JP2012037077A - Dissolving device, and hot water supply device with the same - Google Patents

Dissolving device, and hot water supply device with the same Download PDF

Info

Publication number
JP2012037077A
JP2012037077A JP2010175018A JP2010175018A JP2012037077A JP 2012037077 A JP2012037077 A JP 2012037077A JP 2010175018 A JP2010175018 A JP 2010175018A JP 2010175018 A JP2010175018 A JP 2010175018A JP 2012037077 A JP2012037077 A JP 2012037077A
Authority
JP
Japan
Prior art keywords
water
inorganic compound
circuit
bathtub
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175018A
Other languages
Japanese (ja)
Inventor
Takayuki Takatani
隆幸 高谷
Yoshio Nishiyama
吉継 西山
Tomoaki Ando
智朗 安藤
Masanori Hirota
正宣 広田
Katsuhiro Wada
克広 和田
Yasusuke Horiki
泰佑 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010175018A priority Critical patent/JP2012037077A/en
Publication of JP2012037077A publication Critical patent/JP2012037077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact dissolving device with low operating cost for supplying inorganic compound or the like without requiring any electric circuit, and to provide a water heater with the same.SOLUTION: The dissolving device includes a water circuit 15, and an accommodation means 12 for accommodating a substantially plate-like inorganic compound 11. The dissolving device is provided for dissolving, in water flowing in the water circuit 15, the inorganic compound 11 accommodated in the accommodation means 12. The dissolving device is configured to dissolve the inorganic compound in the water with the principle of substance diffusion (the law of Fick) wherein the difference in dissolution concentration between water and an inorganic compound moves a substance.

Description

本発明は、無機化合物等を溶解する溶解装置、及び溶解した無機化合物等を浴槽に供給する機能を備えた給湯装置に関するものである。   The present invention relates to a melting apparatus that dissolves inorganic compounds and the like, and a hot water supply apparatus that has a function of supplying dissolved inorganic compounds and the like to a bathtub.

従来この種の装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図10は、特許文献1に記載された従来の給湯装置を示すものである。図10に示すように、亜鉛陽極1と、陰極2と、ケーシング5と、直流電源9から構成されている。   FIG. 10 shows a conventional hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 10, it is composed of a zinc anode 1, a cathode 2, a casing 5, and a DC power source 9.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源9と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源9においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power source 9 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in the size and cost of the apparatus, the DC power supply 9 requires power, so that the amount of power consumption increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、コンパクトで運転コストが安価な無機化合物等を供給する溶解装置及びそれを備えた給湯装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a melting apparatus that supplies an inorganic compound or the like that does not require an electric circuit and is compact and low in operating cost, and a hot water supply apparatus including the melting apparatus. To do.

前記従来の課題を解決するために、本発明の溶解装置は、水回路と、略平板状の無機化合物と、前記略平板状の無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させる構成としたことを特徴とするものである。   In order to solve the above-described conventional problems, the dissolution apparatus of the present invention includes a water circuit, a substantially flat inorganic compound, and a storage unit that stores the substantially flat inorganic compound, and dissolves the inorganic compound. The water is made to flow out from the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できる。これにより、コンパクト化と低コスト化を実現するとともに、電力不要の原理であるため、消費電力量を抑えることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far. Thereby, while realizing compactness and cost reduction, since it is a principle which does not require electric power, power consumption can be suppressed.

本発明によれば、コンパクト化、低コスト化、さらには、消費電力量の抑制を実現した無機化合物等を供給する溶解装置及びそれを備えた給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the melt | dissolution apparatus which supplies the inorganic compound etc. which implement | achieved compactization, cost reduction, and also suppression of the power consumption amount, and a hot water supply apparatus provided with the same can be provided.

本発明の実施の形態1における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における同他の溶解装置の構成図The block diagram of the other melt | dissolution apparatus in Embodiment 1 of this invention 本発明の実施の形態1における同他の溶解装置の構成図The block diagram of the other melt | dissolution apparatus in Embodiment 1 of this invention 本発明の実施の形態1における同他の溶解装置の構成図The block diagram of the other melt | dissolution apparatus in Embodiment 1 of this invention 本発明の実施の形態1における溶解装置の詳細図Detailed view of dissolution apparatus in Embodiment 1 of the present invention (a)本発明の実施の形態1における濾過手段の構成図(b)同他の濾過手段の構成図(c)同他の濾過手段の構成図(A) Configuration diagram of filtering means in Embodiment 1 of the present invention (b) Configuration diagram of other filtering means (c) Configuration diagram of other filtering means 本発明の実施の形態2における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 2 of this invention 本発明の実施の形態3における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 3 of the present invention 本発明の実施の形態4における溶解装置の構成図Configuration diagram of dissolution apparatus in Embodiment 4 of the present invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、水回路と、略平板状の無機化合物と、前記略平板状の無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させる構成としたことを特徴とする溶解装置である。   1st invention is equipped with the water circuit, the substantially flat inorganic compound, and the accommodating means to accommodate the said substantially flat inorganic compound, The water which dissolved the said inorganic compound is made to flow out of the said water circuit A melting apparatus characterized by having a configuration.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できる。また、電力不要の原理であるため、消費電力量を抑えることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far. In addition, since it is a principle that does not require power, the power consumption can be suppressed.

