JP2012031001A - Sealing glass - Google Patents

Sealing glass Download PDF

Info

Publication number
JP2012031001A
JP2012031001A JP2010170963A JP2010170963A JP2012031001A JP 2012031001 A JP2012031001 A JP 2012031001A JP 2010170963 A JP2010170963 A JP 2010170963A JP 2010170963 A JP2010170963 A JP 2010170963A JP 2012031001 A JP2012031001 A JP 2012031001A
Authority
JP
Japan
Prior art keywords
glass
sealing
mol
content
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010170963A
Other languages
Japanese (ja)
Other versions
JP5671864B2 (en
Inventor
Shuji Matsumoto
修治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010170963A priority Critical patent/JP5671864B2/en
Publication of JP2012031001A publication Critical patent/JP2012031001A/en
Application granted granted Critical
Publication of JP5671864B2 publication Critical patent/JP5671864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Glass Compositions (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide sealing glass which improves weatherability of glass (a sealing part) after sealing while maintaining sealability with excellent reliability at low temperature.SOLUTION: The sealing glass includes a glass composition including, by mole in terms of oxide, 30-33% of PO, 63-69% of SnO, 0-3% of ZnO, 0.1-3% of WO, and at least one selected from a group of TeO, GeO, GaO, InO, LaO, CaO and SrO. A glass transition temperature is 250°C or lower.

Description

本発明は封着用ガラスに関する。   The present invention relates to glass for sealing.

有機ELディスプレイ(Organic Electro−Luminescence Display:OELD)、電界放出ディスプレイ(Feild Emission Dysplay:FED)、プラズマディスプレイパネル(PDP)、液晶表示装置(LCD)等の平板型ディスプレイ装置(FPD)、また照明用有機発光ダイオード(Organic Light Emittimg Diode:OLED)においては、表示素子や発光素子を形成した素子用ガラス基板と封止用ガラス基板とを対向配置し、これら2枚のガラス基板間を封着したガラスパッケージで素子を封止した構造が適用されている。色素増感型太陽電池のような太陽電池においても、2枚のガラス基板で太陽電池素子(色素増感型光電変換素子)を封止したガラスパッケージの適用が検討されている。   Organic EL displays (Organic Electro-Luminescence Display: OELD), field emission displays (Feed Emission Display: FED), flat panel display devices (FPD) such as plasma display panels (PDP), liquid crystal display devices (LCD), and illumination In an organic light emitting diode (OLED), a glass substrate in which an element glass substrate on which a display element or a light emitting element is formed and a glass substrate for sealing are arranged to face each other, and a glass between which the two glass substrates are sealed is provided. A structure in which an element is sealed with a package is applied. In solar cells such as dye-sensitized solar cells, application of a glass package in which a solar cell element (dye-sensitized photoelectric conversion element) is sealed with two glass substrates has been studied.

2枚のガラス基板間を封着する材料としては、一般的に樹脂が用いられてきたが、有機EL(OEL)素子等は水分により劣化しやすいことから、耐湿性等に優れるガラス製封着材料の適用が進められている。ガラス製封着材料を電子デバイスの封着に適用する場合には、OEL素子等の電子素子部の特性劣化を抑制するために、低温での封着を可能にすることが求められる。低温封着用のガラス材料としては、例えば錫−リン酸系ガラスが知られている(特許文献1参照)。特許文献1には、25〜50モル%のP25、30〜70モル%のSnO、0〜15モル%のZnO等を含有し、SnOとZnOとのモル比がSnOの観点から5:1より大きい錫−リン酸系ガラスが記載されている。 As a material for sealing between two glass substrates, resin has generally been used. However, since organic EL (OEL) elements and the like are easily deteriorated by moisture, sealing with glass having excellent moisture resistance and the like. Application of materials is underway. In the case where a glass sealing material is applied to sealing of an electronic device, it is required to enable sealing at a low temperature in order to suppress deterioration of characteristics of an electronic element portion such as an OEL element. As a glass material for low temperature sealing, for example, tin-phosphate glass is known (see Patent Document 1). Patent Document 1 contains 25 to 50 mol% P 2 O 5 , 30 to 70 mol% SnO, 0 to 15 mol% ZnO, and the like, and the molar ratio of SnO to ZnO is 5 from the viewpoint of SnO. A tin-phosphate glass greater than 1 is described.

また、封着時におけるOEL素子等の電子素子部への熱的な悪影響を排除するために、レーザ光を用いて封止部のみを局所的に加熱して封着するレーザ封着技術の開発、実用化が進められている。レーザ封着に用いる材料としては、黒色のSnコロイドを含有させた封着用ガラス(特許文献2参照)が知られている。特許文献2には、25〜45モル%のP25、20〜40モル%のSnO、25〜50モル%のZnO等を含有する錫−リン酸系ガラスが記載されており、封着温度を低温化できる材料として注目されている。 In addition, in order to eliminate the adverse thermal effects on electronic device parts such as OEL elements during sealing, development of laser sealing technology that uses laser light to locally heat and seal only the sealing part Practical use is in progress. As a material used for laser sealing, sealing glass containing black Sn colloid is known (see Patent Document 2). Patent Document 2, 25-45 mol% of P 2 O 5, 20 to 40 mol% of SnO, tin containing 25 to 50 mol% of ZnO, etc. - have been described phosphoric acid-based glass, sealing It is attracting attention as a material that can lower the temperature.

上述したような錫−リン酸系ガラスはガラス転移温度(Tg)が低く、封着温度を低温化できる材料として注目されているものの、必ずしも十分な耐候性が得られていないという難点を有している。従来の錫−リン酸系ガラスはガラスの安定性を高める成分としてZnOを含んでいるが、ZnOの配合量が多くなると焼成時にガラスが結晶化しやすくなり、封着性が低下してしまう。また、ZnOの配合量の増加はガラス転移温度(Tg)の上昇を招くおそれもある。このようなことから、ガラス転移温度(Tg)が低く、かつ耐候性に優れる封着用ガラスが求められている。   Although the tin-phosphate glass as described above has a low glass transition temperature (Tg) and is attracting attention as a material capable of lowering the sealing temperature, it has a drawback that sufficient weather resistance is not always obtained. ing. Conventional tin-phosphate glass contains ZnO as a component that enhances the stability of the glass. However, if the amount of ZnO is increased, the glass is easily crystallized during firing, and the sealing property is lowered. In addition, an increase in the amount of ZnO may increase the glass transition temperature (Tg). For these reasons, a glass for sealing that has a low glass transition temperature (Tg) and excellent weather resistance is required.

特開平07−069672号公報Japanese Unexamined Patent Publication No. 07-066972 特開2008−186697号公報JP 2008-186697 A

本発明の目的は、低温での信頼性に優れる封着性を維持しつつ、封着後のガラスの耐候性を向上させた封着用ガラスを提供することにある。   The objective of this invention is providing the glass for sealing which improved the weather resistance of the glass after sealing, maintaining the sealing property excellent in the reliability at low temperature.

