JP2012030765A - Variable gravity device - Google Patents

Variable gravity device Download PDF

Info

Publication number
JP2012030765A
JP2012030765A JP2010181936A JP2010181936A JP2012030765A JP 2012030765 A JP2012030765 A JP 2012030765A JP 2010181936 A JP2010181936 A JP 2010181936A JP 2010181936 A JP2010181936 A JP 2010181936A JP 2012030765 A JP2012030765 A JP 2012030765A
Authority
JP
Japan
Prior art keywords
string
capsule
flywheel
moving body
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010181936A
Other languages
Japanese (ja)
Inventor
Ryojiro Akiba
鐐二郎 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU RIYO KOGAKU KENKYUSHO KK
Original Assignee
UCHU RIYO KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU RIYO KOGAKU KENKYUSHO KK filed Critical UCHU RIYO KOGAKU KENKYUSHO KK
Priority to JP2010181936A priority Critical patent/JP2012030765A/en
Publication of JP2012030765A publication Critical patent/JP2012030765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that in a conventional suspending vertical movement type variable gravity device, a flywheel is required, and accompanying an increase in size, out of consideration peculiar to a rotary machine, a load in manufacturing costs becomes high; and for transmitting rotation in both normal and reverse directions in a torque conversion mechanism in order to achieve appropriate acceleration and deceleration, strings of a special specification need to be procured, becoming an obstacle in reduction of the manufacturing costs.SOLUTION: A moving body having substantially the same mass as a capsule is alternately reciprocated in the vertical direction with the capsule in place of the flywheel. Therefore, consideration for a rotary body having a large mass is not required. Further, by a mechanism of winding and winding back the strings respectively suspending the moving body and the capsule by two coaxial spiral pulleys, basically, as tension is always applied by gravity, a high tensile strength string that is normally commercially supplied can be used.

Description

本発明は、往復上下運動を利用し、単純な落下運動のみで実現できる低重力時間の倍増化を図った可変重力装置に関する。  The present invention relates to a variable gravity device that uses a reciprocating vertical motion and doubles a low gravity time that can be realized only by a simple drop motion.

従来の微小重力装置は、高い塔からの落下時間装置内にもたらされる低重力環境を利用したもので、長秒時化の要望を満たすには、塔の高さが時間の二乗に比例するので、装置が大掛かりとなり、経済的にも、技術的にもこれに伴う困難な課題に直面する。特に、高速で落下する装置を許容される減速度で制動し、受け止める仕組みには、幾つかの固有の工夫が凝らされてきた。にもかかわらず、その保守、運用には多くの人手と費用を必要とし装置の利用普及の妨げとなっている。  The conventional microgravity device uses the low-gravity environment provided in the time-to-fall device from a high tower, and the height of the tower is proportional to the square of time to satisfy the demand for longer time. However, the apparatus becomes large-scale and faces difficult problems associated with it economically and technically. In particular, several unique devices have been devised in the mechanism for braking and receiving a device that falls at high speed with an allowable deceleration. Nevertheless, its maintenance and operation require a lot of manpower and expense, which hinders the spread of the use of the device.

落下のみでなく、上昇から下降の間の放物運動中を通じて、装置内にもたらされる低重力環境の利用は、同じ高度差で、落下運動のみの場合の二倍の秒時の間、低重力環境が利用できることは、以前より知られていたが、実際には航空機の弾道飛行のみが国内外(国内:ダイアモンドエアサービス)で実用されている。しかし、一般的利便性には欠しい。  The use of the low-gravity environment brought into the device not only during the fall but also during the parabolic movement between ascending and descending is the same altitude difference, and the low-gravity environment is doubled for the second time of the case of only the falling movement. Although it has been known for a long time that it can be used, only ballistic flight of aircraft is actually used in Japan and abroad (domestic: Diamond Air Service). However, it is lacking in general convenience.

落下塔内で、打ち上げ方式を考案し、垂直上下運動を試みている施設(ドイツ、ブレーメン)はあるが、軌道の分散に問題があり、操作も複雑で、実用の域には至っていない。  There is a facility (Germany, Bremen) that has devised a launch method in the fall tower and has attempted vertical movement (Germany, Bremen), but there are problems with orbital dispersion, operation is complicated, and it has not reached practical use.

