JP2012038490A - Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same - Google Patents

Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same Download PDF

Info

Publication number
JP2012038490A
JP2012038490A JP2010176090A JP2010176090A JP2012038490A JP 2012038490 A JP2012038490 A JP 2012038490A JP 2010176090 A JP2010176090 A JP 2010176090A JP 2010176090 A JP2010176090 A JP 2010176090A JP 2012038490 A JP2012038490 A JP 2012038490A
Authority
JP
Japan
Prior art keywords
negative electrode
sio
ceo
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176090A
Other languages
Japanese (ja)
Inventor
Hideyuki Yamamura
英行 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010176090A priority Critical patent/JP2012038490A/en
Publication of JP2012038490A publication Critical patent/JP2012038490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode which uses SiOas a material constituting the negative electrode and does not includes carbon as an essential component to improve initial charge/discharge efficiency, a manufacturing method of the negative electrode which improves capacity maintenance rate by using SiOas a starting material and not including carbon as the essential component to suppress a decrease in Li insertion capacity after repetition of charge and discharge, a negative electrode obtained by the same, and a secondary battery using the same.SOLUTION: The present invention relates to the negative electrode containing SiO(X=0.8 to 1.2) and CeO, and the manufacturing method of the negative electrode including a process of mixing SiO(X=0.8 to 1.2) and CeOand a process of heat-treating the obtained mixture at 800°C or more; the negative electrode obtained by the manufacturing method; and the secondary battery using the negative electrode.

Description

本発明は、新規な負極、負極の製造方法、それによって得られる負極およびそれを用いた二次電池に関し、さらに詳しくは初回充放電効率を向上させることができる負極、さらに耐久性を向上させることができる負極の製造方法、それによって得られる負極およびそれを用いた二次電池に関する。   The present invention relates to a novel negative electrode, a negative electrode manufacturing method, a negative electrode obtained thereby, and a secondary battery using the same, and more specifically, a negative electrode capable of improving the initial charge / discharge efficiency, and further improving durability. The present invention relates to a method for producing a negative electrode, a negative electrode obtained thereby, and a secondary battery using the same.

近年、高電圧および高エネルギー密度を有する電池としてリチウム二次電池が実用化されている。リチウム二次電池の用途が広い分野に拡大していることおよび高性能の要求から、電池の更なる性能向上のために種々の研究が行われている。
例えば、負極についても種々の材料が検討され、炭素材料やスズ合金等が実用電池の負極材料として実用化されている。しかし、これらの負極材料は比重が小さいため電池内部での占有体積の割合が大きくなるとか、既にこれ以上の改善が困難なレベルにまで性能の向上が図られていることが知られている。このため、電池の性能向上には炭素以外の負極材料による高容量化が不可欠であり、炭素以外の負極材料を用いた負極についての検討がなされている。
In recent years, lithium secondary batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium secondary batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve battery performance.
For example, various materials have been studied for the negative electrode, and carbon materials, tin alloys, and the like have been put into practical use as negative electrode materials for practical batteries. However, it is known that these negative electrode materials have low specific gravity, so that the proportion of the occupied volume in the battery is increased, or the performance has already been improved to a level where further improvement is difficult. For this reason, in order to improve the performance of the battery, it is indispensable to increase the capacity by using a negative electrode material other than carbon, and negative electrodes using a negative electrode material other than carbon have been studied.

そこで、炭素以外の新規材料としてケイ素やその化合物が注目され、炭素にケイ素化合物の粉末を混合した材料、Siなどの物質を炭素で被覆又は炭素と混合した材料が提案されている。
例えば、特許文献1には、B、P、Li、Ge、Al又はV含有化合物あるいはこれらの混合物と、SiOおよびSiを混合してシリコン系複合体の前駆体を調製する工程、前記前駆体を熱処理してB、P、Li、Ge、Al、Vおよびこれらの混合物からなる群から選択される少なくとも一種の元素とシリコンオキシド(SiO、xは1.5以下)を含むシリコン系複合体を製造する工程と、前記シリコン系複合体を急冷させる工程と、前記シリコン系複合体を炭素物質で被覆する工程と、を含むリチウム二次電池用負極活物質の製造方法が記載されている。そして、具体例として、Bをドープした溶融急冷SiOと全量中30質量%含まれる量の炭素とを用いることによって初期効率および耐久性が向上した負極を得た例が示されている。
Accordingly, silicon and its compounds have attracted attention as new materials other than carbon, and materials in which silicon compound powder is mixed with carbon and materials in which a substance such as Si is coated with carbon or mixed with carbon have been proposed.
For example, Patent Document 1 discloses a step of preparing a precursor of a silicon-based composite by mixing B, P, Li, Ge, Al, or a V-containing compound or a mixture thereof with SiO 2 and Si, and the precursor A silicon-based composite containing at least one element selected from the group consisting of B, P, Li, Ge, Al, V and mixtures thereof and silicon oxide (SiO x , x is 1.5 or less) The manufacturing method of the negative electrode active material for lithium secondary batteries including the process of rapidly cooling the said silicon type composite, the process of coat | covering the said silicon type composite with a carbon material is described. As a specific example, an example is shown in which a negative electrode with improved initial efficiency and durability is obtained by using melt-quenched SiO X doped with B and carbon in an amount of 30% by mass in the total amount.

また、特許文献2には、軽金属を吸蔵および離脱することが可能な負極合剤層を形成する工程と、負極合剤層に乾式成膜法により軽金属層を成膜する工程とを含む負極の製造方法が記載されている。そして、具体例として、人造黒鉛粉末90質量%を含む負極合剤層にリチウム金属を真空蒸着法により成膜して、初回充放電効率および放電容量維持率の高い負極が得られることが示されている。   Patent Document 2 discloses a negative electrode including a step of forming a negative electrode mixture layer capable of inserting and extracting light metal and a step of forming a light metal layer on the negative electrode mixture layer by a dry film forming method. A manufacturing method is described. As a specific example, it is shown that a negative electrode having a high initial charge / discharge efficiency and a high discharge capacity retention rate can be obtained by depositing lithium metal on a negative electrode mixture layer containing 90% by mass of artificial graphite powder by a vacuum deposition method. ing.

