JP2012033989A - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP2012033989A
JP2012033989A JP2010169112A JP2010169112A JP2012033989A JP 2012033989 A JP2012033989 A JP 2012033989A JP 2010169112 A JP2010169112 A JP 2010169112A JP 2010169112 A JP2010169112 A JP 2010169112A JP 2012033989 A JP2012033989 A JP 2012033989A
Authority
JP
Japan
Prior art keywords
piezoelectric element
bumper
ultrasonic
ultrasonic sensor
ultrasonic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010169112A
Other languages
Japanese (ja)
Inventor
Junji Ota
順司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010169112A priority Critical patent/JP2012033989A/en
Publication of JP2012033989A publication Critical patent/JP2012033989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high shock resistant ultrasonic sensor with which a piezoelectric element is hardly separated and mass production can be performed easily.SOLUTION: An ultrasonic sensor 201 is provided with a piezoelectric element 21 and a bumper 22 which is an ultrasonic transmission/reception wave member to which the piezoelectric element 21 is attached, and a flexible member 23 and an ultrasonic transmission member 24 are arranged between the piezoelectric element 21 and the bumper 22. The piezoelectric element 21 is provided with an electrode formed in the upper and lower faces, and it spreads and vibrates in the radial direction by applying an alternation voltage. The ultrasonic transmission member 24 has a smaller Young's modulus than the bumper 22 and the piezoelectric element 21, and transmits the elastic wave which is generated in the piezoelectric element 21 to the bumper 22. Since the bumper 22 flexural-vibrates in a comparatively wide range, the narrow directivity and the high sensitivity characteristics are obtained.

Description

本発明は、例えば車両用バンパーや車両の樹脂部分に取り付けられる超音波センサに関するものである。   The present invention relates to an ultrasonic sensor attached to, for example, a vehicle bumper or a resin portion of a vehicle.

車両用バンパーや車両の樹脂部分に取り付けられる超音波センサに関して特許文献1が開示されている。図1は特許文献1に示されている超音波センサの断面図である。圧電素子1とバンパー11との間に介在するハウジング2の底面部3の一部に、ハウジング2の材質とは異なる材質で、超音波伝達部4が形成されている。ハウジング2の内部には振動吸収体6、ストッパ7、スペーサ8、回路基板9、コネクタ10等が設けられている。超音波センサ100の取り付け時には、突起11aと突起12aとが嵌合するようにカバー12が被せられる。   Patent Document 1 discloses an ultrasonic sensor attached to a vehicle bumper or a resin portion of a vehicle. FIG. 1 is a cross-sectional view of an ultrasonic sensor disclosed in Patent Document 1. An ultrasonic transmission portion 4 is formed of a material different from the material of the housing 2 on a part of the bottom surface portion 3 of the housing 2 interposed between the piezoelectric element 1 and the bumper 11. Inside the housing 2, a vibration absorber 6, a stopper 7, a spacer 8, a circuit board 9, a connector 10, and the like are provided. When the ultrasonic sensor 100 is attached, the cover 12 is covered so that the protrusion 11a and the protrusion 12a are fitted.

この超音波伝達部4の音響インピーダンスはハウジング2の音響インピーダンスよりも圧電素子1とバンパー11の音響インピーダンスの中間値に近い。このことにより、圧電素子1による超音波の送受信時において、ハウジング2の底面部3における超音波の伝達が、主に超音波伝達部4を介して行われる。特許文献1では、上記作用により、バンパー11における振動部位が制限されて指向性が過度に狭くなったり不規則となったりすることを防止できると記述されている。   The acoustic impedance of the ultrasonic transmission unit 4 is closer to the intermediate value of the acoustic impedances of the piezoelectric element 1 and the bumper 11 than the acoustic impedance of the housing 2. Thus, at the time of transmission / reception of ultrasonic waves by the piezoelectric element 1, transmission of ultrasonic waves on the bottom surface portion 3 of the housing 2 is mainly performed via the ultrasonic transmission portion 4. In Patent Document 1, it is described that the vibration part in the bumper 11 is restricted by the above action, and the directivity can be prevented from becoming excessively narrow or irregular.

特開2007−142967号公報JP 2007-142967 A

特許文献1に示されている超音波センサにおいては、次のような解決すべき課題がある。
(1)超音波伝達部4の音響インピーダンスが圧電素子1とバンパー11の音響インピーダンスの中間であるため、少なくともゴム状の弾性部材は使用できない。硬い材料を用いたとき、圧電素子1とバンパー11の熱膨張係数の違いによって生じる熱衝撃で剥がれるおそれがある。
The ultrasonic sensor disclosed in Patent Document 1 has the following problems to be solved.
(1) Since the acoustic impedance of the ultrasonic transmission part 4 is intermediate between the acoustic impedances of the piezoelectric element 1 and the bumper 11, at least a rubber-like elastic member cannot be used. When a hard material is used, it may be peeled off by a thermal shock caused by a difference in thermal expansion coefficient between the piezoelectric element 1 and the bumper 11.