本発明の封着用ガラスは、酸化物基準のモル%表示で、30〜33%のP25と、63〜69%のSnOと、0〜3%のZnOと、0.1〜3%のWO3、TeO2、GeO2、Ga23、In23、La23、CaO、及びSrOからなる群より選ばれる少なくとも1種とを含むガラス組成物からなり、ガラス転移温度が250℃以下であることを特徴としている。 The glass for sealing of the present invention is expressed in mol% on the basis of oxide, 30 to 33% P 2 O 5 , 63 to 69% SnO, 0 to 3% ZnO, and 0.1 to 3%. A glass composition containing at least one selected from the group consisting of WO 3 , TeO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , La 2 O 3 , CaO, and SrO. Is 250 ° C. or lower.

本発明の封着用ガラスによれば、低温で信頼性に優れる封着を実現した上で、封着後のガラス(封着部)の耐候性を向上させることが可能となる。   According to the sealing glass of the present invention, it is possible to improve the weather resistance of the glass after sealing (sealing portion) after realizing sealing with excellent reliability at low temperatures.

本発明の実施形態による電子デバイスを示す断面図である。It is sectional drawing which shows the electronic device by embodiment of this invention. 本発明の実施形態による電子デバイスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic device by embodiment of this invention. 図2に示す電子デバイスの製造工程で使用する第1のガラス基板を示す平面図である。It is a top view which shows the 1st glass substrate used in the manufacturing process of the electronic device shown in FIG. 図3のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG. 図2に示す電子デバイスの製造工程で使用する第2のガラス基板を示す平面図である。It is a top view which shows the 2nd glass substrate used at the manufacturing process of the electronic device shown in FIG. 図5のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG.

以下、本発明を実施するための形態について説明する。この実施形態の封着用ガラスは、酸化物基準のモル%表示で、30〜33%のP25と、63〜69%のSnOと、0〜3%のZnOと、0.1〜3%のWO3、TeO2、GeO2、Ga23、In23、La23、CaO、及びSrOからなる群より選ばれる少なくとも1種とを含む錫−リン酸系ガラス組成物からなる。このような錫−リン酸系ガラス組成物からなる封着用ガラスは250℃以下のガラス転移温度(Tg)を有しており、これにより低温封着が可能となる。 Hereinafter, modes for carrying out the present invention will be described. The sealing glass of this embodiment is 30% to 33% P 2 O 5 , 63 to 69% SnO, 0 to 3% ZnO, and 0.1 to 3 in terms of mol% based on oxide. % Tin-phosphate glass composition comprising at least one selected from the group consisting of WO 3 , TeO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , La 2 O 3 , CaO, and SrO. Consists of. Glass for sealing made of such a tin-phosphate glass composition has a glass transition temperature (Tg) of 250 ° C. or lower, which enables low-temperature sealing.

この実施形態の錫−リン酸系ガラス組成物において、P25とSnOは封着用ガラスの主成分を構成するものである。30〜33モル%のP25と63〜69モル%のSnOとからなる封着用ガラスはガラス転移温度(Tg)が低く、低温封着用のガラス材料として好適であるが、十分な耐候性を有する封着部を得ることができない。そこで、この実施形態の錫−リン酸系ガラス組成物は、WO3、TeO2、GeO2、Ga23、In23、La23、CaO、及びSrOからなる群より選ばれる少なくとも1種を0.1〜3モル%の範囲で含有させており、また必要に応じて3モル%以下のZnOを含有させている。 In the tin-phosphate glass composition of this embodiment, P 2 O 5 and SnO constitute the main components of the sealing glass. Glass for sealing composed of 30 to 33 mol% P 2 O 5 and 63 to 69 mol% SnO has a low glass transition temperature (Tg) and is suitable as a glass material for low temperature sealing, but has sufficient weather resistance. It is not possible to obtain a sealing part having Therefore, the tin-phosphate glass composition of this embodiment is selected from the group consisting of WO 3 , TeO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , La 2 O 3 , CaO, and SrO. At least one kind is contained in the range of 0.1 to 3 mol%, and 3 mol% or less of ZnO is contained as necessary.

WO3、TeO2、GeO2、Ga23、In23、La23、CaO、及びSrOからなる群より選ばれる少なくとも1種は、少量の配合でP25とSnOとからなるガラスの耐候性を向上させる効果を有している。従って、上記成分を封着用ガラス中に0.1モル%以上の範囲で含有させることによって、ガラスの耐候性を向上させつつ、ガラス転移温度(Tg)の上昇を抑制することができ、さらに焼成時における封着用ガラスの結晶化を抑制することが可能となる。ただし、上記成分の合計含有量が多すぎるとガラス転移温度(Tg)が上昇するため、上記成分の合計含有量は3モル%以下とする。 At least one selected from the group consisting of WO 3 , TeO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , La 2 O 3 , CaO, and SrO contains P 2 O 5 and SnO in a small amount. It has the effect which improves the weather resistance of the glass which consists of. Therefore, by containing the above components in the sealing glass in a range of 0.1 mol% or more, it is possible to suppress an increase in the glass transition temperature (Tg) while improving the weather resistance of the glass, and further firing. It becomes possible to suppress crystallization of the sealing glass at the time. However, if the total content of the above components is too large, the glass transition temperature (Tg) increases, so the total content of the above components is 3 mol% or less.

この実施形態の錫−リン酸系ガラス組成物の各成分について詳述する。P25はガラス骨格を形成してガラスを安定化させる必須の成分であり、封着用ガラス中に30〜33モル%の範囲で含有させる。P25の含有量が30モル%未満であるとガラス転移温度(Tg)が高くなる。P25の含有量が33モル%を超えると環境(特に水分)に対する耐久性が低下する。ガラスの安定性や環境への耐久性等を考慮して、P25の含有量は特に31〜32.5モル%の範囲とすることが好ましい。 Each component of the tin-phosphate glass composition of this embodiment will be described in detail. P 2 O 5 is an essential component that stabilizes the glass by forming a glass skeleton, and is contained in the sealing glass in a range of 30 to 33 mol%. When the content of P 2 O 5 is less than 30 mol%, the glass transition temperature (Tg) increases. When the content of P 2 O 5 exceeds 33 mol%, durability against the environment (especially moisture) decreases. Considering the stability of the glass and the durability to the environment, the content of P 2 O 5 is particularly preferably in the range of 31 to 32.5 mol%.

SnOはガラスの軟化温度を低下させると共に、ガラスの流動性を向上させる必須の成分であり、封着用ガラス中に63〜69モル%の範囲で含有させる。SnOの含有量が63モル%未満であるとガラスの軟化温度が高くなり、封着工程におけるガラスの流動性が低下する。SnOの含有量が69モル%を超えるとガラス化が困難になる。SnOの含有量はP25との合計含有量が95〜99.5モル%の範囲となるように設定することがより好ましく、これによりガラス転移温度(Tg)が低下する。SnOの含有量はガラスの結晶性や流動性等を考慮して、特に65〜67モル%の範囲とすることが好ましい。 SnO is an essential component that lowers the softening temperature of the glass and improves the fluidity of the glass, and is contained in the sealing glass in the range of 63 to 69 mol%. When the content of SnO is less than 63 mol%, the softening temperature of the glass increases, and the fluidity of the glass in the sealing step decreases. If the SnO content exceeds 69 mol%, vitrification becomes difficult. The content of SnO is more preferably set so that the total content with P 2 O 5 is in the range of 95 to 99.5 mol%, thereby lowering the glass transition temperature (Tg). The SnO content is particularly preferably in the range of 65 to 67 mol% in consideration of the crystallinity and fluidity of the glass.

