JP2012030309A - Cutting tool and manufacturing method therefor - Google Patents

Cutting tool and manufacturing method therefor Download PDF

Info

Publication number
JP2012030309A
JP2012030309A JP2010170753A JP2010170753A JP2012030309A JP 2012030309 A JP2012030309 A JP 2012030309A JP 2010170753 A JP2010170753 A JP 2010170753A JP 2010170753 A JP2010170753 A JP 2010170753A JP 2012030309 A JP2012030309 A JP 2012030309A
Authority
JP
Japan
Prior art keywords
coating layer
substrate
cutting tool
interface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010170753A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kodama
芳和 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010170753A priority Critical patent/JP2012030309A/en
Publication of JP2012030309A publication Critical patent/JP2012030309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool that enables stable cutting in a cutting process in which sudden fracture is likely to occur.SOLUTION: According to the cutting tool 1, a basic substance 6 made of a cemented carbide is coated with a coating layer 5. At an interface between the basic substance 6 and the coating layer 5 of a cutting edge 4, an oxygen amount measured by Auger spectroscopic analysis is 10 atom% or less, and micro irregularities of 50 to 150 nm in terms of arithmetic mean roughness Ra are formed.

Description

本発明は切削工具に関し、特に被覆層との密着性に優れた超硬合金からなる切削工具に関する。   The present invention relates to a cutting tool, and more particularly to a cutting tool made of a cemented carbide having excellent adhesion to a coating layer.

従来から金属の切削加工に広く用いられている切削工具として、超硬合金の表面に被覆層を被覆したコーティング工具が知られている。   2. Description of the Related Art Conventionally, as a cutting tool widely used for metal cutting, a coating tool in which a surface of a cemented carbide is coated with a coating layer is known.

例えば、特許文献1では、基体の表面を研磨加工して表面粗さRa=0.15〜0.4μmに制御することが開示されている。   For example, Patent Document 1 discloses that the surface of the substrate is polished to control the surface roughness Ra = 0.15 to 0.4 μm.

また、特許文献2では、基体の表面を洗浄して表面に存在する脆化相を除去する方法が開示されている。   Patent Document 2 discloses a method of cleaning the surface of a substrate to remove an embrittlement phase present on the surface.

さらに、特許文献3では、超硬合金基体の表面をRmaxが0.2〜1.3μmとなるように加工した後、レーザ照射等により基体の表面にη相を点在させ、その基体の表面に化学蒸着膜を成膜した切削工具が開示され、高硬度なη相の存在で基体の耐摩耗性が向上して工具寿命が長くなることが記載されている。   Further, in Patent Document 3, the surface of the cemented carbide substrate is processed so that Rmax is 0.2 to 1.3 μm, and then the η phase is scattered on the surface of the substrate by laser irradiation or the like. Discloses a cutting tool on which a chemical vapor deposition film is formed, and describes that the presence of a high hardness η phase improves the wear resistance of the substrate and prolongs the tool life.

さらには、特許文献4では、基体の表面に被覆層を成膜した後、ブラスト加工やブラシ加工によって被覆層の表面を加工する方法が開示されている。   Further, Patent Document 4 discloses a method of processing the surface of the coating layer by blasting or brushing after forming the coating layer on the surface of the substrate.

特開平06−108253号公報Japanese Patent Laid-Open No. 06-108253 特開平09−241826号公報JP 09-241826 A 特開2002−329808号公報JP 2002-329808 A 特開2006−113552号公報JP 2006-113552 A

しかしながら、特許文献1のように基体の表面を研磨加工する方法では、被覆層の密着性が向上するものの、さらなる密着性の向上が必要な場合があった。また、特許文献2のように化学的に脆化相を除去する方法では、脆化相は除去できるが更なる被覆層の密着性の向上が求められていた。さらに、特許文献3のように基体の表面を加工した後にレーザ照射する方法では、加工面に酸化物が生成しやすくて被覆層の密着性には限界があった。また、特許文献4のように被覆層の表面から研磨加工する方法でも、基体と被覆層との界面における密着性には問題があった。   However, in the method of polishing the surface of the substrate as in Patent Document 1, although the adhesion of the coating layer is improved, there are cases where further improvement of the adhesion is required. Further, in the method of chemically removing the embrittlement phase as in Patent Document 2, the embrittlement phase can be removed, but further improvement in the adhesion of the coating layer has been demanded. Further, in the method of laser irradiation after processing the surface of the substrate as in Patent Document 3, oxide is easily generated on the processed surface, and there is a limit to the adhesion of the coating layer. Further, even in the method of polishing from the surface of the coating layer as in Patent Document 4, there is a problem in the adhesion at the interface between the substrate and the coating layer.

