JP2012036448A - Vacuum treatment apparatus and plasma treatment method - Google Patents

Vacuum treatment apparatus and plasma treatment method Download PDF

Info

Publication number
JP2012036448A
JP2012036448A JP2010178109A JP2010178109A JP2012036448A JP 2012036448 A JP2012036448 A JP 2012036448A JP 2010178109 A JP2010178109 A JP 2010178109A JP 2010178109 A JP2010178109 A JP 2010178109A JP 2012036448 A JP2012036448 A JP 2012036448A
Authority
JP
Japan
Prior art keywords
ridge
gradually decreasing
discharge chamber
pair
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010178109A
Other languages
Japanese (ja)
Other versions
JP5523977B2 (en
Inventor
Hiroshi Mashima
浩 真島
Yoshiaki Takeuchi
良昭 竹内
Teiko Nakao
禎子 中尾
Eishiro Sasagawa
英四郎 笹川
Naoyuki Miyazono
直之 宮園
Eiichiro Otsubo
栄一郎 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010178109A priority Critical patent/JP5523977B2/en
Publication of JP2012036448A publication Critical patent/JP2012036448A/en
Application granted granted Critical
Publication of JP5523977B2 publication Critical patent/JP5523977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum treatment apparatus in which production of a reflected wave in the boundary part between a converter and a discharge chamber is suppressed, and plasma treatment of high quality can be performed by a simple, compact and inexpensive structure.SOLUTION: The apparatus includes: a discharge chamber 2 composed of a ridge waveguide having a pair of ridge electrodes 21a, 21b parallelly opposed to each other and in which plasma is generated therebetween; converters 3A, 3B having a pair of planar ridge parts 31a, 31b adjacently provided to both the edges of the discharge chamber 2 and parallelly opposed to each other; and a power source means feeding high frequency power to the ridge parts 31a, 31b. The opposed distance d1 of the ridge electrodes of a pair of the ridge parts 21a, 21b is set to be narrower than the opposed distance d2 of a pair of the ridge parts 31a, 31b and ridge level differences D are present, and the parts of the ridge level differences D are provided with gradually reducing parts 32a, 32b connecting a pair of the ridge parts 31a, 31b to a pair of the ridge electrodes 21a, 21b respectively by gradually reducing the respective opposed distances.

Description

本発明は、真空処理装置に関し、特にプラズマを用いて基板に処理を行う真空処理装置およびプラズマ処理方法に関する。   The present invention relates to a vacuum processing apparatus, and more particularly to a vacuum processing apparatus and a plasma processing method for processing a substrate using plasma.

一般的に、薄膜太陽電池の生産性を向上させるためには、高品質なシリコン薄膜を、高速に、かつ、大面積で製膜することが重要である。このような高速かつ大面積な製膜を行う方法としては、プラズマCVD(化学気相成長)法による製膜方法が知られている。   Generally, in order to improve the productivity of a thin film solar cell, it is important to form a high-quality silicon thin film at a high speed and in a large area. As a method for performing such high-speed and large-area film formation, a film formation method by plasma CVD (chemical vapor deposition) is known.

プラズマCVD法による製膜を行うためには、プラズマを発生させるプラズマ生成装置(真空処理装置)が必要であり、効率良く製膜を行うプラズマ生成装置として、例えば特許文献1に開示されているリッジ導波管を利用したプラズマ生成装置が知られている。この種のプラズマ生成装置は、特許文献1の図10に示されるように、高周波電源(RF電源)を強い電界に変換させる左右一対の変換器(分配室40)と、これらの変換器の間に接続される放電室(有効空間1)とを備えて構成されている。   In order to perform film formation by the plasma CVD method, a plasma generation apparatus (vacuum processing apparatus) that generates plasma is necessary. As a plasma generation apparatus that performs film formation efficiently, for example, a ridge disclosed in Patent Document 1 A plasma generating apparatus using a waveguide is known. As shown in FIG. 10 of Patent Document 1, this type of plasma generation apparatus includes a pair of left and right converters (distribution chamber 40) that convert a high-frequency power source (RF power source) into a strong electric field, and the converters. And a discharge chamber (effective space 1) connected to.

変換器は、互いに対向する上下一対の平板状のリッジ部を有するリッジ導波管からなる。また、放電室も、互いに対向する上下一対の平坦なリッジ電極板を有するリッジ導波管であり、変換器に連結されている。このように構成されたプラズマ生成装置において、変換器と放電室の内部を減圧し、この中に、プラズマの生成と薄膜の形成に必要な母ガスを供給し、電源から高周波電力を供給すると、放電室内にて近接対向するリッジ電極板の間にプラズマを発生させることができる。そして、このプラズマを利用してガラス基板等に製膜処理を施すことができる。基板は、放電室におけるリッジ電極板の間に配置されるのが一般的である。具体的には、上下のリッジ電極が水平になるように装置全体を設置し、上下の電極の間に基板を搬入して、この基板を下側のリッジ電極の上面に載置する。   The converter includes a ridge waveguide having a pair of upper and lower flat ridges facing each other. The discharge chamber is also a ridge waveguide having a pair of upper and lower flat ridge electrode plates facing each other, and is connected to a converter. In the plasma generating apparatus configured as described above, the inside of the converter and the discharge chamber is decompressed, and in this, the mother gas necessary for generating the plasma and forming the thin film is supplied, and when the high frequency power is supplied from the power source, Plasma can be generated between ridge electrode plates facing each other in the discharge chamber. Then, a film forming process can be performed on a glass substrate or the like using this plasma. The substrate is generally disposed between the ridge electrode plates in the discharge chamber. Specifically, the entire apparatus is installed so that the upper and lower ridge electrodes are horizontal, a substrate is loaded between the upper and lower electrodes, and this substrate is placed on the upper surface of the lower ridge electrode.

従来のこのようなプラズマ生成装置では、リッジ導波管に対して、横方向からマイクロ波電力を供給する構造になっていて、リッジ導波管に沿った長手方向における電界強度分布に偏りが生じていた。即ち、リッジ導波管に沿った長手方向における電界強度分布は、分配室と称されるリッジ導波管に併設された部分および分配室からリッジ導波管にマイクロ波を供給するための結合穴の構成により定まる。そのため、リッジ導波管と分配室は同じ長さが必要であり、かつ分配室や結合穴における取りうる構成が制限されると、電界強度分布の均一性も制限されることからプラズマの均一化が困難になるという問題があった(特許文献1参照)。   In such a conventional plasma generation apparatus, microwave power is supplied to the ridge waveguide from the lateral direction, and the electric field intensity distribution in the longitudinal direction along the ridge waveguide is biased. It was. In other words, the electric field strength distribution in the longitudinal direction along the ridge waveguide includes a portion provided in the ridge waveguide called a distribution chamber and a coupling hole for supplying microwaves from the distribution chamber to the ridge waveguide. Determined by the configuration of For this reason, the ridge waveguide and the distribution chamber must have the same length, and if the possible arrangements in the distribution chamber and the coupling hole are limited, the uniformity of the electric field strength distribution is also limited, so that the plasma is uniformized. There is a problem that it becomes difficult (see Patent Document 1).

また、従来のこのようなプラズマ生成装置では、変換器のリッジ部のリッジ対向間隔に対して、放電室のリッジ電極のリッジ対向間隔が狭く設定されており、リッジ部からリッジ電極にかけて上記リッジ対向間隔が急激に狭まっていたため、この部分にリッジ段差が存在していた。このリッジ段差を繋ぐ板材とリッジ部面とのなす角度である段差角度(傾斜角度)は、これまでほぼ直角(90度)とされてきたが、従来は基板サイズが小さくプラズマ供給電力も限られていたため、課題が顕在化しなかった。   Further, in such a conventional plasma generating apparatus, the ridge facing interval of the ridge electrode of the discharge chamber is set narrower than the ridge facing interval of the ridge portion of the converter, and the ridge facing portion from the ridge portion to the ridge electrode is set. Since the interval was rapidly narrowed, a ridge step was present in this portion. The step angle (tilt angle), which is the angle formed between the plate material connecting the ridge steps and the ridge surface, has been set to be almost right angle (90 degrees) until now, but conventionally the substrate size is small and the plasma supply power is limited. As a result, the problem did not become apparent.

特表平4−504640号公報Japanese National Patent Publication No. 4-504640

しかしながら、1mを越える大きな面積の基板へ製膜を行うにあたっては、変換器におけるリッジ部の対向間隔が凡そ50〜200mm程度に設定され、放電室におけるリッジ電極板の対向間隔が凡そ3〜30mm程度に設定されるため、変換器から放電室へと移行する境界部においては、数十〜百数十mmの大きなリッジ段差が存在し、且つこのリッジ段差の段差角度がほぼ直角にされていたため、変換器から放電室にかけての特性インピーダンスが急激に減少または増加するする傾向が生じ、これまでは高周波電源から整合器で調整する対応が実施されていたが、インピーダンス不整合に伴う反射波発生の抑制は十分ではなかった。 However, when forming a film on a substrate having a large area exceeding 1 m 2 , the facing distance of the ridge portion in the converter is set to about 50 to 200 mm, and the facing distance of the ridge electrode plate in the discharge chamber is about 3 to 30 mm. Because there is a large ridge step of several tens to hundreds of tens of millimeters at the boundary where the converter moves from the discharge chamber, and the step angle of the ridge step is almost perpendicular. , The characteristic impedance from the converter to the discharge chamber tends to decrease or increase rapidly, so far, adjustments have been made from the high frequency power supply with the matching device, but the generation of reflected waves due to impedance mismatching has been implemented. The suppression was not enough.

