JP2012031550A - Conductive three-layer structured fabric - Google Patents

Conductive three-layer structured fabric Download PDF

Info

Publication number
JP2012031550A
JP2012031550A JP2011001214A JP2011001214A JP2012031550A JP 2012031550 A JP2012031550 A JP 2012031550A JP 2011001214 A JP2011001214 A JP 2011001214A JP 2011001214 A JP2011001214 A JP 2011001214A JP 2012031550 A JP2012031550 A JP 2012031550A
Authority
JP
Japan
Prior art keywords
conductive
layer
conductive fiber
fibers
fiber layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011001214A
Other languages
Japanese (ja)
Other versions
JP5754946B2 (en
Inventor
Hideo Ikenaga
秀雄 池永
Hiroyuki Kinouchi
裕之 木ノ内
Tomoaki Yoshida
友昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2011001214A priority Critical patent/JP5754946B2/en
Publication of JP2012031550A publication Critical patent/JP2012031550A/en
Application granted granted Critical
Publication of JP5754946B2 publication Critical patent/JP5754946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive three-layer structured fabric which integrates two conductive electrode layers and a dielectric layer, enables accurate detection of capacitance for a major load, flexibly fits with the contour of human body, and is easily manufactured at low cost.SOLUTION: A conductive three-layer structured fabric, which is formed integrally by a knitting machine, comprises: two conductive fiber layers arranged in parallel in which a conductive fiber is continuously joined in a face direction; and a non-conductive fiber layer formed between the two conductive fiber layers so as to insulate the two conductive fiber layers. Also provided is a pressure-sensitive sensor comprising the conductive three-layer structured fabric as a detection part.

Description

本発明は、織編機で一体に形成される導電性三層構造布帛に関する。より詳しくは、本発明は、自動車等の座席の着座状態の検知や、ベッド上の人体の体勢の検知、心拍や呼吸等の生体信号の検知、ロボットと人体や物体との接触を検知する静電容量型圧力センサーやスイッチ等に用いられる、織編機で一体に形成される導電性三層構造布帛に関する。   The present invention relates to a conductive three-layer structure fabric formed integrally with a weaving and knitting machine. More specifically, the present invention relates to detection of the seating state of a seat such as an automobile, detection of the posture of a human body on a bed, detection of biological signals such as heartbeat and respiration, and static detection for detecting contact between a robot and a human body or an object. The present invention relates to a conductive three-layer structure fabric integrally formed with a weaving and knitting machine, which is used for a capacitance type pressure sensor, a switch and the like.

従来、二層の面状体からなる導電性の電極の間に柔軟な誘電体を配置し、電極間の距離の変化に伴う静電容量の変化を検出するセンサーが多く開発されている。
以下の特許文献1には、ウレタンシート等からなるシート状誘電体の両面に伸縮性を有する一対の導電布を配備し、一対の導電布の間の距離が変動することで静電容量が変動するセンサーが開示されている。
しかしながら、特許文献1に記載されたセンサーは、二層の導電布と一層のシート状誘電体をそれぞれ個別に製造した後、積層して組み合わせるため、製造方法が煩雑で高コストとなるという問題がある。
Conventionally, many sensors have been developed in which a flexible dielectric is disposed between conductive electrodes made of two layers of planar bodies to detect a change in capacitance accompanying a change in the distance between the electrodes.
In the following Patent Document 1, a pair of conductive cloths having elasticity are provided on both surfaces of a sheet-like dielectric made of a urethane sheet or the like, and the capacitance varies as the distance between the pair of conductive cloths varies. A sensor is disclosed.
However, the sensor described in Patent Document 1 has a problem that the manufacturing method is complicated and expensive because two layers of conductive cloth and one layer of sheet-like dielectric are separately manufactured and then stacked and combined. is there.

また、以下の特許文献2には、上下の地組織とこれらを連結する連結糸層からなる立体構造編基材に導電性金属層が形成された導電性編地が開示されている。
しかしながら、特許文献2に記載された導電性編地は、立体構造基材を製造した後、スパッタリングや真空蒸着メッキ等の方法で上下の地組織の編地を導電化するため、上下の地組織の導電層同士を完全に絶縁することが困難であり、厚み方向に大きな荷重が加わる場合には上下の地組織の導電層が接触して導通することにより、静電容量を検出できなくなるという問題がある。
Further, Patent Document 2 below discloses a conductive knitted fabric in which a conductive metal layer is formed on a three-dimensional knitted fabric base material composed of upper and lower ground structures and connecting yarn layers that connect them.
However, the conductive knitted fabric described in Patent Document 2 is manufactured by manufacturing the three-dimensional structure base material, and then electrically conducting the knitted fabric of the upper and lower ground texture by a method such as sputtering or vacuum evaporation plating. It is difficult to completely insulate the conductive layers of each other, and when a heavy load is applied in the thickness direction, the conductive layers of the upper and lower ground structures come into contact with each other, and the capacitance cannot be detected. There is.

特開2008−241717号公報JP 2008-241717 A 特開2002−84088号公報JP 2002-84088 A

本発明が解決しようとする課題は、前記した従来技術の問題点を解決し、二層の導電性の電極と誘電体層を織編機で一体に形成(編成)することができ、低コストであり、人体の形状にも柔軟に追従でき、大荷重に対しても静電容量の検出精度の高い導電性三層構造布帛を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art and to form (knitting) two conductive electrodes and a dielectric layer integrally with a weaving and knitting machine. It is an object of the present invention to provide a conductive three-layer structure fabric that can flexibly follow the shape of a human body and has high capacitance detection accuracy even with a large load.

本発明者らは、上記の課題を解決すべく、三層構造布帛の中の導電性繊維の構造を鋭意検討し、実験を重ねた結果、本発明を完成するに至った。
すなわち、本発明は、以下のとおりのものである。
[1]導電性繊維が面方向に連続的に接合された導電性繊維層が互いに平行に二層形成され、該二層の導電性繊維層の間に、該二層の導電性繊維層を絶縁する状態で非導電繊維層が形成されることを特徴とする織編機で一体に形成される導電性三層構造布帛。
In order to solve the above-mentioned problems, the present inventors diligently studied the structure of the conductive fiber in the three-layer structure fabric, and as a result of repeated experiments, the present invention has been completed.
That is, the present invention is as follows.
[1] Two conductive fiber layers in which conductive fibers are continuously bonded in the plane direction are formed in parallel to each other, and the two conductive fiber layers are interposed between the two conductive fiber layers. A conductive three-layer structure fabric integrally formed by a weaving and knitting machine, wherein a non-conductive fiber layer is formed in an insulated state.

[2]前記二層の導電性繊維層の各々が、表層を構成する導電性繊維と裏層を構成する非導電性繊維からなる表裏二層の地組織内に形成されており、該地組織内の導電性繊維の少なくとも一部は、該地組織内の表層と裏層の境界面において非導電性繊維のシンカーループによって被覆されている、前記[1]に記載の導電性三層構造布帛。   [2] Each of the two conductive fiber layers is formed in a front and back two-layered ground structure composed of conductive fibers constituting the surface layer and non-conductive fibers constituting the back layer. The conductive three-layer structure fabric according to the above [1], wherein at least a part of the conductive fibers in the inner layer is covered with a sinker loop of non-conductive fibers at the interface between the surface layer and the back layer in the ground structure. .

[3]前記二層の導電性繊維層の間隔を狭める方向に5KPaの圧力を加えたとき、該二層の導電性繊維層は、前記非導電繊維層により絶縁されている、前記[1]又は[2]に記載の導電性三層構造布帛。   [3] When a pressure of 5 KPa is applied in a direction to narrow the distance between the two conductive fiber layers, the two conductive fiber layers are insulated by the non-conductive fiber layer, [1] Or the electroconductive three-layer structure fabric as described in [2].

[4]前記二層の導電性繊維層の少なくとも一部が樹脂で被覆されている、前記[1]〜[3]のいずれかに記載の導電性三層構造布帛。   [4] The conductive three-layer structure fabric according to any one of [1] to [3], wherein at least a part of the two conductive fiber layers is coated with a resin.

[5]前記二層の導電性繊維層の地組織がいずれも縞状を呈し、かつ、一の層の地組織の縞の方向が、他の層の地組織の縞の方向に直交している、前記[1]〜[4]のいずれかに記載の導電性三層構造布帛。   [5] The ground texture of the two conductive fiber layers is striped, and the direction of the stripe of the ground texture of one layer is orthogonal to the direction of the stripe of the ground texture of the other layer. The conductive three-layer structure fabric according to any one of [1] to [4].

