JP2012031346A - Red phosphor - Google Patents

Red phosphor Download PDF

Info

Publication number
JP2012031346A
JP2012031346A JP2010174026A JP2010174026A JP2012031346A JP 2012031346 A JP2012031346 A JP 2012031346A JP 2010174026 A JP2010174026 A JP 2010174026A JP 2010174026 A JP2010174026 A JP 2010174026A JP 2012031346 A JP2012031346 A JP 2012031346A
Authority
JP
Japan
Prior art keywords
light
phosphor
red
red phosphor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010174026A
Other languages
Japanese (ja)
Inventor
Yuji Takatsuka
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010174026A priority Critical patent/JP2012031346A/en
Publication of JP2012031346A publication Critical patent/JP2012031346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a red phosphor efficiently excited by ultraviolet ray or visible light such as blue light to emit high-intensity red light and suitable for a three-wavelength white light emitting diode.SOLUTION: The red phosphor is a compound oxide expressed by the general formula: M(GaEu)Owherein 0<x<0.5 and M is at least one kind of alkaline earth metal element selected from the group consisting of Ca, Sr and Ba.

Description

本発明は、紫外線や青色光で効率よく励起可能な赤色蛍光体に関するものである。   The present invention relates to a red phosphor that can be excited efficiently by ultraviolet rays or blue light.

近年、青色LEDや近紫外LEDの開発に伴い、これらのLEDと蛍光体を組み合わせて白色を得る、白色発光素子の開発が進んでいる。
青色LEDを用いて白色発光素子を作製する場合には、特許文献1、2、3に開示されるように、青色LEDと黄色蛍光体を組み合わせた白色発光素子が開発されている。
しかしながら、青色とその補色とから構成された白色は、色再現性が悪く、演色性が低いため、3波長型と称される白色発光素子が開発されてきている。
In recent years, with the development of blue LEDs and near-ultraviolet LEDs, development of white light-emitting elements that obtain white by combining these LEDs and phosphors is progressing.
In the case of producing a white light emitting element using a blue LED, as disclosed in Patent Documents 1, 2, and 3, a white light emitting element combining a blue LED and a yellow phosphor has been developed.
However, since white color composed of blue and its complementary color has poor color reproducibility and low color rendering, a white light emitting element called a three-wavelength type has been developed.

この3波長型の白色発光素子としては、青色を発光する発光素子と、この発光素子の青色の発光を受けて、緑色を発光する蛍光体及び赤色を発光する蛍光体を用いた白色発光素子が特許文献4に開示されている。また、紫外線を発光する発光素子と、この発光素子の紫外線の発光を受けて、青色を発光する蛍光体、緑色を発光する蛍光体及び赤色を発光する蛍光体を用いた白色発光素子の開発も進められている。   As this three-wavelength type white light emitting element, there are a light emitting element that emits blue light, and a white light emitting element using a phosphor that emits green light and a phosphor that emits red light by receiving blue light emitted from the light emitting element. It is disclosed in Patent Document 4. In addition, the development of a light-emitting element that emits ultraviolet light and a white light-emitting element using a phosphor that emits blue light, a phosphor that emits blue light, and a phosphor that emits red light when receiving the ultraviolet light emitted from the light-emitting element It is being advanced.

特許文献5に、紫外線発光ダイオードより発せられる短波長の近紫外線(発光波長:370〜410nm)を受けて、赤色光(発光波長:590nm〜630nm)、緑色光(発光波長:520nm〜570nm)、および青色光(発光波長:430nm〜490nm)を発光する蛍光体と紫外線発光素子とを組み合わせた3波長型の白色発光ダイオードが開示されている。
このような紫外線発光ダイオードを用いた3波長型の白色発光ダイオードは、赤色発光蛍光体として、YS:Eu3+等が用いられている。しかしながら、InGaNまたはGaN等の窒化物半導体を用いた紫外発光ダイオードは、発光波長が近紫外域の390nmから400nmの間に発光波長を持っている。
In Patent Document 5, in response to short-wavelength near ultraviolet rays (emission wavelength: 370 to 410 nm) emitted from an ultraviolet light emitting diode, red light (emission wavelength: 590 nm to 630 nm), green light (emission wavelength: 520 nm to 570 nm), In addition, a three-wavelength type white light emitting diode is disclosed in which a phosphor emitting blue light (emission wavelength: 430 nm to 490 nm) and an ultraviolet light emitting element are combined.
In such a three-wavelength white light emitting diode using an ultraviolet light emitting diode, Y 2 O 2 S: Eu 3+ or the like is used as a red light emitting phosphor. However, an ultraviolet light emitting diode using a nitride semiconductor such as InGaN or GaN has a light emission wavelength between 390 nm and 400 nm in the near ultraviolet region.