さらに、製膜処理等でプラズマ発生付近に膜が付着成長し始めると、特性インピーダンスがさらに変動し、これによって特性インピーダンスの変動箇所からの反射波の発生が増加することが懸念されていた。特に、1mを越える大きな面積の製膜を行うにあたっては、1mあたり1kWを越える大電力が投入されるため、反射波に起因して高周波電源系統の変調、故障の発生や、場合によっては高周波電源系統の一部の焼損に至る場合があり、このような反射波の抑制対策の確立は非常に重要な課題として急務になっていた。一方では、電源周波数の高高周波化に伴い、反射波は極短時間に急速に大きくなることがあり、この反射波の発生を抑制するような電気的な構成をプラズマ生成装置に付加することは、技術的にも難しいだけでなく、装置構成の複雑化および価格上昇を招来するため、好ましくない。 Furthermore, when the film starts to adhere and grow in the vicinity of the plasma generation due to the film forming process or the like, there is a concern that the characteristic impedance further fluctuates, which increases the generation of reflected waves from the characteristic impedance fluctuation portion. In particular, when forming a film with a large area exceeding 1 m 2 , a large electric power exceeding 1 kW is input per 1 m 2 , so that modulation of a high-frequency power system due to reflected waves, occurrence of a failure, or in some cases In some cases, a part of the high-frequency power supply system may be burned out, and establishment of a countermeasure for suppressing such reflected waves has become an urgent task as an extremely important issue. On the other hand, as the power supply frequency becomes higher, the reflected wave may rapidly increase in a very short time, and it is not possible to add an electrical configuration that suppresses the generation of this reflected wave to the plasma generator. This is not only technically difficult, but also complicates the device configuration and increases the price, which is not preferable.

本発明は、上記の課題を解決するためになされたものであって、対向するリッジ電極板を有するリッジ導波管を利用してプラズマを発生させる真空処理装置において、簡素かつコンパクトで安価な構造により、変換器と放電室との境界部における反射波の発生を抑制し、高品質なプラズマ処理を行うことのできる真空処理装置およびプラズマ処理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a simple, compact, and inexpensive structure in a vacuum processing apparatus that generates plasma using a ridge waveguide having opposed ridge electrode plates. Accordingly, an object of the present invention is to provide a vacuum processing apparatus and a plasma processing method capable of suppressing generation of a reflected wave at a boundary portion between a converter and a discharge chamber and performing high-quality plasma processing.

上記目的を達成するために、本発明は、以下の手段を提供する。
即ち、本発明に係る真空処理装置は、互いに平行に対向して配置され、その間にプラズマが生成される一方および他方のリッジ電極を有したリッジ導波管からなる放電室と、前記放電室の両端に隣接して配置され、互いに平行に対向して配置された一対の平板状のリッジ部を有したリッジ導波管からなり、高周波電源から供給された高周波電力を方形導波管の基本伝送モードに変換して前記放電室に伝送し、前記一方および他方のリッジ電極の間にプラズマを発生させる一対の変換器と、高周波電力を前記リッジ部に供給する電源手段と、を有し、前記変換器における前記リッジ部の対向間隔よりも、前記放電室における前記リッジ電極の対向間隔の方が狭く設定されて前記リッジ部と前記リッジ電極との境界部にリッジ段差が存在し、前記リッジ段差の部分に、前記一対のリッジ部と前記一方および他方のリッジ電極の間を、それら各々の対向間隔を漸減させて接続する漸減部を有することを特徴とする。
In order to achieve the above object, the present invention provides the following means.
That is, the vacuum processing apparatus according to the present invention is disposed in parallel with each other, and a discharge chamber composed of a ridge waveguide having one and the other ridge electrodes between which plasma is generated, and the discharge chamber It consists of a ridge waveguide with a pair of flat ridges arranged adjacent to both ends and facing each other in parallel. A pair of converters for generating a plasma between the one and the other ridge electrode, and a power supply means for supplying high-frequency power to the ridge portion, The facing distance between the ridge electrodes in the discharge chamber is set narrower than the facing distance between the ridge parts in the converter, and there is a ridge step at the boundary between the ridge part and the ridge electrode, The portion of Tsu di step, between the pair of ridge portions and the one and the other ridge electrodes is gradually decreased to opposing distance of their respective and having a decreasing portion to be connected to.

本発明によれば、リッジ導波管からなる変換器のリッジ部と、同じくリッジ導波管からなる放電室のリッジ電極との接続部に存在するリッジ段差の部分に設けられた漸減部により、対向間隔の大きな変換器の一対のリッジ部と、対向間隔の小さな放電室の一対のリッジ電極とを接続する部分において、対向間隔が一定の傾斜率でなだらかに狭くなるように接続される。このため、変換器から放電室にかけての特性インピーダンスが急激に減少または増加変化することがなく、変換器と放電室との境界部における急激な特性インピーダンス変化に伴う不整合による反射波の発生を抑制し、高周波電源系統の変調や故障等を有効に防止して、高品質なプラズマ製膜処理を行うことができる。   According to the present invention, by the gradual decreasing portion provided in the ridge step portion existing in the connection portion between the ridge portion of the converter made of the ridge waveguide and the ridge electrode of the discharge chamber also made of the ridge waveguide, In a portion connecting the pair of ridge portions of the converter having a large facing distance and the pair of ridge electrodes of the discharge chamber having a small facing distance, the facing distance is connected to be gradually narrowed at a constant inclination rate. For this reason, the characteristic impedance from the converter to the discharge chamber does not suddenly decrease or increase, and the generation of reflected waves due to mismatch due to a sudden characteristic impedance change at the boundary between the converter and the discharge chamber is suppressed. In addition, it is possible to effectively prevent the modulation or failure of the high-frequency power supply system and perform high-quality plasma film formation.

また、本発明に係る真空処理装置は、前記漸減部が、前記一対のリッジ部と前記一方および他方のリッジ電極の間を一定の傾斜率で前記対向間隔が狭くなる斜面状に形成されたことを特徴とする。こうすることにより、変換器から放電室にかけての特性インピーダンスの急激な変化に伴う不整合による反射波の発生を抑制し、漸減部の構造を簡素かつ安価なものにして、真空処理装置の価格上昇を抑えることができる。   Further, in the vacuum processing apparatus according to the present invention, the gradually decreasing portion is formed in a slope shape in which the gap between the pair of ridge portions and the one and the other ridge electrodes is narrowed with a constant slope ratio. It is characterized by. By doing this, the generation of reflected waves due to mismatch caused by a sudden change in characteristic impedance from the converter to the discharge chamber is suppressed, the structure of the gradual reduction part is made simple and inexpensive, and the price of the vacuum processing apparatus increases. Can be suppressed.

さらに、本発明に係る真空処理装置は、前記漸減部の傾斜率が、前記リッジ部の面方向に対する前記漸減部の傾斜角度で30度以上60度以下の角度であることを特徴とする。漸減部の角度は緩やかな方が特性インピーダンスの変化を小さくすることができるが、30度以下の角度にしてしまうと、傾斜角度が小さくなることで漸減部のサイズが長くなり、真空処理装置全体のコンパクト性が損なわれてしまう。このため、漸減部の角度を30度以上60度以下の角度にすることにより、反射波の抑制と、真空処理装置のコンパクト化とを両立させることができる。   Furthermore, the vacuum processing apparatus according to the present invention is characterized in that an inclination rate of the gradually decreasing portion is an angle of not less than 30 degrees and not more than 60 degrees as an inclination angle of the gradually decreasing portion with respect to a surface direction of the ridge portion. If the angle of the gradual decrease part is moderate, the change in characteristic impedance can be reduced. However, if the angle is 30 degrees or less, the inclination angle becomes small and the size of the gradual decrease part becomes long, and the entire vacuum processing apparatus. The compactness of the will be impaired. For this reason, by making the angle of the gradual reduction part an angle of 30 degrees or more and 60 degrees or less, it is possible to achieve both suppression of reflected waves and compactness of the vacuum processing apparatus.

また、本発明に係る真空処理装置は、前記漸減部と前記一方および他方のリッジ電極との接続部にR形状を設けたことを特徴とする。これにより、漸減部からリッジ電極に移行する部分において、対向間隔の変化がより緩やかになり、反射波の発生を一層効果的に防止することができる。このようにR形状を設けることにより、漸減部の傾斜角度をある程度急な角度に設定しても、緩やかな角度に設定したのと同様な反射波抑制効果が得られるため、漸減部の傾斜角度を急勾配にしてその長さを短くし、反射波の抑制と、真空処理装置のコンパクト化とを両立させることができる。   Further, the vacuum processing apparatus according to the present invention is characterized in that an R shape is provided at a connection portion between the gradually decreasing portion and the one and the other ridge electrodes. Thereby, in the part which transfers to a ridge electrode from a gradual reduction part, the change of opposing space | interval becomes looser and generation | occurrence | production of a reflected wave can be prevented more effectively. By providing the R shape in this way, even if the inclination angle of the gradually decreasing portion is set to a steep angle to some extent, the same reflected wave suppression effect as that obtained when the angle is gradually set can be obtained. Can be made steep to shorten its length, and both suppression of reflected waves and compactness of the vacuum processing apparatus can be achieved.