第2の発明は、水回路と、略円柱状の無機化合物と、前記略円柱状の無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させる構成としたことを特徴とする溶解装置である。   2nd invention is equipped with the water circuit, the substantially cylindrical inorganic compound, and the accommodating means which accommodates the said substantially cylindrical inorganic compound, The water which dissolved the said inorganic compound is made to flow out of the said water circuit A melting apparatus characterized by having a configuration.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できる。また、電力不要の原理であるため、消費電力量を抑えることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far. In addition, since it is a principle that does not require power, the power consumption can be suppressed.

第3の発明は、第1または第2の発明の無機化合物に、凹凸を設けたことを特徴とするもので、無機化合物の水と接触する表面積を大きくでき、溶解装置の溶解濃度を所定値とする場合は、無機化合物の全表面積をある範囲とする必要があるため、無機化合物収納容器12に収納する無機化合物の量を削減でき、コストが削減できる。   The third invention is characterized in that the inorganic compound of the first or second invention is provided with irregularities, the surface area of the inorganic compound in contact with water can be increased, and the dissolution concentration of the dissolution apparatus is a predetermined value. In this case, since the total surface area of the inorganic compound needs to be within a certain range, the amount of the inorganic compound stored in the inorganic compound storage container 12 can be reduced, and the cost can be reduced.

第4の発明は、湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記第1〜第3のいずれかの発明の溶解装置を、前記浴槽水注湯回路で、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置である。   4th invention is equipped with the bathtub water pouring circuit which supplies hot water to a bathtub, and the bathtub water pouring valve which opens and closes the said bath water pouring circuit, The melt | dissolution of any one of said 1st-3rd invention The hot water supply apparatus is characterized in that an apparatus is disposed on the downstream side of the bathtub water pouring valve in the bathtub water pouring circuit.

これによって、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   Thereby, since the melting apparatus is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting apparatus can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

第5の発明は、湯水を浴槽へ供給する浴槽水注湯回路を備え、前記第1または2の発明の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、水が無機化合物収納容器を通過する際に生じる圧力損失の増加を低減させ、浴槽への湯はりを早く完了することができる。   5th invention is equipped with the bathtub water pouring circuit which supplies hot water to a bathtub, and made the equivalent diameter of the storage means of the said 1st or 2nd invention larger than the equivalent diameter of the said bathtub water pouring circuit. With the hot water supply device that is characteristic, it is possible to reduce an increase in pressure loss that occurs when water passes through the inorganic compound storage container, and to quickly complete the hot water filling to the bathtub.

第6の発明は、湯水を浴槽へ供給する浴槽水注湯回路を備え、前記第1または第2の発明の無機化合物の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置で、無機化合物収納容器を特別な構造にすることなく、略平板状または略円柱状等の無機化合物が安価な仕様で水回路に流出することを防止できる。   6th invention provided the bathtub water pouring circuit which supplies hot water to a bathtub, and made the equivalent diameter of the inorganic compound of the said 1st or 2nd invention larger than the equivalent diameter of the said bath water pouring circuit In the hot water supply apparatus, the inorganic compound container can be prevented from flowing out into the water circuit with an inexpensive specification without having a special structure of the inorganic compound storage container.