特開2005−259697号公報Japanese Patent Laid-Open No. 2005-259697 特開2005−038720号公報JP 2005-038720 A

このように、負極を構成する材料としてSiOを用いることは公知であるが初回充放電効率を向上させることができる負極は知られておらず、さらに、出発材料としてSiOを用い且つ炭素を必須成分とせず充放電繰り返し後のLi挿入容量の低下を抑制することができる負極の製造方法、それによって得られる負極およびそれを用いた二次電池は知られていない。
従って、本発明の目的は、負極を構成する材料としてSiOを用い初回充放電効率を向上させることができる負極を提供することである。
さらに、本発明の目的は、出発材料としてSiOを用い且つ炭素を必須成分とせず充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる負極の製造方法、それによって得られる負極およびそれを用いた二次電池を提供することである。
Thus, it is known that SiO X is used as a material constituting the negative electrode, but no negative electrode capable of improving the initial charge / discharge efficiency is known, and further, SiO X is used as a starting material and carbon is used. A manufacturing method of a negative electrode that is not an essential component and can suppress a decrease in Li insertion capacity after repeated charge and discharge, a negative electrode obtained by the method, and a secondary battery using the same are not known.
Accordingly, an object of the present invention is to provide a negative electrode capable of improving the initial charge and discharge efficiency by using SiO X as a material constituting the negative electrode.
Furthermore, an object of the present invention is to provide a method for producing a negative electrode that uses SiO X as a starting material and suppresses a decrease in Li insertion capacity after repeated charge and discharge without using carbon as an essential component, and can improve the capacity retention rate, An anode obtained thereby and a secondary battery using the same are provided.

本発明は、SiO(X=0.8〜1.2)およびCeOを含有してなる負極に関する。
また、本発明は、負極の製造方法であって、SiO(X=0.8〜1.2)とCeOとを混合する工程と、得られた混合物を800℃以上の温度で熱処理する工程、とを含む負極の製造方法に関する。
また、本発明は、前記の製造方法によって得られる負極に関する。
さらに、本発明は、前記の負極を用いてなる二次電池に関する。
The present invention relates to a negative electrode comprising SiO X (X = 0.8 to 1.2) and CeO 2 .
Further, the present invention is a method for manufacturing a negative electrode, a heat treatment SiO X and (X = 0.8 to 1.2) and mixing and CeO 2, the resultant mixture at a temperature above 800 ° C. And a process for producing a negative electrode.
Moreover, this invention relates to the negative electrode obtained by the said manufacturing method.
Furthermore, the present invention relates to a secondary battery using the negative electrode.

本発明によれば、負極を構成する材料としてSiOを用い且つ炭素を必須成分とせず初回充放電効率を向上させることができる負極を得ることができる。
また、本発明によれば、出発材料としてSiOを用い且つ炭素を必須成分とせず充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる負極を容易に得ることができる。
さらに、本発明によれば、出発材料としてSiOを用い且つ炭素を必須成分とせず充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる負極および二次電池を得ることができる。
According to the present invention, it is possible to obtain a negative electrode capable of improving the initial charge-discharge efficiency without and essential components of carbon using SiO X as the material constituting the anode.
In addition, according to the present invention, it is possible to easily obtain a negative electrode that uses SiO X as a starting material and suppresses a decrease in Li insertion capacity after repeated charge and discharge without using carbon as an essential component and can improve a capacity retention rate. be able to.
Furthermore, according to the present invention, a negative electrode and a secondary battery capable of improving the capacity retention ratio by suppressing a decrease in Li insertion capacity after repeated charge and discharge without an essential component and a carbon with a SiO X as the starting material Can be obtained.

図1は、本発明の範囲内および範囲外の負極のCeO添加量と二次電池の初回充放電効率(%)との関係を比較して示すグラフである。FIG. 1 is a graph showing a comparison of the relationship between the amount of CeO 2 added to the negative electrode outside and within the range of the present invention and the initial charge / discharge efficiency (%) of the secondary battery. 図2は、実施例および比較例でSiOの熱処理温度を変えて得られた試料について測定したXRD(X線回折法)プロファイルである。FIG. 2 is an XRD (X-ray diffractometry) profile measured for samples obtained by changing the heat treatment temperature of SiO X in Examples and Comparative Examples.

本願第1の発明においては、負極にSiO(X=0.8〜1.2)とともにCeOを含有させることが必要であり、これによって前記負極を用いて得られる二次電池の初回充放電効率を向上させることができる。
本発明において負極にCeOとともにSiOを含有させることにより二次電池の初回充放電効率を向上させることができる理論的解明はなされていないが、CeOによりSiOを複合化することにより、CeOによりSiOネットワーク内にCeが導入され、二次電池の初回充放電効率の効果が得られると考えられる。
In the first invention of this application, it is necessary to contain CeO 2 together with SiO X (X = 0.8 to 1.2) in the negative electrode, whereby the initial charge of the secondary battery obtained using the negative electrode is performed. Discharge efficiency can be improved.
Although theoretical elucidation that can improve the initial charge and discharge efficiency of the secondary battery by including SiO X together with CeO 2 in the negative electrode in the present invention has not been made, by combining SiO X with CeO 2 , It is considered that Ce is introduced into the SiO X network by CeO 2 and the effect of the initial charge / discharge efficiency of the secondary battery is obtained.

本明細書において、初回充放電効率を向上させることができるとは、SiO(X=0.8〜1.2)単独の場合と比較して二次電池の初回充放電効率が同等以上であることを意味している。
本明細書において、前記の炭素を必須成分とせずとは、負極を作製する工程において大量、例えば30質量%以上の炭素を用いないことを意味し、少量、例えば全量中の30質量%未満、特に3質量%未満の炭素を用いることや負極を作製する際に導電剤として炭素を用いることは排除されない。
In the present specification, the fact that the initial charge / discharge efficiency can be improved means that the initial charge / discharge efficiency of the secondary battery is equal to or greater than that of SiO X (X = 0.8 to 1.2) alone. It means that there is.
In the present specification, the fact that carbon is not an essential component means that a large amount, for example, 30% by mass or more of carbon is not used in the step of producing a negative electrode, and a small amount, for example, less than 30% by mass in the total amount, In particular, the use of less than 3% by mass of carbon or the use of carbon as a conductive agent when producing a negative electrode is not excluded.