そして、本発明に係る真空処理装置は、前記漸減部と前記一対のリッジ部との接続部、および前記漸減部と前記一方および他方のリッジ電極との接続部にR形状を設けたことを特徴とする。こうすれば、変換器のリッジ部から漸減部に接続する部分と、漸減部から放電室のリッジ電極に接続する部分との両方において対向間隔の変化を緩やかにし、反射波の発生を最も効果的に防止することができる。これにより、漸減部の傾斜角度をより急角度に設定し、その分さらに漸減部の長さを短くして、反射波の抑制と、真空処理装置のコンパクト化とを高次元で両立させることができる。   In the vacuum processing apparatus according to the present invention, an R shape is provided in a connection portion between the gradually decreasing portion and the pair of ridge portions, and a connection portion between the gradually decreasing portion and the one and the other ridge electrodes. And In this way, the change in the facing distance is moderated in both the portion connecting the ridge portion of the converter to the gradually decreasing portion and the portion connecting the gradually decreasing portion to the ridge electrode of the discharge chamber, and the generation of reflected waves is most effective. Can be prevented. As a result, the inclination angle of the gradually decreasing portion is set to a steeper angle, and the length of the gradually decreasing portion is further shortened accordingly, so that the suppression of the reflected wave and the compactness of the vacuum processing apparatus can be achieved at a high level. it can.

また、本発明に係る真空処理装置は、前記漸減部と前記一方および他方のリッジ電極との接続部に設けたR形状の半径は、前記漸減部と前記一対のリッジ部との接続部に設けたR形状の半径よりも大きく設定されたことを特徴とする。こうすることにより、変換器から放電室のリッジ電極に向って滑らかにリッジ対向間隔を狭めて反射波を抑制するとともに、プラズマ発生領域の境界をより明確にし、高品質なプラズマ製膜処理を行うことができる。   Further, in the vacuum processing apparatus according to the present invention, the radius of the R shape provided in the connecting portion between the gradually decreasing portion and the one and the other ridge electrodes is provided in the connecting portion between the gradually decreasing portion and the pair of ridge portions. It is characterized by being set larger than the radius of the R shape. By doing this, the gap between the ridges is smoothly narrowed from the converter toward the ridge electrode of the discharge chamber to suppress the reflected wave, and the boundary of the plasma generation region is further clarified, and high-quality plasma deposition processing is performed. be able to.

さらに、本発明に係るプラズマ処理方法は、前記各態様における真空処理装置を用いて基板にプラズマ処理を施すことを特徴とする。これにより、高品質なプラズマ処理を行うことができる。   Furthermore, the plasma processing method according to the present invention is characterized in that the substrate is subjected to plasma processing using the vacuum processing apparatus in each of the above aspects. Thereby, high quality plasma processing can be performed.

以上のように、本発明に係る真空処理装置およびプラズマ処理方法によれば、対向する一対のリッジ電極板を有するリッジ導波管を利用してプラズマを発生させる真空処理装置において、簡素かつコンパクトで安価な構造により、変換器と放電室との境界部における反射波の発生を抑制し、高品質なプラズマ処理を行うことができるという効果を奏する。   As described above, according to the vacuum processing apparatus and the plasma processing method of the present invention, the vacuum processing apparatus that generates plasma using the ridge waveguide having a pair of opposed ridge electrode plates is simple and compact. Due to the inexpensive structure, it is possible to suppress the generation of reflected waves at the boundary between the converter and the discharge chamber and to perform high-quality plasma processing.

本発明の第1の実施形態に係るダブルリッジ型の製膜装置の概略構成を説明する模式図である。It is a schematic diagram explaining schematic structure of the double ridge type film forming apparatus which concerns on the 1st Embodiment of this invention. 図1に示す製膜装置の斜視図である。It is a perspective view of the film forming apparatus shown in FIG. 図1の放電室の構成を示すIII-III断面視図である。FIG. 3 is a III-III cross-sectional view showing the configuration of the discharge chamber of FIG. 1. 図1の変換器の構成を示すIV-IV断面視図である。FIG. 4 is a cross-sectional view taken along the line IV-IV showing the configuration of the converter of FIG. 1. 図1のV部を拡大して本発明の第1実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which expands the V section of FIG. 1 and shows 1st Embodiment of this invention. 本発明の第2実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of this invention. シングルリッジ型の製膜装置の放電室を示す斜視図である。It is a perspective view which shows the discharge chamber of a single ridge type film forming apparatus.

〔第1実施形態〕
以下、本発明の第1実施形態について、図1〜図5を参照して説明する。本実施形態においては、本発明を、一辺が1mを越える大面積な基板に対して、アモルファス太陽電池や微結晶太陽電池等に用いられる非晶質シリコン、微結晶シリコン等の結晶質シリコン、窒化シリコン等からなる膜の製膜処理をプラズマCVD法によって行うことが可能な製膜装置(真空処理装置)1に適用した場合について説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to a large area substrate having a side exceeding 1 m, amorphous silicon used for amorphous solar cells, microcrystalline solar cells, etc., crystalline silicon such as microcrystalline silicon, nitriding A case will be described in which a film forming process of a film made of silicon or the like is applied to a film forming apparatus (vacuum processing apparatus) 1 capable of performing plasma CVD.

図1は製膜装置1の概略構成を説明する模式図であり、図2は製膜装置1の斜視図である。製膜装置1は、放電室(プロセス室)2と、この放電室2の両端に隣接して配置された変換器3A,3Bと、これらの変換器3A,3Bに一端が接続される同軸ケーブル4A,4Bと、これらの同軸ケーブル4A,4Bの他端に接続される高周波電源5A,5B(電源手段)と、同軸ケーブル4A,4Bの中間部に接続されたサーキュレータ7A,7Bを介して接続された整合器6A,6Bと、排気部9およびガス供給部10を主な構成要素として備えている。   FIG. 1 is a schematic diagram illustrating a schematic configuration of the film forming apparatus 1, and FIG. 2 is a perspective view of the film forming apparatus 1. The film forming apparatus 1 includes a discharge chamber (process chamber) 2, converters 3A and 3B disposed adjacent to both ends of the discharge chamber 2, and a coaxial cable having one end connected to the converters 3A and 3B. 4A, 4B, high-frequency power supplies 5A, 5B (power supply means) connected to the other ends of these coaxial cables 4A, 4B, and circulators 7A, 7B connected to the middle part of the coaxial cables 4A, 4B The matching units 6A and 6B, the exhaust unit 9 and the gas supply unit 10 are provided as main components.

サーキュレータ7A,7Bは、それぞれ高周波電源5A,5Bから供給された高周波電力を放電室(プロセス室)2に導くとともに、高周波電源5A,5Bに対して進行方向が違う高周波電力が入力されることを防止するものである。なお、図2では、構造を判り易くするために、一方の変換器3Aが放電室2から切り離された状態が示されている。   The circulators 7A and 7B guide the high-frequency power supplied from the high-frequency power sources 5A and 5B to the discharge chamber (process chamber) 2, respectively, and that high-frequency power having a different traveling direction is input to the high-frequency power sources 5A and 5B. It is to prevent. FIG. 2 shows a state in which one converter 3 </ b> A is disconnected from the discharge chamber 2 for easy understanding of the structure.

図1に示すように、放電室2および変換器3A,3Bは、函状の真空容器8に収納されている。真空容器8には排気部9が接続され、真空容器8および放電室2、変換器3A,3Bの内部が排気部9により0.1kPaから10kPa程度の真空状態とされる。このため、放電室2および変換器3A,3Bならびに真空容器8は内外の圧力差に耐え得る構造とされる。排気部9としては、本発明において特に限定されることはなく、たとえば公知の真空ポンプ、圧力調整弁と真空排気配管等を用いることができる。   As shown in FIG. 1, the discharge chamber 2 and the converters 3 </ b> A and 3 </ b> B are housed in a box-shaped vacuum vessel 8. An exhaust unit 9 is connected to the vacuum vessel 8, and the inside of the vacuum vessel 8, the discharge chamber 2, and the converters 3 </ b> A, 3 </ b> B is brought to a vacuum state of about 0.1 kPa to 10 kPa by the exhaust unit 9. For this reason, the discharge chamber 2, the converters 3A and 3B, and the vacuum vessel 8 are configured to withstand the pressure difference between the inside and outside. The exhaust unit 9 is not particularly limited in the present invention, and for example, a known vacuum pump, pressure adjusting valve, vacuum exhaust pipe, or the like can be used.

真空容器8の材質としては、例えばステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)等から形成し、リブ材等で補強された構成を用いることができる。また、放電室2は、非磁性または弱磁性を有し、且つ導電性を有する、アルミニウム合金材料等の材料から形成された容器状の部品であって、所謂ダブルリッジ型の導波管状に形成されたものである。   As a material of the vacuum vessel 8, for example, a structure formed from stainless steel (SUS material in JIS standard), a general structural rolling material (SS material in JIS standard), and reinforced with a rib material or the like can be used. . The discharge chamber 2 is a container-shaped part made of a material such as an aluminum alloy material that is nonmagnetic or weakly magnetic and has conductivity, and is formed in a so-called double ridge type waveguide tube. It has been done.