[6]前記[1]〜[5]のいずれかに記載の導電性三層構造布帛を検知部として含み、前記二層の導電性繊維層の各々に配線を介して静電容量測定装置が接続され、前記検知部に加えられた圧力が静電容量の変化として検知されることを特徴とする感圧センサー。   [6] A capacitance measuring device includes the conductive three-layer structure fabric according to any one of [1] to [5] as a detection unit, and a capacitance measuring device is connected to each of the two conductive fiber layers via a wiring. A pressure sensor, wherein the pressure sensor is connected and the pressure applied to the detection unit is detected as a change in capacitance.

本発明に係る導電性三層構造布帛は、織編機で一体に形成(編成)することができるため、その製造には、複雑な製造工程を必要とせず、低コストで、静電容量の検出精度の高い静電容量センサー等の要素として好適に用いることができる。   Since the conductive three-layer structure fabric according to the present invention can be integrally formed (knitted) with a knitting and knitting machine, the manufacturing does not require a complicated manufacturing process, and the capacitance is low. It can be suitably used as an element such as a capacitance sensor with high detection accuracy.

本発明に係る導電性三層構造布帛の1の態様の模式図(断面図)である。It is a schematic diagram (sectional drawing) of 1 aspect of the electroconductive three-layer structure fabric which concerns on this invention. 本発明に係る導電性三層構造布帛の他の態様の模式図(断面図)である。It is a schematic diagram (cross-sectional view) of another aspect of the conductive three-layer structure fabric according to the present invention. 本発明に係る導電性三層構造布帛の他の態様の模式図(斜視図)である。It is a schematic diagram (perspective view) of another aspect of the conductive three-layer structure fabric according to the present invention.

以下、本発明を詳細に説明する。
本発明の導電性三層構造布帛は、二層の導電性繊維層と、該二層の導電性繊維層の間に、該二層の導電性繊維層を絶縁する状態で非導電性繊維層が布帛製造時に一体化されて形成される。
二層の導電性繊維層は各々、導電性繊維が面方向に連続的に接合し合うことにより面状の導電性繊維層を形成する。導電性繊維層が布帛全面を構成してもよく、布帛面の一部分に一定面積の導電性繊維層を複数個形成させてもよい。布帛面の一部分に一定面積の導電性繊維層を複数個形成する場合は、二層の導電性繊維層が向かい合う同一位置に存在してもよく、二層の導電性繊維層がずれた位置に存在していてもよい。
Hereinafter, the present invention will be described in detail.
The conductive three-layer structure fabric of the present invention includes two conductive fiber layers and a non-conductive fiber layer in a state in which the two conductive fiber layers are insulated between the two conductive fiber layers. Are integrally formed when the fabric is manufactured.
Each of the two conductive fiber layers forms a planar conductive fiber layer by continuously bonding the conductive fibers in the plane direction. The conductive fiber layer may constitute the entire fabric surface, or a plurality of conductive fiber layers having a certain area may be formed on a part of the fabric surface. When a plurality of conductive fiber layers having a certain area are formed on a part of the fabric surface, the two conductive fiber layers may be present at the same position facing each other, or the two conductive fiber layers are shifted from each other. May be present.

一定面積の導電性繊維層を複数個形成する場合は、好ましくは、表側の導電性繊維層を各々が絶縁された島状とし、タテ、ヨコ方向に規則的に配置すると同時に、裏面の同位置に導電性繊維層を配置することで、個々の表裏の相対する導電性繊維層の静電容量を計測して布帛の圧力分布状態を測定できる。より好ましくは、表裏二層の導電性繊維層の地組織をいずれも縞状に形成し、かつ、一の層の地組織の縞の方向を、他の層の地組織の縞の方向に直交させて配置することにより、表裏の導電性繊維層への配線数を大幅に減らして、布帛の伸長性や柔軟性を阻害せずに圧力分布を測定できるものとすることができる。   When a plurality of conductive fiber layers having a constant area are formed, it is preferable that the conductive fiber layers on the front side are insularly insulated from each other and are regularly arranged in the vertical and horizontal directions, and at the same time on the back surface. By disposing the conductive fiber layer on the surface, it is possible to measure the capacitance of the conductive fiber layers facing each other and measure the pressure distribution state of the fabric. More preferably, the ground texture of the two conductive fiber layers on both sides is formed in a striped pattern, and the direction of the stripe of the ground texture of one layer is orthogonal to the direction of the stripe of the ground texture of the other layer. By disposing them, the number of wires to the conductive fiber layers on the front and back sides can be greatly reduced, and the pressure distribution can be measured without impairing the stretchability and flexibility of the fabric.

本発明の導電性三層構造布帛は、二層の導電性繊維層と非導電性繊維層とが織編機で一体に形成して得られる。二枚の導電層と一枚の非導電層をそれぞれ個別に織編し、これらを積層して組み合わせる方法では、製造方法が煩雑で高コストとなる。さらに、製編又は製織によって形成された導電性繊維層は、柔軟であり人体等の形状に容易に追従することができる。特に編地であれば、布帛の伸縮性が向上し様々な形状への追従性がより良好となり好ましい。編地の場合は針列が2列あるダブルラッセル編機やダブル丸編機によって好適に得られる。織物の場合は多重織等により好適に得られる。二層の導電性繊維層を非導電繊維層で完全に絶縁するためにはダブルラッセル編機で製造された三層構造編地であることが好ましい。   The conductive three-layer structure fabric of the present invention is obtained by integrally forming two conductive fiber layers and a non-conductive fiber layer with a weaving and knitting machine. In the method in which two conductive layers and one nonconductive layer are individually woven and knitted, and these are laminated and combined, the manufacturing method is complicated and expensive. Furthermore, the conductive fiber layer formed by knitting or weaving is flexible and can easily follow the shape of a human body or the like. In particular, a knitted fabric is preferable because the stretchability of the fabric is improved and the followability to various shapes becomes better. In the case of a knitted fabric, it is preferably obtained by a double raschel knitting machine or a double circular knitting machine having two rows of needles. In the case of a woven fabric, it is preferably obtained by multiple weaving or the like. In order to completely insulate the two conductive fiber layers with the non-conductive fiber layer, a three-layer structure knitted fabric manufactured by a double raschel knitting machine is preferable.

本発明の三層構造布帛としては、表裏二層の地組織の各々が、導電性繊維が配されて形成された導電性繊維層を含み、該地組織の間に非導電繊維のみからなる非導電繊維層が形成されていればよい。導電性繊維層は、導電性繊維層が形成されている範囲においては、導電性繊維が連続的に接合されていることにより、導電性繊維層が形成されている範囲の全体に導電性を有する。布帛内に形成される導電性繊維層の面積は、静電容量の検出精度を上げるため、0.2cm以上が好ましい。導電性繊維が連続的に接合する状態とは、隣り合う導電性繊維が接触して導電性を有する状態、隣り合う導電性繊維が他の導電性繊維との接触を介して導電性を有する状態、又はこれらの組み合わせの状態が面方向に連続することにより、導電性繊維層が形成されている範囲全体に導電性を有している状態をいう。導電性繊維層は、導電性繊維層が形成されている範囲全体に導電性があればよく、導電性繊維のみから形成されていてもよく、交編等によって導電性繊維と非導電性繊維とで形成されていてもよい。導電性繊維と非導電性繊維によって形成されていることは、非導電性繊維が導電性繊維を外力による摩耗等から保護する役割を有すると共に、非導電性繊維の伸縮性を活用して導電性繊維層に伸縮性を付与することができる点で好ましい。 In the three-layer structure fabric of the present invention, each of the two layers of the front and back ground structures includes a conductive fiber layer formed by arranging conductive fibers, and a non-conductive fiber only is formed between the ground structures. The conductive fiber layer should just be formed. In the range in which the conductive fiber layer is formed, the conductive fiber layer has conductivity throughout the range in which the conductive fiber layer is formed by continuously bonding the conductive fibers. . The area of the conductive fiber layer formed in the fabric is preferably 0.2 cm 2 or more in order to increase the capacitance detection accuracy. The state in which conductive fibers are continuously joined is a state in which adjacent conductive fibers are in contact and have conductivity, and a state in which adjacent conductive fibers have conductivity through contact with other conductive fibers. Or the state of having electroconductivity in the whole range in which the conductive fiber layer is formed by the state of these combinations being continued in the surface direction. The conductive fiber layer only needs to be conductive in the entire range where the conductive fiber layer is formed, and may be formed only of the conductive fiber. The conductive fiber layer and the non-conductive fiber may be formed by knitting or the like. May be formed. The formation of conductive fibers and non-conductive fibers means that the non-conductive fibers have a role of protecting the conductive fibers from abrasion due to external force, etc., and are made conductive by utilizing the stretchability of the non-conductive fibers. This is preferable in that stretchability can be imparted to the fiber layer.