前記CeOとSiOとの割合(CeO/SiO)は、図1に示すように、0質量%<CeO/SiO≦25質量%であることが好適である。
また、前記SiO(X=0.8〜1.2)としては、好適にはSiO(X=0.96)であり市販(例えば、Aldrich社製)されている材料をそのまま使用し得る。
As shown in FIG. 1, the ratio of CeO 2 and SiO X (CeO 2 / SiO X ) is preferably 0% by mass <CeO 2 / SiO X ≦ 25% by mass.
Further, as the SiO X (X = 0.8~1.2), preferably a commercially available a SiO X (X = 0.96) (for example, Aldrich Corp.) may be used as it has been have material .

本願第2の発明である負極の製造方法において、SiO(X=0.8〜1.2)とCeOとを混合する工程と、得られた混合物を800℃以上の温度で熱処理する工程、とを含むことが必要であり、これによって炭素を必須成分とせず二次電池の充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる。 In the method for manufacturing a negative electrode according to the second invention of the present application, a step of mixing SiO X (X = 0.8 to 1.2) and CeO 2 and a step of heat-treating the obtained mixture at a temperature of 800 ° C. or higher. Thus, carbon is not an essential component, and a decrease in Li insertion capacity after repeated charging and discharging of the secondary battery can be suppressed to improve the capacity retention rate.

前記の方法においては、先ずSiO(X=0.8〜1.2)とCeOとを混合する工程によって、前記2成分の混合物を得る。
前記のSiO(X=0.8〜1.2)は、好適にはSiO(X=0.96)であり市販(例えば、Aldrich社製)されている材料をそのまま使用し得る。
In the above method, first, the mixture of the two components is obtained by mixing SiO X (X = 0.8 to 1.2) and CeO 2 .
The above-mentioned SiO X (X = 0.8 to 1.2) is preferably SiO X (X = 0.96), and a commercially available material (for example, manufactured by Aldrich) can be used as it is.

前記両成分を、CeOとSiOとの割合(CeO/SiO)が、0質量%<CeO/SiO≦25質量%、特に0.5質量%<CeO/SiO≦5質量%である割合で混合することが好適である。
前記の各成分の混合は、ボールミル、例えば遊星ボールミルを用いて好適に行い得る。
In the two components, the ratio of CeO 2 and SiO X (CeO 2 / SiO X ) is 0% by mass <CeO 2 / SiO X ≦ 25% by mass, particularly 0.5% by mass <CeO 2 / SiO X ≦ 5. It is preferable to mix in the ratio which is the mass%.
The mixing of the above components can be suitably performed using a ball mill, for example, a planetary ball mill.

本発明においては、次いで、前記工程によって得られた混合物を熱処理する工程を有する。
前記の熱処理する工程として、例えば混合物を不活性雰囲気下、800℃以上、特に800〜1200℃、特に800〜1000℃で1〜10時間加熱する方法が挙げられる。
前記の不活性雰囲気としては、特に制限はなく、Ar、Xe、Ne、Nなどの一般に不活性雰囲気として用いられる不活性ガス中が挙げられ、減圧下、大気圧、加圧下のいずれであってもよい。
また、前記熱処理する工程は、前記混合物の少なくとも一部、好適には全体が溶融状態にない粉末状態で加熱する工程であることが好適である。この場合、熱処理して得られる複合材は、粉末として得られるので好適である。
In this invention, it has the process of heat-processing the mixture obtained by the said process then.
Examples of the heat treatment step include a method of heating the mixture in an inert atmosphere at 800 ° C. or higher, particularly 800 to 1200 ° C., particularly 800 to 1000 ° C. for 1 to 10 hours.
The inert atmosphere is not particularly limited and includes inert gases such as Ar, Xe, Ne, and N 2 that are generally used as an inert atmosphere. May be.
In addition, it is preferable that the heat treatment step is a step of heating in a powder state where at least a part, preferably the whole of the mixture is not in a molten state. In this case, the composite material obtained by heat treatment is suitable because it is obtained as a powder.

本願第3の発明において、二次電池用負極、例えばリチウムイオン二次電池用負極として、前記の熱処理する工程後に得られる熱処理材料を負極に用いることによって、後述の表1に示すように、充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させ得る二次電池を得ることができる可能となる。
本発明の方法によって得られる熱処理材料を負極に用いることによってSiO単独の場合と比べて二次電池の充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる理論的解明はなされていないが、以下のように考えられる。すなわち、先ずリチウム金属を活物質と直接接触させる従来の技術、例えば特許文献2に記載の技術と異なりリチウム金属を使用しておらず、材料の変質に伴う結着材の低下による耐久性の低下が生じにくいことが考えられる。また、SiOは800℃以上の温度での熱処理によりSiO→Si+SiOの反応により生成したSiが熱拡散し、Siドメインが成長するため従来の技術では耐久時の熱膨張が大きくなり耐久性が低下する傾向がある。これに対して、本発明の方法では、Siドメインが成長してもSiOをCeがアタックして膨張収縮を緩和するとともにLiの拡散パスを形成し得る。これらによって、充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率が向上すると考えられる。
In the third invention of the present application, as a negative electrode for a secondary battery, for example, a negative electrode for a lithium ion secondary battery, a heat treatment material obtained after the heat treatment step is used for the negative electrode, as shown in Table 1 below. It becomes possible to obtain a secondary battery that can suppress a decrease in Li insertion capacity after repeated discharge and improve the capacity retention rate.
By using the heat treatment material obtained by the method of the present invention for the negative electrode, it is possible to suppress the decrease in the Li insertion capacity after repeated charge and discharge of the secondary battery and improve the capacity retention rate compared to the case of SiO X alone. Theoretical clarification has not been made, but it is considered as follows. That is, unlike the conventional technique in which lithium metal is brought into direct contact with the active material, for example, the technique described in Patent Document 2, the lithium metal is not used, and the durability is lowered due to the decrease in the binder due to the alteration of the material. It is thought that it is hard to occur. In addition, SiO X is thermally diffused by a reaction of SiO X → Si + SiO 2 due to heat treatment at a temperature of 800 ° C. or higher, and Si domains grow, so that the conventional technology increases the thermal expansion during durability and durability. Tends to decrease. On the other hand, in the method of the present invention, even if the Si domain grows, Ce can attack SiO 2 to alleviate expansion and contraction and form a Li diffusion path. By these, it is thought that the capacity retention rate is improved by suppressing a decrease in the Li insertion capacity after repeated charging and discharging.