一方、YS:Eu3+などの赤色発光蛍光体は、波長が370nmの近紫外光の励起により効率よく発光するものである。発光波長が390nmから400nmの間に発光ピークを持つ紫外発光ダイオードに適用する赤色発光蛍光体として、390nm付近の波長の光の励起により効率よく発光する赤色発光蛍光体の開発が望まれている。
そのような赤色蛍光体として、一般式Ca(La1−x,Eu12(0<x≦1)で表されるタングステン系赤色蛍光体やSr、La、Eu、W、Oからなり、一般式Sr(La1−x,Eu1040(0<x≦1)で表される赤色蛍光体(特許文献6,7参照。)と一般式Eu1−xLaMoや一般式Eu1−xLaMo12で表されるモリブデン系赤色蛍光体(特許文献8、9参照。)が開示されている。これらの蛍光体は励起波長395nmでの発光強度がYS:Eu3+より強い蛍光体である。
On the other hand, red light emitting phosphors such as Y 2 O 2 S: Eu 3+ emit light efficiently by excitation of near ultraviolet light having a wavelength of 370 nm. As a red light emitting phosphor applied to an ultraviolet light emitting diode having an emission peak between 390 nm and 400 nm, it is desired to develop a red light emitting phosphor that emits light efficiently by excitation of light having a wavelength near 390 nm.
Such red phosphor, the general formula Ca 3 (La 1-x, Eu x) 2 W 2 O 12 (0 <x ≦ 1) represented by a tungsten-based red phosphor and Sr, La, Eu, W consists O, formula Sr (La 1-x, Eu x) 6 W 10 O 40 red phosphor represented by (0 <x ≦ 1) (see Patent documents 6 and 7.) and the general formula Eu 1 Molybdenum red phosphors represented by -x La 3 Mo 2 O 9 and general formula Eu 1-x La 3 Mo 3 O 12 (see Patent Documents 8 and 9) are disclosed. These phosphors are phosphors whose emission intensity at an excitation wavelength of 395 nm is stronger than that of Y 2 O 2 S: Eu 3+ .

また、青色と黄色の補色とから構成された白色の演色性が充分でない理由は、YAG:Ce蛍光体の発光が黄色であり、赤色領域における発光強度が低いためである。そこで、青色発光素子と黄色発光蛍光体に、更に、青色発光素子の青色の発光を受けて赤色を発光する赤色発光蛍光体を添加することで演色性を改善するものが特許文献9等に開示されている。
さらに、非特許文献1には、GaのGaサイトをEu3+が置換することによって、赤色発光を示すことが記載されている。
The reason why the color rendering property of white composed of blue and yellow complementary colors is not sufficient is that the YAG: Ce phosphor emits yellow light and the light emission intensity in the red region is low. Therefore, Patent Document 9 discloses a technique for improving color rendering by adding a red light emitting phosphor that emits red light by receiving blue light emitted from a blue light emitting element to a blue light emitting element and a yellow light emitting phosphor. Has been.
Further, Non-Patent Document 1 describes that Eu 3+ replaces the Ga site of Ga 2 O 3 to emit red light.

これらの蛍光体材料は、近紫外線LED(発光波長380〜410nm)で励起して高輝度の可視光の蛍光を得ることや、青色LED(発光波長440〜470nm)で励起して緑色の蛍光を得ることが可能であり、単色のLEDランプや白色LED用蛍光体として有用である。   These phosphor materials can be excited with a near-ultraviolet LED (emission wavelength 380 to 410 nm) to obtain high-luminance visible light fluorescence, or excited with a blue LED (emission wavelength 440 to 470 nm) to emit green fluorescence. It can be obtained and is useful as a single color LED lamp or a phosphor for white LED.

特開平10−093146号公報Japanese Patent Laid-Open No. 10-093146 特開平10−065221号公報Japanese Patent Application Laid-Open No. 10-065221 特開平10−242513号公報Japanese Patent Laid-Open No. 10-242513 特開2000−244021号公報JP 2000-244021 A 特表2000−509912号公報JP 2000-509912 A 特開2005−179498号公報JP 2005-179498 A 特開2008−69272号公報JP 2008-69272 A 特開2005−264160号公報JP 2005-264160 A 特開2005−298817号公報JP 2005-298817 A

H.Xie,L.Chen,Y.Liu,K.Huang,“Preparation and photoluminescence properties of Eu−doped α−and β−Ga2O3 Phosphors”,Solid State Comunications,2007,141,p12−16H. Xie, L .; Chen, Y. et al. Liu, K .; Huang, “Preparation and photoluminescence properties of Eu-doped α-and β-Ga2O3 Phosphors”, Solid State Communications, 2007, 141, p12-16.

しかしながら、特許文献6〜9に開示されるタングステン系蛍光体やモリブデン系蛍光体は発光波長が450nmから470nmの青色光と、発光波長が520nmから550nmの緑色光を近紫外光と同程度以上の割合で吸収するため赤色蛍光体を増やすと青と緑の光量が低下するという問題を生じている。
また、非特許文献1に開示されるGaのGaサイトをEu3+が置換することによって示す赤色発光は、その発光強度が弱いという問題を抱えている。
However, tungsten-based phosphors and molybdenum-based phosphors disclosed in Patent Documents 6 to 9 have blue light with an emission wavelength of 450 nm to 470 nm and green light with an emission wavelength of 520 nm to 550 nm that is comparable to or higher than near ultraviolet light. In order to absorb at a rate, increasing the red phosphor causes a problem that the amount of blue and green light decreases.
In addition, red light emission that is indicated by substituting Eu 3+ for the Ga site of Ga 2 O 3 disclosed in Non-Patent Document 1 has a problem that the light emission intensity is weak.