隣り合う導電性繊維を接触させる方法としては、製編において上下左右に隣り合う導電性繊維が少なくとも一部分で同一のニットループを形成する方法、1本の導電性繊維のニットループに別の導電性繊維のニットループが連なる方法、1本の導電性繊維のニットループと別の導電性繊維のシンカーループ又は挿入糸が接触する方法、隣り合う導電性繊維の挿入糸が部分的に重なり合って接触する方法等のいずれの方法であってもよい。しかしながら、布帛の伸長や変形に対する回復性や耐久性を向上させるためには、隣り合う導電性繊維が同一のニットループを形成する方法、又は1本の導電性繊維のニットループに別の導電性繊維のニットループが連なる方法がより好ましい。また、非導電性繊維による導電性繊維の被覆率を上げて、外力から導電性繊維を保護するためには、隣り合う導電性繊維の挿入糸が、地組織を形成する非導電性繊維のニードルループとシンカーループの間に挟まれた状態で重なり合って接触する方法がより好ましい。   As a method of bringing adjacent conductive fibers into contact with each other, a method in which the conductive fibers adjacent in the upper, lower, left, and right sides in knitting form at least a part of the same knit loop, and one conductive fiber knit loop has different conductivity. A method in which knit loops of fibers are connected, a method in which a knit loop of one conductive fiber is in contact with a sinker loop of another conductive fiber or an insertion thread, and an insertion thread of adjacent conductive fibers are partially overlapped and contacted Any method such as a method may be used. However, in order to improve the recoverability and durability against elongation and deformation of the fabric, a method in which adjacent conductive fibers form the same knit loop, or another conductive fiber in a knit loop of one conductive fiber. A method in which fiber knit loops are continuous is more preferable. Further, in order to increase the coverage of the conductive fiber by the nonconductive fiber and protect the conductive fiber from external force, the insertion thread of the adjacent conductive fiber is a needle of the nonconductive fiber that forms the ground structure. A method of overlapping and contacting in a state of being sandwiched between the loop and the sinker loop is more preferable.

本発明においては、二層の導電性繊維層の間に、該二層の導電性繊維層を絶縁する状態で非導電繊維層が形成される。本発明でいう絶縁とは、二層の導電性繊維層間で導電性が実質的に無い状態を示し、具体的には電圧をかけても電流値が0(A)であることを示す。
二層の導電性繊維層を一体化し、かつ二層の導電性繊維層の間に非導電性繊維層を形成するためには、非導電性繊維が二層の導電性繊維層を結合しながら、二層の導電性繊維層の間に絶縁層を形成することが好ましい。
In the present invention, a non-conductive fiber layer is formed between the two conductive fiber layers in a state of insulating the two conductive fiber layers. The term “insulation” as used in the present invention refers to a state where there is substantially no electrical conductivity between the two conductive fiber layers, and specifically indicates that the current value is 0 (A) even when a voltage is applied.
In order to integrate two conductive fiber layers and to form a nonconductive fiber layer between the two conductive fiber layers, the nonconductive fibers are bonded to the two conductive fiber layers. It is preferable to form an insulating layer between the two conductive fiber layers.

二層の導電性繊維層の間に該二層の導電性繊維層を絶縁する状態で非導電性繊維層を形成する構造としては、表裏二層の地組織及びこれらを連結する連結糸からなる三層構造布帛において、導電性繊維層を表裏の地組織内に形成し、表裏の地組織を連結する連結糸に非導電性繊維を使用して表裏の地組織を連結する構造が好ましく用いられる。このように表裏の地組織を連結糸で連結した三層構造布帛はダブルラッセル編機を用いて形成することが好ましい。   The structure in which the non-conductive fiber layer is formed in a state in which the two conductive fiber layers are insulated between the two conductive fiber layers is composed of two layers of the ground structure and the connecting yarn connecting them. In the three-layer structure fabric, a structure in which the conductive fiber layer is formed in the front and back ground structures, and the front and back ground structures are connected to each other by using non-conductive fibers for the connecting yarns connecting the front and back ground structures is preferably used. . Thus, it is preferable to form the three-layer structure fabric in which the front and back ground structures are connected by the connecting yarn using a double Russell knitting machine.

また、二層の導電性繊維層の間に非導電繊維層を形成する別の構造としては、ダブル丸編機により表裏二層の編地を形成する際、導電性繊維が表側編地と裏側編地にまたがることなく表裏二層に分断されて編み込まれ、非導電性繊維が表側編地と裏側編地にまたがって編み込まれ、二層の導電性繊維層をつなぎ合せながら中間に非導電性繊維層を形成する構造が好ましく用いられる。さらには、表側編地と裏側編地にまたがって編み込まれる非導電性繊維とは別の非導電性繊維を、表側編地と裏側編地の中間層に挿入編みし、表裏の導電性繊維層の絶縁を強固にする構造が好ましい。これらの編地は通常2層構造編地と呼ばれることがあるが、非導電性繊維層を有するため、本発明における三層構造布帛に該当する。   Further, as another structure for forming a non-conductive fiber layer between two conductive fiber layers, when forming a two-layer knitted fabric with a double circular knitting machine, the conductive fibers are connected to the front knitted fabric and the back side. Non-conductive fibers are divided into two layers on the front and back sides and knitted without straddling the knitted fabric, and the non-conductive fibers are knitted across the front and back knitted fabrics. A structure that forms a fiber layer is preferably used. Further, non-conductive fibers different from the non-conductive fibers knitted across the front side knitted fabric and the back side knitted fabric are inserted and knitted in the intermediate layer between the front side knitted fabric and the back side knitted fabric, and the conductive fiber layers on the front and back sides are knitted. A structure that strengthens the insulation is preferable. These knitted fabrics are sometimes referred to as two-layer structure knitted fabrics, but have a non-conductive fiber layer, and thus correspond to the three-layer structure fabric in the present invention.

本発明の三層構造布帛では、二層の導電性繊維層がお互いに接することがないように、二層の導電性繊維層の各々が、表層を構成する導電性繊維と裏層を構成する非導電性繊維からなる表裏二層の地組織内に形成されており、該地組織内の導電性繊維の少なくとも一部は、該地組織内の表層と裏層の境界面において非導電性繊維によって被覆されていることが好ましい。導電性繊維の少なくとも一部を非導電性繊維によって被覆する方法は、導電性繊維に非導電性繊維を引き揃えて製編織し、導電性繊維を非導電性繊維で覆う方法や、ダブルラッセル編機やダブル丸編機において、地組織を形成する非導電性繊維のシンカーループにより、導電性繊維の少なくとも一部を被覆する方法が好ましく用いられる。特に、ダブルラッセル編機において、導電性繊維を編成する筬とは別の筬に非導電性繊維を配置して、非導電性繊維のシンカーループで導電性繊維を覆う方法がより好ましい。また、ダブルラッセル編機やダブル丸編機を用いる場合に、地組織を形成する非導電性繊維に導電性繊維の少なくとも一部を挿入編みする方法を用いることは、非導電性繊維による導電性繊維の内側面の被覆率が向上すると同時に、導電性繊維の表裏面側も被覆される構造となり、センサーとしての耐久性向上につながる点で好ましい。二層の地組織の内側面における、非導電性繊維による導電性繊維の被覆率は好ましくは10%以上、よりより好ましくは30%以上、さらに好ましくは50%以上である。   In the three-layer structure fabric of the present invention, each of the two conductive fiber layers constitutes a conductive fiber and a back layer constituting the surface layer so that the two conductive fiber layers do not contact each other. It is formed in a two-layered ground structure made of non-conductive fibers, and at least a part of the conductive fibers in the ground structure is non-conductive fibers at the interface between the front and back layers in the ground structure. It is preferable that it is coat | covered with. The method of covering at least a part of the conductive fiber with the non-conductive fiber includes a method of arranging and knitting the non-conductive fiber on the conductive fiber and covering the conductive fiber with the non-conductive fiber, or double raschel knitting. In a machine or a double circular knitting machine, a method of covering at least a part of conductive fibers with a sinker loop of nonconductive fibers forming a ground structure is preferably used. In particular, in a double raschel knitting machine, it is more preferable to dispose non-conductive fibers on a wrinkle different from a wrinkle for knitting conductive fibers and cover the conductive fibers with a sinker loop of the non-conductive fibers. In addition, when using a double raschel knitting machine or a double circular knitting machine, using a method of inserting and knitting at least a part of conductive fibers into the nonconductive fibers forming the ground structure means that the conductive properties of the nonconductive fibers It is preferable in that the coverage of the inner surface of the fiber is improved and the front and back sides of the conductive fiber are also covered, leading to an improvement in durability as a sensor. The coverage of the conductive fibers by the nonconductive fibers on the inner surface of the two-layered ground texture is preferably 10% or more, more preferably 30% or more, and further preferably 50% or more.