図1〜図3に示すように、放電室2には、上下方向(後述のE方向)に配列された上下一対のリッジ電極21a(一方のリッジ電極)とリッジ電極21b(他方のリッジ電極)が設けられている。これら一対のリッジ電極21a,21bは、ダブルリッジ導波管である放電室2における主要部分となるリッジ形状を構成するものであり、互いに平行に対向配置された平板状の部分である。そして、この放電室2に、プラズマ製膜処理が施される基板Sが収容される。この基板Sは、例えば下側のリッジ電極21bの上に載置される。   As shown in FIGS. 1 to 3, the discharge chamber 2 has a pair of upper and lower ridge electrodes 21a (one ridge electrode) and a ridge electrode 21b (the other ridge electrode) arranged in the vertical direction (E direction described later). Is provided. The pair of ridge electrodes 21a and 21b form a ridge shape that is a main part in the discharge chamber 2 that is a double ridge waveguide, and are flat plate-like portions that are arranged to face each other in parallel. The discharge chamber 2 accommodates a substrate S on which a plasma film forming process is performed. The substrate S is placed on, for example, the lower ridge electrode 21b.

また、下側のリッジ電極21bにおいて、上側のリッジ電極21aと反対側の面にあたるリッジ電極21bの外側面には、図示しない均熱温調器を設けて、基板Sの温度を制御してもよい。なお、基板Sは必ずしも一対の放電用のリッジ電極21a,21bの間に配置する必要はなく、例えば下側のリッジ電極21bに製膜ガスが通過できる多数の通気孔を設け、この下側のリッジ電極21bの下面から所定の間隔を空けて上述の均熱温調器を設け、その上面に基板Sを載置して、基板Sの温度を制御しながら製膜処理を行ってもよい。   Further, in the lower ridge electrode 21b, a temperature-equalizing temperature controller (not shown) is provided on the outer surface of the ridge electrode 21b opposite to the upper ridge electrode 21a to control the temperature of the substrate S. Good. The substrate S is not necessarily disposed between the pair of discharge ridge electrodes 21a and 21b. For example, the lower ridge electrode 21b is provided with a large number of ventilation holes through which the film-forming gas can pass, The above-described soaking temperature controller may be provided at a predetermined interval from the lower surface of the ridge electrode 21b, the substrate S may be placed on the upper surface, and the film forming process may be performed while controlling the temperature of the substrate S.

本実施形態では、放電室2が延びる方向をL方向(図1における左右方向)とし、リッジ電極21a,21bの面に直交してプラズマ放電時の電界が生じる方向をE方向(図1における上下方向)とし、一対のリッジ電極21a,21bに沿い、かつE方向と直交する方向をH方向(図1における紙面に対して直交する方向)とする。さらに、図5に示すように、一方のリッジ電極21aから他方のリッジ電極21bまでの距離がリッジ電極対向間隔d1(mm)と定められる。このリッジ電極対向間隔d1は、高周波電源5A,5Bの周波数、基板Sの大きさやプラズマ製膜処理の種類等に応じて、凡そ3〜30mm程度の範囲に設定される。   In the present embodiment, the direction in which the discharge chamber 2 extends is defined as the L direction (left and right direction in FIG. 1), and the direction in which an electric field is generated during plasma discharge perpendicular to the surfaces of the ridge electrodes 21a and 21b is defined as the E direction. Direction), and a direction along the pair of ridge electrodes 21a and 21b and perpendicular to the E direction is defined as an H direction (a direction perpendicular to the paper surface in FIG. 1). Further, as shown in FIG. 5, the distance from one ridge electrode 21a to the other ridge electrode 21b is defined as a ridge electrode facing distance d1 (mm). The ridge electrode facing distance d1 is set in a range of about 3 to 30 mm according to the frequency of the high frequency power supplies 5A and 5B, the size of the substrate S, the type of plasma film forming process, and the like.

基板Sとしては透光性ガラス基板を例示することができる。例えば、太陽電池パネルに用いられるものでは、縦横の大きさが1.4m×1.1m、厚さが3.0mmから4.5mmのものを挙げることができる。   As the substrate S, a translucent glass substrate can be exemplified. For example, what is used for a solar cell panel can have a vertical and horizontal size of 1.4 m × 1.1 m and a thickness of 3.0 mm to 4.5 mm.

図4は、変換器3A,3Bの構成を説明する模式図である。変換器3A,3Bは、放電室2と同様に、アルミニウム合金材料等の導電性を有し非磁性または弱磁性を有する材料から形成された容器状の部品であって、放電室2と同様にダブルリッジ導波管状に形成されている。   FIG. 4 is a schematic diagram illustrating the configuration of the converters 3A and 3B. The converters 3 </ b> A and 3 </ b> B are container-like parts formed of a conductive non-magnetic or weakly magnetic material such as an aluminum alloy material, like the discharge chamber 2. It is formed in a double ridge waveguide tube.

図1に示すように、変換器3A,3Bは、それぞれ高周波電源5A,5Bから供給される高周波電力が導入される部分であって、供給された高周波電力を放電室2側に伝送する役割を担っている。これらの変換器3A,3Bは、放電室2の、L方向の端部に連結され、電気的に接続されている。なお、変換器3A,3Bを放電室2に対して一体的に設けてもよい。   As shown in FIG. 1, the converters 3A and 3B are portions into which high-frequency power supplied from the high-frequency power sources 5A and 5B is introduced, respectively, and play a role of transmitting the supplied high-frequency power to the discharge chamber 2 side. I'm in charge. These converters 3A and 3B are connected to and electrically connected to the end of the discharge chamber 2 in the L direction. The converters 3A and 3B may be provided integrally with the discharge chamber 2.

変換器3A,3Bには、図1、図2および図4に示すように、それぞれ上下一対の平板状のリッジ部31a,31bが設けられている。これらのリッジ部31a,31bは、ダブルリッジ導波管である変換器3A,3Bにおけるリッジ形状を構成するものであり、互いに平行に対向して配置されている。変換器3A,3Bは、高周波電力の伝送モードを同軸伝送モードであるTEMモードから方形導波管の基本伝送モードであるTEモードに変換して、放電室(プロセス室)2に伝送する。   As shown in FIGS. 1, 2 and 4, the converters 3A and 3B are provided with a pair of upper and lower flat plate-shaped ridge portions 31a and 31b, respectively. These ridge portions 31a and 31b form a ridge shape in the converters 3A and 3B, which are double ridge waveguides, and are arranged to face each other in parallel. The converters 3 </ b> A and 3 </ b> B convert the high-frequency power transmission mode from the TEM mode that is the coaxial transmission mode to the TE mode that is the basic transmission mode of the rectangular waveguide, and transmit the converted mode to the discharge chamber (process chamber) 2.

変換器3A,3Bにおける一方のリッジ部31aから他方のリッジ部31bまでの距離がリッジ部対向間隔d2(mm)と定められる(図5参照)。このリッジ部対向間隔d2は、高周波電源5A,5Bの周波数、基板Sの大きさやプラズマ製膜処理の種類等に応じて、凡そ50〜200mm程度の範囲に設定される。   The distance from one ridge portion 31a to the other ridge portion 31b in the converters 3A and 3B is determined as a ridge portion facing distance d2 (mm) (see FIG. 5). The ridge facing distance d2 is set in a range of about 50 to 200 mm according to the frequency of the high frequency power supplies 5A and 5B, the size of the substrate S, the type of plasma film forming process, and the like.

図1、図2および図4に示すように、変換器3A,3Bに接続されている同軸ケーブル4A,4Bは、例えばその外部導体41が上側のリッジ部31aに電気的に接続され、内部導体42が下側のリッジ部31bに電気的に接続されている。同軸ケーブル4A,4Bは、それぞれ、高周波電源5A,5Bから供給された高周波電力を、変換器3A,3Bに導くものである。なお、高周波電源5A,5Bとしては、公知のものを用いることができる。   As shown in FIGS. 1, 2 and 4, the coaxial cables 4A and 4B connected to the converters 3A and 3B have, for example, an outer conductor 41 electrically connected to the upper ridge portion 31a, and an inner conductor. 42 is electrically connected to the lower ridge 31b. The coaxial cables 4A and 4B lead the high frequency power supplied from the high frequency power supplies 5A and 5B to the converters 3A and 3B, respectively. As the high frequency power supplies 5A and 5B, known ones can be used.

本発明において、高周波電源5A,5Bは、周波数が13.56MHz以上、好ましくは30MHzから400MHz(VHF帯からUHF帯)に設定されている。これは、13.56MHzよりも周波数が低いと、ダブルリッジ導波管である放電室2と変換器3A,3Bのサイズが基板Sのサイズに対して大型化するために装置設置スペースが増加し、逆に周波数が400MHzより高いと、放電室(プロセス室)2が延びる方向(L方向)に生じる定在波の影響が増大してプラズマの均一性が低下するためである。さらに、リッジ導波管の特性により、リッジ電極21a,21bの間ではリッジ電極に沿う方向(H方向)の電界強度分布がほぼ均一になる。そして、リッジ電極21a,21bの間ではプラズマを生成可能な程度の強い電界強度を得ることができる。   In the present invention, the high frequency power supplies 5A and 5B have a frequency set to 13.56 MHz or more, preferably 30 MHz to 400 MHz (VHF band to UHF band). If the frequency is lower than 13.56 MHz, the size of the discharge chamber 2, which is a double ridge waveguide, and the size of the converters 3A and 3B are increased with respect to the size of the substrate S. On the contrary, if the frequency is higher than 400 MHz, the influence of the standing wave generated in the direction (L direction) in which the discharge chamber (process chamber) 2 extends increases, and the uniformity of the plasma decreases. Furthermore, due to the characteristics of the ridge waveguide, the electric field intensity distribution in the direction along the ridge electrode (H direction) is substantially uniform between the ridge electrodes 21a and 21b. A strong electric field strength capable of generating plasma can be obtained between the ridge electrodes 21a and 21b.