発明者らは、実験カプセルを紐で吊るし、ヨーヨーの運動原理を応用し、紐の長さを操作することで、出来る限りエネルギーを保存しながら、カプセルの上下運動を繰り返す方式を考案し、教育用に室内型短時間無重力装置を開発し、特許を得ている。  Inventors devised a method to repeat the vertical movement of the capsule while preserving energy as much as possible by suspending the experimental capsule with a string, applying the yo-yo movement principle, and manipulating the length of the string. Has developed and patented an indoor short-time zero-gravity device.

以下、従来型として、最も本発明に関連する、ヨーヨー型無重力装置について、図4.図5により説明する。図において、10はカプセルを吊るす紐で、他端は11において、ヨーヨー滑車に結ばれる。カプセルはこの紐の巻き取り、巻き戻しに連動して運動する。その、変速機構が12の滑車系である。この滑車は、一対の円錐螺旋滑車により、構成されているが、正逆両方向に回転するので、動力を相互間に伝えるために、13のように正逆に応じて張力を担う紐を2本必要とする。ここで一方に張力が掛かるとき、他方は弛緩しており、普通の撓みのない紐では、滑車溝から外れる虞があるので、非線形な引っ張り特性をもつ紐を特製しなければならない。  Hereinafter, as a conventional type, the yo-yo type weightless device most relevant to the present invention will be described with reference to FIG. This will be described with reference to FIG. In the figure, 10 is a string for suspending a capsule, and the other end is tied to a yo-yo pulley at 11. The capsule moves in conjunction with the winding and unwinding of the string. The transmission mechanism is a twelve pulley system. This pulley is composed of a pair of conical spiral pulleys, but rotates in both forward and reverse directions. Therefore, in order to transmit power to each other, two strings that bear tension according to forward and reverse, such as 13, are provided. I need. Here, when tension is applied to one side, the other side is relaxed, and an ordinary string without bending may be detached from the pulley groove. Therefore, a string having a non-linear tensile characteristic must be produced.

また、カプセル最下点においては、全エネルギーは、はずみ車の回転エネルギーとして保存されるので、大型化に伴い、高速で回転する大型のはずみ車を設計製作しなければならない。  At the lowest point of the capsule, all energy is stored as rotational energy of the flywheel. Therefore, as the size increases, a large flywheel that rotates at high speed must be designed and manufactured.

特許第4391266号Japanese Patent No. 4391266

Akiba.R.et al.,A New Low Gravity Device Applying the Yo−Yo Princile,JSTS vol.25 no.1(日本ロケット協会英文誌)Akiba. R. et al. A New Low Gravity Device Applying the Yo-Yo Prince, JSTS vol. 25 no. 1 (English publication of the Japan Rocket Association)

以上述べた従来の上下運動を利用する無重力装置は、大型にあっては、操作性と利便性に問題がある。最近の発明である、ヨーヨー型では、小型としてはこれらの欠点を解決したけれども、大型化については対処しなければならない2つの課題を抱えている。第1は、原理的に落下のエネルギーをはずみ車の回転エネルギーと交換することで、上下運動を反復しているため、大型化に伴いはずみ車も大型となり、動つりあいに配慮した大型のはずみ車を設計製作しなければならない。第2は、トルク変換部の滑車に掛かる紐を正転、逆転方向に装備しなければならないので、張力の掛からない側の紐の弛みを防止する目的で、特殊な非線形性を張力特性に持たせねばならない。このため、特殊仕様の高抗張力紐が必要となる。このような特性の紐は需要が限られるので、製作費用が嵩む。  The conventional weightless device using the vertical motion described above has problems in operability and convenience when it is large. The yo-yo type, which is a recent invention, has solved these drawbacks as a small size, but has two problems that must be dealt with in terms of upsizing. The first is that, in principle, the falling energy is exchanged with the rotational energy of the flywheel, and the vertical movement is repeated. Therefore, the flywheel becomes larger as the size of the flywheel increases, and a large flywheel that takes into account the dynamic balance is designed and manufactured. Must. Second, since the string on the pulley of the torque converter must be equipped in the forward and reverse directions, it has a special non-linearity in the tension characteristics in order to prevent loosening of the string on the side where no tension is applied. I have to do it. For this reason, a special high tensile strength string is required. Since the string of such characteristics is limited in demand, the production cost increases.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、はずみ車を用いずに、落下体を2基一対で構成し、相互間でエネルギーを交換し、両者間のトルク変換伝達部の滑車を常に緩みのない紐で駆動できる機構として、実現することを目的とするものである。  The present invention is intended to solve the problems of such a conventional configuration, and without using a flywheel, the falling bodies are configured in pairs, and energy is exchanged between them. It is intended to be realized as a mechanism that can always drive the pulley of the torque conversion transmission section between them with a string without looseness.