(2)超音波伝達部にクッション性がないため、異物がバンパーに当たったとき、衝撃が圧電素子に直接加わり、センサの機能を破損するおそれが高い。 (2) Since the ultrasonic transmission portion has no cushioning property, when a foreign object hits the bumper, an impact is directly applied to the piezoelectric element, and the function of the sensor is likely to be damaged.

(3)特許文献1に示されている超音波センサでは、厚み縦振動を利用することになるが、厚み縦振動では圧電素子であれば、60kHzで厚みが20mm程度の厚いものが必要になり、量産性が低い。 (3) In the ultrasonic sensor disclosed in Patent Document 1, thickness longitudinal vibration is used. However, in thickness longitudinal vibration, a piezoelectric element having a thickness of about 20 mm at 60 kHz is required if it is a piezoelectric element. The mass productivity is low.

そこで、本発明は、これらの課題を解決した超音波センサ、すなわち圧電素子が剥がれ難く、耐衝撃性が高く、量産が容易な超音波センサを提供することを目的としている。   Therefore, an object of the present invention is to provide an ultrasonic sensor that solves these problems, that is, an ultrasonic sensor in which a piezoelectric element is hardly peeled off, has high impact resistance, and is easily mass-produced.

本発明の超音波センサは、交番電圧の印加により振動する圧電素子と、その圧電素子が取り付けられた超音波送受波部材と、を備え、
前記圧電素子は前記交番電圧の印加により拡がり振動し、
前記圧電素子と前記超音波送受波部材との間に、前記圧電素子に発生する弾性波(縦波)を超音波送受波部材に伝達する、前記超音波送受波部材よりヤング率の小さな超音波伝達部材を配したことを特徴とする。
An ultrasonic sensor of the present invention includes a piezoelectric element that vibrates by application of an alternating voltage, and an ultrasonic wave transmitting / receiving member to which the piezoelectric element is attached,
The piezoelectric element spreads and vibrates by application of the alternating voltage,
An ultrasonic wave having a Young's modulus smaller than that of the ultrasonic wave transmitting / receiving member that transmits an elastic wave (longitudinal wave) generated in the piezoelectric element to the ultrasonic wave transmitting / receiving member between the piezoelectric element and the ultrasonic wave transmitting / receiving member. A transmission member is provided.

この構成により、超音波伝達部材は、圧電素子と超音波送受波部材(バンパーや車両の樹脂部分)との熱膨張係数の違いによる熱衝撃が小さく、剥離の問題が解消される。また、超音波伝達部がクッション材として作用することにより、超音波送受波部材に異物が当たったときの衝撃が緩和されて、圧電素子の破損が回避できる。さらに、圧電素子に必要な厚み寸法が相対的に薄くできるので、量産性が高い。   With this configuration, the ultrasonic transmission member has a small thermal shock due to a difference in thermal expansion coefficient between the piezoelectric element and the ultrasonic transmission / reception member (a bumper or a resin part of the vehicle), and the problem of peeling is solved. Further, since the ultrasonic transmission portion acts as a cushioning material, the impact when a foreign object hits the ultrasonic transmission / reception member is mitigated, and damage to the piezoelectric element can be avoided. Furthermore, since the thickness dimension required for the piezoelectric element can be made relatively thin, mass productivity is high.

また、例えば前記超音波送受波部材と前記圧電素子との間に、前記超音波伝達部材とともに、当該超音波伝達部材の周囲を囲む柔軟部材を配する。この構造によれば、圧電素子、バンパー、および柔軟部材による空間に超音波伝達部材を充填により設けることができる。   In addition, for example, a flexible member surrounding the ultrasonic transmission member is disposed between the ultrasonic transmission / reception member and the piezoelectric element together with the ultrasonic transmission member. According to this structure, the ultrasonic transmission member can be provided by filling the space formed by the piezoelectric element, the bumper, and the flexible member.

本発明によれば、熱衝撃による圧電素子の剥離の問題が解消される。また、超音波送受波部材に異物が当たったときの圧電素子の破損が回避できる。さらに、圧電素子の量産性が高い、という効果を奏する。   According to the present invention, the problem of peeling of the piezoelectric element due to thermal shock is solved. Moreover, damage to the piezoelectric element when a foreign object hits the ultrasonic wave transmitting / receiving member can be avoided. Furthermore, there is an effect that the mass productivity of the piezoelectric element is high.