本発明は、様々な上記問題の解決を目的とし、紫外線又は青色などの可視光で効率よく励起され、高輝度に発光する、3波長型の白色発光ダイオードに好適な赤色蛍光体の提供を目的とする。   The present invention aims to solve various problems described above, and to provide a red phosphor suitable for a three-wavelength white light-emitting diode that is efficiently excited by visible light such as ultraviolet light or blue light and emits light with high luminance. And

本発明者らは、上記した種々の技術的課題を解決するために鋭意研究を重ねた結果、Gaとアルカリ土類金属(Ca、Sr、Baなど)酸化物の複合酸化物とし、Ga位置をEu3+で置換することで課題を解決できることを見出し、本発明を完成させるに至ったものである。 As a result of intensive studies to solve the various technical problems described above, the inventors have made a complex oxide of Ga 2 O 3 and an alkaline earth metal (Ca, Sr, Ba, etc.) oxide, The inventors have found that the problem can be solved by substituting the Ga position with Eu 3+ , and have completed the present invention.

本発明の赤色蛍光体は、一般式M(Ga1−xEuで表され、xが0<x<0.5であり、MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素である複合酸化物であることを特徴とするものである。 Red phosphor of the present invention are represented by the general formula M (Ga 1-x Eu x ) 2 O 4, x is 0 <x <0.5, M is selected Ca, Sr, from the group of Ba It is a composite oxide that is at least one alkaline earth metal element.

更に、本発明の赤色蛍光体のX線回折パターンは、一般式EuMGa結晶相(MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなる)に相当するピークを含むことを特徴とし、この場合において、Ga位置の組成を化学量論組成より10%以下と少なくしてもよい。 Furthermore, the X-ray diffraction pattern of the red phosphor of the present invention corresponds to a crystal phase of general formula EuMGa 3 O 7 (M is composed of at least one alkaline earth metal element selected from the group of Ca, Sr, Ba). In this case, the composition at the Ga position may be less than 10% of the stoichiometric composition.

本発明によれば、一般式M(Ga1−xEuで表され、0<x<0.5、MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなり、さらに、蛍光体のX線回折パターンに一般式EuMGa結晶相、(MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなる)に相当するピークを含むことで紫外線又は青色などの可視光で効率よく励起され、波長域が450から470nmの青色光と、520から550nmの緑色光との光吸収を抑制した、3波長型の白色発光ダイオードに好適な赤色蛍光体である。 According to the present invention, is represented by the general formula M (Ga 1-x Eu x ) 2 O 4, 0 <x <0.5, at least one alkaline earth M is Ca, Sr, selected from the group consisting of Ba Further, an X-ray diffraction pattern of the phosphor has a general formula EuMGa 3 O 7 crystal phase (M is composed of at least one alkaline earth metal element selected from the group consisting of Ca, Sr, and Ba). Of the three-wavelength type, which is efficiently excited by visible light such as ultraviolet light or blue light by suppressing the light absorption of blue light having a wavelength range of 450 to 470 nm and green light having a wavelength range of 520 to 550 nm. It is a red phosphor suitable for white light emitting diodes.

実施例2、4、10と比較例1を395nmの光で励起した発光スペクトルを示す図である。It is a figure which shows the emission spectrum which excited Example 2, 4, 10 and the comparative example 1 with the light of 395 nm. 実施例2、4、10と比較例1の617nmの発光の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of 617 nm light emission of Examples 2, 4, and 10 and Comparative Example 1. 実施例5のXRDパターンを示す図、「○」はEuSrGaを示し、母結晶はSrGaのガンマ相であった。It shows the XRD pattern of Example 5, "○" indicates a EuSrGa 3 O 7, the mother crystal was gamma phase of SrGa 2 O 4. 実施例6のXRDパターンを示す図、「○」はEuCaGaを示し、母結晶はCaGa相であった。It shows the XRD pattern of Example 6, "○" indicates a EuCaGa 3 O 7, host crystals was CaGa 2 O 4 phase. 実施例7のXRDパターンを示す図、「○」はEuBaGaを示し、母結晶はBaGa相であった。It shows the XRD pattern of Example 7, "○" indicates a EuBaGa 3 O 7, host crystals was BaGa 2 O 4 phase. 実施例6、7、8の617nmの発光の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of 617 nm light emission of Example 6, 7, and 8. FIG. 実施例5と市販のYS:Euを395nmの近紫外光で励起した発光スペクトルを示す図である。Example 5 and a commercially available Y 2 O 2 S: is a diagram showing an emission spectrum under excitation by near-ultraviolet light of 395nm and Eu.

本発明の赤色蛍光体は、一般式M(Ga1−xEuで示されるxが、0<x<0.5、MはCa、Sr、Baの群から選ばれる少なくとも1種からなるアルカリ土類金属元素であり、この赤色蛍光体は広い組成範囲で非常に高い発光強度を得ることができる。
更に、本発明に係る赤色蛍光体のX線回折パターンには、一般式EuMGa結晶相(MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなる)に相当するピークを含むことを特徴とし、紫外線又は青色などの可視光で効率よく励起され、波長域が450から470nmの青色光と520から550nmの緑色の光吸収を抑制した、3波長型の白色発光ダイオードに好適な赤色蛍光体を提供するものである。
Red phosphor of the present invention have the general formula M (Ga 1-x Eu x ) x represented by 2 O 4 is, 0 <x <0.5, at least 1 M is the Ca, Sr, selected from the group consisting of Ba It is an alkaline earth metal element consisting of seeds, and this red phosphor can obtain very high emission intensity over a wide composition range.
Further, the X-ray diffraction pattern of the red phosphor according to the present invention has a general formula EuMGa 3 O 7 crystal phase (M is composed of at least one alkaline earth metal element selected from the group consisting of Ca, Sr and Ba). A three-wavelength type that is efficiently excited by visible light such as ultraviolet light or blue light and suppresses absorption of blue light having a wavelength range of 450 to 470 nm and green light having a wavelength range of 520 to 550 nm. A red phosphor suitable for a white light emitting diode is provided.