本願第4発明の二次電池においては、前記の方法で熱処理して得られる熱処理材料を用いることが必要であり、通常一般的に用いられるバインダー、導電剤、および溶剤とを組み合わせて得られる負極を用い得る。
前記バインダーとしては、スチレンブタジエンゴム(SBR)、ポリアクリレート、ポリフッ化ビニリデン(PVdF)等が挙げられる。
前記導電剤としては、炭素材料、リチウムと合金化し難い金属、導電性高分子材料等が挙げられ、炭素材料が好適である。前記炭素材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上を組み合わせて用いることができる。
In the secondary battery according to the fourth invention of the present application, it is necessary to use the heat treatment material obtained by heat treatment by the above method, and the negative electrode obtained by combining a binder, a conductive agent, and a solvent that are generally used in general. Can be used.
Examples of the binder include styrene butadiene rubber (SBR), polyacrylate, polyvinylidene fluoride (PVdF), and the like.
Examples of the conductive agent include carbon materials, metals that are difficult to alloy with lithium, conductive polymer materials, and the like, and carbon materials are preferred. As the carbon material, graphite, carbon black, carbon nanotube, carbon nanofiber, fullerene and the like can be used alone or in combination of two or more.

また、前記の溶剤としては、アルコール、グリコール、セロソルブ、アミノアルコール、アミン、ケトン、カルボン酸アミド、リン酸アミド、スルホキシド、カルボン酸エステル、リン酸エステル、エーテル、ニトリル等が挙げられる。具体例としては、メチルアルコール、エチルアルコール、2−プロパノール、1−ブタノール、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール、2−メトキシエタノール、2−エトキシエタノール、2−アミノエタノール、アセトン、メチルエチルケトン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、スルホラン、アセトニトリル、プロピオニトリルが挙げられる。   Examples of the solvent include alcohol, glycol, cellosolve, amino alcohol, amine, ketone, carboxylic acid amide, phosphoric acid amide, sulfoxide, carboxylic acid ester, phosphoric acid ester, ether, and nitrile. Specific examples include methyl alcohol, ethyl alcohol, 2-propanol, 1-butanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 2 -Methoxyethanol, 2-ethoxyethanol, 2-aminoethanol, acetone, methyl ethyl ketone, formamide, N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylformamide, N-methylacetamide, N , N-dimethylacetamide, N-methylpropionamide, N-methylpyrrolidone, hexamethylphosphoric triamide, dimethyl sulfoxide, sulfolane, acetonitrile, propionitrile.

負極中の総固形分に占める各成分の割合は、前記加熱処理材料が60質量%以上で98.5質量%以下、バインダーが1質量%以上で20質量%以下、導電剤が0.5質量%以上30質量%以下であることが好適である。   The proportion of each component in the total solid content in the negative electrode is such that the heat treatment material is 60% by mass or more and 98.5% by mass or less, the binder is 1% by mass or more and 20% by mass or less, and the conductive agent is 0.5% by mass. % Or more and 30% by mass or less is preferable.

前記加熱処理材料の割合が60質量%を下回ると、十分な導電性、放電容量を得ることが難しくなる場合があり、98.5質量%を越えると、バインダーの割合が低下するため、集電体への密着性が低下し、負極活物質が脱離しやすくなる場合がある。
前記バインダーの割合が1質量%を下回ると、結着性が低下するため集電体から負極活物質や導電剤としての炭素等が脱離しやすくなる場合があり、20質量%を越えると、負極活物質および導電剤としての炭素材料の割合が低下するため、電池性能の低下をもたらす可能性がある。
また、導電剤の割合が0.5質量%を下回ると、電池性能の低下をもたらす可能性があり、30質量%を越えると、電池性能に大きく関与する負極熱処理材料の割合が低下するため、放電容量が低下する等の問題が発生する場合がある。
If the ratio of the heat treatment material is less than 60% by mass, it may be difficult to obtain sufficient electrical conductivity and discharge capacity. If the ratio exceeds 98.5% by mass, the ratio of the binder decreases, so In some cases, the adhesion to the body is lowered, and the negative electrode active material is easily detached.
When the ratio of the binder is less than 1% by mass, the binding property is lowered, so that the negative electrode active material and carbon as a conductive agent may be easily detached from the current collector. Since the ratio of the carbon material as the active material and the conductive agent is lowered, there is a possibility that the battery performance is lowered.
Further, if the proportion of the conductive agent is less than 0.5% by mass, there is a possibility that the battery performance is reduced, and if it exceeds 30% by mass, the proportion of the negative electrode heat treatment material that is greatly involved in the battery performance is reduced. Problems such as a decrease in discharge capacity may occur.

本発明の前記熱処理材料を用いて負極を得る方法として、前記熱処理材料を含むペースト又はこのペーストにさらに溶剤を加えて負極集電体上に塗布した後、乾燥し、プレスして、集電体上に負極材料層を形成する塗布法が挙げられる。   As a method for obtaining a negative electrode using the heat treatment material of the present invention, a paste containing the heat treatment material or a solvent added to the paste and applied onto the negative electrode current collector, dried, pressed, and current collector A coating method for forming a negative electrode material layer thereon can be mentioned.