第7の発明は、前記第1〜第3のいずれかの発明の溶解装置を、本体筐体内に配設した
ことを特徴とする給湯装置で、低外気温時であっても貯湯タンク、電源回路などからの僅かな放熱により筐体内の雰囲気は常時加温されているため、溶解装置の凍結防止などの断熱が簡素化、または不要となる。
A seventh aspect of the present invention is a hot water supply apparatus in which the melting apparatus according to any one of the first to third aspects of the present invention is disposed in a main body casing. Since the atmosphere in the housing is always warmed by slight heat radiation from the circuit or the like, heat insulation such as prevention of freezing of the melting apparatus is simplified or unnecessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11はであり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。濾過手段13は複数の***を有し、濾過手段収納容器14に収納される。無機化合物収納容器12と濾過手段収納容器14は、順に水回路15によってと連通され、無機化合物収納容器12は濾過手段収納容器14の上流側となるように溶解装置16を構成する。   In FIG. 1, the inorganic compound 11 is stored in an inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The filtering means 13 has a plurality of small holes and is stored in the filtering means storage container 14. The inorganic compound storage container 12 and the filtration means storage container 14 are sequentially communicated with the water circuit 15, and the dissolution apparatus 16 is configured so that the inorganic compound storage container 12 is on the upstream side of the filtration means storage container 14.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12と無機化合物11の間を通過する。水には粘性があるため、無機化合物収納容器12と無機化合物11の間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図5はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、無機化合物11の表面から離れると流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes between the inorganic compound storage container 12 and the inorganic compound 11. Since water has viscosity, when passing between the inorganic compound storage container 12 and the inorganic compound 11, a velocity boundary layer is generated from the surface of the inorganic compound 11 to a region near the surface. FIG. 5 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer in the vicinity of the surface of the inorganic compound 11 is small, and the flow velocity becomes a large distribution away from the surface of the inorganic compound 11. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい無機化合物11の表面から離れた部分を流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を無機化合物11の表面から離れた部分の水に溶解させることができる。濾過手段13は、無機化合物収納容器12内の水勢によって無機化合物11が無機化合物収納容器12から流出しようとした場合、これを防止するものである。   On the other hand, the dissolved concentration of water flowing in a portion away from the surface of the inorganic compound 11 having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in a portion away from the surface of the inorganic compound 11. The filtering means 13 prevents the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to water in the inorganic compound storage container 12.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器と、濾過手段と、濾過手段収納容器を有し、無機化合物収納容器、濾過手段収納容器の順にと水回路で接続した溶解装置を備えた給湯装置とした。   As described above, in the present embodiment, the inorganic compound, the inorganic compound storage container, the filtration means, and the filtration means storage container are provided, and the inorganic compound storage container and the filtration means storage container are connected in this order through the water circuit. It was set as the hot-water supply apparatus provided with the melt | dissolution apparatus.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, since the power supply circuit and the insulation circuit which have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact and low in cost, and further reduces power consumption.

尚、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

図2は、本発明の第1の実施の形態における図1とは別の溶解装置の構造図を示すもの
である。
FIG. 2 shows a structural diagram of a melting apparatus different from FIG. 1 in the first embodiment of the present invention.

図2において、無機化合物11は略円柱状であり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。無機化合物収納容器12は、水回路15と連通され、溶解装置16を構成する。   In FIG. 2, the inorganic compound 11 has a substantially cylindrical shape and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The inorganic compound storage container 12 communicates with the water circuit 15 and constitutes a dissolution apparatus 16.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12と無機化合物11の間を通過する。水には粘性があるため、無機化合物収納容器12と無機化合物11の間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図5はその速度境界層の状態を示す図である。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes between the inorganic compound storage container 12 and the inorganic compound 11. Since water has viscosity, when passing between the inorganic compound storage container 12 and the inorganic compound 11, a velocity boundary layer is generated from the surface of the inorganic compound 11 to a region near the surface. FIG. 5 is a diagram showing the state of the velocity boundary layer.

無機化合物11の表面近傍の速度境界層の流速は小さく、無機化合物11の表面から離れると流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   The flow velocity of the velocity boundary layer in the vicinity of the surface of the inorganic compound 11 is small, and the flow velocity becomes a large distribution away from the surface of the inorganic compound 11. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい無機化合物11の表面から離れた部分を流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を無機化合物11の表面から離れた部分の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in a portion away from the surface of the inorganic compound 11 having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in a portion away from the surface of the inorganic compound 11.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器を有し、無機化合物収納容器と水回路を接続した溶解装置を備えた給湯装置とした。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the melt | dissolution apparatus which had the inorganic compound and the inorganic compound storage container, and connected the inorganic compound storage container and the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、低コスト化、さらには消費電力量を抑えた給湯装置とすることができる。
尚、無機化合物11は、略円柱状として説明したが、略平板状でも同様の効果が得られる。
This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, since the power supply circuit and the insulation circuit which have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact and low in cost, and further reduces power consumption.
In addition, although the inorganic compound 11 was demonstrated as substantially cylindrical shape, the same effect is acquired even if it is substantially flat shape.

図3は、本発明の第1の実施の形態における図1、図2とは別の溶解装置の構造図を示すものである。   FIG. 3 shows a structural diagram of a melting apparatus different from FIGS. 1 and 2 in the first embodiment of the present invention.

図3において、無機化合物11は中空のある略円柱状であり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。無機化合物収納容器12は、水回路15と連通され、溶解装置16を構成する。   In FIG. 3, the inorganic compound 11 has a substantially hollow cylindrical shape and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The inorganic compound storage container 12 communicates with the water circuit 15 and constitutes a dissolution apparatus 16.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12と無機化合物11の間を通過する。水には粘性があるため、無機化合物収納容器12と無機化合物11の間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。図5はその速度境界層の状態を示す図である。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes between the inorganic compound storage container 12 and the inorganic compound 11. Since water has viscosity, when passing between the inorganic compound storage container 12 and the inorganic compound 11, a velocity boundary layer is generated from the surface of the inorganic compound 11 to a region near the surface. FIG. 5 is a diagram showing the state of the velocity boundary layer.