導電性繊維層を表裏の地組織内に形成する際、導電性繊維層を地組織の全面に形成する方法、地組織内に部分的に島状に形成する方法、地組織内に縞状に形成する方法があるが、圧力分布を測定するために表裏の縞状の導電性繊維層を交差させて、すなわち、一の層の地組織の縞の方向を、他の層の地組織の縞の方向に直交させて、縞状に形成する方法としては、ダブルラッセル編機により、一方面のニットループ編成や挿入編によりタテ方向に縞状に導電性繊維層を形成し、他方面を緯糸挿入編によりヨコ方向に縞状に導電性繊維層を形成する方法が好ましい。また、二重織物を形成する際に、片面をタテ方向の縞状とし、一方面をヨコ方向の縞状とすることもできる。   When forming the conductive fiber layer in the front and back ground structures, a method of forming the conductive fiber layer on the entire surface of the ground structure, a method of partially forming an island shape in the ground structure, and a stripe pattern in the ground structure In order to measure the pressure distribution, the striped conductive fiber layers on the front and back sides are crossed, that is, the direction of the stripe of one layer of the ground structure is changed to the stripe of the ground layer of the other layer. As a method of forming a stripe in a direction perpendicular to the direction, a conductive fiber layer is formed in a stripe shape in the vertical direction by knit loop knitting or insertion knitting on one side with a double raschel knitting machine, and the weft on the other side A method of forming the conductive fiber layer in a stripe shape in the horizontal direction by the insertion knitting is preferable. Moreover, when forming a double fabric, one side can be made into the stripe shape of a vertical direction, and one surface can also be made into the stripe shape of a horizontal direction.

本発明に用いられる導電性繊維とは、合成繊維の表面にスパッタリング、蒸着、メッキ等の方法により、銀、銅、ニッケル、硫化銅等の公知の金属皮膜を形成した繊維や、銅、ステンレス、ニッケル、アルミニウム等の公知の金属繊維や、ポリピロール、ポリアニリン等の公知の導電性高分子繊維等を用いることができる。また、芯糸に弾性繊維を用い、これらの導電性繊維をカバーリングした複合糸は、布帛の伸縮性を増大できるものとなる。更には、金属などの導体が塩ビやポリエチレン等の被覆材で覆われた電線を用いることは、液体で濡れることによる劣化や腐食等を防止し、長期使用時の耐久性を向上させる上で好ましい。   The conductive fiber used in the present invention is a fiber in which a known metal film such as silver, copper, nickel, copper sulfide or the like is formed on the surface of the synthetic fiber by sputtering, vapor deposition, plating, or the like, copper, stainless steel, Known metal fibers such as nickel and aluminum and known conductive polymer fibers such as polypyrrole and polyaniline can be used. In addition, a composite yarn in which an elastic fiber is used as a core yarn and these conductive fibers are covered can increase the stretchability of the fabric. Furthermore, it is preferable to use a wire in which a conductor such as a metal is covered with a coating material such as vinyl chloride or polyethylene, in order to prevent deterioration or corrosion due to getting wet with a liquid and to improve durability during long-term use. .

導電性繊維としては、任意の繊度のものを使用することができるが、高分子繊維を主体として構成される導電性繊維の場合、導電性を良好にして製編織性を向上させる観点で、総繊度が30〜1000デシテックスのマルチフィラメントが好ましく用いられる。金属繊維の場合には、単糸の直径が1〜500μmのモノフィラメントやマルチフィラメントが好ましく用いられるが、単糸の直径が1〜200μmのマルチフィラメントであると製編織性が良好となりより好ましい。電線の場合は断面積が0.1〜6mmのものが製編織上、好ましく用いられるが、0.1〜2mmがより好ましい。 As the conductive fibers, those having an arbitrary fineness can be used. However, in the case of conductive fibers mainly composed of polymer fibers, the total is preferable from the viewpoint of improving conductivity and improving the weaving property. A multifilament having a fineness of 30 to 1000 dtex is preferably used. In the case of metal fibers, monofilaments and multifilaments having a single yarn diameter of 1 to 500 μm are preferably used, but multifilaments having a single yarn diameter of 1 to 200 μm are more preferable because the knitting property becomes good. In the case of an electric wire, one having a cross-sectional area of 0.1 to 6 mm 2 is preferably used for weaving and weaving, but 0.1 to 2 mm 2 is more preferable.

本発明に用いられる非導電性繊維は、特に限定されるものではないが、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリアミド繊維、ポリウレタン繊維、ポリエステル系エラストマー繊維等の合成繊維が好ましく用いられる。繊維形態は、未加工糸(原糸)、仮撚加工糸、紡績糸のいずれであってもよく、また、マルチフィラメント糸であってもモノフィラメント糸であってもよい。非導電性繊維の好ましい総繊度は、導電性繊維の被覆性や絶縁性を良好にし、製編織性を向上させる観点から、50〜1000デシテックスが好ましい。   Non-conductive fibers used in the present invention are not particularly limited, but synthetic fibers such as polyethylene terephthalate fibers, polybutylene terephthalate fibers, polytrimethylene terephthalate fibers, polyamide fibers, polyurethane fibers, and polyester-based elastomer fibers can be used. Preferably used. The fiber form may be any of unprocessed yarn (raw yarn), false twisted yarn, and spun yarn, and may be a multifilament yarn or a monofilament yarn. The preferred total fineness of the non-conductive fibers is preferably 50 to 1000 dtex from the viewpoint of improving the coverage and insulating properties of the conductive fibers and improving the knitting property.

非導電繊維層に用いる非導電性繊維としては、二層の導電性繊維層間の絶縁性を良好にするため、以下に示す繊維が好ましく用いられる。まず、2層の導電性繊維間の間隔が小さい場合(間隔が約2mm以下の場合)は、2層の導電性繊維同士が接する隙間をなくすために、カバー率の高いマルチフィラメントや紡績糸を用いることが好ましく、より好ましくはマルチフィラメントの仮撚加工糸が用いられる。また、二層の導電性繊維層が繰返し圧縮される場合の回復性や耐久性を向上させるためには、ポリウレタン繊維やポリエステル系エラストマー繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維等の弾性繊維を使用することが好ましい。   As the non-conductive fibers used for the non-conductive fiber layer, the following fibers are preferably used in order to improve the insulation between the two conductive fiber layers. First, when the distance between the two layers of conductive fibers is small (when the distance is about 2 mm or less), in order to eliminate the gap between the two layers of conductive fibers, a multifilament or spun yarn with a high coverage is used. Preferably, a multifilament false twisted yarn is used. In order to improve recovery and durability when the two conductive fiber layers are repeatedly compressed, elastic fibers such as polyurethane fibers, polyester-based elastomer fibers, polytrimethylene terephthalate fibers, polybutylene terephthalate fibers, etc. Is preferably used.

また、二層の導電性繊維層の間隔が比較的大きく(間隔が約2mm以上である)、厚み方向のクッション性を向上させる場合は、二層の導電性繊維層を連結する繊維として合成繊維のモノフィラメント糸を用いることが好ましい。モノフィラメント糸の剛性により、圧力が加わる際の二層の導電性繊維層の接触を防止することが可能となると共に、繰返しの圧力に対する耐久性も良好となる。モノフィラメント糸としてはポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエステル系エラストマー繊維、ナイロン繊維、ポリウレタン繊維が好ましく用いられる。   Further, when the distance between the two conductive fiber layers is relatively large (the distance is about 2 mm or more) and the cushioning property in the thickness direction is to be improved, the synthetic fiber is used as a fiber connecting the two conductive fiber layers. It is preferable to use a monofilament yarn. The rigidity of the monofilament yarn makes it possible to prevent contact between the two conductive fiber layers when pressure is applied, and to improve durability against repeated pressure. As the monofilament yarn, polytrimethylene terephthalate fiber, polybutylene terephthalate fiber, polyester elastomer fiber, nylon fiber, or polyurethane fiber is preferably used.