前記の熱処理材料を用いて得られた負極、他の構成材、例えば正極、セパレータおよび電解質を用いて二次電池が構成される。
前記正極は、正極集電体とその少なくとも一面に設けられた正極活物質層とを有している。
前記正極集電体は、例えば、アルミニウム、ニッケル又はステンレスなどの金属材料によって構成されている。
A secondary battery is composed of a negative electrode obtained by using the heat treatment material and other constituent materials such as a positive electrode, a separator, and an electrolyte.
The positive electrode has a positive electrode current collector and a positive electrode active material layer provided on at least one surface thereof.
The positive electrode current collector is made of, for example, a metal material such as aluminum, nickel, or stainless steel.

前記正極活物質層としては、リチウム酸化物、特にリチウムと遷移金属とを含む複合酸化物、リチウム硫化物、リチウムを含む層間化合物、リチウムリン酸化合物などの正極材料が含まれている。正極活物質層には高分子材料、例えば、ポリアニリン、ポリチオフェンや、導電剤、例えば、黒鉛、カーボンブラック、アセチレンブラック又はケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上を組み合わせた炭素材料が含まれていてもよい。   The positive electrode active material layer includes a positive electrode material such as lithium oxide, particularly a composite oxide containing lithium and a transition metal, lithium sulfide, an intercalation compound containing lithium, and a lithium phosphate compound. The positive electrode active material layer may be a polymer material such as polyaniline, polythiophene, or a conductive agent such as graphite, carbon black, acetylene black or ketjen black, carbon nanotube, carbon nanofiber, fullerene, etc. The carbon material which combined these may be contained.

前記セパレータとしては、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、セラミック製の多孔質膜が挙げられる。例えば、多層構造、例えばPP/PE/PPの3層構造のポリオレフィン製の多孔質膜が好適に使用される場合がある。   Examples of the separator include a porous film made of polyolefin such as polypropylene (PP) and polyethylene (PE), and a porous film made of ceramic. For example, a porous film made of polyolefin having a multilayer structure, for example, a three-layer structure of PP / PE / PP may be suitably used.

前記電解質としては電解液又はゲル状の電解質が挙げられる。電解液は溶剤と電解質塩とを含んでいて、溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネートが好適に挙げられる。その中でも、エチレンカーボネートあるいはプロピレンカーボネートなどの高粘度溶剤とジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの低粘度溶剤の少なくとも1種又は2種以上とを混合した混合溶剤が好適である。この溶剤にはビニレンカーボネートやビニルエチレンカーボネートなどの不飽和結合を有する環状カーボネートや、ビス(フルオロメチル)カーボネートなどのハロゲンを有する環状カーボネートを含有させてもよい。   Examples of the electrolyte include an electrolytic solution or a gel electrolyte. The electrolytic solution contains a solvent and an electrolyte salt, and preferred examples of the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Among them, a mixed solvent obtained by mixing a high-viscosity solvent such as ethylene carbonate or propylene carbonate and at least one or two or more low-viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable. . This solvent may contain a cyclic carbonate having an unsaturated bond such as vinylene carbonate or vinylethylene carbonate, or a cyclic carbonate having a halogen such as bis (fluoromethyl) carbonate.

前記電解液には、一般的に電解質塩が支持塩として含有されている。この電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )、六フッ化ヒ酸リチウム(LiAsF6 )、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C25 SO22 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO22 )、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO23 )、塩化リチウム(LiCl)あるいは臭化リチウム(LiBr)など、好適には六フッ化リン酸リチウム(LiPF6 )が挙げられる。 The electrolytic solution generally contains an electrolyte salt as a supporting salt. Examples of the electrolyte salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), Bis (pentafluoroethanesulfonyl) imidolithium (LiN (C 2 F 5 SO 2 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ), lithium chloride (LiCl) or lithium bromide (LiBr), preferably lithium hexafluorophosphate (LiPF 6 ) Can be mentioned.

前記ゲル状の電解質は、例えば正極および負極を作製し、これらに溶剤と電解質塩とを含む電解液を塗布した後に溶剤を揮発させて形成し得る。   The gel electrolyte can be formed, for example, by preparing a positive electrode and a negative electrode, applying an electrolytic solution containing a solvent and an electrolyte salt thereto, and then volatilizing the solvent.

前記正極活物質を用いて正極を得る方法としてはそれ自体公知の方法、例えば蒸着又はスパッタもしくはCVDにより正極集電体、例えば銅箔上に正極活物質層を形成する方法が挙げられる。
または、前記正極活物質を用いて正極を得る方法として、前記正極活物質を含むペーストを正極集電体上に塗布した後、乾燥させて正極集電体上に正極活物質層を形成する塗布法が挙げられる。前記正極活物質を含むペースト又はこのペーストにさらに溶剤、例えば前記の負極作製用の溶剤を加えて正極集電体上に塗布した後、乾燥し、プレスすることによって得ることができる。
また、本発明により得られる熱処理材料を用いて得られる負極、正極、セパレータおよび電解質を用いることによって、充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる二次電池を得ることが可能となる。
前記二次電池としては任意の形状を有するものが挙げられる。
Examples of a method for obtaining a positive electrode using the positive electrode active material include a method known per se, for example, a method of forming a positive electrode active material layer on a positive electrode current collector, for example, a copper foil, by vapor deposition, sputtering, or CVD.
Alternatively, as a method of obtaining a positive electrode using the positive electrode active material, a paste containing the positive electrode active material is applied on a positive electrode current collector and then dried to form a positive electrode active material layer on the positive electrode current collector Law. It can be obtained by adding a solvent, for example, the above-mentioned solvent for producing a negative electrode to the paste containing the positive electrode active material or the paste, and applying it on the positive electrode current collector, followed by drying and pressing.
Further, by using a negative electrode, a positive electrode, a separator and an electrolyte obtained by using the heat treatment material obtained according to the present invention, it is possible to suppress a decrease in Li insertion capacity after repeated charge and discharge and improve the capacity retention rate. A secondary battery can be obtained.
Examples of the secondary battery include those having an arbitrary shape.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の記載において、部は質量部を示す。
以下の各例において、試料のXRD測定は以下の装置を用いて行った。
XRD測定装置:リガク製
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In the following description, a part shows a mass part.
In each of the following examples, the XRD measurement of the sample was performed using the following apparatus.
XRD measuring device: Rigaku