図1は特許文献1に示されている超音波センサの断面図である。FIG. 1 is a cross-sectional view of an ultrasonic sensor disclosed in Patent Document 1. 図2(A)は第1の実施形態に係る超音波センサ201の平面図、図2(B)は図2(A)におけるB−B部分の断面図である。2A is a plan view of the ultrasonic sensor 201 according to the first embodiment, and FIG. 2B is a cross-sectional view of a BB portion in FIG. 2A. 図3は超音波センサ201の、圧電素子21の振動による各部の変位を模式的に表した図である。FIG. 3 is a diagram schematically illustrating the displacement of each part of the ultrasonic sensor 201 due to the vibration of the piezoelectric element 21. 図4(A)は第1の実施形態に係る超音波センサ201の反射波形、図4(B)は比較例であり、金属ケースに圧電素子を接合して、金属ケースの底面をベンディング振動させる従来構造の超音波センサの反射波形である。4A is a reflected waveform of the ultrasonic sensor 201 according to the first embodiment, and FIG. 4B is a comparative example. A piezoelectric element is bonded to the metal case, and the bottom surface of the metal case is bent and vibrated. It is the reflected waveform of the ultrasonic sensor of conventional structure. 図5は超音波センサの振動面の変位をレーザドップラー計測装置で測定した結果である。FIG. 5 shows the result of measuring the displacement of the vibration surface of the ultrasonic sensor with a laser Doppler measuring device. 図6(A)は実施形態に係る超音波センサが備える圧電素子単体のインピーダンスの周波数特性を示す図、図6(B)は超音波センサの状態での圧電素子のインピーダンスの周波数特性を示す図である。FIG. 6A is a diagram showing the frequency characteristics of the impedance of the piezoelectric element provided in the ultrasonic sensor according to the embodiment, and FIG. 6B is a diagram showing the frequency characteristics of the impedance of the piezoelectric element in the state of the ultrasonic sensor. It is. 図7は超音波センサ201の指向特性を示す図である。FIG. 7 is a diagram showing the directivity characteristics of the ultrasonic sensor 201. 図8は第2の実施形態に係る超音波センサ202の断面図である。FIG. 8 is a cross-sectional view of the ultrasonic sensor 202 according to the second embodiment. 図9は第3の実施形態に係る超音波センサ203の断面図である。FIG. 9 is a cross-sectional view of an ultrasonic sensor 203 according to the third embodiment.

《第1の実施形態》
本発明の第1の実施形態である超音波センサの構成と特性等について各図を参照して説明する。
図2(A)は第1の実施形態に係る超音波センサ201の平面図、図2(B)は図2(A)におけるB−B部分の断面図である。この超音波センサ201は、圧電素子21と、その圧電素子21が取り付けられたバンパー22と、を備え、圧電素子21とバンパー22との間に柔軟部材23および超音波伝達部材24が配されている。圧電素子21は上下面に電極が形成されていて、交番電圧の印加によって径方向に拡がり振動する。超音波伝達部材24はバンパー22および圧電素子21よりヤング率が小さく、圧電素子21に発生する弾性波(縦波)をバンパー22へ伝達する。このバンパーは本発明に係る「超音波送受波部材」に相当する。
<< First Embodiment >>
The configuration and characteristics of the ultrasonic sensor according to the first embodiment of the present invention will be described with reference to the drawings.
2A is a plan view of the ultrasonic sensor 201 according to the first embodiment, and FIG. 2B is a cross-sectional view of a BB portion in FIG. 2A. The ultrasonic sensor 201 includes a piezoelectric element 21 and a bumper 22 to which the piezoelectric element 21 is attached. A flexible member 23 and an ultrasonic transmission member 24 are disposed between the piezoelectric element 21 and the bumper 22. Yes. The piezoelectric element 21 has electrodes formed on the upper and lower surfaces thereof, and vibrates by expanding in the radial direction when an alternating voltage is applied. The ultrasonic transmission member 24 has a Young's modulus smaller than that of the bumper 22 and the piezoelectric element 21, and transmits an elastic wave (longitudinal wave) generated in the piezoelectric element 21 to the bumper 22. This bumper corresponds to an “ultrasonic wave transmitting / receiving member” according to the present invention.

図2に示した超音波センサ201の各部の寸法は次のとおりである。
D1=30.0mm
D2=70.0mm
D3=40.0mm
d3=25.0mm
t1=6.6mm
t2=2.5mm
t3=2.0mm
なお、ここでは定量評価のために、バンパー22はパンバーとして用いられる樹脂材料であるポリプロピレンにゴムを添加した樹脂を円板状にしたものを用いている。この円板の寸法は、圧電素子の振動に起因して振動する範囲より充分に大きな寸法であると考えられる。
The dimensions of each part of the ultrasonic sensor 201 shown in FIG. 2 are as follows.
D1 = 30.0mm
D2 = 70.0mm
D3 = 40.0mm
d3 = 25.0mm
t1 = 6.6mm
t2 = 2.5mm
t3 = 2.0mm
Here, for the purpose of quantitative evaluation, the bumper 22 is a disk-shaped resin made by adding rubber to polypropylene, which is a resin material used as a pan bar. The size of the disk is considered to be sufficiently larger than the range of vibration due to the vibration of the piezoelectric element.