一般に賦活材としてEu3+を含む蛍光体は、Euのf電子の光学遷移で光を吸収し発光することが知られているが、この遷移現象を説明する理論にジャッド−オーフェルトの理論が知られている。
この理論からf電子間の選択則は以下のように考えられる。
電気双極子遷移は、軌道角運動量ベクトルをL、スピン角運動量ベクトルをS、全角運動量ベクトルJ(J=L+S)、それぞれの量子数をL、S、Jとし、300nmより短い光で励起される。
遷移には電気双極子遷移と磁気双極子遷移などがあり、その選択則は電気双極子の場合はΔJ(遷移する電子準位のJの差)が2以下が許容遷移で、J=0と、J=0または1の電子準位間の遷移は禁止、磁気双極子遷移の場合はΔJ=0、+1、−1が許容遷移で、J=0とJ=0の電子準位間の遷移は禁止という電子遷移の選択則がある。
これに従うとEu3+の遷移で近紫外から青色の波長領域では電子遷移が起きないか、起きても非常に小さい。
In general, a phosphor containing Eu 3+ as an activator is known to absorb and emit light by optical transition of Eu f-electrons. The theory explaining the transition phenomenon is known by Judd-Obert's theory. It has been.
From this theory, the selection rule between f electrons can be considered as follows.
The electric dipole transition is excited by light shorter than 300 nm, with the orbital angular momentum vector L, the spin angular momentum vector S, the total angular momentum vector J (J = L + S), and the respective quantum numbers L, S, J. .
The transition includes an electric dipole transition and a magnetic dipole transition. In the case of an electric dipole, ΔJ (difference of J of the transition electron level) is 2 or less, and an allowable transition is J = 0. , Transitions between electronic levels of J = 0 or 1 are prohibited. In the case of magnetic dipole transitions, ΔJ = 0, +1, −1 are allowable transitions, and transitions between electronic levels of J = 0 and J = 0 Has an electronic transition selection rule of prohibition.
According to this, an electron transition does not occur in the near ultraviolet to blue wavelength region due to the transition of Eu 3+ or is very small even if it occurs.

ところが、Eu3+イオンが置換した原子位置によっては周囲の原始配置の影響を受けて本来は禁制である電子遷移が可能になり、近紫外から青色の波長領域で光を吸収して赤色の発光が可能になると考えられる。そこで色々な結晶において、その効果が調べられている。そのような具体例としてタングステン系やモリブデン系蛍光体が開発されている。 However, depending on the atomic position substituted by Eu 3+ ions, electronic transition that is originally forbidden is possible due to the influence of the surrounding primitive arrangement, and light is absorbed in the near ultraviolet to blue wavelength region, and red light emission occurs. It will be possible. Therefore, the effect of various crystals has been investigated. As such specific examples, tungsten-based and molybdenum-based phosphors have been developed.

通常、イオン半径が小さいGaサイトにEuが置換することが難しいといわれてきたが、最近、GaにおいてもGaの空孔と対を形成することでGaサイトをEu3+で置換することが分かった。これによって近紫外から青色の波長領域での電子励起が可能であることが報告されたが、発明者が試験したところ、図1(例えば、比較例1参照。)に示すように、その発光強度は低いことが分かった。 Usually, it has been said that it is difficult to replace Eu with a Ga site having a small ionic radius. Recently, Ga 2 O 3 is also replaced with Eu 3+ by forming a pair with Ga vacancies. I understood. As a result, it was reported that electronic excitation in the near ultraviolet to blue wavelength region was possible. However, as a result of testing by the inventors, as shown in FIG. Was found to be low.

そこで、発明者はアルカリ土類金属とGaの複合酸化物を作製し、Gaサイトの周囲の原子配置を変化させることで蛍光特性の改良を検討した。
その結果、蛍光体を特定の組成比のアルカリ土類金属元素とガリウムの複合酸化物とすることで図1、2に示すように高い発光特性が得られた。
Therefore, the inventor made a composite oxide of an alkaline earth metal and Ga 2 O 3 and examined the improvement of the fluorescence characteristics by changing the atomic arrangement around the Ga site.
As a result, high emission characteristics were obtained as shown in FIGS. 1 and 2 by using a phosphor as a complex oxide of an alkaline earth metal element and gallium having a specific composition ratio.

また、図3から図5に示すように本発明に係る赤色蛍光体は、それらの複合酸化物中にEuMGa結晶相(MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素)が含まれることも分かった。 Further, as shown in FIGS. 3 to 5, the red phosphor according to the present invention includes EuMGa 3 O 7 crystal phase (M is at least one selected from the group of Ca, Sr, Ba) in the composite oxide. It was also found that alkaline earth metal elements) were included.