実施例1
[遊星ボールミルによるSiOとCeOとの複合化]
遊星ボールミル中、SiO(Aldrich社製)[SiO(X=0.96)]100部にCeO(Wako)0.5部を添加し、250rpmで3時間混合して複合化した。
[負極作製]
得られた複合材:黒鉛:PVdF=76.5:13.5:10.0(質量比)になるようにN−メチル−2−ピロリドン中で混合し、厚さ10μmのCu箔(日本製箔社)上に塗布した。電極密度が1.2mg/cmになるようにプレスし、φ16mmの円形に打ち抜き負極電極とした。
Example 1
[Combination of SiO X and CeO 2 by planetary ball mill]
In a planetary ball mill, 0.5 part of CeO 2 (Wako) was added to 100 parts of SiO (manufactured by Aldrich) [SiO X (X = 0.96)] and mixed at 250 rpm for 3 hours to form a composite.
[Negative electrode preparation]
The obtained composite material: graphite: PVdF = 76.5: 13.5: 10.0 (mass ratio) was mixed in N-methyl-2-pyrrolidone, and 10 μm thick Cu foil (made in Japan) Foil company). The electrode was pressed so as to have an electrode density of 1.2 mg / cm 2 and punched into a circle of φ16 mm to obtain a negative electrode.

[電池作製]
作製した電極を負極として、対極リチウム、1MのLiPFを含むEC:DEC=3:7(vol比)混合溶媒を電解液とし、PE製のセパレータを用いて2032型のコインセルを作製した。
[電気化学特性評価]
電池評価環境温度25℃、電流レート0.1C(1C=1時間に満充放電できる電流地)にて充放電(上下限電圧3.0V〜0.01V)を行い、放電容量と充電容量の比率、すなわち初回充放電効率を評価した。得られた結果を比較例1および他の実施例の結果とまとめて表1および図1に示す。
[Battery fabrication]
Using the produced electrode as a negative electrode, a 2032 type coin cell was produced using a counter electrode lithium and EC: DEC = 3: 7 (vol ratio) mixed solvent containing 1M LiPF 6 as an electrolyte and using a separator made of PE.
[Electrochemical characteristics evaluation]
The battery is evaluated for charge and discharge (upper and lower limit voltage: 3.0 V to 0.01 V) at an environmental temperature of 25 ° C. and a current rate of 0.1 C (1C = 1 current area that can be fully charged and discharged in 1 hour). The ratio, that is, the initial charge / discharge efficiency was evaluated. The results obtained are shown in Table 1 and FIG. 1 together with the results of Comparative Example 1 and other examples.

比較例1
CeOの添加を行わなかった他は実施例1と同様にして、負極を得た。この負極を用いた他は実施例1と同様にして電池を作製し、実施例1と同様にして電気化学特性評価を行った。
得られた結果を実施例の結果とまとめて表1および図1に示す。
Comparative Example 1
A negative electrode was obtained in the same manner as in Example 1 except that CeO 2 was not added. A battery was produced in the same manner as in Example 1 except that this negative electrode was used, and the electrochemical characteristics were evaluated in the same manner as in Example 1.
The obtained results are shown together with the results of the examples in Table 1 and FIG.

実施例2〜8
SiO(Aldrich社製)100部にCeOを1.0部添加した(実施例2)、CeOを2.0部添加した(実施例3)、CeOを3.0部添加した(実施例4)、CeOを4.0部添加した(実施例5)、CeOを5.0部添加した(実施例6)、CeOを10部添加した(実施例7)又はCeOを25部添加した(実施例8)他は実施例1と同様にして、負極を得た。この負極を用いた他は実施例1と同様にして電池を作製し、実施例1と同様にして電気化学特性評価を行った。
得られた結果を比較例1および他の実施例の結果とまとめて表1および図1に示す。
Examples 2-8
1.0 part of CeO 2 was added to 100 parts of SiO (manufactured by Aldrich) (Example 2), 2.0 parts of CeO 2 were added (Example 3), and 3.0 parts of CeO 2 were added (implementation). Example 4), 4.0 parts of CeO 2 were added (Example 5), 5.0 parts of CeO 2 were added (Example 6), 10 parts of CeO 2 were added (Example 7), or CeO 2 was added. A negative electrode was obtained in the same manner as in Example 1 except that 25 parts were added (Example 8). A battery was produced in the same manner as in Example 1 except that this negative electrode was used, and the electrochemical characteristics were evaluated in the same manner as in Example 1.
The results obtained are shown in Table 1 and FIG. 1 together with the results of Comparative Example 1 and other examples.

Figure 2012038490
Figure 2012038490

表1および図1は、負極にCeOとともにSiOを含有させることにより二次電池の初回充放電効率が向上していることを示している。 Table 1 and FIG. 1 show that the initial charge / discharge efficiency of the secondary battery is improved by including SiO X together with CeO 2 in the negative electrode.

実施例9
[遊星ボールミルによるSiOとCeOとの複合化]
遊星ボールミル中、SiO(Aldrich社製)[SiO(X=0.96)]100部にCeO(Wako)3部を添加し、250rpmで3時間混合して複合化した。
[熱処理]
得られた試料を不活性雰囲気下、1000℃・3時間の熱処理を行った。
[負極作製]
得られた熱処理複合材:黒鉛:PVdF=76.5:13.5:10.0(質量比)になるようにN−メチル−2−ピロリドン中で混合し、厚さ10μmのCu箔(日本製箔社)上に塗布した。電極密度が1.2mg/cmになるようにプレスし、φ16mmの円形に打ち抜き負極電極とした。
Example 9
[Combination of SiO X and CeO 2 by planetary ball mill]
In a planetary ball mill, 3 parts of CeO 2 (Wako) were added to 100 parts of SiO (manufactured by Aldrich) [SiO X (X = 0.96)], and mixed at 250 rpm for 3 hours to form a composite.
[Heat treatment]
The obtained sample was heat-treated at 1000 ° C. for 3 hours under an inert atmosphere.
[Negative electrode preparation]
The obtained heat-treated composite material: graphite: PVdF = 76.5: 13.5: 10.0 (mass ratio) was mixed in N-methyl-2-pyrrolidone, and a 10 μm thick Cu foil (Japan) It was applied on (Foil Manufacturing Co.). The electrode was pressed so as to have an electrode density of 1.2 mg / cm 2 and punched into a circle of φ16 mm to obtain a negative electrode.