超音波伝達部材24はシリコーンゴムなどの弾性体で円板状の層を構成している。この超音波伝達部材24は、リング状の柔軟部材23の内部に充填されたものである。ここでは、2成分室温硬化型の自己接着性液状シリコーンゴム(ポッティング用シリコーンゴム)であり、その硬度は40である。柔軟部材23はスポンジまたはゴムなどをリング状に成型した成型体である。   The ultrasonic transmission member 24 is a disc-like layer made of an elastic material such as silicone rubber. The ultrasonic transmission member 24 is filled in a ring-shaped flexible member 23. Here, it is a two-component room temperature curing type self-adhesive liquid silicone rubber (silicone rubber for potting), and its hardness is 40. The flexible member 23 is a molded body in which sponge or rubber is molded into a ring shape.

図2に示されている超音波センサ201は、この柔軟部材23を粘着材として利用し、バンパー22に圧電素子21を貼着し、バンパー22と圧電素子21との間の空間に超音波伝達部材24を充填することによって構成される。   The ultrasonic sensor 201 shown in FIG. 2 uses this flexible member 23 as an adhesive material, sticks the piezoelectric element 21 to the bumper 22, and transmits ultrasonic waves to the space between the bumper 22 and the piezoelectric element 21. It is configured by filling the member 24.

図3は超音波センサ201の、圧電素子21の振動による各部の変位を模式的に表した図である。但し、図2に示した柔軟部材23は動作には無関係であるので図示していない。圧電素子21はその電極間への交番電圧の印加により、図3中に破線で示すように径方向に拡がり振動する。この拡がり振動に伴い、厚み方向にも振動する。超音波伝達部材24は圧電素子21よりもヤング率が小さいので、この超音波伝達部材24は圧電素子21の拡がり振動を阻害しない。しかし、厚み寸法は径寸法より相対的に非常に小さい(薄い)ので、圧電素子21の厚み方向の変位をバンパー22に効率よく伝達する。そのため、バンパー22は図3中に破線で示すようにベンディング振動する。   FIG. 3 is a diagram schematically illustrating the displacement of each part of the ultrasonic sensor 201 due to the vibration of the piezoelectric element 21. However, the flexible member 23 shown in FIG. 2 is not shown because it is irrelevant to the operation. The piezoelectric element 21 expands in the radial direction and vibrates as shown by a broken line in FIG. 3 when an alternating voltage is applied between the electrodes. Along with this spreading vibration, it also vibrates in the thickness direction. Since the ultrasonic transmission member 24 has a Young's modulus smaller than that of the piezoelectric element 21, the ultrasonic transmission member 24 does not hinder the spreading vibration of the piezoelectric element 21. However, since the thickness dimension is much smaller (thin) than the radial dimension, the displacement in the thickness direction of the piezoelectric element 21 is efficiently transmitted to the bumper 22. Therefore, the bumper 22 bends and vibrates as indicated by a broken line in FIG.

図4(A)は第1の実施形態に係る超音波センサ201の反射波形、図4(B)は比較例であり、金属ケースに圧電素子を接合して、金属ケースの底面をベンディング振動させる従来構造の超音波センサの反射波形である。この比較例の超音波センサが備える圧電素子の寸法は、直径7mm、厚さ0.15mm、金属ケースの寸法は、外径14mm、高さ9mmである。測定に用いた反射ターゲットは直径60mmのポールであり、距離60cmの位置に置いた。   4A is a reflected waveform of the ultrasonic sensor 201 according to the first embodiment, and FIG. 4B is a comparative example. A piezoelectric element is bonded to the metal case, and the bottom surface of the metal case is bent and vibrated. It is the reflected waveform of the ultrasonic sensor of conventional structure. The piezoelectric element included in the ultrasonic sensor of this comparative example has a diameter of 7 mm and a thickness of 0.15 mm, and the metal case has an outer diameter of 14 mm and a height of 9 mm. The reflective target used for the measurement was a pole having a diameter of 60 mm, and was placed at a distance of 60 cm.

従来構造の超音波センサの総合感度は0.97Vpp、1Vクロス残響時間は0.9msであった。実施形態に係る超音波センサの総合感度は2.19Vpp、1Vクロス残響時間は1.35msであった。このように、実施形態に係る超音波センサでは残響が或る態度長いものの、反射信号の強度が約2倍に大きい。   The total sensitivity of the ultrasonic sensor having a conventional structure was 0.97 Vpp, and the 1 V cross reverberation time was 0.9 ms. The total sensitivity of the ultrasonic sensor according to the embodiment was 2.19 Vpp, and the 1 V cross reverberation time was 1.35 ms. Thus, although the reverberation has a long attitude in the ultrasonic sensor according to the embodiment, the intensity of the reflected signal is about twice as large.

ちなみに、圧電素子の厚み寸法を3.0mmにすると総合感度は1/10となった。また圧電素子の厚み寸法を15mmにすると、残響時間が長くなって総合感度の測定が不能となった。したがって圧電素子の厚み寸法には最良点があるものと予想される。   Incidentally, when the thickness dimension of the piezoelectric element is 3.0 mm, the total sensitivity is 1/10. In addition, when the thickness dimension of the piezoelectric element was set to 15 mm, the reverberation time was increased and the total sensitivity could not be measured. Therefore, it is expected that the thickness dimension of the piezoelectric element has the best point.