次に、本発明の赤色蛍光体の製造方法を説明する。
本発明の赤色蛍光体であるアルカリ土類金属とガリウムの複合酸化物は、固相法または液相法で前駆体を作製し、それを焼成することで作製できる。
例えば、固相法ではアルカリ土類金属炭酸塩、酸化Gaと酸化ユーロピウムを混合し、それを大気中で700℃から1300℃で焼成することで作製することができる。
その焼成温度が700℃より低いと、炭酸塩が分解できないため複合酸化物が出来難い。また焼成温度が1300℃より高いと、Gaが揮発するため組成ズレを生じたり、得られる複合酸化物が熔融するため好ましくない。
Next, the method for producing the red phosphor of the present invention will be described.
The complex oxide of alkaline earth metal and gallium, which is the red phosphor of the present invention, can be produced by producing a precursor by a solid phase method or a liquid phase method and firing it.
For example, in the solid phase method, it can be produced by mixing alkaline earth metal carbonate, Ga oxide and europium oxide, and firing at 700 to 1300 ° C. in the atmosphere.
If the firing temperature is lower than 700 ° C., it is difficult to form a composite oxide because the carbonate cannot be decomposed. On the other hand, when the firing temperature is higher than 1300 ° C., Ga 2 O 3 is volatilized, resulting in a composition shift or melting of the obtained composite oxide.

また液相法では、例えば錯体重合法を用いて前駆体を作製する場合には、まず、アルカリ土類金属炭酸塩を、そのアルカリ土類金属元素の3から6倍モルのクエン酸水溶液に溶解させる。次いで、その水溶液に硝酸Gaと硝酸Eu水溶液を加え、50から120℃で1から8時間程度攪拌して錯化する。このようにして得られた液に、全金属元素の8から12倍モルのアルコールを加えて加熱し、エステル化反応でポリエステルを形成する。このポリエステルを450℃で加熱分解し、さらに550から600℃で大気雰囲気にて焼成し、前駆体を作製する。ここで使用するアルコールとしてはプロピレングリコール、エチレングリコールなどのグリコールが好ましい。   In the liquid phase method, for example, when a precursor is prepared using a complex polymerization method, first, an alkaline earth metal carbonate is dissolved in an aqueous citric acid solution having a molar amount of 3 to 6 times that of the alkaline earth metal element. Let Next, Ga nitrate and Eu nitrate aqueous solution are added to the aqueous solution, and complexed by stirring at 50 to 120 ° C. for about 1 to 8 hours. To the liquid thus obtained, 8 to 12 times moles of alcohol of all metal elements are added and heated to form a polyester by an esterification reaction. This polyester is thermally decomposed at 450 ° C., and further fired at 550 to 600 ° C. in an air atmosphere to prepare a precursor. As the alcohol used here, glycols such as propylene glycol and ethylene glycol are preferable.

次に、得られた前駆体は固相法と同様に、大気中で700℃から1300℃で焼成することによって、複合酸化物の作製が可能である。
その焼成温度が700℃より低いと炭酸塩が分解できないため複合酸化物が出来難い。また焼成温度が1300℃より高いとGaが揮発するため組成ズレを生じたり、得られる複合酸化物が熔融するため好ましくない。さらに、一般にGaは、800℃以上で昇華が著しくなるので、一度800℃以下で焼成して複合酸化物を形成し、再度1000℃以上の高温で焼成してもよい。
Next, similarly to the solid phase method, the obtained precursor can be fired at 700 ° C. to 1300 ° C. in the atmosphere to produce a composite oxide.
When the firing temperature is lower than 700 ° C., the carbonate cannot be decomposed, so that it is difficult to form a composite oxide. On the other hand, when the firing temperature is higher than 1300 ° C., Ga 2 O 3 is volatilized, resulting in a composition shift or melting of the resulting composite oxide. Furthermore, since Ga 2 O 3 generally sublimes at 800 ° C. or higher, it may be fired once at 800 ° C. or lower to form a composite oxide, and may be fired again at a high temperature of 1000 ° C. or higher.

以下に、実施例を用いて本発明を詳細に説明する。ただし、本発明の赤色蛍光体は以下の具体的実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the red phosphor of the present invention is not limited to the following specific examples.

0.3モルのクエン酸を100mlの水に溶解し、その溶液に炭酸ストロンチウム0.05モルを加えて0.5M/LのSrクエン酸溶液を作製した。このSrクエン酸溶液と硝酸Ga(1M/L)と硝酸Eu(0.1M/L)を金属モル比で1:1.6:0.4でEu濃度を20%になるよう、すなわち組成式SrGaのGa原子をEu原子で20原子%置換するように、ビーカーに入れて混合し、80℃のホットプレート上で1時間攪拌し、この溶液にプロピレングリコールを全金属モル数の10倍量加えて、更に8時間攪拌してゲル体を作製した。更に、このゲル体から硝酸を蒸発させるため180℃で2時間の加熱を施した。
このようにして得たゲル体を、450℃に設定したマントルヒーターで2時間焼成して前駆体を作製した。
さらに、得られた前駆体をボックス炉で大気雰囲気中で750℃2時間の焼成を行い、実施例1の蛍光体を作製した。
0.3 mol of citric acid was dissolved in 100 ml of water, and 0.05 mol of strontium carbonate was added to the solution to prepare a 0.5 M / L Sr citric acid solution. This Sr citric acid solution, Ga nitrate (1 M / L), and Eu nitrate (0.1 M / L) in a metal molar ratio of 1: 1.6: 0.4 and an Eu concentration of 20%, that is, a composition formula In a beaker, the mixture was mixed in a beaker so that 20 atom% of Ga atoms in SrGa 2 O 4 were replaced with Eu atoms, and the mixture was stirred on a hot plate at 80 ° C. for 1 hour. Doubled amount was added and further stirred for 8 hours to prepare a gel body. Furthermore, in order to evaporate nitric acid from this gel body, it heated at 180 degreeC for 2 hours.
The gel body thus obtained was fired for 2 hours with a mantle heater set at 450 ° C. to prepare a precursor.
Furthermore, the obtained precursor was baked at 750 ° C. for 2 hours in an air atmosphere in a box furnace to produce the phosphor of Example 1.