ZnOはガラスの耐水性を向上させたり、また熱膨張係数を低下させる成分として含有させることができる。ただし、ZnOの含有量が多くなるとガラス転移温度(Tg)が上昇し、また焼成時に結晶化しやすくなるため、ZnOの含有量は0〜3モル%の範囲とする。ZnOの含有量が3モル%を超えるとガラス転移温度(Tg)が上昇すると共に、失透が発生しやすくなる。ZnOの含有量は2モル%以下とすることがより好ましい。   ZnO can be contained as a component that improves the water resistance of the glass or lowers the thermal expansion coefficient. However, if the ZnO content is increased, the glass transition temperature (Tg) is increased, and crystallization is facilitated during firing. Therefore, the ZnO content is in the range of 0 to 3 mol%. When the content of ZnO exceeds 3 mol%, the glass transition temperature (Tg) rises and devitrification tends to occur. The content of ZnO is more preferably 2 mol% or less.

WO3はガラスの結晶化を抑制しつつ、ガラスを安定化させる成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。WO3の含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が250℃を超えるおそれがあるため、低温での封着性が低下する。WO3の含有量は0.1〜2モル%の範囲とすることがより好ましく、特に1.5モル%以下とすることが好ましい。 WO 3 can be contained in the glass for sealing in a range of 3 mol% or less as a component for stabilizing the glass while suppressing crystallization of the glass. When the content of WO 3 exceeds 3 mol%, the softening temperature of the glass becomes high and the glass transition temperature (Tg) may exceed 250 ° C., so that the sealing property at low temperatures is lowered. The content of WO 3 is more preferably in the range of 0.1 to 2 mol%, particularly preferably 1.5 mol% or less.

TeO2はガラスの結晶化を抑制しつつ、ガラスを安定化させる成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。TeO2の含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が例えば250℃を超えるおそれがあるため、低温での封着性が低下する。さらに、TeO2を含有させるとガラスが黒色化するため、レーザ光源から照射されるレーザ光や高輝度光源から照射される光ビーム等による封着に好適な封着用ガラスを提供することが可能となる。 TeO 2 can be contained in the glass for sealing in a range of 3 mol% or less as a component for stabilizing the glass while suppressing crystallization of the glass. When the content of TeO 2 exceeds 3 mol%, the glass softening temperature becomes high and the glass transition temperature (Tg) may exceed, for example, 250 ° C., so that the sealing property at a low temperature is lowered. Furthermore, when TeO 2 is contained, the glass turns black, and therefore it is possible to provide a sealing glass suitable for sealing with a laser beam emitted from a laser light source, a light beam emitted from a high-intensity light source, or the like. Become.

TeO2でガラスを黒色化する場合、ガラスの光吸収率を十分に向上させて光照射による加熱効率を高める上で、TeO2含有量は0.5モル%以上とすることが好ましい。TeO2の含有量は0.5〜2モル%の範囲とすることがより好ましく、これによりガラス転移温度(Tg)を低下させつつ、光吸収率が高い黒色ガラスを安定して得ることが可能となる。TeO2含有量は、特に0.5〜1.5モル%の範囲とすることが好ましい。 When blackening the glass TeO 2, on which the light absorption of the glass by sufficiently improved enhance the heating efficiency by light irradiation, TeO 2 content is preferably 0.5 mol% or more. It is more preferable that the content of TeO 2 is in the range of 0.5 to 2 mol%, which makes it possible to stably obtain black glass having a high light absorption rate while lowering the glass transition temperature (Tg). It becomes. The TeO 2 content is particularly preferably in the range of 0.5 to 1.5 mol%.

GeO2はガラスの結晶化を抑制しつつ、ガラスを安定化させる成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。GeO2の含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が例えば250℃を超えるおそれがあるため、低温での封着性が低下する。GeO2の含有量は0.1〜2モル%の範囲とすることがより好ましく、特に1.5モル%以下とすることが好ましい。 GeO 2 can be contained in the glass for sealing in a range of 3 mol% or less as a component for stabilizing the glass while suppressing crystallization of the glass. When the content of GeO 2 exceeds 3 mol%, the softening temperature of the glass becomes high and the glass transition temperature (Tg) may exceed, for example, 250 ° C., so that the sealing property at a low temperature is lowered. The content of GeO 2 is more preferably in the range of 0.1 to 2 mol%, particularly preferably 1.5 mol% or less.

Ga23はガラスの結晶化を抑制しつつ、ガラスを安定化させる成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。Ga23は、特にガラスの耐候性の向上に有効な成分である。Ga23の含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が250℃を超えるおそれがあるため、低温での封着性が低下する。Ga23の含有量は0.1〜2モル%の範囲とすることがより好ましく、特に1.5モル%以下とすることが好ましい。 Ga 2 O 3 can be contained in the glass for sealing in a range of 3 mol% or less as a component for stabilizing the glass while suppressing crystallization of the glass. Ga 2 O 3 is a component that is particularly effective for improving the weather resistance of glass. When the content of Ga 2 O 3 exceeds 3 mol%, the softening temperature of the glass becomes high and the glass transition temperature (Tg) may exceed 250 ° C., so that the sealing property at a low temperature is lowered. The content of Ga 2 O 3 is more preferably in the range of 0.1 to 2 mol%, particularly preferably 1.5 mol% or less.

In23はガラスの結晶化を抑制しつつ、ガラスの安定性や耐水性を向上させる成分として、封着用ガラス中に1モル%以下の範囲で含有させることができる。In23の含有量が1モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が250℃を超えるおそれがある。In23の含有量は0.1〜1モル%の範囲とすることがより好ましく、特に0.5モル%以下とすることが好ましい。 In 2 O 3 can be contained in the glass for sealing in a range of 1 mol% or less as a component for improving the stability and water resistance of the glass while suppressing crystallization of the glass. When the content of In 2 O 3 exceeds 1 mol%, the softening temperature of the glass increases, and the glass transition temperature (Tg) may exceed 250 ° C. The content of In 2 O 3 is more preferably in the range of 0.1 to 1 mol%, particularly preferably 0.5 mol% or less.

La23はガラスの結晶化を抑制しつつ、ガラスの安定性や耐水性を向上させる成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。La23の含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が250℃を超えるおそれがある。La23の含有量は0.1〜2モル%の範囲とすることがより好ましく、特に1.5モル%以下とすることが好ましい。 La 2 O 3 can be contained in the glass for sealing in a range of 3 mol% or less as a component for improving the stability and water resistance of the glass while suppressing crystallization of the glass. If the content of La 2 O 3 exceeds 3 mol%, the softening temperature of the glass becomes high and the glass transition temperature (Tg) may exceed 250 ° C. The content of La 2 O 3 is more preferably in the range of 0.1 to 2 mol%, particularly preferably 1.5 mol% or less.