また、超音波伝達部材の厚み寸法を1mmにしたときと5mmにしたときにそれぞれ総合感度は1/10となった。超音波伝達部材の厚み寸法は2mmまたはその近傍に最良点がある。   When the thickness of the ultrasonic transmission member was 1 mm and 5 mm, the total sensitivity was 1/10. The thickness dimension of the ultrasonic transmission member has a best point at or near 2 mm.

超音波伝達部材の硬度を25にすると、総合感度は約1/4になり、超音波伝達部材の硬度を80にすると、総合感度は約1/10になった。したがって、超音波伝達部材の硬度はその中間の40程度がよい。   When the hardness of the ultrasonic transmission member was 25, the total sensitivity was about 1/4, and when the hardness of the ultrasonic transmission member was 80, the total sensitivity was about 1/10. Therefore, the hardness of the ultrasonic transmission member is preferably about 40 in the middle.

柔軟部材23の内径を15mmにすると、つまり超音波伝達部材24の直径を15mmにすると、総合感度は1/10となった。圧電素子21の振動エネルギーをバンパー22に伝達するには圧電素子21の直径に見合った大きさが必要であり、この例では25mmまたはその近傍が最良である。   When the inner diameter of the flexible member 23 was 15 mm, that is, when the diameter of the ultrasonic transmission member 24 was 15 mm, the total sensitivity was 1/10. In order to transmit the vibration energy of the piezoelectric element 21 to the bumper 22, a size corresponding to the diameter of the piezoelectric element 21 is required, and in this example, 25 mm or the vicinity thereof is the best.

図5は超音波センサの振動面の変位をレーザドップラー計測装置で測定した結果である。図5(A)は実施形態に係る超音波センサ201の振動面(バンパー)の変位を示している。図5(A)の右側は測定範囲の円とその円内の変位量を濃度で表した図である。測定範囲は直径約25mmである。図5(A)の左側は、右側に示した測定範囲の中央横断線部分での変位を示す図であり、横軸は位置、縦軸は変位量である。図5(B)は上記金属ケースを備えた従来構造の超音波センサの振動面の変位を比較例として示している。図5(B)の右側は測定範囲の円とその円内の変位量を濃度で表した図である。この測定範囲は直径約13mmである。図5(B)の左側は、右側に示した測定範囲の中央横断線部分での変位を示す図であり、横軸は位置、縦軸は変位量である。   FIG. 5 shows the result of measuring the displacement of the vibration surface of the ultrasonic sensor with a laser Doppler measuring device. FIG. 5A shows the displacement of the vibration surface (bumper) of the ultrasonic sensor 201 according to the embodiment. The right side of FIG. 5A is a diagram showing the circle of the measurement range and the amount of displacement within the circle in terms of concentration. The measurement range is about 25 mm in diameter. The left side of FIG. 5A is a diagram showing the displacement at the central transverse line portion of the measurement range shown on the right side, where the horizontal axis is the position and the vertical axis is the amount of displacement. FIG. 5B shows a displacement of the vibration surface of an ultrasonic sensor having a conventional structure provided with the metal case as a comparative example. The right side of FIG. 5 (B) is a diagram showing the circle of the measurement range and the amount of displacement within the circle in terms of concentration. This measuring range is about 13 mm in diameter. The left side of FIG. 5B is a diagram showing the displacement at the central transverse line portion of the measurement range shown on the right side, where the horizontal axis is the position and the vertical axis is the displacement amount.

いずれも実効電圧10Vの連続正弦波を印加して測定した。従来構造の超音波センサによれば、振動面に変位は±1.6μmであるのに対し、実施形態に係る超音波センサ201の振動面の変位は±0.15μmである。このように変位量が約1/10程度であるにもかかわらず、図4に示したように総合感度では2倍以上が得られた。このことは、図3に示したように、本発明の超音波センサが従来の超音波センサとは異なったメカニズムで動作しているものと予想される。音波は振動面の振幅の大きさだけでなく振動エネルギーの流れとしてとらえることも重要なことを示唆している。   In both cases, measurement was performed by applying a continuous sine wave having an effective voltage of 10V. According to the ultrasonic sensor of the conventional structure, the displacement on the vibration surface is ± 1.6 μm, whereas the displacement of the vibration surface of the ultrasonic sensor 201 according to the embodiment is ± 0.15 μm. Thus, although the displacement amount is about 1/10, the total sensitivity is more than doubled as shown in FIG. As shown in FIG. 3, it is expected that the ultrasonic sensor of the present invention operates by a mechanism different from that of the conventional ultrasonic sensor. This suggests that sound waves are important not only as the amplitude of the vibration surface but also as a flow of vibration energy.

図6(A)は実施形態に係る超音波センサが備える圧電素子単体のインピーダンスの周波数特性を示す図、図6(B)は超音波センサの状態での圧電素子のインピーダンスの周波数特性を示す図である。曲線Zはインピーダンスの絶対値、曲線Pは位相を表している。   FIG. 6A is a diagram showing the frequency characteristics of the impedance of the piezoelectric element provided in the ultrasonic sensor according to the embodiment, and FIG. 6B is a diagram showing the frequency characteristics of the impedance of the piezoelectric element in the state of the ultrasonic sensor. It is. A curve Z represents the absolute value of the impedance, and a curve P represents the phase.