その一方で、放電室2には、高周波電源5Aから供給された高周波電力と、高周波電源5Bから供給された高周波電力により、定在波が形成される。このとき、電源5Aおよび電源5Bから供給される高周波電力の位相が固定されていると、定在波の位置(位相)が固定され、リッジ電極21a,21bにおける放電室2の長さ方向(L方向)の電界強度の分布に偏りが生じる。そこで、高周波電源5Aおよび高周波電源5Bの少なくとも一方から供給される高周波電力の位相を調節することにより、放電室2に形成される定在波の位置の調節が行われる。これにより、リッジ電極21a,21bにおけるL方向の電界強度の分布が時間平均的に均一化される。   On the other hand, a standing wave is formed in the discharge chamber 2 by the high frequency power supplied from the high frequency power source 5A and the high frequency power supplied from the high frequency power source 5B. At this time, if the phase of the high frequency power supplied from the power source 5A and the power source 5B is fixed, the position (phase) of the standing wave is fixed, and the length direction (L of the discharge chamber 2 in the ridge electrodes 21a and 21b) Direction) electric field intensity distribution. Therefore, the position of the standing wave formed in the discharge chamber 2 is adjusted by adjusting the phase of the high frequency power supplied from at least one of the high frequency power source 5A and the high frequency power source 5B. Thereby, the distribution of the electric field intensity in the L direction in the ridge electrodes 21a and 21b is made uniform on a time average basis.

具体的には、定在波の位置が、時間の経過に伴いL方向に、sin波状や、三角波状や、階段(ステップ)状に移動するように高周波電源5Aおよび高周波電源5Bから供給される高周波電力の位相が調節される。定在波が移動する範囲や、定在波を移動させる方式(sin波状、三角波状、階段状等)や、位相調整の周期の適正化は、電力の分布や、プラズマからの発光の分布や、プラズマ密度の分布や、製膜された膜に係る特性の分布等に基づいて行われる。膜に係る特性としては、膜厚や、膜質や、太陽電池等の半導体としての特性等を挙げることができる。リッジ部を形成したリッジ導波管の特性と、高周波電源5A,5Bから供給された高周波電力の位相変調により、基板Sに対してH方向とL方向のいずれの方向にも均一なプラズマを広い範囲に生成することができ、大面積基板へ製膜するにあたり、高品質な膜を均一に製膜することができる。   Specifically, the position of the standing wave is supplied from the high-frequency power source 5A and the high-frequency power source 5B so as to move in the sine wave shape, the triangular wave shape, or the staircase (step) shape in the L direction as time passes. The phase of the high frequency power is adjusted. The range in which the standing wave moves, the method of moving the standing wave (sin wave shape, triangular wave shape, stepped shape, etc.) and the optimization of the phase of the phase adjustment depend on the distribution of power, the distribution of light emission from plasma, It is performed based on the distribution of plasma density, the distribution of characteristics related to the formed film, and the like. Examples of characteristics relating to the film include film thickness, film quality, and characteristics as a semiconductor such as a solar cell. Due to the characteristics of the ridge waveguide formed with the ridge portion and the phase modulation of the high-frequency power supplied from the high-frequency power supplies 5A and 5B, a uniform plasma is widened in both the H and L directions with respect to the substrate S. A high quality film can be uniformly formed when forming a film on a large area substrate.

一方、ガス供給部10は、放電室2等から離れた位置に配置され、基板Sの表面にプラズマ製膜処理を施すのに必要な原料ガスを含む材料ガス(例えば、SiHガス等)を、放電室2の内部においてリッジ電極21a,21bの間に供給するものである。 On the other hand, the gas supply unit 10 is disposed at a position away from the discharge chamber 2 and the like, and supplies a material gas (for example, SiH 4 gas) including a source gas necessary for performing a plasma film forming process on the surface of the substrate S. In the discharge chamber 2, it is supplied between the ridge electrodes 21a and 21b.

図5に示すように、変換器3A,3Bにおけるリッジ部31a,31b間のリッジ部対向間隔d2(凡そ50〜200mm)よりも、放電室2におけるリッジ電極21a,21b間のリッジ電極対向間隔d1(凡そ3〜30mm)の方が狭く設定されているため、リッジ部31a,31bとリッジ電極21a,21bとの境界部に数十〜百数十ミリのリッジ段差Dが存在している。そして、このリッジ段差Dの部分には漸減部32a,32bが設けられている(図1、図2も参照)。この漸減部32a,32bは、リッジ部31a,31bからリッジ電極21a,21bにかけて、そのリッジ対向間隔を漸減させて接続するものである。   As shown in FIG. 5, the ridge electrode facing distance d1 between the ridge electrodes 21a and 21b in the discharge chamber 2 is larger than the ridge facing distance d2 (approximately 50 to 200 mm) between the ridges 31a and 31b in the converters 3A and 3B. Since (about 3 to 30 mm) is set narrower, a ridge step D of several tens to several tens of millimeters exists at the boundary between the ridge portions 31a and 31b and the ridge electrodes 21a and 21b. Further, gradually decreasing portions 32a and 32b are provided at the ridge step D (see also FIGS. 1 and 2). The gradually decreasing portions 32a and 32b are connected from the ridge portions 31a and 31b to the ridge electrodes 21a and 21b while gradually decreasing the ridge facing distance.

本実施形態において、漸減部32a,32bは、リッジ部31a,31bからリッジ電極21a,21bに向って一定の傾斜率でリッジ対向間隔を狭くする斜面状に形成されている。漸減部32a,32bが、リッジ部31a,31bの面方向(本実施形態ではL方向とH方向に広がる水平面)に対してなす角度である傾斜角度θは、30度以上60度以下の角度に設定するのが望ましい。ここでは漸減部32a,32bの傾斜角度θが35度程度に設定されている。   In the present embodiment, the gradually decreasing portions 32a and 32b are formed in a slope shape that narrows the ridge facing distance from the ridge portions 31a and 31b toward the ridge electrodes 21a and 21b at a constant inclination rate. The inclination angle θ, which is an angle formed by the gradually decreasing portions 32a and 32b with respect to the surface direction of the ridge portions 31a and 31b (horizontal plane extending in the L direction and the H direction in the present embodiment), is an angle of 30 degrees or more and 60 degrees or less. It is desirable to set. Here, the inclination angle θ of the gradually decreasing portions 32a and 32b is set to about 35 degrees.

傾斜角度θが30度以下では、反射波を小さく抑えられる反面、漸減部32a,32bのL方向の長さ(図5のL1)が長くなるため製膜装置1が大型化するとともに、リッジ電極21a,21bと漸減部32a,32bとの境界部においてプラズマの発生範囲の境界部分が曖昧になり、プラズマの不安定要因になってしまう。一方、傾斜角度θが60度以上になると、リッジ段差Dが大きくなるほど漸減部32a,32bで発生する反射波成分が高周波電源5A,5Bへと戻る反射波として加わり、全体の反射波が増大するために好ましくない。   When the tilt angle θ is 30 degrees or less, the reflected wave can be kept small, but the length in the L direction of the gradually decreasing portions 32a and 32b (L1 in FIG. 5) becomes long, so that the film forming apparatus 1 becomes large and the ridge electrode The boundary part of the plasma generation range becomes ambiguous at the boundary part between 21a, 21b and the gradually decreasing parts 32a, 32b, which becomes an unstable factor of plasma. On the other hand, when the inclination angle θ is 60 degrees or more, the reflected wave components generated in the gradually decreasing portions 32a and 32b are added as reflected waves returning to the high frequency power supplies 5A and 5B as the ridge step D increases, and the total reflected waves increase. Therefore, it is not preferable.

以上のように構成された製膜装置1において、放電室2の内部に設置された基板Sには、以下の手順によりプラズマ製膜処理が施される。   In the film forming apparatus 1 configured as described above, a plasma film forming process is performed on the substrate S installed inside the discharge chamber 2 by the following procedure.

まず、図1および図3に示すように、図示しない基板搬送装置により、基板Sが、放電室2におけるリッジ電極21bの上に配置される。その後、図1に示す排気部9により真空容器8、放電室2、変換器3A,3Bの内部から空気等の気体が排気される。   First, as shown in FIGS. 1 and 3, the substrate S is placed on the ridge electrode 21 b in the discharge chamber 2 by a substrate transfer device (not shown). Thereafter, a gas such as air is exhausted from the inside of the vacuum vessel 8, the discharge chamber 2, and the converters 3A and 3B by the exhaust unit 9 shown in FIG.

さらに、高周波電源5A,5Bから、周波数が13.56MHz以上、好ましくは30MHzから400MHzの高周波電力が変換器3A,3Bを経て放電室2のリッジ電極21a,21bに供給されるとともに、ガス供給部10からリッジ電極21a,21bの間に、例えばSiHガス等の母ガスが供給される。この時、真空容器8内を排気する排気部9の排気量が制御されて、放電室2等の内部、即ちリッジ電極21a,21bの間の気圧が0.1kPaから10kPa程度の真空状態に保たれる。 Furthermore, high-frequency power having a frequency of 13.56 MHz or higher, preferably 30 MHz to 400 MHz is supplied from the high-frequency power sources 5A and 5B to the ridge electrodes 21a and 21b of the discharge chamber 2 through the converters 3A and 3B, and a gas supply unit. Between 10 and the ridge electrodes 21a and 21b, a mother gas such as SiH 4 gas is supplied. At this time, the exhaust amount of the exhaust unit 9 for exhausting the inside of the vacuum vessel 8 is controlled, and the pressure inside the discharge chamber 2 or the like, that is, the pressure between the ridge electrodes 21a and 21b is maintained in a vacuum state of about 0.1 kPa to 10 kPa. Be drunk.