無機化合物11の表面近傍の速度境界層の流速は小さく、無機化合物11の表面から離れると流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   The flow velocity of the velocity boundary layer in the vicinity of the surface of the inorganic compound 11 is small, and the flow velocity becomes a large distribution away from the surface of the inorganic compound 11. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい無機化合物11の表面から離れた部分を流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を無機化合物11の表面から離れた部分の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in a portion away from the surface of the inorganic compound 11 having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in a portion away from the surface of the inorganic compound 11.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器を有し、無機化合物収納容器と水回路を接続した溶解装置を備えた給湯装置とした。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the melt | dissolution apparatus which had the inorganic compound and the inorganic compound storage container, and connected the inorganic compound storage container and the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。無機化合物11は中空のある略円柱状であり、水と接触する表面積を大きくでき、溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、無機化合物収納容器12に収納する無機化合物11の量を削減でき、コストが削減できる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、さらには低コスト化、消費電力量を抑えた給湯装置とすることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. The inorganic compound 11 has a hollow, substantially cylindrical shape, can increase the surface area in contact with water, and when the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range. Therefore, the amount of the inorganic compound 11 stored in the inorganic compound storage container 12 can be reduced, and the cost can be reduced. Therefore, since the power supply circuit and the insulation circuit that have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact, further reduced in cost, and has reduced power consumption.

尚、無機化合物11は、中空のある略円柱状として説明したが、中空のある略平板状でも同様の効果が得られる。   In addition, although the inorganic compound 11 was demonstrated as a hollow substantially cylindrical shape, the same effect is acquired even if it is a hollow substantially flat plate shape.

図4は、本発明の第1の実施の形態における図1、図2、図3とは別の溶解装置の構造図を示すものである。   FIG. 4 shows a structural view of a melting apparatus different from those of FIGS. 1, 2 and 3 in the first embodiment of the present invention.

図4において、無機化合物11は凹凸形状であり、無機化合物収納容器12に収納される。無機化合物11は水に対して溶解性を持つ。無機化合物収納容器12は、水回路15と連通され、溶解装置16を構成する。   In FIG. 4, the inorganic compound 11 has an uneven shape and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water. The inorganic compound storage container 12 communicates with the water circuit 15 and constitutes a dissolution apparatus 16.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15から溶解装置16に流入する水は、無機化合物収納容器12と無機化合物11の間を通過する。水には粘性があるため、無機化合物収納容器12と無機化合物11の間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The water flowing from the water circuit 15 into the dissolving device 16 passes between the inorganic compound storage container 12 and the inorganic compound 11. Since water has viscosity, when passing between the inorganic compound storage container 12 and the inorganic compound 11, a velocity boundary layer is generated from the surface of the inorganic compound 11 to a region near the surface.

図5はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、無機化合物11の表面から離れると流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   FIG. 5 is a diagram showing the state of the velocity boundary layer. The flow velocity of the velocity boundary layer in the vicinity of the surface of the inorganic compound 11 is small, and the flow velocity becomes a large distribution away from the surface of the inorganic compound 11. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい無機化合物11の表面から離れた部分を流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を無機化合物11の表面から離れた部分の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in a portion away from the surface of the inorganic compound 11 having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in a portion away from the surface of the inorganic compound 11.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器を有し、無機化合物収納容器と水回路を接続した溶解装置を備えた給湯装置とした。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the melt | dissolution apparatus which had the inorganic compound and the inorganic compound storage container, and connected the inorganic compound storage container and the water circuit.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。無機化合物11は
凹凸形状があり、水と接触する表面積を大きくでき、溶解装置16の溶解濃度を所定値とする場合は、無機化合物11の全表面積をある範囲とする必要があるため、無機化合物収納容器12に収納する無機化合物11の量を削減でき、コストが削減できる。従って、これまで必要としていた電源回路と絶縁回路が削減できるので、コンパクト化、さらには低コスト化、消費電力量を抑えた給湯装置とすることができる。
This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Since the inorganic compound 11 has an uneven shape, the surface area in contact with water can be increased, and when the dissolution concentration of the dissolution apparatus 16 is set to a predetermined value, the total surface area of the inorganic compound 11 needs to be within a certain range. The amount of the inorganic compound 11 stored in the storage container 12 can be reduced, and the cost can be reduced. Therefore, since the power supply circuit and the insulation circuit that have been required so far can be reduced, it is possible to provide a hot water supply apparatus that is compact, further reduced in cost, and has reduced power consumption.