[電池作製]
作製した電極を負極として、対極リチウム、1MのLiPFを含むEC:DEC=3:7(vol比)混合溶媒を電解液とし、PE製のセパレータを用いて2032型のコインセルを作製した。
[電気化学特性評価]
電池評価環境温度25℃、0.2C(1C=1時間で満充放電できる電流値)で0.01VまでLiを挿入し、その後1.2VまでLiを脱離する操作を30回行い、30回目のLi挿入容量を1回目のLi挿入容量で割った値を容量維持率として、耐久性の評価指標とした。
得られ結果は、容量維持率=44.8%であった。
結果を他の例とまとめて表2に示す。
[Battery fabrication]
Using the produced electrode as a negative electrode, a 2032 type coin cell was produced using a counter electrode lithium and EC: DEC = 3: 7 (vol ratio) mixed solvent containing 1M LiPF 6 as an electrolyte and using a separator made of PE.
[Electrochemical characteristics evaluation]
The battery evaluation was carried out 30 times by inserting Li up to 0.01 V at an environmental temperature of 25 ° C. and 0.2 C (current value that can be fully charged and discharged in 1 hour), and then desorbing Li to 1.2 V. 30 A value obtained by dividing the first Li insertion capacity by the first Li insertion capacity was defined as a capacity maintenance ratio, which was used as an evaluation index for durability.
As a result, the capacity retention rate was 44.8%.
The results are shown in Table 2 together with other examples.

比較例2
熱処理を行わなかった他は実施例9と同様にして、負極を得た。この負極を用いた他は実施例1と同様にして電池を作製し、実施例9と同様にして電気化学特性評価を行った。
得られ結果は、容量維持率=38.4%であった。
得られた結果を実施例の結果とまとめて表2に示す。
Comparative Example 2
A negative electrode was obtained in the same manner as in Example 9 except that no heat treatment was performed. A battery was produced in the same manner as in Example 1 except that this negative electrode was used, and the electrochemical characteristics were evaluated in the same manner as in Example 9.
As a result, the capacity retention rate was 38.4%.
The obtained results are shown in Table 2 together with the results of the examples.

比較例3
CeOの添加を行わなかった他は実施例9と同様にして、負極を得た。この負極を用いた他は実施例9と同様にして電池を作製し、実施例1と同様にして電気化学特性評価を行った。
得られ結果は、容量維持率=37.3%であった。
得られた結果を実施例の結果とまとめて表2に示す。
Comparative Example 3
A negative electrode was obtained in the same manner as in Example 9 except that CeO 2 was not added. A battery was produced in the same manner as in Example 9 except that this negative electrode was used, and the electrochemical characteristics were evaluated in the same manner as in Example 1.
As a result, the capacity retention rate was 37.3%.
The obtained results are shown in Table 2 together with the results of the examples.

比較例4
CeOの添加を行わず且つ熱処理を行わなかった他は実施例9と同様にして、負極を得た。この負極を用いた他は実施例9と同様にして電池を作製し、実施例1と同様にして電気化学特性評価を行った。
得られ結果は、容量維持率=39.2%であった。
得られた結果を実施例の結果とまとめて表2に示す。
Comparative Example 4
A negative electrode was obtained in the same manner as in Example 9 except that CeO 2 was not added and heat treatment was not performed. A battery was produced in the same manner as in Example 9 except that this negative electrode was used, and the electrochemical characteristics were evaluated in the same manner as in Example 1.
As a result, the capacity retention rate was 39.2%.
The obtained results are shown in Table 2 together with the results of the examples.

Figure 2012038490
Figure 2012038490

表2は、SiOとCeOとを混合する工程と、得られた混合物を800℃以上の温度で熱処理する工程とにより得られる熱処理材料を負極に用いることによって充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることが可能になったことを示している。 Table 2 shows Li insertion capacity after repeated charging and discharging by using a heat treatment material obtained by mixing SiO X and CeO 2 and heat-treating the obtained mixture at a temperature of 800 ° C. or more for the negative electrode. This indicates that it has become possible to improve the capacity retention rate by suppressing the decrease of the above.

参考例1
遊星ボールミル中、SiO(Aldrich社製)[SiO(X=0.96)]100部にCeO(Wako)3部を添加し、250rpmで3時間混合して複合化した。
得られた試料を不活性雰囲気下、1000℃・3時間の熱処理を行った。
得られた熱処理複合材についてXRD測定を行った。
結果を図2に示す。なお、参考例1の試料は、1000℃と表示する。
Reference example 1
In a planetary ball mill, 3 parts of CeO 2 (Wako) were added to 100 parts of SiO (manufactured by Aldrich) [SiO X (X = 0.96)], and mixed at 250 rpm for 3 hours to form a composite.
The obtained sample was heat-treated at 1000 ° C. for 3 hours under an inert atmosphere.
XRD measurement was performed on the obtained heat-treated composite material.
The results are shown in FIG. In addition, the sample of the reference example 1 is displayed as 1000 degreeC.

参考例2〜3
熱処理温度を900℃又は800℃に変えた他は参考例1と同様にして、熱処理を行った。
得られた熱処理複合材についてXRD測定を行った。
結果を図2に示す。なお、参考例2の試料は900℃と、参考例3の試料は800℃と表示する。
Reference Examples 2-3
The heat treatment was performed in the same manner as in Reference Example 1 except that the heat treatment temperature was changed to 900 ° C. or 800 ° C.
XRD measurement was performed on the obtained heat-treated composite material.
The results are shown in FIG. In addition, the sample of the reference example 2 is displayed as 900 degreeC, and the sample of the reference example 3 is displayed as 800 degreeC.