本発明の導電性三層構造布帛は、自動車等の座席の乗員検知センサーとして用いる際に大荷重が加わった場合に、二層の導電性繊維層が接触して導通することによる誤作動を防止するため、二層の導電性繊維層の間隔を狭める方向に5KPaの圧力が加わっても、二層の導電性繊維層が接触することなく、絶縁されていることが好ましい。このような絶縁性能を有するためには、非導電繊維層が50デシテックス以上の繊度のモノフィラメント糸で形成されていることが好ましい。   The conductive three-layer structure fabric of the present invention prevents malfunction due to contact between two conductive fiber layers and conduction when a heavy load is applied when used as an occupant detection sensor for a seat of an automobile or the like. Therefore, even if a pressure of 5 KPa is applied in the direction of narrowing the distance between the two conductive fiber layers, the two conductive fiber layers are preferably insulated without contacting each other. In order to have such insulating performance, it is preferable that the non-conductive fiber layer is formed of monofilament yarn having a fineness of 50 dtex or more.

さらに、導電性三層構造布帛が水等の液体で濡れたり、導電性繊維に腐食等の劣化が生じることを防止するため、又は二層の導電繊維層の接触による導通を完全に防止するためには、導電性繊維層の少なくとも一部が樹脂で被覆されていることが好ましい。樹脂で被覆する方法としては、導電性三層構造編地の少なくとも片面を、より好ましくは両面を、コーティング加工やラミネート加工等による樹脂加工することが、水分等の液体の浸入を防止する点で、好ましい。また、ディッピング加工等により、導電性三層構造布帛を樹脂溶液に浸漬して、二層の導電性繊維層の内層側に樹脂を含浸し、熱等によって乾燥・固化することは、導電性繊維の劣化を防止し、二層の導電性繊維層の絶縁性を向上させることができるため、より好ましい。   Furthermore, in order to prevent the conductive three-layer structure fabric from getting wet with a liquid such as water or the conductive fiber from being deteriorated by corrosion or the like, or to completely prevent conduction due to contact between the two conductive fiber layers. It is preferable that at least a part of the conductive fiber layer is coated with a resin. As a method of coating with resin, at least one side of the conductive three-layer structure knitted fabric, more preferably, both sides are processed with resin by coating, laminating, etc., in order to prevent infiltration of liquid such as moisture. ,preferable. Also, it is possible to immerse a conductive three-layer structure fabric in a resin solution by dipping or the like, impregnate the resin on the inner layer side of the two conductive fiber layers, and dry and solidify by heat or the like. It is more preferable because it is possible to prevent deterioration and improve the insulating properties of the two conductive fiber layers.

導電性繊維層を被覆する樹脂は特に限定されるものではなく、通常一般に使用されている樹脂を使用することができる。例えば、シリコーン、ポリウレタン、ポリ塩化ビニル、クロロプレン、クロロスルホン化ポリオレフィン、アクリル、フッ素、ポリアミド系エラストマー、ポリスチレンブタジエン等の樹脂を好ましく用いることができる。
これらの樹脂による被覆は、導電性三層構造布帛を所望のサイズにカットし、2層の導電性繊維層に配線を備えた後に行うことが好ましいが、これに限定されるものではない。
The resin for coating the conductive fiber layer is not particularly limited, and a generally used resin can be used. For example, resins such as silicone, polyurethane, polyvinyl chloride, chloroprene, chlorosulfonated polyolefin, acrylic, fluorine, polyamide elastomer, polystyrene butadiene, etc. can be preferably used.
The coating with these resins is preferably performed after the conductive three-layer structure fabric is cut into a desired size and wiring is provided in the two conductive fiber layers, but is not limited thereto.

本発明の導電性三層構造布帛は、製編・製織後、熱セット工程を経て、寸法や形態安定性を向上させることが好ましい。また、繊維と樹脂との接着性を向上させるため、必要に応じて精錬を行ってもよい。熱セット工程で用いる熱処理機としては、ピンテンター、クリップテンター、ショートループドライヤー、シュリンクサーファードライヤー、ドラムドライヤー、連続又はバッチ式タンブラー等が使用できる。   The conductive three-layer structure fabric of the present invention is preferably improved in dimensional and shape stability through knitting / weaving and then a heat setting step. Moreover, in order to improve the adhesiveness of a fiber and resin, you may refine | purify as needed. As a heat treatment machine used in the heat setting process, a pin tenter, a clip tenter, a short loop dryer, a shrink surfer dryer, a drum dryer, a continuous or batch tumbler, or the like can be used.

本発明の導電性三層構造の厚みは1〜20mmが好ましいが、圧縮回復性をより向上させるためには、1〜10mmがより好ましく、1〜7mmがさらに好ましい。
本発明で得られた導電性三層構造布帛は、二層の導電性繊維層に配線し、静電容量の変化を検出する圧力(感圧)センサーやスイッチ、生体信号検出用電極等の用途に用いることができる。
The thickness of the conductive three-layer structure of the present invention is preferably 1 to 20 mm, but in order to further improve the compression recovery, 1 to 10 mm is more preferable, and 1 to 7 mm is more preferable.
The conductive three-layer structure fabric obtained by the present invention is used for a pressure (pressure-sensitive) sensor, a switch, a biological signal detection electrode, etc., which are wired in two conductive fiber layers and detects a change in capacitance. Can be used.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
22ゲージのダブルラッセル編機を用い、表裏の地組織を形成する筬L1、L2、L5、L6において、L1及びL6に導電性繊維(日本蚕毛染色株式会社製サンダーロン110デシテックスの4本引き揃え)、L2、L5に非導電性繊維であるポリエステル(以下、単にポリエステルと記載)330dtex96フィラメントの仮撚加工糸を配置して、L2、L5のポリエステルのシンカーループが導電性繊維のシンカーループの一部を被覆する様に編成した。尚、編組織はL1とL6は3針振りのトリコット編とし、L2とL5はそれぞれL1とL6とは逆振りの1針振りのトリコット編とした。また、非導電性繊維層を形成しながら表裏の地組織を連結する筬L3、L4に、ポリエステル330デシテックスのモノフィラメントを配置して、表裏の導電性繊維層を有する地組織を非導電性繊維であるポリエステルモノフィラメントで連結した導電性三層構造布帛を得た。尚、L3、L4はそれぞれ逆振りの1針振りのトリコット編とした。得られた布帛に180℃×2分の熱セットを行い形態を安定させ、厚さ5mmの導電性三層構造布帛を製造した。熱セット後の導電性三層構造布帛の断面を図1に示す。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[Example 1]
Using a 22-gauge double raschel knitting machine, conductive fibers (Sunderlon 110 dtex manufactured by Nippon Washi Dyeing Co., Ltd.) are drawn in L1 and L6 in the heels L1, L2, L5, and L6 forming the front and back ground structures. Alignment), L2 and L5 are polyester non-conductive fibers (hereinafter simply referred to as polyester) 330 dtex 96 filament false twisted yarn, and the L2 and L5 polyester sinker loops are conductive fiber sinker loops. It was knitted to cover a part. The knitting structures L1 and L6 were tricot knitting with three stitches, and L2 and L5 were tricot knitting with one stitch oscillating in reverse of L1 and L6, respectively. In addition, polyester 330 decitex monofilaments are arranged on the collars L3 and L4 that connect the front and back ground structures while forming the non-conductive fiber layers, and the ground tissues having the front and back conductive fiber layers are made of non-conductive fibers. A conductive three-layer structure fabric connected with a certain polyester monofilament was obtained. In addition, L3 and L4 were each a tricot knitting with a single swing in reverse. The obtained fabric was heat set at 180 ° C. for 2 minutes to stabilize the form, and a conductive three-layer structure fabric having a thickness of 5 mm was produced. A cross section of the conductive three-layer structure fabric after heat setting is shown in FIG.

図1に示す導電性三層構造布帛1は表側の地組織2と裏側の地組織3、及び地組織2と地組織3を連結する非導電繊維4からなる。表側の地組織2においては導電性繊維層5が形成されていると共に、地組織と非導電繊維層との境界面の導電性繊維の一部が、地組織を形成する非導電性繊維6によって被覆されている。裏側の地組織3においては導電性繊維層7が形成されていると共に、非導電繊維層との境界面の導電性繊維の一部が、地組織を形成する非導電性繊維8によって被覆されている。
得られた導電性三層構造布帛は一体で簡単に製造でき、二層の導電性繊維層が5KPaの圧力下においても絶縁されており、柔軟に変形し、かつ、厚みの変化により静電容量の変化が発生するものであった。
A conductive three-layer structure fabric 1 shown in FIG. 1 includes a front side ground structure 2 and a back side ground structure 3, and a non-conductive fiber 4 that connects the ground structure 2 and the ground structure 3. In the ground structure 2 on the front side, the conductive fiber layer 5 is formed, and a part of the conductive fibers on the boundary surface between the ground structure and the non-conductive fiber layer is formed by the non-conductive fibers 6 forming the ground structure. It is covered. In the ground structure 3 on the back side, the conductive fiber layer 7 is formed, and a part of the conductive fiber on the boundary surface with the non-conductive fiber layer is covered with the non-conductive fiber 8 forming the ground structure. Yes.
The obtained conductive three-layer structure fabric can be easily manufactured integrally, and the two conductive fiber layers are insulated even under a pressure of 5 KPa, deformed flexibly, and have a capacitance by changing the thickness. Changes occurred.