CaOはガラスの安定性を高めつつ、ガラスの結晶化を抑制する成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。CaOの含有量が3モル%を超えるとガラスが不安定になる。CaOによる結晶化の抑制効果を得る上で、CaOの含有量は0.5モル%以上とすることが好ましい。CaOの含有量は0.5〜2モル%の範囲とすることがより好ましく、特に0.5〜1.5モル%の範囲とすることが好ましい。   CaO can be contained in the glass for sealing in a range of 3 mol% or less as a component that suppresses the crystallization of the glass while enhancing the stability of the glass. If the content of CaO exceeds 3 mol%, the glass becomes unstable. In order to obtain an effect of suppressing crystallization by CaO, the content of CaO is preferably 0.5 mol% or more. The content of CaO is more preferably in the range of 0.5 to 2 mol%, and particularly preferably in the range of 0.5 to 1.5 mol%.

SrOはガラスの安定性を高めつつ、ガラスの結晶化を抑制する成分として、封着用ガラス中に3モル%以下の範囲で含有させることができる。SrOの含有量が3モル%を超えると、ガラスの軟化温度が高くなり、ガラス転移温度(Tg)が250℃を超えるおそれがある。SrOの含有量は0.5〜2モル%の範囲とすることがより好ましく、特に1.5モル%以下とすることが好ましい。   SrO can be contained in the glass for sealing in a range of 3 mol% or less as a component that suppresses crystallization of the glass while enhancing the stability of the glass. If the SrO content exceeds 3 mol%, the softening temperature of the glass increases, and the glass transition temperature (Tg) may exceed 250 ° C. The SrO content is more preferably in the range of 0.5 to 2 mol%, particularly preferably 1.5 mol% or less.

この実施形態の錫−リン酸系ガラス組成物は、例えば0.1〜2%のWO3、0.5〜2%のTeO2、0.1〜2%のGeO2、0.1〜2%のGa23、0.1〜1%のIn23、0.1〜2%のLa23、0.5〜2%のCaO、及び0.5〜2%のSrOからなる群より選ばれる1種を含有するものである。これらの成分は単独で用いる場合に限らず、2種以上を複合して用いてもよい。その場合の含有量は合計量が0.1〜3モル%の範囲となるように設定する。上記成分の合計含有量が0.1モル%未満であると、P25とSnOとを主成分とするガラスの耐候性を十分に向上させることができず、また3モル%を超えるとガラス転移温度(Tg)が上昇して250℃を超えやすくなる。 The tin-phosphate glass composition of this embodiment is, for example, 0.1-2% WO 3 , 0.5-2% TeO 2 , 0.1-2% GeO 2 , 0.1-2. from% of Ga 2 O 3, 0.1~1% of in 2 O 3, 0.1~2% of La 2 O 3, 0.5% to 2% of CaO, and 0.5% to 2% of SrO 1 type chosen from the group which consists of. These components are not limited to being used alone, but may be used in combination of two or more. The content in that case is set so that the total amount is in the range of 0.1 to 3 mol%. When the total content of the above components is less than 0.1 mol%, the weather resistance of the glass mainly composed of P 2 O 5 and SnO cannot be sufficiently improved, and when the content exceeds 3 mol%. The glass transition temperature (Tg) rises and tends to exceed 250 ° C.

封着用ガラスとして用いる錫−リン酸系ガラス組成物は、上記した各成分から実質的になるものであるが、その目的を損なわない範囲でその他の成分、例えばMgO、Bi23、Y23、Gd23、Ce23、CeO2、TiO2、Ta25等を含有していてもよい。なお、封着用ガラスはPbOを実質的に含有しないことが好ましい。さらに、封着用ガラスはLi2O、Na2O、K2O等を実質的に含有しないことが好ましい。これらの化合物がガラス中に有意な量で存在すると、封着時に電子素子の電極や配線等にイオン拡散し、電子素子に劣化や特性低下が生じるおそれがある。 The tin-phosphate glass composition used as the sealing glass is substantially composed of the above-described components, but other components such as MgO, Bi 2 O 3 , Y 2 within the range not impairing the purpose. O 3 , Gd 2 O 3 , Ce 2 O 3 , CeO 2 , TiO 2 , Ta 2 O 5 and the like may be contained. In addition, it is preferable that the glass for sealing does not contain PbO substantially. Further, it is preferable that the sealing glass does not contain Li 2 O, Na 2 O, the K 2 O or the like substantially. If these compounds are present in a significant amount in the glass, ions may diffuse into the electrodes and wirings of the electronic device during sealing, which may cause deterioration and deterioration of the characteristics of the electronic device.

上述した錫−リン酸系ガラス組成物からなる封着用ガラスによれば、主成分としての30〜33モル%のP25と63〜69モル%のSnOとに基づくガラス転移温度(Tg)、具体的に250℃以下のガラス転移温度(Tg)の上昇を抑制しつつ、ガラスの耐候性を向上させ、さらにガラスの結晶化を抑制することができる。従って、低温で結晶化させることなく封着することができ、その上で封着後のガラス(封着部)の耐候性を向上させた封着用ガラスを提供することが可能となる。すなわち、封着時の加熱温度の低下を実現した上で、封着信頼性と耐候性とに優れる封着部を得ることができる。 According to the sealing glass comprising the above-described tin-phosphate glass composition, the glass transition temperature (Tg) based on 30 to 33 mol% P 2 O 5 and 63 to 69 mol% SnO as the main components. Specifically, it is possible to improve the weather resistance of the glass and further suppress the crystallization of the glass while suppressing an increase in the glass transition temperature (Tg) of 250 ° C. or less. Therefore, it is possible to provide a sealing glass that can be sealed without being crystallized at a low temperature and on which the weather resistance of the sealed glass (sealed portion) is improved. That is, it is possible to obtain a sealed portion that is excellent in sealing reliability and weather resistance while realizing a reduction in heating temperature during sealing.

この実施形態の封着用ガラスは、それをガラス化して鏡面研磨した厚さ2mmの板を、80℃、80%RHの環境に44時間放置した後に460nmの分光透過率を測定したとき、分光透過率の初期値に対する44時間後の分光透過率の割合が80%以上である耐候性を有することが好ましい。このような耐候性を満足させることによって、封着用ガラスを用いた封着した電子デバイス等の信頼性を高めることが可能となる。   The glass for sealing of this embodiment was obtained by measuring a spectral transmittance of 460 nm after leaving a plate having a thickness of 2 mm, which was vitrified and mirror-polished, in an environment of 80 ° C. and 80% RH for 44 hours. It is preferable that it has the weather resistance that the ratio of the spectral transmittance after 44 hours to the initial value of the rate is 80% or more. By satisfying such weather resistance, it is possible to improve the reliability of a sealed electronic device using a sealing glass.