比較参考例1〜5
CeOの添加を行わず且つ熱処理を行わなかったか、CeOを添加したが熱処理を行わなかったか、CeOを添加したが熱処理温度を700℃、600℃又は350℃に変えた他は参考例1と同様にして試料を得て、XRD測定を行った。
結果を図2に示す。なお、図2中、各試料は、SiOSiO+BM処理、700℃、600℃、350℃と表示している。
Comparative Reference Examples 1-5
Or was not carried out and the heat treatment without addition of CeO 2, or has been added to CeO 2 was not heat-treated, was added CeO 2 700 ° C. The heat treatment temperature, except for changing the 600 ° C. or 350 ° C. Reference Example A sample was obtained in the same manner as in Example 1, and XRD measurement was performed.
The results are shown in FIG. In FIG. 2, each sample is indicated as SiOSiO + BM treatment, 700 ° C., 600 ° C., and 350 ° C.

図2のXRDプロファイルから、800℃以上の温度で2θ=26〜31°にSiの結晶ピークが出現しており、SiOが800℃以上の温度で熱処理されてSiO→Si+SiOの反応により、Siを生成したことを示している。 From the XRD profile of FIG. 2, a Si crystal peak appears at 2θ = 26 to 31 ° at a temperature of 800 ° C. or higher, and SiO X is heat-treated at a temperature of 800 ° C. or higher, resulting in a reaction of SiO X → Si + SiO 2 . , Si is generated.

本発明によれば、炭素材料以外の材料を用いて初回充放電効率を向上させることができる負極を得ることができ、また出発材料としてSiOを用い且つ炭素を必須成分とせず充放電繰り返し後のLi挿入容量の低下を抑制して容量維持率を向上させることができる負極、二次電池を得ることができる。 According to the present invention, it is possible to obtain a negative electrode capable of improving the initial charge and discharge efficiency using a material other than the carbon material, and after repeating charge and discharge using SiO X as a starting material and without using carbon as an essential component. Thus, it is possible to obtain a negative electrode and a secondary battery that can suppress a decrease in the Li insertion capacity and improve the capacity retention rate.

Claims (9)

SiO(X=0.8〜1.2)およびCeOを含有してなる負極。 A negative electrode comprising SiO X (X = 0.8 to 1.2) and CeO 2 . 前記CeOとSiOとの割合(CeO/SiO)が、0質量%<CeO/SiOS≦25質量%である請求項1に記載の負極。 2. The negative electrode according to claim 1, wherein a ratio of the CeO 2 and SiO X (CeO 2 / SiO X ) is 0 mass% <CeO 2 / SiO X S ≦ 25 mass%. 前記SiOが、SiO(X=0.96)である請求項1又は2に記載の負極。 The negative electrode according to claim 1, wherein the SiO X is SiO X (X = 0.96). 負極の製造方法であって、SiO(X=0.8〜1.2)とCeOとを混合する工程と、得られた混合物を800℃以上の温度で熱処理する工程、とを含む前記方法。 A method for producing a negative electrode, comprising: a step of mixing SiO X (X = 0.8 to 1.2) and CeO 2; and a step of heat-treating the obtained mixture at a temperature of 800 ° C. or higher. Method. 前記SiOが、SiO(X=0.96)である請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the SiO X is SiO X (X = 0.96). 前記CeOとSiOとの割合(CeO/SiO)が、0質量%<CeO/SiOS≦25質量%である請求項4又は5に記載の製造方法。 6. The method according to claim 4, wherein a ratio of the CeO 2 and SiO X (CeO 2 / SiO X ) is 0 mass% <CeO 2 / SiO X S ≦ 25 mass%. 前記熱処理する工程が、不活性雰囲気下、800〜1200℃で1〜24時間加熱する工程である請求項4〜6のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 4 to 6, wherein the heat treatment step is a step of heating at 800 to 1200 ° C for 1 to 24 hours in an inert atmosphere. 請求項4〜7のいずれか1項に記載の製造方法によって得られる負極。   The negative electrode obtained by the manufacturing method of any one of Claims 4-7. 請求項8に記載の負極を用いてなる二次電池。   A secondary battery using the negative electrode according to claim 8.
JP2010176090A 2010-08-05 2010-08-05 Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same Pending JP2012038490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176090A JP2012038490A (en) 2010-08-05 2010-08-05 Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176090A JP2012038490A (en) 2010-08-05 2010-08-05 Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2012038490A true JP2012038490A (en) 2012-02-23

Family

ID=45850304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176090A Pending JP2012038490A (en) 2010-08-05 2010-08-05 Negative electrode, manufacturing method of negative electrode, negative electrode obtained by the same, and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2012038490A (en)

Similar Documents

Publication Publication Date Title
JP2021158119A (en) Pre-lithiation of electrode material in semisolid electrode
Wang et al. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode
EP2156503B1 (en) Plastic crystal electrolyte with a broad potential window
WO2015030053A1 (en) Solid-state battery and method for manufacturing electrode active material
JP5226128B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2009110490A1 (en) Non-aqueous electrolyte battery
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
Boltersdorf et al. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives
JP2009064714A (en) Electrode and lithium secondary battery using the same
JP2013131366A (en) Anode active material for metal ion battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP5981101B2 (en) Nonaqueous electrolyte secondary battery
EP3128589B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
JP2023510989A (en) Electrolytes, electrochemical devices and electronic devices
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JPWO2014003077A1 (en) Non-aqueous electrolyte secondary battery
JP2012049124A (en) Nonaqueous electrolyte secondary battery
JP2009076278A (en) Positive electrode and lithium secondary battery
JP2016058343A (en) Electrode for secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
WO2023004821A1 (en) Electrolyte, secondary battery, battery module, battery pack, and electric device
JP4172175B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP7289367B2 (en) Compound, electrolyte for lithium secondary battery containing same, and lithium secondary battery
JP5593919B2 (en) Secondary battery negative electrode and secondary battery using the same