尚、布帛を30cm角にカットし、表裏の導電性繊維層に配線を介して静電容量測定装置を接続して静電容量の変化に基づく圧力センサーを作製した。得られた圧力センサーは、荷重に応じて静電容量値がリニアに変化し、繰返し圧縮に対する回復性も良好であった。   In addition, the cloth was cut into 30 cm square, and a capacitance sensor was connected to the conductive fiber layers on the front and back sides through a wiring to produce a pressure sensor based on a change in capacitance. The obtained pressure sensor linearly changed the capacitance value according to the load, and had good recovery from repeated compression.

[実施例2]
22ゲージのダブル丸編機を用い、第1フィーダーから導電性繊維(日本蚕毛染色株式会社製サンダーロン110デシテックスの2本引き揃え)をダイアル側のロング針のみに供給して天竺編みし、第2フィーダーから導電性繊維(日本蚕毛染色株式会社製サンダーロン110デシテックスの2本引き揃え)をシリンダ側のロング針のみに供給して天竺編みした。引き続き第3フィーダーからポリトリメチレンテレフタレート繊維167デシテックス48フィラメントの仮撚加工糸をダイアル側のショート針のみに供給して天竺編みし、第4フィーダーからポリトリメチレンテレフタレート繊維167デシテックス48フィラメントの仮撚加工糸をシリンダ側のショート針のみに供給して天竺編みした。引き続き、第5フィーダーからポリトリメチレンテレフタレート繊維167デシテックス48フィラメントの仮撚加工糸をダイアル側及びシリンダ側のショート針のみに供給してゴム編みした。同時にポリトリメチレンテレフタレート繊維330デシテックス96フィラメントの仮撚加工糸をダイアル針とシリンダ針の裏側から挿入編みして導電性三層構造布帛を得た。得られた布帛に180℃×2分の熱セットを行い、形態を安定させ、厚さ2mmの導電性三層構造布帛を製造した。熱セット後の導電性三構造布帛の断面を図2に示す。
[Example 2]
Using a 22-gauge double circular knitting machine, electrically conductive fibers (2 lines of Sanderlon 110 decitex made by Nippon Kashiwa Dyeing Co., Ltd.) are fed from the first feeder to only the long needle on the dial side, From the second feeder, conductive fibers (two pieces of Sanderlon 110 dtex made by Nippon Shah Dyeing Co., Ltd.) were fed only to the long needle on the cylinder side and knitted in a tense. Subsequently, a false twisted yarn of polytrimethylene terephthalate fiber 167 dtex 48 filament is supplied from the third feeder to only the short needle on the dial side and is knitted in a tense stitch. A false twist of polytrimethylene terephthalate fiber 167 dtex 48 filament is fed from the fourth feeder The processed yarn was fed only to the short needle on the cylinder side and knitted with a candy. Subsequently, a false twisted yarn of polytrimethylene terephthalate fiber 167 decitex 48 filaments was supplied from the fifth feeder to only the short needles on the dial side and the cylinder side, and rubber knitting was performed. Simultaneously, false twisted yarn of polytrimethylene terephthalate fiber 330 dtex 96 filament was inserted and knitted from the back side of dial needle and cylinder needle to obtain a conductive three-layer structure fabric. The obtained fabric was heat set at 180 ° C. for 2 minutes to stabilize the form, and a conductive three-layer structure fabric having a thickness of 2 mm was produced. FIG. 2 shows a cross section of the conductive tristructure fabric after heat setting.

図2に示す導電性三層構造布帛9は、表側の地組織10と裏側の地組織11及び地組織10と地組織11を連結する非導性電繊維12によって形成されている。表側の地組織10においては導電性繊維層13が形成されていると共に、地組織と非導電繊維層との境界面の導電性繊維の一部が、地組織を形成する非導電性繊維14によって被覆されている。裏側の地組織11においては導電性繊維層15が形成されていると共に、地組織と非導電繊維層との境界面の導電性繊維の一部が、地組織を形成する非導電性繊維16によって被覆されている。また、表裏の地組織の中間に非導電性繊維17が挿入されており、表裏の地組織を連結する非導電性繊維12と共に、非導電性繊維層を形成している。
得られた導電性三層構造布帛は一体で簡単に製造でき、二層の導電性繊維層が5KPaの圧力下においても絶縁されており、柔軟に変形し、かつ、厚みの変化により静電容量の変化が発生するものであった。また、厚みが薄く、曲げや伸びに柔軟に追従するものであった。
The conductive three-layer structure fabric 9 shown in FIG. 2 is formed by a ground structure 10 on the front side, a ground structure 11 on the back side, and a non-conductive electric fiber 12 that connects the ground structure 10 and the ground structure 11. In the ground structure 10 on the front side, the conductive fiber layer 13 is formed, and a part of the conductive fibers at the boundary surface between the ground structure and the non-conductive fiber layer is formed by the non-conductive fibers 14 forming the ground structure. It is covered. In the ground texture 11 on the back side, a conductive fiber layer 15 is formed, and a part of the conductive fibers at the boundary surface between the ground texture and the non-conductive fiber layer is formed by the non-conductive fibers 16 forming the ground texture. It is covered. Further, non-conductive fibers 17 are inserted between the front and back ground structures, and together with the non-conductive fibers 12 connecting the front and back ground structures, a non-conductive fiber layer is formed.
The obtained conductive three-layer structure fabric can be easily manufactured integrally, and the two conductive fiber layers are insulated even under a pressure of 5 KPa, deformed flexibly, and have a capacitance by changing the thickness. Changes occurred. Moreover, it was thin and flexibly followed bending and elongation.

[実施例3]
裏面に緯糸挿入装置を装備した22ゲージのダブルラッセル編機を用い、表裏の地組織を形成する筬L1、L2、L5、L6において、L1に導電性繊維(日本蚕毛染色株式会社製サンダーロン、アクリル2/52)を20イン10アウト、L2、L5、L6に非導電性繊維であるポリエステル330dtex96フィラメントの仮撚加工糸をオールインで配置し、また、非導電性繊維層を形成しながら表裏の地組織を連結する筬L3、L4に、ポリエステル330デシテックスのモノフィラメントをオールインで配置した。L1を4針振りの挿入編、L2を2針振りのトリコット編、L3、L4をそれぞれ逆振りの1針振りのトリコット編、L5を鎖編、L6を2針振りのトリコット編として、三層構造布帛を編成した。この際、裏面の緯糸挿入装置により、20コースに導電性繊維(日本蚕毛染色株式会社製サンダーロン、アクリル2/52)を緯糸挿入した後、10コースは緯糸を挿入せず、以降これを繰り返して、表側にタテ方向の縞状導電性繊維層、裏側にヨコ方向の縞状の導電性繊維層を有する地組織を形成し、これらを非導電性繊維であるポリエステルモノフィラメントで連結した導電性三層構造布帛を得た。得られた布帛に180℃×2分の熱セットを行い形態を安定させ、厚さ5mmの導電性三層構造布帛を製造した。熱セット後の導電性三層構造布帛を図3に示す。
[Example 3]
Using a 22-gauge double raschel knitting machine equipped with a weft insertion device on the back side, conductive fibers (Sunderlon manufactured by Nippon Washi Dyeing Co., Ltd.) are used in the heels L1, L2, L5, and L6 forming the front and back ground structures. , Acrylic 2/52) 20 in 10 out, L2, L5, L6 are arranged with all-in false twisted yarn of polyester 330 dtex 96 filament which is non-conductive fiber, while forming non-conductive fiber layer Polyester 330 decitex monofilaments were placed all-in on the ridges L3 and L4 that connect the front and back ground structures. Three layers, L1 is a four-needle insertion knitting, L2 is a two-needle tricot knitting, L3 and L4 are reverse one-handed tricot knitting, L5 is a chain stitch, and L6 is a two-needle tricot knitting. A structural fabric was knitted. At this time, after weft insertion of conductive fibers (Sunderlon, Acrylic 2/52 made by Nihon Noshi Dyeing Co., Ltd.) on the 20th course by the weft insertion device on the back side, 10th course did not insert the weft. Repeatedly, a ground texture having a striped conductive fiber layer in the vertical direction on the front side and a conductive fiber layer in the horizontal direction on the back side was formed, and these were connected by polyester monofilaments that are non-conductive fibers. A three-layer fabric was obtained. The obtained fabric was heat set at 180 ° C. for 2 minutes to stabilize the form, and a conductive three-layer structure fabric having a thickness of 5 mm was produced. The conductive three-layer structure fabric after heat setting is shown in FIG.