圧電素子単体での径方向の拡がり振動の共振周波数は66kHzであるが、超音波伝達部材であるシリコーンゴムを介して、超音波送受波部材であるバンパーに取り付けたことにより、58kHzに僅かなピークが生じている。この周波数は超音波センサの共振周波数であり、この周波数58kHzで駆動することにより、図3に示した振動が生じる。   The resonance frequency of the spreading vibration in the radial direction of the piezoelectric element alone is 66 kHz, but it is slightly peaked at 58 kHz by being attached to the bumper as the ultrasonic wave transmitting / receiving member via the silicone rubber as the ultrasonic transmitting member. Has occurred. This frequency is the resonance frequency of the ultrasonic sensor, and the vibration shown in FIG. 3 is generated by driving at this frequency of 58 kHz.

図7は超音波センサ201の指向特性を示す図である。横軸は振動面に垂直な方向(正面)を0°とする方位角、縦軸はピークを0dBとして表した総合感度である。総合感度が−6dBまで低下する方位角は±8°、すなわち半値角は16°である。前記比較対照である従来構造の超音波センサの半値角が40°であるから、良好な狭指向性が得られることが分かる。これは、超音波送受波部材であるバンパーの同位相で振動する振動面が従来構造の超音波センサより大きいことに起因しているものと推察される。
また、図7から明らかなように、指向性が鋭いだけでなく、サイドローブが小さいこともわかる。
FIG. 7 is a diagram showing the directivity characteristics of the ultrasonic sensor 201. The horizontal axis represents the azimuth angle with the direction perpendicular to the vibration plane (front) as 0 °, and the vertical axis represents the total sensitivity with the peak represented as 0 dB. The azimuth angle at which the total sensitivity decreases to −6 dB is ± 8 °, that is, the half-value angle is 16 °. Since the half-value angle of the ultrasonic sensor having the conventional structure as the comparative reference is 40 °, it can be seen that a good narrow directivity can be obtained. This is presumably due to the fact that the vibration surface that vibrates in the same phase of the bumper, which is an ultrasonic wave transmitting / receiving member, is larger than the ultrasonic sensor of the conventional structure.
Further, as is clear from FIG. 7, not only the directivity is sharp, but also the side lobe is small.

第1の実施形態で示した超音波センサによれば、超音波伝達部材は、圧電素子とバンパーとの熱膨張係数の違いによる熱衝撃が小さく、剥離の問題が解消される。また、超音波伝達部がクッション材として作用することにより、バンパーに異物が当たったときの衝撃が緩和されて圧電素子の破損が回避できる。さらに、圧電素子に必要な厚み寸法が相対的に薄くできるので、量産性が高い。   According to the ultrasonic sensor shown in the first embodiment, the ultrasonic transmission member has a small thermal shock due to the difference in thermal expansion coefficient between the piezoelectric element and the bumper, and the problem of peeling is solved. In addition, since the ultrasonic transmission portion acts as a cushioning material, the impact when a foreign object hits the bumper is mitigated, and damage to the piezoelectric element can be avoided. Furthermore, since the thickness dimension required for the piezoelectric element can be made relatively thin, mass productivity is high.

《第2の実施形態》
図8は第2の実施形態に係る超音波センサ202の断面図である。この超音波センサ202は、圧電素子21と、その圧電素子21が取り付けられたバンパー22と、を備え、圧電素子21とバンパー22との間に柔軟部材23および超音波伝達部材24が配されている。また、バンパー22が湾曲していて、バンパー22と柔軟部材23との間に隙間が生じているが、この隙間はシリコーンゴム充填材25で充填されている。この充填材は空気中の湿気(水分)と反応し、ゴム状弾性体に硬化する脱アルコールタイプの1成分形液状シリコーンゴムである。
<< Second Embodiment >>
FIG. 8 is a cross-sectional view of the ultrasonic sensor 202 according to the second embodiment. The ultrasonic sensor 202 includes a piezoelectric element 21 and a bumper 22 to which the piezoelectric element 21 is attached. A flexible member 23 and an ultrasonic transmission member 24 are disposed between the piezoelectric element 21 and the bumper 22. Yes. Further, the bumper 22 is curved and a gap is formed between the bumper 22 and the flexible member 23, and this gap is filled with a silicone rubber filler 25. This filler is a dealcohol-free one-component liquid silicone rubber that reacts with moisture (water) in the air and cures into a rubbery elastic body.