尚、無機化合物11は、中空のある略円柱状として説明したが、中空のある略平板状でも同様の効果が得られる。   In addition, although the inorganic compound 11 was demonstrated as a hollow substantially cylindrical shape, the same effect is acquired even if it is a hollow substantially flat plate shape.

図6は、濾過手段13の構成例である。(a)は、線形状の繊維で角状の***を形成したものである。(b)は、所定の厚さの板に、複数種の径の***を施したものである。(c)は、粒状の非溶解材料を多層状として多孔質空間を形成したものである。何れも、無機化合物収納容器12内の水勢によって無機化合物11が無機化合物収納容器12から流出しようとした場合、これを防止するものであるが、この構成と形状の限りではない。   FIG. 6 is a configuration example of the filtering means 13. (A) forms a square-shaped small hole with a linear fiber. (B) is a plate having a predetermined thickness and small holes having a plurality of types of diameters. (C) forms a porous space by using a granular non-dissolving material as a multilayer. In either case, the inorganic compound 11 is prevented from flowing out of the inorganic compound storage container 12 due to the water flow in the inorganic compound storage container 12, but this is not limited to this configuration and shape.

(実施の形態2)
図7は、本発明の第2の実施の形態における給湯装置の構成図を示すものである。
(Embodiment 2)
FIG. 7 shows a block diagram of a hot water supply apparatus according to the second embodiment of the present invention.

図7において、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   In FIG. 7, a compressor 22, a hot water supply heat exchanger 23, a decompression means 24, and an evaporator 25 are connected in an annular manner in order with a refrigerant circuit 26 to constitute a heat pump unit 21. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order. The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。浴槽水注湯回路39は、貯湯タンク28の水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の水と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。溶解装置16は浴槽水注湯弁38の下流側の浴槽水注湯回路39に本体の筐体に収納するように設けた。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order. The bathtub water pouring circuit 39 is a circuit for pouring the water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. In this circuit, a bath water mixing valve 36 for mixing hot water in the hot water storage tank 28 and tap water, temperature detecting means 37 for detecting the temperature of the pouring water, and bath water pouring for opening and closing the bath water pouring circuit 39. The hot water valve 38 is provided in order. The melting device 16 was provided in the bathtub water pouring circuit 39 on the downstream side of the bathtub water pouring valve 38 so as to be housed in the housing of the main body.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流量を制御する。   The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、高温の水と水道水の混合割合を調整する。所定温度となった浴槽水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28に貯留された高温の水を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ18より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bath water mixing valve 36 of the bath water pouring circuit 39 has a hot water and tap water so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). Adjust the mixing ratio. The bathtub water having a predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when the bathtub water in the bathtub 42 is heated, the hot water stored in the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 18. Heat. Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が
浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された水が、浴槽水注湯弁38を閉から開に制御した場合に、溶解装置16、浴槽水循環回路41を経由して浴槽42に流出する。水が溶解装置16を通過する際に、無機化合物が水に溶解するので、浴槽42に湯はり動作と同時に、無機化合物11を溶解させた水が浴槽42に流入する。
About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the water adjusted by the bathtub water mixing valve 36 at a preset temperature controls the bathtub water pouring valve 38 from closed to open, it passes through the melting device 16 and the bathtub water circulation circuit 41. It flows out into the bathtub 42. When the water passes through the dissolving device 16, the inorganic compound dissolves in the water, so that the water in which the inorganic compound 11 is dissolved flows into the bathtub 42 simultaneously with the hot water operation in the bathtub 42.

溶解装置16は、浴槽水注湯弁38の下流側としたが、浴槽水注湯弁38が開から閉へ制御された場合は、ウォーターハンマー現象が発生し、上流側の回路に設けている、浴槽水混合弁36、貯湯タンク28等は水道圧以上の水圧負荷を与える。下流側に設けることによって、溶解装置16への水圧負荷が掛からない。   Although the melting device 16 is on the downstream side of the bathtub water pouring valve 38, when the bathtub water pouring valve 38 is controlled from opening to closing, a water hammer phenomenon occurs and is provided in the upstream circuit. The bathtub water mixing valve 36, the hot water storage tank 28, etc. give a water pressure load higher than the water pressure. By providing on the downstream side, the hydraulic load on the melting device 16 is not applied.

以上のように、本実施の形態においては、浴槽水注湯回路と、浴槽水注湯弁を備え、浴槽水注湯弁、溶解装置の順に浴槽水注湯回路に備えた給湯装置とした。これにより、溶解装置は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置の耐圧構造を簡素化することができる。さらに、浴槽への湯はりの水流を利用するため、湯はりと同時に無機化合物を溶解させた水を浴槽へ供給できるので、利便性が向上する。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the bathtub water-pouring circuit and the bathtub water-pouring valve, and equipped with the bathtub water-pouring circuit in order of the bathtub water-pouring valve and the melting apparatus. Thereby, since the melting device is not affected by the water hammer phenomenon (water pressure increase in the bathtub water pouring circuit or the like) that occurs when hot water to the bathtub is stopped, the pressure resistance structure of the melting device can be simplified. Furthermore, since the water flow of the hot water to the bathtub is used, the water in which the inorganic compound is dissolved can be supplied to the bathtub at the same time as the hot water, thereby improving convenience.