一方、高周波電源5A,5Bから供給された高周波電力は、同軸ケーブル4A,4Bと整合器6A,6Bを介して変換器3A,3Bに伝送される。整合器6A,6Bでは高周波電力を伝送する系統におけるインピーダンス等の値が調節される。そして、変換器3A,3Bにおいて、高周波電力の伝送モードが、同軸伝送モードであるTEMモードから方形導波管の基本伝送モードであるTEモードに変換され、変換部3A,3Bから放電室2のリッジ電極21a,21bに伝送される。リッジ電極21a,21bでは、そのリッジ電極対向間隔d1が狭く設定されたことで強い電界が発生し、このリッジ電極21a,21bの間に母ガスを導入することで母ガスが電離されてプラズマが生成される。   On the other hand, the high frequency power supplied from the high frequency power supplies 5A and 5B is transmitted to the converters 3A and 3B via the coaxial cables 4A and 4B and the matching units 6A and 6B. The matching units 6A and 6B adjust values such as impedance in a system that transmits high-frequency power. In the converters 3A and 3B, the high-frequency power transmission mode is converted from the TEM mode that is the coaxial transmission mode to the TE mode that is the basic transmission mode of the rectangular waveguide, and the converters 3A and 3B It is transmitted to the ridge electrodes 21a and 21b. In the ridge electrodes 21a and 21b, a strong electric field is generated by setting the ridge electrode facing distance d1 to be narrow, and by introducing the mother gas between the ridge electrodes 21a and 21b, the mother gas is ionized and plasma is generated. Generated.

このような状態において、リッジ電極21a,21bの間で材料ガスが分解や活性化して製膜種が発生する。材料ガスにSiHとHを主成分に用い、このプラズマを基板Sの面内において均一に形成することにより、基板Sの上に均一な膜、例えばアモルファスシリコン膜や結晶質シリコン膜が形成される。 In such a state, the material gas is decomposed and activated between the ridge electrodes 21a and 21b to generate a film-forming species. By using SiH 4 and H 2 as the main gases and forming this plasma uniformly in the plane of the substrate S, a uniform film such as an amorphous silicon film or a crystalline silicon film is formed on the substrate S. Is done.

放電室2は、リッジ部(リッジ電極21a,21b)を形成したリッジ導波管であるため、その特性により、リッジ電極21a,21bの間ではH方向の電界強度分布がほぼ均一になる。さらに、高周波電源5Aおよび高周波電源5Bの少なくとも一方から供給される高周波電力の位相を時間的に変調することにより、放電室2に形成される定在波の位置を変化させ、リッジ電極21a,21bにおけるL方向の電界強度の分布が時間平均的に均一化される。リッジ導波管を用いることにより、伝送損出が小さい効果も加わり、H方向とL方向ともに電界強度分布がほぼ均一化された領域を容易に大面積化できる。   Since the discharge chamber 2 is a ridge waveguide in which ridge portions (ridge electrodes 21a and 21b) are formed, the electric field intensity distribution in the H direction is substantially uniform between the ridge electrodes 21a and 21b due to the characteristics thereof. Further, the position of the standing wave formed in the discharge chamber 2 is changed by temporally modulating the phase of the high frequency power supplied from at least one of the high frequency power source 5A and the high frequency power source 5B, and the ridge electrodes 21a and 21b are changed. The distribution of the electric field intensity in the L direction at is uniformed on a time average basis. By using the ridge waveguide, an effect of low transmission loss is added, and the area where the electric field intensity distribution is almost uniform in both the H direction and the L direction can be easily increased.

そして、先述した通り、変換器3A,3Bのリッジ部31a,31bと、放電室2のリッジ電極21a,21bとの境界部に存在するリッジ段差Dの部分に漸減部32a,32bが設けられており、この漸減部32a,32bがリッジ部31a,31bからリッジ電極21a,21bにかけてのリッジ対向間隔を漸減させる斜面状に形成されているため、この部分におけるリッジ対向間隔が一定の傾斜率でなだらかに狭くなっている。   As described above, gradually decreasing portions 32a and 32b are provided at the ridge step D at the boundary between the ridge portions 31a and 31b of the converters 3A and 3B and the ridge electrodes 21a and 21b of the discharge chamber 2. The gradually decreasing portions 32a and 32b are formed in a slope shape that gradually decreases the ridge facing distance from the ridge portions 31a and 31b to the ridge electrodes 21a and 21b. It has become narrower.

このため、変換器3A,3Bから放電室2にかけて特性インピーダンスが急激に大きく減少あるいは増加することがなく、変換器3A,3Bと放電室2との境界部における急激な特性インピーダンス不整合による反射波の発生を抑制することができる。その結果、高周波電源5A,5Bの系統における変調や故障、焼損等を有効に防止するとともに、リッジ電極21a,21b間の、放電室2の長さ方向(L方向)の電界の伝送の減衰を抑制して時間平均的に均一化することができ、基板Sに対してプラズマを均一かつ広範囲に分布させて、大面積基板へ製膜するにあたり、均一かつ高品質なプラズマ製膜処理を行うことができる。   Therefore, the characteristic impedance does not drastically decrease or increase from the converters 3A, 3B to the discharge chamber 2, and the reflected wave due to the sudden characteristic impedance mismatch at the boundary between the converters 3A, 3B and the discharge chamber 2 Can be suppressed. As a result, modulation, failure, burnout, etc. in the system of the high frequency power supplies 5A, 5B are effectively prevented, and transmission of the electric field in the length direction (L direction) of the discharge chamber 2 between the ridge electrodes 21a, 21b is attenuated. A uniform and high-quality plasma film forming process can be performed when forming a film on a large area substrate by distributing the plasma uniformly and over a wide range on the substrate S. Can do.

また、漸減部32a,32bが、リッジ部31a,31bからリッジ電極21a,21bに向って一定の傾斜率でリッジ対向間隔が狭くなる斜面状に形成されているため、漸減部32a,32bの構造を簡素かつ安価なものにして、製膜装置1の価格上昇を抑えるとともに、漸減部32a,32bを強度的に堅固なものにして、内外の圧力差にも変形しにくいものにすることができる。   In addition, since the gradually decreasing portions 32a and 32b are formed in a slope shape with a constant inclination rate from the ridge portions 31a and 31b toward the ridge electrodes 21a and 21b, the ridge facing interval is narrowed. Can be made simple and inexpensive to suppress an increase in the price of the film forming apparatus 1, and the gradually decreasing portions 32a and 32b can be made strong and difficult to be deformed by a pressure difference between the inside and outside. .

しかも、漸減部32a,32bの傾斜角度θを、リッジ部31a,31bの面方向(本実施形態ではL方向とH方向に広がる水平面)に対して30度以上60度以下の角度に設定したため、上述した反射波の抑制と、製膜装置1のコンパクト化とを両立させることができる。即ち、漸減部32a,32bの傾斜角度θは緩やかな方が特性インピーダンスの変化を小さくして反射波の発生を抑制することができるが、30度以下の角度に寝かせてしまうと、リッジ電極21a,21bと漸減部32a,32bとの境界部においてプラズマの発生する範囲が曖昧化してプラズマの不安定要因になってしまう。しかも、漸減部32a,32bのL方向の長さL1(=D/tanθ)は、傾斜角度θが小さくなるとともに長くなり、これによって製膜装置1全体のコンパクト性が損なわれてしまう。このため、漸減部32a,32bの傾斜角度θを30度以上60度以下の角度にすることにより、反射波の抑制と、製膜装置1のコンパクト化とを両立させることができる。   Moreover, since the inclination angle θ of the gradually decreasing portions 32a and 32b is set to an angle of 30 degrees or more and 60 degrees or less with respect to the surface direction of the ridge portions 31a and 31b (horizontal plane extending in the L direction and the H direction in this embodiment), The suppression of the reflected wave described above and the compactness of the film forming apparatus 1 can both be achieved. That is, if the inclination angle θ of the gradually decreasing portions 32a and 32b is gentle, the change in characteristic impedance can be reduced to suppress the generation of reflected waves, but if the angle is set to 30 ° or less, the ridge electrode 21a , 21b and the gradually decreasing portions 32a and 32b, the plasma generation range is obscured and becomes a cause of plasma instability. Moreover, the length L1 (= D / tan θ) in the L direction of the gradually decreasing portions 32a and 32b becomes longer as the inclination angle θ becomes smaller, which impairs the compactness of the entire film forming apparatus 1. For this reason, by suppressing the inclination angle θ of the gradually decreasing portions 32a and 32b to an angle of 30 degrees or more and 60 degrees or less, it is possible to achieve both suppression of reflected waves and downsizing of the film forming apparatus 1.

〔第2実施形態〕
次に、本発明の第2実施形態について、図6を参照して説明する。本実施形態において、図5に示す第1実施形態の構成と異なるのは、漸減部32a,32bとリッジ電極21a,21bとの接続部にR形状が設けられている点と、漸減部32a,32bの傾斜角度θが第1実施形態の場合よりも大きな角度で設置されて漸減部32a,32bが急角度に立っている点であり、他の部分の構成は第1実施形態と同一である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the configuration of the first embodiment shown in FIG. 5 is different from that of the first embodiment shown in FIG. 5 in that an R shape is provided at the connection between the gradually decreasing portions 32a and 32b and the ridge electrodes 21a and 21b. The inclination angle θ of 32b is set at a larger angle than in the case of the first embodiment, and the gradually decreasing portions 32a and 32b stand at a steep angle, and the configuration of the other parts is the same as that of the first embodiment. .