圧電素子21は上下面に電極が形成されていて、交番電圧の印加によって径方向に拡がり振動する。超音波伝達部材24はバンパー22および圧電素子21よりヤング率(音響インピーダンス)が小さく、圧電素子21に発生する弾性波(縦波)をバンパー22へ伝達する。このとき充填材25はバンパー22の振動を殆ど阻害しないので、第1の実施形態で示した超音波センサと同様に作用する。
このように、超音波送受波部材であるバンパーの曲面に圧電素子を取り付けて超音波センサを構成することもできる。
The piezoelectric element 21 has electrodes formed on the upper and lower surfaces thereof, and vibrates by expanding in the radial direction when an alternating voltage is applied. The ultrasonic transmission member 24 has a Young's modulus (acoustic impedance) smaller than that of the bumper 22 and the piezoelectric element 21, and transmits an elastic wave (longitudinal wave) generated in the piezoelectric element 21 to the bumper 22. At this time, since the filler 25 hardly inhibits the vibration of the bumper 22, it acts in the same manner as the ultrasonic sensor shown in the first embodiment.
Thus, an ultrasonic sensor can be configured by attaching a piezoelectric element to the curved surface of a bumper that is an ultrasonic wave transmitting / receiving member.

《第3の実施形態》
図9は第3の実施形態に係る超音波センサ203の断面図である。この超音波センサ203は、圧電素子21と、その圧電素子21が取り付けられたバンパー22と、を備え、圧電素子21とバンパー22との間に超音波伝達部材24が配されている。また、圧電素子21と超音波伝達部材24は緩衝材26を介してフック22Fでバンパー22に取り付けられている。すなわち、超音波伝達部材24、圧電素子21、および緩衝材26の積層体がバンパー22の内面とフック22Fとの間に挟持されている。この例ではフック22Fはバンパー22の内面方向に突出していて、バンパー22と一体成型されている。
<< Third Embodiment >>
FIG. 9 is a cross-sectional view of an ultrasonic sensor 203 according to the third embodiment. The ultrasonic sensor 203 includes a piezoelectric element 21 and a bumper 22 to which the piezoelectric element 21 is attached. An ultrasonic transmission member 24 is disposed between the piezoelectric element 21 and the bumper 22. Further, the piezoelectric element 21 and the ultrasonic transmission member 24 are attached to the bumper 22 with a hook 22F via a buffer material 26. That is, the laminated body of the ultrasonic transmission member 24, the piezoelectric element 21, and the buffer material 26 is sandwiched between the inner surface of the bumper 22 and the hook 22F. In this example, the hook 22 </ b> F protrudes toward the inner surface of the bumper 22 and is integrally formed with the bumper 22.

緩衝材26は弾性を備え、圧電素子21と超音波伝達部材24とをバンパー22の内面に対して必要な押圧力で押しつける。このように充填でなく、予め成型した超音波伝達部材24を配置することによって超音波センサを構成することもできる。   The buffer material 26 has elasticity, and presses the piezoelectric element 21 and the ultrasonic transmission member 24 against the inner surface of the bumper 22 with a necessary pressing force. In this way, the ultrasonic sensor can be configured by arranging the ultrasonic transmission member 24 that is pre-molded instead of filling.

なお、バンパー22と超音波伝達部材24との間や、超音波伝達部材24と圧電素子21との間にオイルやグリスを介在させてもよい。   Note that oil or grease may be interposed between the bumper 22 and the ultrasonic transmission member 24 or between the ultrasonic transmission member 24 and the piezoelectric element 21.

《他の実施形態》
以上に示した実施形態では車両のバンパーに圧電素子および超音波伝達部材を設けて超音波センサを構成したが、車両やその他の機器に備えられる化粧ボードに圧電素子および超音波伝達部材を設けて超音波センサを構成することも同様にできる。
<< Other embodiments >>
In the embodiment described above, the piezoelectric sensor and the ultrasonic transmission member are provided on the bumper of the vehicle to configure the ultrasonic sensor. However, the piezoelectric element and the ultrasonic transmission member are provided on the decorative board provided in the vehicle and other devices. An ultrasonic sensor can be configured similarly.

また、超音波送受波部材に対して複数の圧電素子を超音波伝達部材を介して取り付けてアレイ状にしてもよい。そのことにより、合成開口面が広くなり、指向性ビームの幅を更に狭めることができる。   Alternatively, a plurality of piezoelectric elements may be attached to the ultrasonic transmission / reception member via the ultrasonic transmission member to form an array. As a result, the synthetic aperture surface is widened, and the width of the directional beam can be further reduced.

21…圧電素子
22…バンパー(超音波送受波部材)
22F…フック
23…柔軟部材
24…超音波伝達部材
25…充填材
26…緩衝材
201〜203…超音波センサ
21 ... piezoelectric element 22 ... bumper (ultrasonic wave transmitting / receiving member)
22F ... Hook 23 ... Flexible member 24 ... Ultrasonic transmission member 25 ... Filler 26 ... Buffer material 201-203 ... Ultrasonic sensor

Claims (2)

