit side.
前記保持部材と前記固定部材との間には、弾力性のある部材が介在されている、請求項11に記載の血液成分濃度測定装置。   The blood component concentration measurement apparatus according to claim 11, wherein an elastic member is interposed between the holding member and the fixing member. 前記固定部材は、前記血液浄化回路に対し取り外し自在に構成されている、請求項5〜12のいずれかに記載の血液成分濃度測定装置。   The blood component concentration measuring apparatus according to claim 5, wherein the fixing member is configured to be detachable from the blood purification circuit. 前記発光部と前記受光部は、前記血液浄化回路において気泡が滞留しない部分に設けられている、請求項1〜13のいずれかに記載の血液成分濃度測定装置。   The blood component concentration measuring device according to any one of claims 1 to 13, wherein the light emitting unit and the light receiving unit are provided in a portion where bubbles do not stay in the blood purification circuit. 前記発光部は、波長850nm〜1000nmの光を発する第1発光部と、波長500nm〜700nmの光を発する第2発光部を備え、前記血液成分の濃度が血液中の酸素飽和度である、請求項1〜14のいずれかに記載の血液成分濃度測定装置。  The light emitting unit includes a first light emitting unit that emits light with a wavelength of 850 nm to 1000 nm and a second light emitting unit that emits light with a wavelength of 500 nm to 700 nm, and the concentration of the blood component is oxygen saturation in blood. Item 15. A blood component concentration measurement apparatus according to any one of Items 1 to 14. 体内から取り出された血液を浄化して体内に戻すための血液浄化回路において血液中の所定の血液成分の濃度を測定する血液成分濃度測定方法であって、
前記血液浄化回路の血液ポンプの下流側の血液中に光を入射し、前記血液浄化回路の血液中を透過した前記光を検出する工程と、
前記検出された光強度の時間変化から、前記血液ポンプの駆動により前記血液浄化回路内に生じる血液の拍動に対応する前記光強度の時間変化の周期成分を抽出し、当該周期成分に基づいて所定の血液成分の濃度を算出する工程と、を有する、血液成分濃度測定方法。
A blood component concentration measurement method for measuring a concentration of a predetermined blood component in blood in a blood purification circuit for purifying blood taken out from the body and returning it to the body,
Incident light into the blood downstream of the blood pump of the blood purification circuit, and detecting the light transmitted through the blood of the blood purification circuit;
A periodic component of the temporal change in the light intensity corresponding to the pulsation of blood generated in the blood purification circuit by driving the blood pump is extracted from the detected temporal change in the light intensity, and based on the periodic component And a step of calculating a concentration of a predetermined blood component.
JP2010181413A 2010-08-13 2010-08-13 Blood component concentration measuring device Active JP5535002B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010181413A JP5535002B2 (en) 2010-08-13 2010-08-13 Blood component concentration measuring device
CN201110233282.6A CN102426159B (en) 2010-08-13 2011-08-15 Device for measuring blood component concentration and method for measuring blood component concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181413A JP5535002B2 (en) 2010-08-13 2010-08-13 Blood component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2012040058A true JP2012040058A (en) 2012-03-01
JP5535002B2 JP5535002B2 (en) 2014-07-02

Family

ID=45897054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181413A Active JP5535002B2 (en) 2010-08-13 2010-08-13 Blood component concentration measuring device

Country Status (2)