R形状の半径寸法は、製膜装置1の大きさや用途等によって異なるが、半径10mm以上であることが望ましい。また、R形状の半径寸法の上限値は、R<(d2−d1)/2の式により導き出すことができる。例えば、リッジ電極21aと21bとのリッジ電極対向間隔d1が10mmに設定され、リッジ部31aと31bとの対向間隔d2が80mmに設定されている場合には、(80−10)/2=35mmとなる。したがって、Rの値を10mm以上35mm未満に設定するのが好ましい。   The radius dimension of the R shape varies depending on the size and application of the film forming apparatus 1, but is preferably 10 mm or more. Further, the upper limit value of the radius shape of the R shape can be derived from the equation R <(d2-d1) / 2. For example, when the ridge electrode facing distance d1 between the ridge electrodes 21a and 21b is set to 10 mm and the facing distance d2 between the ridge portions 31a and 31b is set to 80 mm, (80-10) / 2 = 35 mm It becomes. Therefore, it is preferable to set the value of R to 10 mm or more and less than 35 mm.

このようなR形状を設けることにより、漸減部32a,32bからリッジ電極21a,21bに移行する部分において、リッジ対向間隔の変化(リッジ段差の変化)がより緩やかになり、特性インピーダンスの増加または減少による不整合による反射波の発生を一層効果的に防止することができる。しかも、このR形状を設けることにより、漸減部32a,32bの傾斜角度θを第1実施形態で示した30度〜60度よりも大きな角度に設定しても、緩やかな角度に設定したのと同様な反射波抑制効果が得られる。   By providing such an R shape, the change in the ridge facing distance (change in the ridge step) becomes more gradual in the portion where the gradually decreasing portions 32a and 32b transition to the ridge electrodes 21a and 21b, and the characteristic impedance is increased or decreased. It is possible to more effectively prevent the generation of reflected waves due to mismatch due to the above. Moreover, by providing this R shape, even if the inclination angle θ of the gradually decreasing portions 32a and 32b is set to an angle larger than 30 to 60 degrees shown in the first embodiment, it is set to a gentle angle. A similar reflected wave suppression effect can be obtained.

このため、漸減部32a,32bの傾斜角度θを30度〜60度よりも大きな範囲、例えば40度〜70度の間に設定でき、その分L方向の長さL2(=D/tanθ)は傾斜角度θが大きくなるとともに短くなるため、反射波の抑制と、製膜装置1のコンパクト化とを両立させることができる。この第2実施形態では、漸減部32a,32bの傾斜角度θを45度に設定している。こうすれば、傾斜角度θを35度に設定した第1実施形態における漸減部32a,32bのL方向の長さL1に比べて、漸減部32a,32bのL方向の長さL2を短縮することができ、製膜装置1がコンパクト化する。   For this reason, the inclination angle θ of the gradually decreasing portions 32a and 32b can be set in a range larger than 30 ° to 60 °, for example, between 40 ° and 70 °, and the length L2 (= D / tan θ) in the L direction accordingly. Since the inclination angle θ increases and decreases, it is possible to achieve both suppression of reflected waves and compactness of the film forming apparatus 1. In the second embodiment, the inclination angle θ of the gradually decreasing portions 32a and 32b is set to 45 degrees. In this way, the length L2 in the L direction of the gradually decreasing portions 32a and 32b is shortened compared to the length L1 in the L direction of the gradually decreasing portions 32a and 32b in the first embodiment in which the inclination angle θ is set to 35 degrees. The film forming apparatus 1 can be made compact.

〔第3実施形態〕
次に、本発明の第3実施形態について、図7を参照して説明する。本実施形態において、図6に示す第2実施形態の構成と異なるのは、漸減部32a,32bとリッジ電極21a,21bとの接続部にR形状(R1)が設けられていることに加えて、漸減部32a,32bと変換器3A,3Bのリッジ部31a,31bとの接続部にもR形状(R2)が設けられている点である。R1とR2の大きさの関係は、R1<R2に設定するのが好ましい。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the difference from the configuration of the second embodiment shown in FIG. 6 is that an R shape (R1) is provided at the connection portion between the gradually decreasing portions 32a and 32b and the ridge electrodes 21a and 21b. In addition, an R shape (R2) is also provided at a connection portion between the gradually decreasing portions 32a and 32b and the ridge portions 31a and 31b of the converters 3A and 3B. The relationship between the sizes of R1 and R2 is preferably set to R1 <R2.

このように、漸減部32a,32bの両端にそれぞれR形状(R1,R2)を設けたことにより、変換器3A,3Bのリッジ部31a,31bから漸減部32a,32bに移行する部分と、漸減部32a,32bから放電室2のリッジ電極21a,21bに移行する部分との両方においてリッジ対向間隔の変化(リッジ段差の変化)を緩やかにし、特性インピーダンスの増加または減少による不整合による反射波の発生を最も効果的に防止することができる。   In this way, by providing R shapes (R1, R2) at both ends of the gradually decreasing portions 32a, 32b, the portions of the converters 3A, 3B that are shifted from the ridge portions 31a, 31b to the gradually decreasing portions 32a, 32b, and gradually decreasing, respectively. The change in the ridge facing distance (change in the ridge step) is moderated in both the portions 32a, 32b and the portions of the discharge chamber 2 that transition to the ridge electrodes 21a, 21b, and the reflected wave due to mismatch due to the increase or decrease in characteristic impedance. Occurrence can be prevented most effectively.

その上、漸減部32a,32bの傾斜角度θを、第1実施形態で例示した30度〜60度よりもさらに急角度な範囲、例えば45度〜75度の間に設定して、漸減部32a,32bのL方向の長さL3を、第2実施形態における長さL2に比べてさらに短縮し、製膜装置1のL方向の長さをよりコンパクト化することができる。因みにここでは漸減部32a,32bの傾斜角度θが60度程度に設定されている。   In addition, the inclination angle θ of the gradually decreasing portions 32a and 32b is set to a steeper range than 30 ° to 60 ° exemplified in the first embodiment, for example, 45 ° to 75 °, and the gradually decreasing portion 32a. 32b can be further shortened compared to the length L2 in the second embodiment, and the length in the L direction of the film forming apparatus 1 can be made more compact. Incidentally, the inclination angle θ of the gradually decreasing portions 32a and 32b is set to about 60 degrees here.

そして、R1とR2の寸法関係を、R1<R2としたことにより、変換器3A,3Bから放電室2のリッジ電極21a,21bに向って滑らかにリッジ対向間隔(リッジ段差)を狭めて反射波を抑制するとともに、リッジ電極21a,21bと漸減部32a,32bとの境界部におけるR形状(R1)を小さくすることでリッジ対向間隔(リッジ段差)を急速に所定値まで狭め、プラズマ発生領域の境界をより明確にし、プラズマを安定化させ、基板Sに対してプラズマを均一かつ広範囲に分布させて、大面積基板へ製膜するにあたり、均一かつ高品質なプラズマ製膜処理を行うことができる。この第3実施形態では、R1を10mm〜15mmの間に設定し、R2を20mm〜35mmの間に設定している。   By setting the dimensional relationship between R1 and R2 to R1 <R2, the reflected waves are smoothly narrowed from the converters 3A and 3B toward the ridge electrodes 21a and 21b of the discharge chamber 2 by narrowing the ridge facing distance (ridge step). In addition, by reducing the R shape (R1) at the boundary between the ridge electrodes 21a and 21b and the gradually decreasing portions 32a and 32b, the ridge facing distance (ridge step) is rapidly reduced to a predetermined value, and the plasma generation region is reduced. When the film is formed on a large area substrate by making the boundary clearer, stabilizing the plasma, and distributing the plasma uniformly and over a wide range on the substrate S, it is possible to perform a uniform and high-quality plasma film forming process. . In the third embodiment, R1 is set between 10 mm and 15 mm, and R2 is set between 20 mm and 35 mm.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記の実施形態1〜3においては、本発明をダブルリッジ導波管状に形成された放電室2および変換器3A,3Bを備えた製膜装置1に適用した例について説明したが、図8に示すように、所謂シングルリッジ導波管状に形成された放電室2および変換器を備えた製膜装置にも本発明を適用することができる。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above first to third embodiments, an example in which the present invention is applied to the film forming apparatus 1 including the discharge chamber 2 and the converters 3A and 3B formed in a double ridge waveguide tubular shape has been described. As shown in FIG. 8, the present invention can be applied to a film forming apparatus including a discharge chamber 2 and a converter formed in a so-called single ridge waveguide tube.

また、上記の各実施形態においては、基板Sを水平に設置する横型の製膜装置1に適用した構成例を説明したが、基板Sを鉛直上下方向に傾斜させて設置する縦型の製膜装置にも適用することができる。この場合は、基板Sを鉛直方向から7°〜12°傾斜させることで、基板自重のsin(θ)成分により基板を安定して支持させるとともに、基板搬送時のゲート弁通過幅や製膜装置の設置床面積を少なく出来るので、好ましい。   In each of the above embodiments, the configuration example applied to the horizontal film forming apparatus 1 in which the substrate S is installed horizontally has been described. However, the vertical film forming in which the substrate S is installed in a vertically vertical direction. It can also be applied to devices. In this case, by tilting the substrate S by 7 ° to 12 ° from the vertical direction, the substrate is stably supported by the sin (θ) component of the substrate's own weight, and the gate valve passage width and the film forming apparatus during substrate transport The installation floor area can be reduced, which is preferable.