本発明は上記を達成するため、これまでのはずみ車の回転運動エネルギーに代わり、一対の上昇落下体相互間で併進運動とポテンシャルエネルギーを交換する仕組みとした。  In order to achieve the above, the present invention has a mechanism for exchanging translational motion and potential energy between a pair of rising and falling bodies, instead of the rotational kinetic energy of the flywheel so far.

その問題解決手段はシーソーの原理を応用し、共通軸上に螺旋滑車を対向して180°の位相差で配置し、これに、1対の上昇落下体それぞれに繋がる紐を巻きつける。したがって、両者の紐は、常に軸周りに反対方向のトルクを与えている。  The problem-solving means applies the seesaw principle, arranges the spiral pulleys on a common axis with a phase difference of 180 °, and wraps a string connected to each pair of rising and falling bodies. Therefore, both strings always give torques in opposite directions around the axis.

問題解決手段による作用は次の通りである。一対の紐が螺旋滑車の部分で、軸に対し等しい半径位置にあるときにトルクは等しくなり、静止すれば釣り合う。上昇落下体をこの静止位置からずらせば、トルクが発生し、シーソーの原理で、この位置に戻るような振動が誘起される。この振幅を大きくしてやると、やがて紐が、それぞれ最大半径と最小半径の円柱滑車に掛かるようになる。  The operation of the problem solving means is as follows. The torque is equal when the pair of cords are part of the spiral pulley and are at the same radial position with respect to the shaft, and balances when stationary. If the rising and falling body is shifted from this stationary position, torque is generated, and a vibration that returns to this position is induced by the seesaw principle. Increasing this amplitude will eventually cause the string to hang over the cylindrical pulleys with the maximum and minimum radii, respectively.

紐が両半径位置に掛かった後、大半径側の運動体は螺旋滑車で得た速度で上昇し、半径比分だけ1gより少ない一定加速度を受け、頂点に達し一且静止する。ついで、同じ一定加速度で螺旋滑車に紐が掛かるまで落下運動をする。この間において、運動体内部は低重力環境となり実験に利用される。この上下運動の間、頂点を除けば、紐には常に張力がかかった状態であるので、紐にたるみは出ないので、第2の課題が克服できる。  After the string is engaged at both radial positions, the moving body on the large radius side rises at the speed obtained by the spiral pulley, receives a constant acceleration of less than 1 g by the radius ratio, reaches the apex and pauses. Then, it is dropped at the same constant acceleration until the string is hooked on the spiral pulley. During this time, the inside of the moving body becomes a low-gravity environment and is used for experiments. During this up-and-down movement, except for the apex, the string is always in tension, so that the string does not sag, so the second problem can be overcome.

その後、大半径側の紐は、減速を受けつつ最小半径側に向かい、もう1方の最小半径に掛かっていた紐では他方の運動体が加速され、入れ替わって、大半径側に向い、エネルギー損失がなければ、繰り返し運動となる。すなわち、この1周期の間エネルギーは2つの運動体相互間で移行し、回転体のエネルギーを必要としない。この運動体は、併進運動のみを考慮すればいいので、第1の課題が克服できる。After that, the string on the large radius side decelerates toward the minimum radius side, and the other moving body is accelerated and replaced with the string hanging on the other minimum radius. Without it, it becomes a repetitive exercise. That is, the energy is transferred between the two moving bodies during this one cycle, and the energy of the rotating body is not required. Since this moving body only needs to consider the translational motion, the first problem can be overcome.