本発明において、溶解装置16は給湯機の本体筐体に収納し、浴槽水注湯回路39としているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11を溶解させた水を供給することが出来る。また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は常時加温されるため、溶解装置16の凍結防止などの断熱が不要、または簡素化できる。   In the present invention, the melting device 16 is housed in the main body housing of the water heater and serves as a bathtub water pouring circuit 39. However, even if provided in the bathtub water circulation circuit 41, water in which the inorganic compound 11 is dissolved is supplied to the bathtub 42. I can do it. Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is always heated, so that heat insulation such as prevention of freezing of the melting device 16 is unnecessary or simplified.

また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を化合物溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the compound dissolving apparatus. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態3)
図8は、本発明の第3の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 3)
FIG. 8 shows a structural diagram of a melting apparatus according to the third embodiment of the present invention.

図8において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11を収納する無機化合物収納容器12の相当直径d1、浴槽水注湯回路39の相当直径d2とした場合、図8においてそれぞれをd1>d2となる大きさなるように決定した。   In FIG. 8, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d1 of the inorganic compound storage container 12 that stores the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, the sizes are determined so as to satisfy d1> d2 in FIG.

以上のように構成された給湯装置について、以下その動作、作用を説明する。水回路15に対して、無機化合物11を収納した無機化合物収納容器12を設けたので、溶解装置16を水が通過する際に、圧力損失が生じる。圧力損失が生じると、浴槽42へ供給する水の流量が低下する。ここで、無機化合物収納容器12の相当直径d1を、浴槽水注湯回路39の相当直径d2に対して、d1>d2となる大きさとすると、無機化合物収納容器12の平均流速u1は、浴槽水注湯回路39の平均流速u2より小さくなる。水回路の流体の圧力損失は、流体の平均流速の2乗に比例するため、溶解装置16を通過する際の圧力損失の増加を低減させることができる。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Since the inorganic compound storage container 12 storing the inorganic compound 11 is provided for the water circuit 15, a pressure loss occurs when water passes through the dissolving device 16. When pressure loss occurs, the flow rate of water supplied to the bathtub 42 decreases. Here, assuming that the equivalent diameter d1 of the inorganic compound storage container 12 is such that d1> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the average flow velocity u1 of the inorganic compound storage container 12 is the bath water. It becomes smaller than the average flow velocity u2 of the pouring circuit 39. Since the pressure loss of the fluid in the water circuit is proportional to the square of the average flow velocity of the fluid, an increase in the pressure loss when passing through the dissolving device 16 can be reduced.

以上のように、本実施の形態においては、無機化合物収納容器の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物を通過する水流による圧力損失を低減し、浴槽への湯はり時間を早く完了することができる。   As mentioned above, in this Embodiment, the pressure by the water flow which passes an inorganic compound is made larger by making the equivalent diameter of an inorganic compound storage container larger than the equivalent diameter of the bathtub water pouring circuit which connects a dissolving device. Loss can be reduced and the hot water filling time for the bathtub can be completed quickly.

(実施の形態4)
図9は、本発明の第4の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 4)
FIG. 9 shows a structural diagram of a melting apparatus according to the fourth embodiment of the present invention.

図9において、溶解装置16の入口と出口は浴槽水注湯回路39に接続されている。無機化合物11の相当直径d3、浴槽水注湯回路39の相当直径d2とした場合、図9においてそれぞれをd3>d2となる大きさなるように決定した。   In FIG. 9, the inlet and outlet of the melting device 16 are connected to a bathtub water pouring circuit 39. When the equivalent diameter d3 of the inorganic compound 11 and the equivalent diameter d2 of the bathtub water pouring circuit 39 are set, in FIG. 9, each is determined to have a size that satisfies d3> d2.

以上のように構成された給湯装置について、以下その動作、作用を説明する。無機化合物11を収納した無機化合物収納容器12を水が通過する場合、無機化合物収納容器12と無機化合物11の隙間を流れるとともに、無機化合物11自体が水回路15出口方向に移動する可能性がある。ここで、無機化合物11の相当直径d3を、浴槽水注湯回路39の相当直径d2に対して、d3>d2となる大きさとすると、無機化合物11は水とともに無機化合物収納容器12内を移動しても浴槽水注湯回路39に流入することはない。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When water passes through the inorganic compound storage container 12 that stores the inorganic compound 11, the water flows through the gap between the inorganic compound storage container 12 and the inorganic compound 11, and the inorganic compound 11 itself may move toward the outlet of the water circuit 15. . Here, if the equivalent diameter d3 of the inorganic compound 11 is set to a size that satisfies d3> d2 with respect to the equivalent diameter d2 of the bathtub water pouring circuit 39, the inorganic compound 11 moves in the inorganic compound storage container 12 together with water. However, it does not flow into the bathtub water pouring circuit 39.