実施例1で作製した蛍光体を、さらに大気中1200℃2時間焼成して実施例2に係る蛍光体を作製した。   The phosphor produced in Example 1 was further baked in the atmosphere at 1200 ° C. for 2 hours to produce the phosphor according to Example 2.

Srクエン酸溶液と硝酸Ga(1M/L)と硝酸Eu(0.1M/L)の金属モル比を1:1.4:0.6でEu濃度を30%にした以外は実施例1と同様の方法で実施例3に係る蛍光体を作製した。   Example 1 except that the metal molar ratio of the Sr citric acid solution, Ga nitrate (1 M / L) and Eu nitrate (0.1 M / L) was 1: 1.4: 0.6, and the Eu concentration was 30%. A phosphor according to Example 3 was produced in the same manner.

実施例3で作製した蛍光体を、大気中1200℃2時間焼成して実施例4に係る蛍光体を作製した。   The phosphor produced in Example 3 was fired in the atmosphere at 1200 ° C. for 2 hours to produce the phosphor according to Example 4.

Srクエン酸溶液と硝酸Ga(1M/L)と硝酸Eu(0.1M/L)の金属モル比を1:1.80:0.20でEu濃度を10%にした以外は実施例1と同様の方法で前駆体を作製し、その前駆体をボックス炉で大気中750℃2時間、更に1200℃で2時間焼成して実施例5に係る蛍光体を作製した。   Example 1 except that the metal molar ratio of the Sr citric acid solution, Ga nitrate (1 M / L) and Eu nitrate (0.1 M / L) was 1: 1.80: 0.20, and the Eu concentration was 10%. A precursor was prepared in the same manner, and the precursor was baked in a box furnace in the atmosphere at 750 ° C. for 2 hours and further at 1200 ° C. for 2 hours to prepare a phosphor according to Example 5.

Srクエン酸溶液と硝酸Ga(1M/L)と硝酸Eu(0.1M/L)の金属モル比を1:1.92:0.08でEu濃度を4%にした以外は実施例1と同様の方法で前駆体を作製し、その前駆体をボックス炉で大気中750℃2時間、更に1200℃で2時間焼成して実施例6に係る蛍光体を作製した。   Example 1 except that the metal molar ratio of the Sr citric acid solution, Ga nitrate (1 M / L) and Eu nitrate (0.1 M / L) was 1: 1.92: 0.08, and the Eu concentration was 4%. A precursor was prepared by the same method, and the precursor was fired in a box furnace in the atmosphere at 750 ° C. for 2 hours and further at 1200 ° C. for 2 hours to prepare a phosphor according to Example 6.

炭酸Srの代りに炭酸Caを使用し、Srクエン酸溶液の代わりにCaクエン酸溶液にした以外は実施例6と同様の方法で実施例7に係る蛍光体を作製した。   A phosphor according to Example 7 was produced in the same manner as in Example 6 except that Ca carbonate was used instead of Sr carbonate, and Ca citric acid solution was used instead of Sr citric acid solution.

炭酸Srの代りに炭酸Baを使用し、Srクエン酸溶液の代わりにBaクエン酸溶液にした以外は実施例6と同様の方法で実施例8に係る蛍光体を作製した。   A phosphor according to Example 8 was produced in the same manner as in Example 6 except that Ba carbonate was used instead of Sr carbonate, and Ba citric acid solution was used instead of Sr citric acid solution.

炭酸Srの代りに炭酸Srおよび炭酸Caを用いて、SrとCaの比を0.25:0.75でEu濃度を8%にした以外は実施例1と同様の方法で前駆体を作製し、その前駆体をボックス炉で大気中750℃2時間、更に1100℃2時間焼成して実施例9に係る蛍光体を作製した。   A precursor was prepared in the same manner as in Example 1 except that Sr carbonate and Ca carbonate were used instead of Sr carbonate, the ratio of Sr to Ca was 0.25: 0.75, and the Eu concentration was 8%. The precursor was fired in a box furnace in the atmosphere at 750 ° C. for 2 hours, and further at 1100 ° C. for 2 hours to produce a phosphor according to Example 9.