上述したように本発明の無重力装置は、大きな慣性モーメントを持つ回転部分を含まないので、回転部固有の問題が無い。  As described above, the weightless device according to the present invention does not include a rotating part having a large moment of inertia, and therefore there is no problem inherent to the rotating part.

また、動作中滑車部に掛かるすべての紐には張力がかかり、弛緩することはない。  In addition, all the strings that are applied to the pulley during operation are tensioned and do not relax.

本発明の実施形態を示す装置の全体図  Overall view of an apparatus showing an embodiment of the present invention シーソー螺旋滑車と紐(静止平衡位置)  Seesaw spiral pulley and string (stationary equilibrium position) 運動体の最高、最低点におけるシーソー螺旋滑車と紐位置  Seesaw spiral pulley and string position at the highest and lowest points of the moving body 従来型としてのヨーヨー型無重力装置全体図  Overall view of conventional yo-yo type zero gravity device ヨーヨー型無重力装置の駆動螺旋滑車系  Driving spiral pulley system of yo-yo type weightless device

以下、本発明の実施の形態を図1〜図3に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1において、1はカプセル、2はそれと釣り合わせるための質量で、それぞれは、変向滑車を介し、3の滑車系に繋がる。  In FIG. 1, 1 is a capsule, 2 is a mass for balancing it, and each is connected to a pulley system of 3 via a turning pulley.

図2、図3では、単純化し変向滑車を省き、両質量が軸を共有する滑車に巻きつく様子を示してある。紐の固定端は4である。二つの螺旋滑車5、6は正対し、180°の位相差をもって取り付けられているので、図示7、8のようにそれぞれの紐は、軸に対し逆方向のトルクを加える。シーソーの原理で、紐の掛かる螺旋位置の半径が等しいとき両質量は釣り合う。図2はこの平衡位置における紐の掛かり方を示す。同様に、平衡位置からずれた位置における紐の掛かり方を最高点、最低点を例にとって図3示してある。  In FIGS. 2 and 3, the turning pulley is simplified and both masses wrap around a pulley sharing a shaft. The fixed end of the string is 4. Since the two helical pulleys 5 and 6 face each other and are attached with a phase difference of 180 °, each string applies a torque in the opposite direction to the shaft as shown in FIGS. According to the seesaw principle, the two masses are balanced when the radii of the spiral positions where the strings are applied are equal. FIG. 2 shows how to tie a string in this equilibrium position. Similarly, FIG. 3 shows an example of how to tie a string at a position deviated from the equilibrium position by taking the highest point and the lowest point as an example.

図1において、変向滑車9、10を滑車系と離して配置することで、紐の水平方向の運動が吸収されるので、両質量は垂直な上下動となる。これにより、はずみ車に代わり、カプセルとバランス質量の上下運動を交互に反復することで、カプセルの上下運動を実現できる。  In FIG. 1, by disposing the turning pulleys 9 and 10 away from the pulley system, the horizontal movement of the string is absorbed, so that both masses move vertically up and down. Thereby, instead of the flywheel, the vertical movement of the capsule can be realized by alternately repeating the vertical movement of the capsule and the balance mass.

1 カプセル
2 バランス質量
3 滑車系
4,5 180°の位相差で正対する二つの螺旋滑車
6,7 螺旋滑車に掛かる紐の位置
DESCRIPTION OF SYMBOLS 1 Capsule 2 Balance mass 3 Pulley system 4,5 Two spiral pulleys that face each other with a phase difference of 180 ° 6,7 Position of the string on the spiral pulley

Claims (1)

紐により吊るされた2つの物体の紐が、同一滑車軸に取り付けた、2基の螺旋滑車を有し、シーソーの運動原理により、操作されることで、運動エネルギーを相互に交換し、吊るされた物体に上下運動を交互に行わせる機構を備えた可変重力装置。    A string of two objects suspended by a string has two spiral pulleys attached to the same pulley shaft, and is operated according to the seesaw's movement principle to exchange kinetic energy with each other. A variable gravity device equipped with a mechanism for alternately moving the object up and down.
JP2010181936A 2010-07-29 2010-07-29 Variable gravity device Pending JP2012030765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181936A JP2012030765A (en) 2010-07-29 2010-07-29 Variable gravity device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181936A JP2012030765A (en) 2010-07-29 2010-07-29 Variable gravity device