上述した実施形態の封着用ガラスは、例えばOELD、FED、PDP、LCD等のFPD、OEL素子(OLED)等の発光素子を使用した照明装置、色素増感型太陽電池のような太陽電池等の電子デバイスを構成するガラスパネル、MEMS(Micro Electro Mecanical System)や光デバイス等の電子部品のパッケージ、照明用バルブ、複層ガラスのようなガラス部材等の封着に適用することができる。図1は実施形態の封着用ガラスを使用した電子デバイスを示す図、図2は電子デバイスの製造工程を示す図、図3ないし図6はそれに用いるガラス基板の構成を示す図である。   The sealing glass of the above-described embodiment is a lighting device using a light emitting element such as an FPD such as OELD, FED, PDP, and LCD, or an OEL element (OLED), and a solar cell such as a dye-sensitized solar cell. The present invention can be applied to sealing of glass panels that constitute electronic devices, packages of electronic components such as MEMS (Micro Electro Mechanical Systems) and optical devices, bulbs for lighting, and glass members such as multilayer glass. FIG. 1 is a view showing an electronic device using the sealing glass of the embodiment, FIG. 2 is a view showing a manufacturing process of the electronic device, and FIGS. 3 to 6 are views showing a configuration of a glass substrate used therefor.

電子デバイス1は第1のガラス基板2と第2のガラス基板3とを具備している。第1及び第2のガラス基板2、3は、例えば各種公知の組成を有するソーダライムガラスや無アルカリガラス等で構成される。ソーダライムガラスは80〜90×10-7/℃程度の熱膨張係数を有している。無アルカリガラスは35〜40×10-7/℃程度の熱膨張係数を有している。ただし、ガラス基板2、3の材質は特に限定されるものではない。 The electronic device 1 includes a first glass substrate 2 and a second glass substrate 3. The first and second glass substrates 2 and 3 are made of, for example, soda lime glass or non-alkali glass having various known compositions. Soda lime glass has a thermal expansion coefficient of about 80 to 90 × 10 −7 / ° C. The alkali-free glass has a thermal expansion coefficient of about 35 to 40 × 10 −7 / ° C. However, the material of the glass substrates 2 and 3 is not particularly limited.

第1のガラス基板2の表面2aとそれと対向する第2のガラス基板3の表面3aとの間には、電子デバイス1に応じた電子素子部(図示せず)が設けられる。電子素子部は、例えばOELDやOEL照明であればOEL素子、PDPであればプラズマ発光素子、LCDであれば液晶表示素子、太陽電池であれば色素増感型太陽電池素子(色素増感型光電変換部素子)等を備えている。表示素子、発光素子、色素増感型太陽電池素子等を備える電子素子部は各種公知の構造を有している。   An electronic element portion (not shown) corresponding to the electronic device 1 is provided between the surface 2a of the first glass substrate 2 and the surface 3a of the second glass substrate 3 facing it. The electronic element unit is, for example, an OEL element for OELD or OEL illumination, a plasma light emitting element for PDP, a liquid crystal display element for LCD, or a dye-sensitized solar cell element (dye-sensitized photoelectric element for solar cells). Conversion unit element) and the like. An electronic element portion including a display element, a light emitting element, a dye-sensitized solar cell element, and the like has various known structures.

電子デバイス1における電子素子部は、第1及び第2のガラス基板2、3の表面2a、3aの少なくとも一方に形成された素子膜、電極膜、配線膜等により構成される。OELD、FED、PDP等においては、一方のガラス基板3(2)の表面3a(2a)に形成された素子構造体により電子素子部が構成される。この場合、他方のガラス基板2(3)は封止用基板となるが、フィルタ膜等が形成される場合もある。また、LCDや色素増感型太陽電池素子等においては、ガラス基板2、3の各表面2a、3aに素子構造を形成する素子膜、電極膜、配線膜等が形成され、これらにより電子素子部が構成される。   The electronic element part in the electronic device 1 is composed of an element film, an electrode film, a wiring film, and the like formed on at least one of the surfaces 2a, 3a of the first and second glass substrates 2, 3. In OELD, FED, PDP, etc., an electronic element part is comprised by the element structure formed in the surface 3a (2a) of one glass substrate 3 (2). In this case, the other glass substrate 2 (3) serves as a sealing substrate, but a filter film or the like may be formed. In addition, in LCDs and dye-sensitized solar cell elements, element films, electrode films, wiring films and the like that form element structures are formed on the surfaces 2a and 3a of the glass substrates 2 and 3, respectively. Is configured.

電子デバイス1の作製に用いられる第1のガラス基板2の表面2aには、図3に示すように第1の封止領域4が設けられている。第2のガラス基板3の表面3aには、図5に示すように第1の封止領域4に対応する第2の封止領域5が設けられている。第1及び第2の封止領域4、5は封着層の形成領域(第2の封止領域5については封着材料層の形成領域)となる。第1及び第2の封止領域4、5で囲われた部分が素子領域となり、この素子領域に電子素子部が設けられる。   As shown in FIG. 3, a first sealing region 4 is provided on the surface 2 a of the first glass substrate 2 used for manufacturing the electronic device 1. As shown in FIG. 5, a second sealing region 5 corresponding to the first sealing region 4 is provided on the surface 3 a of the second glass substrate 3. The first and second sealing regions 4 and 5 serve as a sealing layer forming region (a sealing material layer forming region for the second sealing region 5). A portion surrounded by the first and second sealing regions 4 and 5 becomes an element region, and an electronic element portion is provided in the element region.

第1のガラス基板2と第2のガラス基板3とは、第1の封止領域4を有する表面2aと第2の封止領域5を有する表面3aとが対向するように、所定の間隙を持って配置されている。第1のガラス基板2と第2のガラス基板3との間の間隙は、封着層6で封止されている。封着層6は電子素子部を封止するように、第1のガラス基板2の封止領域4と第2のガラス基板3の封止領域5との間に形成されている。第1のガラス基板2と第2のガラス基板3との間に設けられる電子素子部は、第1のガラス基板2と第2のガラス基板3と封着層6とで構成されたガラスパネルによって気密封止されている。   The first glass substrate 2 and the second glass substrate 3 have a predetermined gap so that the surface 2a having the first sealing region 4 and the surface 3a having the second sealing region 5 face each other. Is arranged. A gap between the first glass substrate 2 and the second glass substrate 3 is sealed with a sealing layer 6. The sealing layer 6 is formed between the sealing region 4 of the first glass substrate 2 and the sealing region 5 of the second glass substrate 3 so as to seal the electronic element portion. The electronic element portion provided between the first glass substrate 2 and the second glass substrate 3 is a glass panel composed of the first glass substrate 2, the second glass substrate 3, and the sealing layer 6. It is hermetically sealed.