また、上記の第1〜第3実施形態においては、本発明をプラズマCVD法による製膜装置1に適用して説明したが、この発明は製膜装置に限られることなく、プラズマエッチング等のプラズマ処理を行う装置等、その他各種の装置にも広範囲に適用可能なものである。   In the first to third embodiments, the present invention has been described by applying the present invention to the film forming apparatus 1 by the plasma CVD method. However, the present invention is not limited to the film forming apparatus, and plasma such as plasma etching is used. The present invention can be widely applied to various other apparatuses such as a processing apparatus.

1 製膜装置(真空処理装置)
2 放電室(プロセス室)
3A,3B 変換器
5A,5B 高周波電源(電源手段)
9 排気部
21a,21b リッジ電極
31a,31b リッジ部
32a,32b 漸減部
d1 リッジ電極対向間隔
d2 リッジ部対向間隔
D リッジ段差
R,R1,R2 R形状
S 基板
θ 漸減部の傾斜角度
1 Film forming equipment (vacuum processing equipment)
2 Discharge chamber (process chamber)
3A, 3B Converter 5A, 5B High frequency power supply (power supply means)
9 Exhaust parts 21a, 21b Ridge electrodes 31a, 31b Ridge parts 32a, 32b Gradually decreasing part d1 Ridge electrode facing distance d2 Ridge facing distance D Ridge steps R, R1, R2 R shape S Substrate θ Tilt angle of gradually decreasing part

Claims (7)

互いに平行に対向して配置され、その間にプラズマが生成される一方および他方のリッジ電極を有したリッジ導波管からなる放電室と、
前記放電室の両端に隣接して配置され、互いに平行に対向して配置された一対の平板状のリッジ部を有したリッジ導波管からなり、高周波電源から供給された高周波電力を方形導波管の基本伝送モードに変換して前記放電室に伝送し、前記一方および他方のリッジ電極の間にプラズマを発生させる一対の変換器と、
高周波電力を前記リッジ部に供給する電源手段と、を有し、
前記変換器における前記リッジ部の対向間隔よりも、前記放電室における前記リッジ電極の対向間隔の方が狭く設定されて前記リッジ部と前記リッジ電極との境界部にリッジ段差が存在し、
前記リッジ段差の部分に、前記一対のリッジ部と前記一方および他方のリッジ電極の間を、それら各々の対向間隔を漸減させて接続する漸減部を有することを特徴とする真空処理装置。
A discharge chamber composed of a ridge waveguide having one and the other ridge electrodes disposed opposite to each other in parallel and generating plasma therebetween,
A ridge waveguide having a pair of plate-like ridge portions arranged adjacent to both ends of the discharge chamber and facing each other in parallel with each other, and a high frequency power supplied from a high frequency power source is rectangularly guided. A pair of transducers that convert to a basic transmission mode of the tube and transmit to the discharge chamber to generate plasma between the one and the other ridge electrodes;
Power supply means for supplying high-frequency power to the ridge portion,
The facing distance of the ridge electrode in the discharge chamber is set narrower than the facing distance of the ridge part in the converter, and there is a ridge step at the boundary between the ridge part and the ridge electrode,
A vacuum processing apparatus, comprising: a gradual decreasing portion that connects the pair of ridge portions and the one and the other ridge electrodes by gradually decreasing the facing distance between the pair of ridge portions at the ridge step portion.
前記漸減部は、前記一対のリッジ部と前記一方および他方のリッジ電極の間を一定の傾斜率で前記対向間隔が狭くなる斜面状に形成されたことを特徴とする請求項1に記載の真空処理装置。   2. The vacuum according to claim 1, wherein the gradually decreasing portion is formed in a slope shape between the pair of ridge portions and the one and other ridge electrodes so that the facing interval is narrowed at a constant slope rate. Processing equipment. 前記漸減部の傾斜率は、前記リッジ部の面方向に対する前記漸減部の傾斜角度が30度以上60度以下の角度であることを特徴とする請求項2に記載の真空処理装置。   3. The vacuum processing apparatus according to claim 2, wherein an inclination rate of the gradually decreasing portion is an angle in which an inclination angle of the gradually decreasing portion with respect to a surface direction of the ridge portion is not less than 30 degrees and not more than 60 degrees. 前記漸減部と前記一方および他方のリッジ電極との接続部にR形状を設けたことを特徴とする請求項2または3に記載の真空処理装置。   4. The vacuum processing apparatus according to claim 2, wherein an R shape is provided at a connection portion between the gradually decreasing portion and the one and the other ridge electrodes. 前記漸減部と前記一対のリッジ部との接続部、および前記漸減部と前記一方および他方のリッジ電極との接続部にR形状を設けたことを特徴とする請求項2または3に記載の真空処理装置。   4. The vacuum according to claim 2, wherein an R shape is provided in a connecting portion between the gradually decreasing portion and the pair of ridge portions, and a connecting portion between the gradually decreasing portion and the one and the other ridge electrodes. Processing equipment. 前記漸減部と前記一方および他方のリッジ電極との接続部に設けたR形状の半径は、前記漸減部と前記一対のリッジ部との接続部に設けたR形状の半径よりも大きく設定されたことを特徴とする請求項5に記載の真空処理装置。   The radius of the R shape provided at the connecting portion between the gradually decreasing portion and the one and the other ridge electrode was set larger than the radius of the R shape provided at the connecting portion between the gradually decreasing portion and the pair of ridge portions. The vacuum processing apparatus according to claim 5. 請求項1〜6のいずれかに記載の真空処理装置を用いて基板にプラズマ処理を施すことを特徴とするプラズマ処理方法。   A plasma processing method, wherein the substrate is subjected to plasma processing using the vacuum processing apparatus according to claim 1.
JP2010178109A 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method Active JP5523977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178109A JP5523977B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178109A JP5523977B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JP2012036448A true JP2012036448A (en) 2012-02-23
JP5523977B2 JP5523977B2 (en) 2014-06-18

Family

ID=45848745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178109A Active JP5523977B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP5523977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US10644368B2 (en) 2018-01-16 2020-05-05 Lyten, Inc. Pressure barrier comprising a transparent microwave window providing a pressure difference on opposite sides of the window
US10756334B2 (en) 2017-12-22 2020-08-25 Lyten, Inc. Structured composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111577A (en) * 1989-09-26 1991-05-13 Idemitsu Petrochem Co Ltd Microwave plasma generator and production of diamond film by utilizing this generator
JPH04504640A (en) * 1989-04-17 1992-08-13 ロフイン ジナール レーザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and device for generating high frequency electric field in effective space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504640A (en) * 1989-04-17 1992-08-13 ロフイン ジナール レーザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and device for generating high frequency electric field in effective space
JPH03111577A (en) * 1989-09-26 1991-05-13 Idemitsu Petrochem Co Ltd Microwave plasma generator and production of diamond film by utilizing this generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US10332726B2 (en) 2016-11-15 2019-06-25 Lyten, Inc. Microwave chemical processing
US10756334B2 (en) 2017-12-22 2020-08-25 Lyten, Inc. Structured composite materials
US10644368B2 (en) 2018-01-16 2020-05-05 Lyten, Inc. Pressure barrier comprising a transparent microwave window providing a pressure difference on opposite sides of the window

Also Published As

Publication number Publication date
JP5523977B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP6338462B2 (en) Plasma processing equipment
KR101199994B1 (en) Plasma generation device, plasma control method, and substrate manufacturing method
US7728251B2 (en) Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing
US8961735B2 (en) Plasma processing apparatus and microwave introduction device
JP5324026B2 (en) Plasma processing apparatus and plasma processing apparatus control method
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
US20120090782A1 (en) Microwave plasma source and plasma processing apparatus
US9548187B2 (en) Microwave radiation antenna, microwave plasma source and plasma processing apparatus
WO2007020810A1 (en) Plasma processing apparatus
US20100074807A1 (en) Apparatus for generating a plasma
US20160358750A1 (en) Power Combiner and Microwave Introduction Mechanism
JP5199962B2 (en) Vacuum processing equipment
US20090152243A1 (en) Plasma processing apparatus and method thereof
JP5523977B2 (en) Vacuum processing apparatus and plasma processing method
WO2011042949A1 (en) Surface wave plasma cvd device and film-forming method
JP2003273027A (en) High-frequency power supply structure and plasma enhanced cvd system equipped with the same
JP2006286705A (en) Plasma deposition method and deposition structure
JPWO2008153052A1 (en) Plasma processing apparatus and method of using plasma processing apparatus
JP5656504B2 (en) Vacuum processing apparatus and plasma processing method
JP5822658B2 (en) Vacuum processing equipment
JP4302010B2 (en) Plasma processing apparatus and plasma processing method
JP3637291B2 (en) Method and apparatus for equalizing large area of high frequency plasma in plasma chemical vapor deposition apparatus
JP3611309B2 (en) Structure of discharge electrode in plasma chemical vapor deposition equipment.
CN108243550B (en) Linear electromagnetic wave plasma source and plasma processing apparatus using the same
US20210020406A1 (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250