以上のように、本実施の形態においては、無機化合物の相当直径を、溶解装置を接続する浴槽水注湯回路の相当直径よりも大とすることにより、無機化合物収納容器を特別な構造にすることなく、顆粒状の無機化合物が安価な仕様で水回路に流出することを防止できる。   As described above, in the present embodiment, the inorganic compound storage container has a special structure by making the equivalent diameter of the inorganic compound larger than the equivalent diameter of the bathtub water pouring circuit to which the dissolving apparatus is connected. Therefore, it is possible to prevent the granular inorganic compound from flowing into the water circuit with an inexpensive specification.

以上のように、本発明にかかる給湯装置は、コンパクト化、低コスト化、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention leads to downsizing, cost reduction, and improvement in operating efficiency, and can be used for a hot water storage hot water heater and a gas heat source hot water heater.

11 無機化合物
12 無機化合物収納容器
13 濾過手段
14 濾過手段収納容器
15 水回路
16 溶解装置
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 11 Inorganic compound 12 Inorganic compound storage container 13 Filtration means 14 Filtration means storage container 15 Water circuit 16 Dissolving device 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bath water mixing valve 37 Temperature detection means 38 Bath water pouring valve 39 Bath water pouring Hot water circuit 42 Bathtub

Claims (7)

水回路と、略平板状の無機化合物と、前記略平板状の無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させる構成としたことを特徴とする溶解装置。 A water circuit, a substantially flat inorganic compound, and a storage means for storing the substantially flat inorganic compound, wherein water in which the inorganic compound is dissolved flows out from the water circuit. A melting device. 水回路と、略円柱状の無機化合物と、前記略円柱状の無機化合物を収納する収納手段とを備え、前記無機化合物を溶解させた水を、前記水回路から流出させる構成としたことを特徴とする溶解装置。 A water circuit, a substantially cylindrical inorganic compound, and a storage means for storing the substantially cylindrical inorganic compound, wherein water in which the inorganic compound is dissolved is configured to flow out of the water circuit. A melting device. 前記無機化合物の表面に凹凸を設けたことを特徴とする請求項1または2に記載の溶解装置。 The dissolution apparatus according to claim 1, wherein unevenness is provided on a surface of the inorganic compound. 湯水を浴槽へ供給する浴槽水注湯回路と、前記浴槽水注湯回路を開閉する浴槽水注湯弁とを備え、前記請求項1〜3のいずれか1項に記載の溶解装置を、前記浴槽水注湯回路で、前記浴槽水注湯弁の下流側に配設したことを特徴とする給湯装置。 A bath water pouring circuit for supplying hot water to the bathtub, and a bath water pouring valve for opening and closing the bath water pouring circuit, and the melting device according to any one of claims 1 to 3, A hot water supply apparatus, wherein the hot water supply circuit is disposed downstream of the bathtub water pouring valve in a bath water pouring circuit. 湯水を浴槽へ供給する浴槽水注湯回路を備え、前記請求項1または2に記載の収納手段の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置。 A hot water supply apparatus comprising a bathtub water pouring circuit for supplying hot water to the bathtub, wherein the equivalent diameter of the storage means according to claim 1 or 2 is larger than the equivalent diameter of the bathtub water pouring circuit. . 湯水を浴槽へ供給する浴槽水注湯回路を備え、前記請求項1〜3のいずれか1項に記載の溶解装置に収納された無機化合物の相当直径を、前記浴槽水注湯回路の相当直径よりも大きくしたことを特徴とする給湯装置。 It equips with the bathtub water pouring circuit which supplies hot water to a bathtub, and the equivalent diameter of the inorganic compound stored in the dissolution device given in any 1 paragraph of the above-mentioned 1-3 is equivalent to the equivalent diameter of the bathtub water pouring circuit. A hot water supply device that is larger than the above. 前記請求項1〜3のいずれか1項に記載の溶解装置を、本体筐体内に配設したことを特徴とする給湯装置。 The hot water supply apparatus characterized by arrange | positioning the melting | dissolving apparatus of any one of the said Claims 1-3 in the main body housing | casing.
JP2010175018A 2010-08-04 2010-08-04 Dissolving device, and hot water supply device with the same Pending JP2012037077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175018A JP2012037077A (en) 2010-08-04 2010-08-04 Dissolving device, and hot water supply device with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175018A JP2012037077A (en) 2010-08-04 2010-08-04 Dissolving device, and hot water supply device with the same

Publications (1)