封着層6は、第2のガラス基板3の封止領域5上に形成された封着材料層7を溶融・固化させることによって、第1のガラス基板2の封止領域4に固着させた溶融固着層からなるものである。電子デバイス1の作製に用いられる第2のガラス基板3の封止領域5には、図5及び図6に示すように枠状の封着材料層7が形成されている。第2のガラス基板3の封止領域5に形成された封着材料層7を加熱し、第1のガラス基板2の封止領域5に溶融固着させることによって、第1のガラス基板2と第2のガラス基板3との間の空間(素子配置空間)を気密封止する封着層6が形成される。   The sealing layer 6 was fixed to the sealing region 4 of the first glass substrate 2 by melting and solidifying the sealing material layer 7 formed on the sealing region 5 of the second glass substrate 3. It consists of a melt-fixed layer. As shown in FIGS. 5 and 6, a frame-shaped sealing material layer 7 is formed in the sealing region 5 of the second glass substrate 3 used for manufacturing the electronic device 1. The sealing material layer 7 formed in the sealing region 5 of the second glass substrate 3 is heated and melted and fixed to the sealing region 5 of the first glass substrate 2, whereby the first glass substrate 2 and the first glass substrate 2 A sealing layer 6 that hermetically seals a space (element arrangement space) between the two glass substrates 3 is formed.

封着材料層7は、上述した実施形態の封着用ガラスを含有する封着材料の焼成層である。封着材料はその熱膨張率をガラス基板2、3の熱膨張率と整合させる上で、低膨張充填材を含有していてもよい。また、封着材料層7の加熱にレーザ光等による光加熱(局所加熱)を適用する場合、封着材料は顔料等の光吸収材を含有していてもよい。なお、TeO2を含む封着用ガラスを使用した場合には、ガラス自体が黒色であるため、光吸収材を含有させることなく、レーザ光等の光ビームによる加熱、溶融を実現することができる。
封着材料は低膨張充填材や光吸収材以外の添加材を必要に応じて含有していてもよい。
The sealing material layer 7 is a fired layer of a sealing material containing the sealing glass of the embodiment described above. The sealing material may contain a low expansion filler in order to match the thermal expansion coefficient with the thermal expansion coefficient of the glass substrates 2 and 3. Further, when light heating (local heating) using laser light or the like is applied to the sealing material layer 7, the sealing material may contain a light absorbing material such as a pigment. When sealing glass containing TeO 2 is used, since the glass itself is black, heating and melting with a light beam such as laser light can be realized without containing a light absorbing material.
The sealing material may contain additives other than the low expansion filler and the light absorbing material as necessary.

低膨張充填材としては、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、及び石英固溶体からなる群より選ばれる少なくとも1種を用いることが好ましい。リン酸ジルコニウム系化合物としては、(ZrO)227、NaZr2(PO43、KZr2(PO43、Ca0.5Zr2(PO43、Na0.5Nb0.5Zr1.5(PO43、K0.5Nb0.5Zr1.5(PO43、Ca0.25Nb0.5Zr1.5(PO43、NbZr(PO43、Zr2(WO3)(PO42、これらの複合化合物が挙げられる。低膨張充填材とは封着材料の主成分である封着ガラスより低い熱膨張係数を有するものである。 The low expansion filler is selected from the group consisting of silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compounds, tin oxide compounds, and quartz solid solutions. It is preferable to use at least one selected from the above. Zirconium phosphate compounds include (ZrO) 2 P 2 O 7 , NaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.5 Zr 2 (PO 4 ) 3 , Na 0.5 Nb 0.5 Zr 1.5 ( PO 4 ) 3 , K 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 , Ca 0.25 Nb 0.5 Zr 1.5 (PO 4 ) 3 , NbZr (PO 4 ) 3 , Zr 2 (WO 3 ) (PO 4 ) 2 , these Examples include complex compounds. The low expansion filler has a lower thermal expansion coefficient than the sealing glass which is the main component of the sealing material.

図1に示す電子デバイス1は、例えば以下のようにして作製される。まず、図2(a)に示すように、第1のガラス基板2と封着材料層7を有する第2のガラス基板3とを用意する。封着材料層7は、封着ガラスと低膨張充填材とを含有する封着材料をビヒクルと混合して封着材料ペーストを調製し、これを第2のガラス基板3の封止領域5に塗布した後に乾燥及び焼成することにより形成される。封着材料ペーストは、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して第2の封止領域5上に塗布したり、あるいはディスペンサ等を用いて第2の封止領域5に沿って塗布する。   The electronic device 1 shown in FIG. 1 is manufactured as follows, for example. First, as shown in FIG. 2A, a first glass substrate 2 and a second glass substrate 3 having a sealing material layer 7 are prepared. The sealing material layer 7 is prepared by mixing a sealing material containing a sealing glass and a low expansion filler with a vehicle to prepare a sealing material paste, which is then applied to the sealing region 5 of the second glass substrate 3. It is formed by drying and baking after coating. The sealing material paste is applied onto the second sealing region 5 by applying a printing method such as screen printing or gravure printing, or is applied along the second sealing region 5 using a dispenser or the like. To do.

上記した封着材料ペーストの塗布層を焼成して封着材料層7を形成する。焼成工程は、まず塗布層を封着材料の主成分である封着用ガラス(錫−リン酸系ガラス組成物)のガラス転移温度(Tg)以下の温度に加熱し、塗布層内のバインダ成分を除去した後、封着用ガラスの軟化温度以上の温度に加熱し、封着材料を溶融してガラス基板3に焼き付ける。このようにして、封着材料の焼成層からなる封着材料層7を形成する。   The sealing material layer 7 is formed by baking the coating layer of the sealing material paste described above. In the firing step, first, the coating layer is heated to a temperature not higher than the glass transition temperature (Tg) of the sealing glass (tin-phosphate glass composition) which is the main component of the sealing material, and the binder component in the coating layer is heated. After the removal, the glass is heated to a temperature equal to or higher than the softening temperature of the sealing glass, and the sealing material is melted and baked on the glass substrate 3. In this way, the sealing material layer 7 composed of the fired layer of the sealing material is formed.

次に、図2(b)に示すように、第1のガラス基板2と第2のガラス基板3とを、それらの表面2a、3a同士が対向するように封着材料層7を介して積層する。次いで、図2(c)に示すように、封着材料層7を加熱して溶融させることによって、第1のガラス基板2と第2のガラス基板3との間を封止する封着層6を形成する。封着材料層7の加熱は通常の加熱炉に限らず、レーザ光等の光ビームによる局所加熱を適用してもよい。その場合、光ビーム8は例えば枠状の封着材料層7に沿って走査しながら照射される。   Next, as shown in FIG.2 (b), the 1st glass substrate 2 and the 2nd glass substrate 3 are laminated | stacked through the sealing material layer 7 so that those surfaces 2a and 3a may oppose. To do. Next, as shown in FIG. 2C, the sealing material layer 7 is heated and melted to seal the sealing layer 6 between the first glass substrate 2 and the second glass substrate 3. Form. The heating of the sealing material layer 7 is not limited to a normal heating furnace, and local heating by a light beam such as a laser beam may be applied. In that case, the light beam 8 is irradiated, for example, while scanning along the frame-shaped sealing material layer 7.