交番電圧の印加により振動する圧電素子と、その圧電素子が取り付けられた超音波送受波部材と、を備えた超音波センサにおいて、
前記圧電素子は前記交番電圧の印加により拡がり振動し、
前記圧電素子と前記超音波送受波部材との間に、前記圧電素子に発生する弾性波を超音波送受波部材に伝達する、前記超音波送受波部材および前記圧電素子よりヤング率の小さな超音波伝達部材が配されたことを特徴とする超音波センサ。
In an ultrasonic sensor comprising a piezoelectric element that vibrates by application of an alternating voltage, and an ultrasonic wave transmitting / receiving member to which the piezoelectric element is attached,
The piezoelectric element spreads and vibrates by application of the alternating voltage,
An ultrasonic wave having a Young's modulus smaller than that of the ultrasonic wave transmitting / receiving member and the piezoelectric element that transmits an elastic wave generated in the piezoelectric element to the ultrasonic wave transmitting / receiving member between the piezoelectric element and the ultrasonic wave transmitting / receiving member. An ultrasonic sensor comprising a transmission member.
前記超音波送受波部材と前記圧電素子との間で、前記超音波伝達部材の周囲を囲む柔軟部材を配した、請求項1に記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein a flexible member surrounding the ultrasonic transmission member is disposed between the ultrasonic transmission / reception member and the piezoelectric element.
JP2010169112A 2010-07-28 2010-07-28 Ultrasonic sensor Pending JP2012033989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169112A JP2012033989A (en) 2010-07-28 2010-07-28 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169112A JP2012033989A (en) 2010-07-28 2010-07-28 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JP2012033989A true JP2012033989A (en) 2012-02-16

Family

ID=45846920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169112A Pending JP2012033989A (en) 2010-07-28 2010-07-28 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP2012033989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175327A1 (en) * 2015-04-30 2016-11-03 日清紡ホールディングス株式会社 Ultrasonic sensor
WO2016204295A1 (en) * 2015-06-17 2016-12-22 日清紡ホールディングス株式会社 Ultrasonic wave detecting device
JP2019220911A (en) * 2018-06-22 2019-12-26 株式会社トーキン Ultrasonic sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792182U (en) * 1980-11-26 1982-06-07
JPS6381273U (en) * 1986-11-14 1988-05-28
JPH01134279U (en) * 1988-03-07 1989-09-13
JPH11146878A (en) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd Ultrasonic wave probe
JP2007114182A (en) * 2005-09-22 2007-05-10 Denso Corp Mounting structure of ultrasonic sensor
JP2007142967A (en) * 2005-11-21 2007-06-07 Denso Corp Ultrasonic sensor
JP2008191007A (en) * 2007-02-05 2008-08-21 Denso Corp Structure for mounting sensor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792182U (en) * 1980-11-26 1982-06-07
JPS6381273U (en) * 1986-11-14 1988-05-28
JPH01134279U (en) * 1988-03-07 1989-09-13
JPH11146878A (en) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd Ultrasonic wave probe
JP2007114182A (en) * 2005-09-22 2007-05-10 Denso Corp Mounting structure of ultrasonic sensor
JP2007142967A (en) * 2005-11-21 2007-06-07 Denso Corp Ultrasonic sensor
JP2008191007A (en) * 2007-02-05 2008-08-21 Denso Corp Structure for mounting sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175327A1 (en) * 2015-04-30 2016-11-03 日清紡ホールディングス株式会社 Ultrasonic sensor
WO2016204295A1 (en) * 2015-06-17 2016-12-22 日清紡ホールディングス株式会社 Ultrasonic wave detecting device
JP2019220911A (en) * 2018-06-22 2019-12-26 株式会社トーキン Ultrasonic sensor
JP7105116B2 (en) 2018-06-22 2022-07-22 株式会社トーキン ultrasonic sensor

Similar Documents

Publication Publication Date Title
JP5267128B2 (en) Ultrasonic sensor
JP4618165B2 (en) Ultrasonic sensor
JP5447535B2 (en) Ultrasonic vibration device
JP5460738B2 (en) Ultrasonic sensor and method for attaching ultrasonic sensor
EP2076061B1 (en) Ultrasonic transducer
KR101368697B1 (en) Ultrasonic vibration device
JPWO2007069609A1 (en) Ultrasonic transducer
US10847708B2 (en) Multi-cell transducer
JP2007155675A (en) Ultrasonic sensor
JP2018105619A (en) Ultrasonic sensor
JP2012033989A (en) Ultrasonic sensor
US9968966B2 (en) Electroacoustic transducer
JPWO2005009075A1 (en) Ultrasonic transducer
GB2486561A (en) Piezoelectric sound transducer
JP5537321B2 (en) Ultrasonic transceiver
JP5111977B2 (en) Ultrasonic transducer
GB2486560A (en) Piezoelectric sound element
JP4442632B2 (en) Ultrasonic sensor
JP2008306315A (en) Ultrasonic wave echo transceiver
JP5417633B2 (en) Ultrasonic sensor
JP2009141451A (en) Ultrasonic wave transceiver
JP5804907B2 (en) Ultrasonic transceiver
JP5814797B2 (en) Ultrasonic transceiver
JP2013110570A (en) Ultrasonic wave transceiver
JP6971939B2 (en) Ultrasonic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507