Publications (1)

Publication Number Publication Date
JP2012030765A true JP2012030765A (en) 2012-02-16

Family

ID=45844711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181936A Pending JP2012030765A (en) 2010-07-29 2010-07-29 Variable gravity device

Country Status (1)

Country Link
JP (1) JP2012030765A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963544A (en) * 2012-10-23 2013-03-13 哈尔滨工业大学 Gravity direction mass characteristic simulation device of aircraft ground-simulation system
WO2018088365A1 (en) * 2016-11-11 2018-05-17 杉野公一 Prime mover
JP2018084227A (en) * 2016-11-11 2018-05-31 公一 杉野 Prime mover
CN110164229A (en) * 2019-05-28 2019-08-23 哈尔滨工程大学 A kind of training device for spacefarer's ground simulation microgravity environment carry an object
CN110697092A (en) * 2019-11-22 2020-01-17 北京理工大学 Magnetic suspension hanging device
CN115072014A (en) * 2022-08-22 2022-09-20 哈尔滨工业大学 Stepless variable load gravity balancing device suitable for space butt joint simulation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963544A (en) * 2012-10-23 2013-03-13 哈尔滨工业大学 Gravity direction mass characteristic simulation device of aircraft ground-simulation system
WO2018088365A1 (en) * 2016-11-11 2018-05-17 杉野公一 Prime mover
JP2018084227A (en) * 2016-11-11 2018-05-31 公一 杉野 Prime mover
US10753344B2 (en) 2016-11-11 2020-08-25 Kouichi Sugino Prime mover
CN110164229A (en) * 2019-05-28 2019-08-23 哈尔滨工程大学 A kind of training device for spacefarer's ground simulation microgravity environment carry an object
CN110164229B (en) * 2019-05-28 2021-01-05 哈尔滨工程大学 Training device for carrying object in ground simulated microgravity environment of astronaut
CN110697092A (en) * 2019-11-22 2020-01-17 北京理工大学 Magnetic suspension hanging device
CN115072014A (en) * 2022-08-22 2022-09-20 哈尔滨工业大学 Stepless variable load gravity balancing device suitable for space butt joint simulation
CN115072014B (en) * 2022-08-22 2022-11-11 哈尔滨工业大学 Stepless variable load gravity balancing device suitable for space butt joint simulation

Similar Documents

Publication Publication Date Title
JP2012030765A (en) Variable gravity device
US20100186527A1 (en) Centrifugal system
US9528900B2 (en) Balanced and eccentric mass compact pendulum with dynamic tuning
GB2488563A (en) Balanced and eccentric mass pendulum
CN101529087A (en) Method and apparatus for converting ocean wave energy into electricity
EA022481B1 (en) Wind turbine with compensated motor torque
US8803487B2 (en) Rotating kinetic and potential energy frequency regulation device for fast response large scale electric power applications
WO2009102232A1 (en) Method for operating a power rotary actuator and a power plant for carrying out said method
US20150354677A1 (en) Power transfer device
KR101389488B1 (en) The power converting apparatus
US8307652B1 (en) Heterodyne transmission
US11549568B2 (en) Device for damping vibrations in a structure
CN208575895U (en) Robot balancer and decoupling type robot palletizer
CN106826903B (en) Utilize the biconvex wheel disc output variable speed joint of steel wire drive
CN206386235U (en) Suppress building enclosure oscillation crosswise and protect the device of tilting member
GB2516273A (en) Drum of action radial
RU2548229C2 (en) Combined method of energy accumulation
CN100478587C (en) Eccentric power gain mechanism
US20110308337A1 (en) Centrifugal energy generator
Lwin Design Calculation of Flywheel Free Energy Generating System with Motor-Generator
JP2020056311A (en) Power generation device
RU169203U1 (en) VERTICAL ROTARY SHAFT
RU2780246C2 (en) Vibration damping device for helicopter
WO2020089959A1 (en) Motive force generating device, and motive force generating method
US20120096984A1 (en) Flywheel System