図3に示す導電性三層構造布帛18は表側の地組織19と裏側の地組織20、及び地組織19と地組織20を連結する非導電繊維21からなる。表側の地組織においては導電性繊維層22がタテ方向に縞状形成されていると共に、地組織と非導電繊維層との境界面の導電性繊維の一部が、筬L2から供給されたポリエステルによって被覆されている。裏側の地組織20においてはヨコ方向の縞状の導電性繊維層23が形成されていると共に、地組織と非導電繊維層との境界面の導電性繊維の一部が、筬L5及びL6から供給されたポリエステルによって被覆されている。   The conductive three-layer structure fabric 18 shown in FIG. 3 includes a front side ground structure 19 and a back side ground structure 20, and a non-conductive fiber 21 connecting the ground structure 19 and the ground structure 20. Polyester in which the conductive fiber layer 22 is striped in the vertical direction in the ground structure on the front side, and part of the conductive fibers at the boundary surface between the ground structure and the non-conductive fiber layer is supplied from the ridge L2 It is covered by. In the ground structure 20 on the back side, a stripe-shaped conductive fiber layer 23 in the horizontal direction is formed, and part of the conductive fibers at the boundary surface between the ground texture and the non-conductive fiber layer is formed from the ridges L5 and L6. It is covered by the supplied polyester.

得られた導電性三層構造布帛は一体で簡単に製造でき、二層の導電性繊維層が5KPaの圧力下においても絶縁されており、柔軟に変形し、かつ、厚みの変化により静電容量の変化が発生し、圧力分布を計測することのできる布帛であった。
尚、布帛を30cm角にカットし、表裏の縞状の導電性繊維層(表裏計16本)に配線を介して静電容量測定装置を接続して静電容量センサーを試作した結果、各々の交差する導電性繊維層から得られる静電容量値を演算することで、圧力分布を測定できる感圧センサーとなった。
The obtained conductive three-layer structure fabric can be easily manufactured integrally, and the two conductive fiber layers are insulated even under a pressure of 5 KPa, deformed flexibly, and have a capacitance by changing the thickness. The fabric was capable of measuring the pressure distribution.
In addition, as a result of cutting the fabric into 30 cm squares and connecting a capacitance measuring device to the front and back striped conductive fiber layers (16 on the front and back sides) via wiring and making a prototype of the capacitance sensor, By calculating the capacitance value obtained from the intersecting conductive fiber layers, a pressure-sensitive sensor capable of measuring the pressure distribution was obtained.

本発明の導電性三層構造布帛は、製造が簡単で低コストであり、人体の形状にも柔軟に追従でき、大荷重に対しても静電容量の検出精度が高く、自動車等の座席の着座状態の検知や、ベッド上の人体の体勢の検知、心拍や呼吸等の生体信号の検知、ロボットと人体や物体との接触を検知する静電容量型圧力(感圧)センサーやスイッチ等に好適に利用しうる。   The conductive three-layer structure fabric of the present invention is easy to manufacture and low in cost, can flexibly follow the shape of the human body, has high capacitance detection accuracy even for large loads, Detection of sitting state, detection of human body posture on the bed, detection of biological signals such as heartbeat and breathing, and capacitive pressure (pressure-sensitive) sensors and switches that detect contact between the robot and human bodies and objects It can be suitably used.

1 導電性三層構造布帛
2 表側の地組織
3 裏側の地組織
4 非導電繊維(層)
5 表側の地組織の表層を構成する導電性繊維(表側の導電性繊維層)
6 表側の地組織の裏層を構成する非導電性繊維
7 裏側の地組織の表層を構成する導電性繊維(裏側の導電性繊維層)
8 裏側の地組織の裏層を構成する非導電性繊維
9 導電性三層構造布帛
10 表側の地組織
11 裏側の地組織
12 非導電繊維
13 表側の地組織の表層を構成する導電性繊維(表側の導電性繊維層)
14 表側の地組織の裏層を構成する非導電性繊維
15 裏側の地組織の表層を構成する導電性繊維(裏側の導電性繊維層)
16 裏側の地組織の裏層を構成する非導電性繊維
17 非導電性繊維(層)
18 導電性三層構造布帛
19 表側の地組織
20 裏側の地組織
21 非導電性繊維(層)
22 タテ方向の縞状の導電性繊維層
23 ヨコ方向の縞状の導電性繊維層
DESCRIPTION OF SYMBOLS 1 Conductive three-layer structure fabric 2 Front side ground structure 3 Back side ground structure 4 Non-conductive fiber (layer)
5 Conductive fibers that make up the surface layer of the front side texture (front side conductive fiber layer)
6 Non-conductive fibers that make up the back layer of the ground structure on the front side 7 Conductive fibers that make up the back layer of the ground structure on the back side (conductive fiber layer on the back side)
8 Non-conductive fiber constituting the back layer of the back side ground structure 9 Conductive three-layer structure fabric 10 Front side ground texture 11 Back side ground texture 12 Non-conductive fiber 13 Conductive fiber constituting the surface layer of the front side ground texture ( Front conductive fiber layer)
14 Non-conductive fibers constituting the back layer of the ground structure on the front side 15 Conductive fibers constituting the surface layer of the ground structure on the back side (conductive fiber layer on the back side)
16 Non-conductive fibers constituting the back layer of the ground structure on the back side 17 Non-conductive fibers (layer)
18 conductive three-layer structure fabric 19 ground structure on the front side 20 ground structure on the back side 21 non-conductive fiber (layer)
22 Striped conductive fiber layer in the vertical direction 23 Striped conductive fiber layer in the horizontal direction

Claims (6)

導電性繊維が面方向に連続的に接合された導電性繊維層が互いに平行に二層形成され、該二層の導電性繊維層の間に、該二層の導電性繊維層を絶縁する状態で非導電繊維層が形成されることを特徴とする織編機で一体に形成される導電性三層構造布帛。   Two conductive fiber layers in which conductive fibers are continuously bonded in the plane direction are formed in parallel to each other, and the two conductive fiber layers are insulated between the two conductive fiber layers. A conductive three-layer structure fabric integrally formed with a weaving and knitting machine, wherein a non-conductive fiber layer is formed in 前記二層の導電性繊維層の各々が、表層を構成する導電性繊維と裏層を構成する非導電性繊維からなる表裏二層の地組織内に形成されており、該地組織内の導電性繊維の少なくとも一部は、該地組織内の表層と裏層の境界面において非導電性繊維のシンカーループによって被覆されている、請求項1に記載の導電性三層構造布帛。   Each of the two conductive fiber layers is formed in a two-layer ground structure composed of conductive fibers constituting the surface layer and non-conductive fibers constituting the back layer. 2. The conductive three-layer structure fabric according to claim 1, wherein at least a part of the conductive fibers is covered with a sinker loop of nonconductive fibers at a boundary surface between the surface layer and the back layer in the ground structure. 前記二層の導電性繊維層の間隔を狭める方向に5KPaの圧力を加えたとき、該二層の導電性繊維層は、前記非導電繊維層により絶縁されている、請求項1又は2に記載の導電性三層構造布帛。   3. The two-layer conductive fiber layer is insulated by the non-conductive fiber layer when a pressure of 5 KPa is applied in a direction to narrow the interval between the two layers of conductive fiber layers. A conductive three-layer structure fabric. 前記二層の導電性繊維層の少なくとも一部が樹脂で被覆されている、請求項1〜3のいずれか1項に記載の導電性三層構造布帛。   The conductive three-layer structure fabric according to any one of claims 1 to 3, wherein at least a part of the two conductive fiber layers is coated with a resin. 前記二層の導電性繊維層の地組織がいずれも縞状を呈し、かつ、一の層の地組織の縞の方向が、他の層の地組織の縞の方向に直交している、請求項1〜4のいずれか1項に記載の導電性三層構造布帛。   The ground textures of the two conductive fiber layers are both striped, and the direction of the stripes of the ground texture of one layer is orthogonal to the direction of the stripes of the ground texture of the other layer. Item 5. The conductive three-layer structure fabric according to any one of Items 1 to 4. 請求項1〜5のいずれか1項に記載の導電性三層構造布帛を検知部として含み、前記二層の導電性繊維層の各々に配線を介して静電容量測定装置が接続され、前記検知部に加えられた圧力が静電容量の変化として検知されることを特徴とする感圧センサー。   The conductive three-layer structure fabric according to any one of claims 1 to 5 is included as a detection unit, and a capacitance measuring device is connected to each of the two conductive fiber layers via a wiring, A pressure-sensitive sensor, wherein pressure applied to a detection unit is detected as a change in capacitance.
JP2011001214A 2010-07-09 2011-01-06 Conductive three-layer fabric Active JP5754946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001214A JP5754946B2 (en) 2010-07-09 2011-01-06 Conductive three-layer fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010156903 2010-07-09
JP2010156903 2010-07-09
JP2011001214A JP5754946B2 (en) 2010-07-09 2011-01-06 Conductive three-layer fabric