このようにして、第1のガラス基板2と第2のガラス基板3と封着層6とで構成したガラスパネルで電子素子部を気密封止した電子デバイス1を作製する。なお、実施形態の封着用ガラスは電子デバイス1の封着に限らず、電子部品のパッケージ、照明用バルブ、複層ガラスのようなガラス部材等の封着にも適用することが可能である。   In this way, the electronic device 1 in which the electronic element portion is hermetically sealed with the glass panel constituted by the first glass substrate 2, the second glass substrate 3, and the sealing layer 6 is produced. The sealing glass of the embodiment is not limited to the sealing of the electronic device 1 but can be applied to sealing of a glass member such as a package of an electronic component, a bulb for illumination, and a multilayer glass.

次に、本発明の具体的な実施例及びその評価結果について述べる。なお、以下の説明は本発明を限定するものではない。   Next, specific examples of the present invention and evaluation results thereof will be described. The following description does not limit the present invention.

(実施例1〜8、比較例1〜4)
表1に示す組成となるように、Sn227、SnO、Zn(PO32、WO3、TeO2、GeO2、Ga23、In23、La23、Ca(PO32、及びSrCO3の各原料粉末を全成分の合計量が200gとなるように調合し、これら調合物を十分に混合した。各混合粉末を石英製のルツボに入れ、石英製の蓋をして950℃の電気炉で30分間溶融した。この後、蓋を外して融液をカーボン板上に流し出して急冷することによって、それぞれガラスを得た。以上の工程は全て乾燥窒素雰囲気のグローブボックス中で実施した。
(Examples 1-8, Comparative Examples 1-4)
In order to obtain the composition shown in Table 1, Sn 2 P 2 O 7 , SnO, Zn (PO 3 ) 2 , WO 3 , TeO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , La 2 O 3 , Each raw material powder of Ca (PO 3 ) 2 and SrCO 3 was prepared so that the total amount of all components was 200 g, and these preparations were sufficiently mixed. Each mixed powder was put into a quartz crucible, covered with a quartz lid, and melted in an electric furnace at 950 ° C. for 30 minutes. Thereafter, the lid was removed, and the melt was poured onto the carbon plate and quenched to obtain glasses. All the above steps were carried out in a glove box with a dry nitrogen atmosphere.

得られた各ガラスについて、ガラス転移温度(Tg)、結晶化ピーク温度(Tc)、耐候性を以下のようにして測定した。ガラス転移温度(Tg)及び結晶化ピーク温度(Tc)については、粉末状に加工したサンプル250mgを白金パンに充填し、示差熱分析装置(理学社製、製品名:Thermo Plus TG8110)により10℃/分の昇温速度で測定した。   About each obtained glass, the glass transition temperature (Tg), the crystallization peak temperature (Tc), and the weather resistance were measured as follows. Regarding the glass transition temperature (Tg) and the crystallization peak temperature (Tc), 250 mg of a sample processed into a powder was filled in a platinum pan, and 10 ° C. by a differential thermal analyzer (product name: Thermo Plus TG8110, manufactured by Rigaku Corporation). Measured at a rate of temperature increase per minute.

ガラスの耐候性は以下のようにして測定した。まず、各ガラスを2mmの厚さに加工し、表裏面を鏡面加工したサンプルを、80℃、80%RHの環境に44時間放置した後の変化を目視で確認した。目視による耐候性の評価結果を、◎:クリア(初期と変化なし)、○:ほぼクリア、△:クモリ、×:不透明、を基準として表1に示す。さらに、460nmの分光透過率を分光光度計(パーキンエルマー社製、製品名:ラムダ950)を用いて測定し、分光透過率の初期値T0に対する44時間後の分光透過率T1の割合を、[(T1/T0)×100(%)]の式に基づいて算出した。この値を表1に示す。なお、実施例2はガラスが黒色であるため、初期透過率が1%程度と低く、計算精度が低いため、「>90%」と記載した。   The weather resistance of the glass was measured as follows. First, each glass was processed to a thickness of 2 mm, and the changes after the samples were mirror-finished on the front and back surfaces after being left in an environment of 80 ° C. and 80% RH for 44 hours were visually confirmed. Evaluation results of visual weather resistance are shown in Table 1 on the basis of ◎: clear (initial and no change), ◯: almost clear, Δ: spider, ×: opaque. Further, the spectral transmittance at 460 nm was measured using a spectrophotometer (manufactured by Perkin Elmer, product name: Lambda 950), and the ratio of the spectral transmittance T1 after 44 hours to the initial value T0 of the spectral transmittance was expressed as [ (T1 / T0) × 100 (%)] was calculated. This value is shown in Table 1. In Example 2, since the glass was black, the initial transmittance was as low as about 1% and the calculation accuracy was low, so “> 90%” was described.

Figure 2012031001
Figure 2012031001

表1から明らかなように、実施例1〜8によるガラスはいずれもガラス転移温度(Tg)が250℃以下であり、また結晶化ピーク温度(Tc)も高いことが分かる。結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が大きいということは、封着時におけるガラスの結晶化を抑制できることを意味し、これにより健全な封着部を得ることが可能となる。また、実施例1〜8によるガラスは耐候性にも優れていることが分かる。なお、T1/T0比は目視による評価とよく一致しており、この値が大きいほど耐候性に優れることが確認された。   As is apparent from Table 1, it can be seen that all the glasses according to Examples 1 to 8 have a glass transition temperature (Tg) of 250 ° C. or lower and a high crystallization peak temperature (Tc). A large difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) means that crystallization of the glass at the time of sealing can be suppressed, and thus a sound sealed part can be obtained. It becomes. Moreover, it turns out that the glass by Examples 1-8 is excellent also in a weather resistance. The T1 / T0 ratio was in good agreement with the visual evaluation, and it was confirmed that the larger this value, the better the weather resistance.

1…電子デバイス、2…第1のガラス基板、2a…第1の表面、3…第2のガラス基板、3a…第2の表面、4…第1の封止領域、5…第2の封止領域、6…封着層、7…封着材料層。   DESCRIPTION OF SYMBOLS 1 ... Electronic device, 2 ... 1st glass substrate, 2a ... 1st surface, 3 ... 2nd glass substrate, 3a ... 2nd surface, 4 ... 1st sealing area | region, 5 ... 2nd sealing Stop region, 6 ... sealing layer, 7 ... sealing material layer.