炭酸Srの代りに炭酸Srおよび炭酸Caを用いて、SrとCaの比を、0.5:0.5でEu濃度を8%にした以外は実施例1と同様の方法で前駆体を作製し、その前駆体をボックス炉で大気中750℃2時間、更に1100℃2時間焼成して実施例10に係る蛍光体を作製した。   A precursor was produced in the same manner as in Example 1 except that Sr carbonate and Ca carbonate were used instead of Sr carbonate, the ratio of Sr to Ca was 0.5: 0.5, and the Eu concentration was 8%. Then, the precursor was baked in a box furnace in the atmosphere at 750 ° C. for 2 hours and further at 1100 ° C. for 2 hours to produce the phosphor according to Example 10.

炭酸Srの代りに炭酸Srおよび炭酸Caを用いて、SrとCaの比を0.75:0.25でEu濃度を8%にした以外は実施例1と同様の方法で前駆体を作製し、前駆体をボックス炉で大気中750℃2時間、更に1100℃2時間焼成して実施例11に係る蛍光体を作製した。   A precursor was prepared in the same manner as in Example 1 except that Sr carbonate and Ca carbonate were used instead of Sr carbonate, the ratio of Sr to Ca was 0.75: 0.25, and the Eu concentration was 8%. The phosphor was fired in a box furnace in the atmosphere at 750 ° C. for 2 hours and further at 1100 ° C. for 2 hours to produce a phosphor according to Example 11.

(比較例1)
硝酸Ga(1M/L)と硝酸Eu(0.1M/L)を、金属モル比で1.92:0.08でEu濃度を4%になるようにビーカーに入れて混合し、80℃のホットプレート上で1時間攪拌した。この溶液にプロピレングリコールを全金属モル数の10倍量加えて、更に8時間攪拌してゲル体を作製した。このゲル体から硝酸を蒸発させるために、180℃で2時間加熱した。
このゲルを450℃に設定したマントルヒーターで2時間焼成して前駆体を作製した。
この前駆体をボックス炉で大気中750℃2時間、1000℃2時間焼成して比較例1に係る蛍光体を作製した。
(Comparative Example 1)
Nitric acid Ga (1 M / L) and Eu nitrate (0.1 M / L) were mixed in a beaker at a metal molar ratio of 1.92: 0.08 and an Eu concentration of 4%. Stir on a hot plate for 1 hour. To this solution, propylene glycol was added in an amount 10 times the total number of moles of metal, and the mixture was further stirred for 8 hours to prepare a gel. In order to evaporate nitric acid from this gel body, it was heated at 180 ° C. for 2 hours.
This gel was baked with a mantle heater set at 450 ° C. for 2 hours to prepare a precursor.
The precursor was fired in a box furnace in the atmosphere at 750 ° C. for 2 hours and 1000 ° C. for 2 hours to produce a phosphor according to Comparative Example 1.

(比較例2)
Srクエン酸溶液と硝酸Ga(1M/L)と硝酸Eu(0.1M/L)を金属モル比を1:0.9:1.1でEu濃度を55%にした以外は、実施例1と同様の方法で比較例2に係る蛍光体を作製した。得られた蛍光体をXRD測定してみると、EuSrGa以外に複数の相があり、発光しなかった。
(Comparative Example 2)
Example 1 except that the Sr citric acid solution, Ga nitrate (1 M / L) and Eu nitrate (0.1 M / L) were made to have a metal molar ratio of 1: 0.9: 1.1 and an Eu concentration of 55%. A phosphor according to Comparative Example 2 was produced in the same manner as described above. When XRD measurement was performed on the obtained phosphor, there were a plurality of phases other than EuSrGa 3 O 7 and no light was emitted.

[性能評価]
<蛍光特性の測定>
発光特性の評価は、蛍光分光光度計FP−6500(日本分光)を用いて、実施例および比較例における励起、発光スペクトルの測定を行った。測定した励起、発光スペクトルの強度は、市販のYAG:Ce(化成オプトニクス製P46)のピーク強度を1として規格化、比較している。
[Performance evaluation]
<Measurement of fluorescence characteristics>
For the evaluation of the emission characteristics, excitation and emission spectra in Examples and Comparative Examples were measured using a fluorescence spectrophotometer FP-6500 (JASCO). The measured excitation and emission spectrum intensities are normalized and compared with the peak intensity of commercially available YAG: Ce (P46 manufactured by Kasei Optonics) being 1.

表1に、発光波長617nmの実施例1から実施例6と比較例1、2の励起スペクトル強度を示す。
表1から明らかなように、比較例1に比べて実施例は、何れの励起波長でも強度がほぼ一桁以上強くなっていることが分かる。また395nmの励起による発光特性に比べて464nmや533nmの励起による発光特性は、比較的小さいことが分かる。
実施例7から実施例11の結果を表2に示す。比較例1よりも、いずれも発光強度が強いことがわかる。
Table 1 shows the excitation spectrum intensities of Examples 1 to 6 and Comparative Examples 1 and 2 having an emission wavelength of 617 nm.
As is apparent from Table 1, it can be seen that the intensity of the example is almost one digit higher than that of Comparative Example 1 at any excitation wavelength. It can also be seen that the light emission characteristics due to excitation at 464 nm and 533 nm are relatively small compared to the light emission characteristics due to excitation at 395 nm.
The results of Example 7 to Example 11 are shown in Table 2. It can be seen that the emission intensity is higher than in Comparative Example 1.