Publications (2)

Publication Number Publication Date
JP2012031550A true JP2012031550A (en) 2012-02-16
JP5754946B2 JP5754946B2 (en) 2015-07-29

Family

ID=45845286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001214A Active JP5754946B2 (en) 2010-07-09 2011-01-06 Conductive three-layer fabric

Country Status (1)

Country Link
JP (1) JP5754946B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193467A (en) * 2011-03-16 2012-10-11 Asahi Kasei Fibers Corp Electroconductive fabric
JP2012197521A (en) * 2011-03-18 2012-10-18 Asahi Kasei Fibers Corp Conductive stretchable knitted fabric
JP2014015696A (en) * 2012-07-11 2014-01-30 Nissan Motor Co Ltd Fabric with matrix shape
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device
JP2017182918A (en) * 2016-03-28 2017-10-05 帝人株式会社 Touch switch
WO2017174505A1 (en) * 2016-04-04 2017-10-12 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
JP2018067845A (en) * 2016-10-20 2018-04-26 帝人株式会社 Sheet structure, manufacturing method therefor and method of application for three-dimensional structure body
CN108893849A (en) * 2018-08-19 2018-11-27 宁波元元光大服饰有限公司 A kind of air layer face fabric production method of good warmth retention effect
WO2019130808A1 (en) * 2017-12-27 2019-07-04 竹中繊維株式会社 Electrically conductive fabric and method for manufacturing electrically conductive fabric
WO2019167744A1 (en) * 2018-02-28 2019-09-06 住友理工株式会社 Sensor electrode and planar sensor using same
CN111270393A (en) * 2020-02-25 2020-06-12 江南大学 Design and weaving method of weft-knitted bidirectional jacquard structure flexible sensor for intelligent mattress
JP2020517841A (en) * 2017-04-21 2020-06-18 ピルツ ゲーエムベーハー ウント コー.カーゲーPilz GmbH & Co.KG Molded fabrics and use of molded fabrics
CN113186635A (en) * 2021-05-07 2021-07-30 广州番禺职业技术学院 Preparation method of rabbit hair-like real silk fabric
CN115161803A (en) * 2022-06-30 2022-10-11 中国科学院工程热物理研究所 Flexible piezoelectric fiber for measuring stress strain and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138862A1 (en) 2020-12-23 2022-06-30 旭化成アドバンス株式会社 Sensing fiber member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042108A (en) * 2007-08-09 2009-02-26 Nippon Micro System:Kk Pressure sensitive sensor
JP4273233B2 (en) * 2005-03-31 2009-06-03 福井県 Pressure-sensitive sensor sheet
JP2010243240A (en) * 2009-04-02 2010-10-28 Suminoe Textile Co Ltd Body pressure distribution measuring device for solid knitting
JP2011102457A (en) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273233B2 (en) * 2005-03-31 2009-06-03 福井県 Pressure-sensitive sensor sheet
JP2009042108A (en) * 2007-08-09 2009-02-26 Nippon Micro System:Kk Pressure sensitive sensor
JP2010243240A (en) * 2009-04-02 2010-10-28 Suminoe Textile Co Ltd Body pressure distribution measuring device for solid knitting
JP2011102457A (en) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193467A (en) * 2011-03-16 2012-10-11 Asahi Kasei Fibers Corp Electroconductive fabric
JP2012197521A (en) * 2011-03-18 2012-10-18 Asahi Kasei Fibers Corp Conductive stretchable knitted fabric
JP2014015696A (en) * 2012-07-11 2014-01-30 Nissan Motor Co Ltd Fabric with matrix shape
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device
JP2017182918A (en) * 2016-03-28 2017-10-05 帝人株式会社 Touch switch
JP2019513992A (en) * 2016-04-04 2019-05-30 ピルツ ゲーエムベーハー アンド コー.カーゲー Sensor fabric having multiple fabric layers
WO2017174505A1 (en) * 2016-04-04 2017-10-12 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
US11150147B2 (en) 2016-04-04 2021-10-19 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
JP2018067845A (en) * 2016-10-20 2018-04-26 帝人株式会社 Sheet structure, manufacturing method therefor and method of application for three-dimensional structure body
JP7186179B2 (en) 2017-04-21 2022-12-08 ピルツ ゲーエムベーハー ウント コー.カーゲー Use of formed knitted fabrics and formed knitted fabrics
JP2020517841A (en) * 2017-04-21 2020-06-18 ピルツ ゲーエムベーハー ウント コー.カーゲーPilz GmbH & Co.KG Molded fabrics and use of molded fabrics
WO2019130808A1 (en) * 2017-12-27 2019-07-04 竹中繊維株式会社 Electrically conductive fabric and method for manufacturing electrically conductive fabric
JPWO2019130808A1 (en) * 2017-12-27 2020-12-17 竹中繊維株式会社 Conductive fabric and method for manufacturing conductive fabric
WO2019167744A1 (en) * 2018-02-28 2019-09-06 住友理工株式会社 Sensor electrode and planar sensor using same
JPWO2019167744A1 (en) * 2018-02-28 2020-05-28 住友理工株式会社 Sensor electrode and planar sensor using the same
CN108893849A (en) * 2018-08-19 2018-11-27 宁波元元光大服饰有限公司 A kind of air layer face fabric production method of good warmth retention effect
CN111270393A (en) * 2020-02-25 2020-06-12 江南大学 Design and weaving method of weft-knitted bidirectional jacquard structure flexible sensor for intelligent mattress
CN111270393B (en) * 2020-02-25 2021-06-25 江南大学 Design and weaving method of weft-knitted bidirectional jacquard structure flexible sensor for intelligent mattress
CN113186635A (en) * 2021-05-07 2021-07-30 广州番禺职业技术学院 Preparation method of rabbit hair-like real silk fabric
CN115161803A (en) * 2022-06-30 2022-10-11 中国科学院工程热物理研究所 Flexible piezoelectric fiber for measuring stress strain and preparation method thereof

Also Published As

Publication number Publication date
JP5754946B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5754946B2 (en) Conductive three-layer fabric
US9733136B2 (en) Textile pressure sensor
US9448127B2 (en) Device for measuring pressure from a flexible, pliable, and/or extensible object made from a textile material comprising a measurement device
US8925393B2 (en) Device intended for measuring pressure from a flexible, foldable, and/or extendable object made of a textile material and comprising a measurement device
JP7033063B2 (en) Textile structure with capacitive grid implemented
JP7186179B2 (en) Use of formed knitted fabrics and formed knitted fabrics
JP5668966B2 (en) Conductive fabric and touch sensor device using conductive fabric
US20190276955A1 (en) Structure of fabric and electronic components
JP4273233B2 (en) Pressure-sensitive sensor sheet
JP2013019064A (en) Conductive fabric
JP6271959B2 (en) Fabric with fiber electrode, method for producing fabric with fiber electrode, and belt for measuring electrical impedance
WO2019167744A1 (en) Sensor electrode and planar sensor using same
WO2016118746A1 (en) Stretchable electric conductive paths narrow fabrics for smart textiles/garments
CN113286990A (en) System for insulating temperature sensors incorporated in a base fabric layer
JP2012193467A (en) Electroconductive fabric
CN111270393B (en) Design and weaving method of weft-knitted bidirectional jacquard structure flexible sensor for intelligent mattress
JP2022541623A (en) stitched sensor
EP2770095B1 (en) Structure of three-dimensional electrically conductive fabric
CN113383219B (en) Pressure-sensitive sensor
US20140242869A1 (en) Structure of three-dimensional electrically conductive fabric
CN205382266U (en) Water drop sensors fabric
ES2669196T3 (en) Tissue product and detection fabric made of it
EP2775018B1 (en) Fabric pressure switch
CN213985472U (en) Point-contact wearable pressure sensor
CN217586112U (en) Piezoelectric fabric sensor and garment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5754946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350