Publication Number Publication Date
JP2012037077A true JP2012037077A (en) 2012-02-23

Family

ID=45849278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175018A Pending JP2012037077A (en) 2010-08-04 2010-08-04 Dissolving device, and hot water supply device with the same

Country Status (1)

Country Link
JP (1) JP2012037077A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532701A (en) * 1978-08-23 1980-03-07 Mitsui Mining & Smelting Co Ltd Facilitating method for dissolution of zinc and zinc alloy
JPH0683024U (en) * 1993-05-25 1994-11-29 松下電工株式会社 Bath agent supply device
JPH08206666A (en) * 1995-01-31 1996-08-13 Koichi Sano Apparatus and method for making mineral water and sterilizing solution diluting apparatus
JPH08336477A (en) * 1995-06-15 1996-12-24 Toshiba Corp Bath water purifier and bathing agent
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH09215618A (en) * 1996-02-14 1997-08-19 Energy Support Corp Circulator for warm water in bathtub
JPH1114157A (en) * 1997-06-24 1999-01-22 Matsushita Electric Ind Co Ltd Bath tub device
JPH1147015A (en) * 1997-07-30 1999-02-23 Matsushita Electric Ind Co Ltd Solid bathing agent supply device
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2001186995A (en) * 1999-10-21 2001-07-10 Kao Corp Shower implement
JP2003212754A (en) * 2001-03-09 2003-07-30 National Institute Of Advanced Industrial & Technology Bathing agent composition
JP2006150302A (en) * 2004-12-01 2006-06-15 Kido Toshihiro Water treatment tool
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JP2008068248A (en) * 2006-08-17 2008-03-27 Hitachi Housetec Co Ltd Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus
JPWO2007141978A1 (en) * 2006-06-07 2009-10-15 興亜硝子株式会社 Mixed antibacterial glass

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532701A (en) * 1978-08-23 1980-03-07 Mitsui Mining & Smelting Co Ltd Facilitating method for dissolution of zinc and zinc alloy
JPH0683024U (en) * 1993-05-25 1994-11-29 松下電工株式会社 Bath agent supply device
JPH08206666A (en) * 1995-01-31 1996-08-13 Koichi Sano Apparatus and method for making mineral water and sterilizing solution diluting apparatus
JPH08336477A (en) * 1995-06-15 1996-12-24 Toshiba Corp Bath water purifier and bathing agent
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH09215618A (en) * 1996-02-14 1997-08-19 Energy Support Corp Circulator for warm water in bathtub
JPH1114157A (en) * 1997-06-24 1999-01-22 Matsushita Electric Ind Co Ltd Bath tub device
JPH1147015A (en) * 1997-07-30 1999-02-23 Matsushita Electric Ind Co Ltd Solid bathing agent supply device
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2001186995A (en) * 1999-10-21 2001-07-10 Kao Corp Shower implement
JP2003212754A (en) * 2001-03-09 2003-07-30 National Institute Of Advanced Industrial & Technology Bathing agent composition
JP2006150302A (en) * 2004-12-01 2006-06-15 Kido Toshihiro Water treatment tool
JP2006183911A (en) * 2004-12-27 2006-07-13 Noritz Corp Hot water storage type water heater with sterilizing function
JPWO2007141978A1 (en) * 2006-06-07 2009-10-15 興亜硝子株式会社 Mixed antibacterial glass
JP2008068248A (en) * 2006-08-17 2008-03-27 Hitachi Housetec Co Ltd Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus

Similar Documents

Publication Publication Date Title
JP2012037077A (en) Dissolving device, and hot water supply device with the same
JP5527257B2 (en) Melting apparatus and hot water supply apparatus including the same
JP5640808B2 (en) Water heater
JP2008057857A (en) Heat pump water heater
JP4858632B1 (en) Water heater
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
JP2014076435A (en) Dissolution device and hot-water supply device equipped with dissolution device
JP4403983B2 (en) Water heater
JP4858633B1 (en) Water heater
JP2012021715A (en) Dissolving device, and water heater with the same
JP5857209B2 (en) Melting apparatus and hot water supply apparatus including the same
JP2008157544A (en) Heat exchanger and water heater
JP2006275357A (en) Hot-water supply device
JP5467364B2 (en) Water heater
JP5375769B2 (en) Water heater
JP2012184888A (en) Dissolving apparatus
JP2012042147A (en) Dissolving apparatus, and water heater with the same
JP2009103334A (en) Storage water heater
JP2006057935A (en) Hot water storage type hot water supply apparatus
JP2007085666A (en) Storage water heater
JP2012237529A (en) Water heater
JP2010243094A (en) Hot water storage type hot water supply device
JP2006194583A (en) Heat pump type hot water supply apparatus
JP2007024330A (en) Hot water storage type water heater
JP2007147110A (en) Heat exchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408