Country Link
JP (1) JP5535002B2 (en)
CN (1) CN102426159B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002167A (en) * 2014-06-16 2016-01-12 ジーニアルライト株式会社 Wrist fitting type pulse oximeter
WO2018074299A1 (en) * 2016-10-19 2018-04-26 アルプス電気株式会社 Measuring device and blood circulation device
JP2018112462A (en) * 2017-01-11 2018-07-19 東レエンジニアリング株式会社 Constituent concentration detection system
JP2018528018A (en) * 2015-09-26 2018-09-27 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Determination of gas dissolved in blood during extracorporeal circulation
WO2019098207A1 (en) * 2017-11-14 2019-05-23 ジーニアルライト株式会社 Body fluid analysis device
EP3534150A4 (en) * 2016-10-25 2020-05-27 Pioneer Corporation Fluid measuring device
KR20210076662A (en) * 2019-12-16 2021-06-24 서울대학교산학협력단 Blood oxygen saturation sensing device for non-pulsatile extracorporeal blood circulation circuit and a control method of the same
WO2021199655A1 (en) * 2020-03-31 2021-10-07 浜松ホトニクス株式会社 Dialysis system and dialysis system operation method
US11499961B2 (en) 2017-11-14 2022-11-15 Genial Light Co., Ltd. Body fluid optical analysis device
WO2023058732A1 (en) 2021-10-08 2023-04-13 日機装株式会社 Blood purification device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205246522U (en) * 2015-12-26 2016-05-18 深圳市前海安测信息技术有限公司 Blood sugar tests data acquisition facility
CN109085143B (en) * 2016-08-25 2021-01-12 邵明秀 Blood concentration detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326437B2 (en) * 1974-03-29 1978-08-02
JPH03237280A (en) * 1990-02-09 1991-10-23 Shimadzu Corp Blood pump
JPH06218046A (en) * 1993-01-25 1994-08-09 Sanyo Electric Works Ltd Blood purifier
JP2006340845A (en) * 2005-06-08 2006-12-21 Nikkiso Co Ltd Blood circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
FR2725522B1 (en) * 1994-10-07 1997-01-03 Hospal Ind DEVICE FOR DETECTING A CONDUIT AND DETERMINING AT LEAST ONE CHARACTERISTIC OF ITS CONTENT
SE508374C2 (en) * 1995-09-12 1998-09-28 Gambro Med Tech Ab Method and apparatus for detecting the condition of a blood vessel access
CN2362122Y (en) * 1999-02-10 2000-02-02 北京奥博迪光电技术有限公司 Reflecting blood oxygen saturation monitoring instrument
US6284142B1 (en) * 1999-09-03 2001-09-04 Baxter International Inc. Sensing systems and methods for differentiating between different cellular blood species during extracorporeal blood separation or processing
DE10047421C1 (en) * 2000-09-26 2003-01-02 Klaus Sodemann Method and device for ultrafiltration control in blood treatment methods
US6706007B2 (en) * 2000-12-29 2004-03-16 Chf Solutions, Inc. Feedback control of ultrafiltration to prevent hypotension
US20070007184A1 (en) * 2005-07-07 2007-01-11 Delphi Technologies, Inc. Specialized sensor-assisted dialysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326437B2 (en) * 1974-03-29 1978-08-02
JPH03237280A (en) * 1990-02-09 1991-10-23 Shimadzu Corp Blood pump
JPH06218046A (en) * 1993-01-25 1994-08-09 Sanyo Electric Works Ltd Blood purifier
JP2006340845A (en) * 2005-06-08 2006-12-21 Nikkiso Co Ltd Blood circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002167A (en) * 2014-06-16 2016-01-12 ジーニアルライト株式会社 Wrist fitting type pulse oximeter
JP2018528018A (en) * 2015-09-26 2018-09-27 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Determination of gas dissolved in blood during extracorporeal circulation
WO2018074299A1 (en) * 2016-10-19 2018-04-26 アルプス電気株式会社 Measuring device and blood circulation device
EP3534150A4 (en) * 2016-10-25 2020-05-27 Pioneer Corporation Fluid measuring device
US11333602B2 (en) 2016-10-25 2022-05-17 Pioneer Corporation Fluid measuring apparatus
WO2018131348A1 (en) * 2017-01-11 2018-07-19 東レエンジニアリング株式会社 Component concentration detection system
JP2018112462A (en) * 2017-01-11 2018-07-19 東レエンジニアリング株式会社 Constituent concentration detection system
WO2019098207A1 (en) * 2017-11-14 2019-05-23 ジーニアルライト株式会社 Body fluid analysis device
US11499961B2 (en) 2017-11-14 2022-11-15 Genial Light Co., Ltd. Body fluid optical analysis device
TWI791071B (en) * 2017-11-14 2023-02-01 日商Genial Light股份有限公司 Body Fluid Analysis Device
KR20210076662A (en) * 2019-12-16 2021-06-24 서울대학교산학협력단 Blood oxygen saturation sensing device for non-pulsatile extracorporeal blood circulation circuit and a control method of the same
KR102348184B1 (en) * 2019-12-16 2022-01-05 서울대학교 산학협력단 Blood oxygen saturation sensing device for non-pulsatile extracorporeal blood circulation circuit and a control method of the same
WO2021199655A1 (en) * 2020-03-31 2021-10-07 浜松ホトニクス株式会社 Dialysis system and dialysis system operation method
WO2023058732A1 (en) 2021-10-08 2023-04-13 日機装株式会社 Blood purification device

Also Published As

Publication number Publication date
CN102426159A (en) 2012-04-25
JP5535002B2 (en) 2014-07-02
CN102426159B (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5535002B2 (en) Blood component concentration measuring device
US7758532B2 (en) Blood purification device
US9155826B2 (en) Method for using photoplethysmography to optimize fluid removal during renal replacement therapy by hemodialysis or hemofiltration
CN101304773B (en) Hemodialysis apparatus and method for hemodialysis
JP4895952B2 (en) Process and apparatus for determining pulse transition time and extracorporeal blood therapy facility having such apparatus
WO2003094716A1 (en) Method and apparatus for determining blood parameters and vital signs of a patient
US20100099964A1 (en) Hemoglobin monitor
JP4527425B2 (en) Autonomic nerve activity monitoring device, blood processing device, and blood collection device
US10518018B2 (en) Blood purification system
US20140073889A1 (en) Systems and methods for determining fluid responsiveness
CA2883782A1 (en) Systems and methods for determining fluid responsiveness
JP4573231B2 (en) Blood purification equipment
KR20190130596A (en) Oxygen Supply Device and Control Method
JP2010178846A (en) Blood component concentration measuring instrument and method
Tremper et al. Pulse oximetry and oxygen transport
CN111225694B (en) Blood purification device
Campbell Development of non-invasive, optical methods for central cardiovascular and blood chemistry monitoring.
US20210308354A1 (en) Intradialytic monitoring of hemodynamic status based on detection of oxygen signature phase shift
CN109996574B (en) Exercise support device
JP6708539B2 (en) Exercise support device
US20230147605A1 (en) Method, device, and system for blood oxygen saturation and vital sign measurements using a wearable biosensor
US20220192529A1 (en) Pulse recognition and blood oxygen saturation systems and methods
IT201900016787A1 (en) Non-invasive sensor for determining a heartbeat and / or heart rate in an extracorporeal segment of a conduit for an extracorporeal blood circuit.
CN108379680A (en) A kind of family apparatus for purifying blood
JP2018089249A (en) Exercise support device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350