また、実施例5と市販のYS:Eu(フォスファー テクノロジー社製)を395nmで励起して比較した発光スペクトルの比較を図7に示す。図7から発光ピークがYS:Euよりも短波長側にあり、蛍光灯用のY:Euの発光波長(611nm)に近く、強度的にも視感度的にもYS:Euよりも白色発光照明に適していることが分かる。 FIG. 7 shows a comparison of emission spectra obtained by exciting Example 5 and commercially available Y 2 O 2 S: Eu (manufactured by Phosphor Technology) at 395 nm for comparison. From FIG. 7, the emission peak is on the shorter wavelength side than Y 2 O 2 S: Eu, is close to the emission wavelength (611 nm) of Y 2 O 3 : Eu for fluorescent lamps, and is Y in terms of intensity and visibility. It can be seen that it is more suitable for white light-emitting illumination than 2 O 2 S: Eu.

Figure 2012031346
Figure 2012031346

Figure 2012031346
Figure 2012031346

Claims (2)

一般式 M(Ga1−xEuで表され、0<x<0.5であり、MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなる複合酸化物であることを特徴とする赤色蛍光体。 Represented by the general formula M (Ga 1-x Eu x ) 2 O 4 , 0 <x <0.5, and M is from at least one alkaline earth metal element selected from the group of Ca, Sr, Ba. A red phosphor characterized by being a composite oxide. 前記赤色蛍光体のX線回折パターンが、一般式EuMGa結晶相を示し、MはCa、Sr、Baの群から選ばれる少なくとも1種のアルカリ土類金属元素からなることを特徴とする請求項1に記載の赤色蛍光体。 The X-ray diffraction pattern of the red phosphor shows a general formula EuMGa 3 O 7 crystal phase, and M is composed of at least one alkaline earth metal element selected from the group consisting of Ca, Sr and Ba. The red phosphor according to claim 1.
JP2010174026A 2010-08-02 2010-08-02 Red phosphor Pending JP2012031346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174026A JP2012031346A (en) 2010-08-02 2010-08-02 Red phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174026A JP2012031346A (en) 2010-08-02 2010-08-02 Red phosphor

Publications (1)

Publication Number Publication Date
JP2012031346A true JP2012031346A (en) 2012-02-16

Family

ID=45845133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174026A Pending JP2012031346A (en) 2010-08-02 2010-08-02 Red phosphor

Country Status (1)

Country Link
JP (1) JP2012031346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849402A (en) * 2012-11-29 2014-06-11 海洋王照明科技股份有限公司 Lanthanum calcium gallate luminescent material and preparation method thereof
WO2021205970A1 (en) * 2020-04-06 2021-10-14 Jx金属株式会社 Target, sintered body, and methods respectively for producing those products
CN115873595A (en) * 2022-12-12 2023-03-31 华南理工大学 Adjustable red light and near-infrared rare earth luminescent material, preparation method thereof and infrared LED device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849402A (en) * 2012-11-29 2014-06-11 海洋王照明科技股份有限公司 Lanthanum calcium gallate luminescent material and preparation method thereof
WO2021205970A1 (en) * 2020-04-06 2021-10-14 Jx金属株式会社 Target, sintered body, and methods respectively for producing those products
CN115873595A (en) * 2022-12-12 2023-03-31 华南理工大学 Adjustable red light and near-infrared rare earth luminescent material, preparation method thereof and infrared LED device

Similar Documents

Publication Publication Date Title
Huang et al. Ultra-high color rendering warm-white light-emitting diodes based on an efficient green-emitting garnet phosphor for solid-state lighting
TWI374178B (en) Novel aluminate-based green phosphors
KR100951065B1 (en) Aluminate-based blue phosphors
KR101539446B1 (en) Green-emitting, garnet-based phosphors in general and backlighting applications
JP4799549B2 (en) White light emitting diode
JP6091475B2 (en) Yellow-green to yellow-emitting phosphors based on halogenated aluminates
JP2008545048A6 (en) Aluminate blue phosphor
TW200814359A (en) Highly saturated red-emitting Mn (IV) activated phosphors and method of fabricating the same
JP2012509364A (en) Phosphor composition
JP5097190B2 (en) Red fluorescent material, method for producing the same, and white fluorescent device
Li et al. Mechanism analysis of a narrow-band ultra-bright green phosphor with its prospect in white light-emitting diodes and field emission displays
US9890328B2 (en) Phosphor compositions and lighting apparatus thereof
JP4989454B2 (en) Phosphor and light emitting device using the same
JP2012031346A (en) Red phosphor
JP4098354B2 (en) White light emitting device
JP5528303B2 (en) Sulfide phosphor
KR102631178B1 (en) Blue light-emitting phosphor, light-emitting element, light-emitting device, and white light-emitting device
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
WO2023139824A1 (en) Phosphor, light emitting device, illumination device, image display device, and vehicular display lamp
JP7266215B2 (en) Phosphor and light-emitting device using the same
Lee et al. Analyses of ultraviolet-excitable high-efficiency phosphorescent RGB phosphors with various Eu2O3 doping concentrations for fabricating white Light–Emitting diodes
WO2023139823A1 (en) Phosphor, light-emitting device, lighting device, image display device, and indicator lamp for vehicles
JP2017222868A (en) Terbium-containing aluminate-based yellowish green to yellow light-emitting fluophor
JPWO2018042949A1 (en) Phosphor and light emitting device
JP4401866B2 (en) Green light emitting phosphor