Claims (6)

酸化物基準のモル%表示で、30〜33%のP25と、63〜69%のSnOと、0〜3%のZnOと、0.1〜3%のWO3、TeO2、GeO2、Ga23、In23、La23、CaO、及びSrOからなる群より選ばれる少なくとも1種とを含むガラス組成物からなり、ガラス転移温度が250℃以下であることを特徴とする封着用ガラス。 30% to 33% P 2 O 5 , 63% to 69% SnO, 0% to 3% ZnO, 0.1% to 3% WO 3 , TeO 2 , GeO, expressed as mole percent on an oxide basis. 2 , comprising a glass composition containing at least one selected from the group consisting of Ga 2 O 3 , In 2 O 3 , La 2 O 3 , CaO, and SrO, and having a glass transition temperature of 250 ° C. or lower. Characteristic sealing glass. 前記ガラス組成物のP25とSnOの合計含有量が、酸化物基準のモル%表示で95〜99.5%の範囲であることを特徴とする請求項1記載の封着用ガラス。 2. The sealing glass according to claim 1, wherein the total content of P 2 O 5 and SnO in the glass composition is in the range of 95 to 99.5% in terms of mol% based on oxide. 前記ガラス組成物のP25の含有量が、酸化物基準のモル%表示で31〜32.5%の範囲であることを特徴する請求項1又は2記載の封着用ガラス。 3. The sealing glass according to claim 1, wherein the P 2 O 5 content of the glass composition is in the range of 31 to 32.5% in terms of oxide-based mol%. 前記ガラス組成物のSnOの含有量が、酸化物基準のモル%表示で65〜67%の範囲であることを特徴する請求項1乃至3のいずれか1項記載の封着用ガラス。   The glass for sealing according to any one of claims 1 to 3, wherein the SnO content of the glass composition is in a range of 65 to 67% in terms of mol% based on oxide. 前記ガラス組成物は酸化物基準のモル%表示で、0.1〜2%のWO3、0.5〜2%のTeO2、0.1〜2%のGeO2、0.1〜2%のGa23、0.1〜1%のIn23、0.1〜2%のLa23、0.5〜2%のCaO、及び0.5〜2%のSrOからなる群より選ばれる1種を含むことを特徴とする請求項1乃至4のいずれか1項記載の封着用ガラス。 The glass composition is expressed in terms of mol% on the basis of oxide, 0.1 to 2% WO 3 , 0.5 to 2% TeO 2 , 0.1 to 2 % GeO 2 , 0.1 to 2 %. Ga 2 O 3 , 0.1-1% In 2 O 3 , 0.1-2% La 2 O 3 , 0.5-2% CaO, and 0.5-2% SrO. The glass for sealing according to any one of claims 1 to 4, comprising one kind selected from the group. 前記ガラス組成物をガラス化して鏡面研磨した厚さ2mmの板を、80℃、80%RHの環境に44時間放置した後に460nmの分光透過率を測定したとき、分光透過率の初期値に対する44時間後の分光透過率の割合が80%以上であることを特徴とする請求項1乃至5のいずれか1項記載の封着用ガラス。   When a spectral transmittance of 460 nm was measured after leaving a plate having a thickness of 2 mm that had been vitrified and mirror-polished from the glass composition in an environment of 80 ° C. and 80% RH for 44 hours, it was 44 to the initial value of the spectral transmittance. The glass for sealing according to any one of claims 1 to 5, wherein a ratio of spectral transmittance after time is 80% or more.
JP2010170963A 2010-07-29 2010-07-29 Sealing glass Active JP5671864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170963A JP5671864B2 (en) 2010-07-29 2010-07-29 Sealing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170963A JP5671864B2 (en) 2010-07-29 2010-07-29 Sealing glass

Publications (2)

Publication Number Publication Date
JP2012031001A true JP2012031001A (en) 2012-02-16
JP5671864B2 JP5671864B2 (en) 2015-02-18

Family

ID=45844896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170963A Active JP5671864B2 (en) 2010-07-29 2010-07-29 Sealing glass

Country Status (1)

Country Link
JP (1) JP5671864B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111059A1 (en) * 2009-07-23 2012-05-10 Asahi Glass Company, Limited Process and apparatus for producing glass member provided with sealing material layer and process for producing electronic device
US20150028291A1 (en) * 2013-07-25 2015-01-29 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
JP7205043B2 (en) 2019-10-15 2023-01-17 Yejガラス株式会社 Low-melting stannous phosphate-based glass frit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769672A (en) * 1993-06-21 1995-03-14 Corning Inc Lead-free tin phosphate glass
JPH09235136A (en) * 1995-12-25 1997-09-09 Asahi Glass Co Ltd Low-melting point class composition and glass ceramics composition for sealing
JPH11171589A (en) * 1997-12-09 1999-06-29 Asahi Techno Glass Corp Sealing composition for aluminous ceramic package
JP2003146691A (en) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp Low melting point glass, and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769672A (en) * 1993-06-21 1995-03-14 Corning Inc Lead-free tin phosphate glass
JPH09235136A (en) * 1995-12-25 1997-09-09 Asahi Glass Co Ltd Low-melting point class composition and glass ceramics composition for sealing
JPH11171589A (en) * 1997-12-09 1999-06-29 Asahi Techno Glass Corp Sealing composition for aluminous ceramic package
JP2003146691A (en) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp Low melting point glass, and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111059A1 (en) * 2009-07-23 2012-05-10 Asahi Glass Company, Limited Process and apparatus for producing glass member provided with sealing material layer and process for producing electronic device
US8490434B2 (en) * 2009-07-23 2013-07-23 Asahi Glass Company, Limited Process and apparatus for producing glass member provided with sealing material layer and process for producing electronic device
US20150028291A1 (en) * 2013-07-25 2015-01-29 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
US9324967B2 (en) * 2013-07-25 2016-04-26 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
JP7205043B2 (en) 2019-10-15 2023-01-17 Yejガラス株式会社 Low-melting stannous phosphate-based glass frit

Also Published As

Publication number Publication date
JP5671864B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5716743B2 (en) SEALING PASTE AND ELECTRONIC DEVICE MANUFACTURING METHOD USING THE SAME
JP5413373B2 (en) Laser sealing glass material, glass member with sealing material layer, and electronic device and manufacturing method thereof
JP5692218B2 (en) Electronic device and manufacturing method thereof
WO2010055888A1 (en) Method for producing glass member provided with sealing material layer, and method for manufacturing electronic device
JP6357937B2 (en) Sealing material and sealing package
TWI462829B (en) Glass member having sealing material layer and method for manufacturing the same, and electronic device and manufacturing method thereof
JP2010228998A (en) Glass member with sealing material layer, electronic device using the same, and production method thereof
JP2012041196A (en) Glass member with sealing material layer, electronic device using the same, and method for producing the electronic device
JPWO2012093698A1 (en) Manufacturing method and manufacturing apparatus of glass member with sealing material layer, and manufacturing method of electronic device
JP2011011925A (en) Glass member with sealing material layer, electronic device using the same and method for producing the electronic device
JP2012014971A (en) Electronic device and its manufacturing method
JP5671864B2 (en) Sealing glass
JP5516194B2 (en) Light heat sealing glass, glass member with sealing material layer, electronic device and method for producing the same
JP5370011B2 (en) Method for producing glass member with sealing material layer and method for producing electronic device
TW202145615A (en) Sealed package and organic electroluminescent element comprising a first substrate, a second substrate arranged opposite to the first substrate, and a sealing layer arranged therebetween
US20140342136A1 (en) Member with sealing material layer, electronic device, and method of manufacturing electronic device
KR101008201B1 (en) Lead-free frit composition for flat display panel sealing
JP2012082085A (en) Glass
WO2012046817A1 (en) Electronic device and method of manufacturing thereof
JP2014149941A (en) Airtight sealed package and method of manufacturing the same
JP2024019999A (en) Glass composition, glass paste, sealed package, and organic electroluminescence element
TW202408952A (en) Glass compositions, glass pastes, sealed packages and organic electroluminescent components
WO2010113838A1 (en) Colored lead-free glass for sealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5671864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250