本発明は、上記問題点を解決するためになされたものであり、その目的は、基体と被覆層との密着性を向上させて、被覆層が剥離しにくい安定した切削性能を発揮することができる切削工具を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the adhesion between the substrate and the coating layer and to exhibit stable cutting performance in which the coating layer is difficult to peel off. It is in providing the cutting tool which can be performed.

本発明の切削工具は、超硬合金からなる基体の表面を被覆層で被覆して、切刃における前記基体と前記被覆層との界面にはオージェ分光分析法で測定される酸素量が10原子%以下であり、かつ該界面に算術平均粗さRa値換算で50〜150nmの微細凹凸が形成
されていることを特徴とする。
In the cutting tool of the present invention, the surface of a substrate made of cemented carbide is coated with a coating layer, and the amount of oxygen measured by Auger spectroscopy is 10 atoms at the interface between the substrate and the coating layer in the cutting blade. %, And fine irregularities of 50 to 150 nm in terms of arithmetic average roughness Ra value are formed on the interface.

ここで、上記構成において、すくい面および逃げ面においては、基体と前記被覆層との界面には酸素量が10原子%より多く、かつ該界面の凹凸が算術平均粗さRa値換算で50nm未満であることが望ましい。   Here, in the above configuration, at the rake face and the flank face, the amount of oxygen is greater than 10 atomic% at the interface between the base and the coating layer, and the unevenness of the interface is less than 50 nm in terms of arithmetic mean roughness Ra value. It is desirable that

また、本発明の切削工具の製造方法は、焼成にて超硬合金からなる基体を作製する工程と、前記超硬合金の少なくとも切刃をホーニング加工する工程と、微細凹凸研磨加工する工程と、洗浄する工程と、該洗浄された基体に被覆層を成膜する工程とを含むものである。   Further, the manufacturing method of the cutting tool of the present invention includes a step of producing a substrate made of a cemented carbide by firing, a step of honing at least the cutting edge of the cemented carbide, a step of polishing fine unevenness, It includes a cleaning step and a step of forming a coating layer on the cleaned substrate.

このとき、荷重15〜35Nで、砥粒#200〜#400の砥石を用いて微細凹凸加工することが望ましい。   At this time, it is desirable to perform fine unevenness processing using a grindstone of abrasive grains # 200 to # 400 with a load of 15 to 35 N.

本発明の切削工具によれば、基体と被覆層との界面に酸化物が介在せず、かつ界面の凹凸が算術平均粗さRa値換算で50〜150nmであることから、基体と被覆層との間の密着性が良くてチッピングや膜剥離の発生がなく、切削工具として安定した切削が可能となる。   According to the cutting tool of the present invention, no oxide is present at the interface between the substrate and the coating layer, and the unevenness at the interface is 50 to 150 nm in terms of arithmetic average roughness Ra. The adhesiveness between the two is good, chipping and film peeling do not occur, and stable cutting is possible as a cutting tool.

本発明の切削工具の一例について、(a)斜視図、(b)被覆層の近傍についての模式断面図である。It is a schematic cross section about (a) perspective view and (b) the vicinity of a coating layer about an example of the cutting tool of this invention. 図1の切削工具について、基体と被覆層との界面における原子間力顕微鏡分析(AFM)データであり、(a)上方から見た斜視図、(b)上面から見た平面図、(c)(b)のA−A線についての断面図である。FIG. 1 is atomic force microscope analysis (AFM) data at the interface between the substrate and the coating layer for the cutting tool of FIG. 1, (a) a perspective view seen from above, (b) a plan view seen from above. It is sectional drawing about the AA of (b). 従来の切削工具の一例について、基体と被覆層との界面における原子間力顕微鏡分析(AFM)データであり、(a)上方から見た斜視図、(b)上面から見た平面図、(c)(b)のA−A線についての断面図である。It is atomic force microscope analysis (AFM) data at an interface between a substrate and a coating layer for an example of a conventional cutting tool, (a) a perspective view seen from above, (b) a plan view seen from above. It is sectional drawing about the AA of (b). (a)図1の切削工具、(b)従来の切削工具についての基体と被覆層との界面におけるオージェ電子分光分析(AES)データである。It is an Auger electron spectroscopy analysis (AES) data in the interface of a base | substrate and a coating layer about the cutting tool of FIG. 1 and (b) the conventional cutting tool.

本発明の切削工具の一例について、被覆層の近傍についての模式段面図である図1、図1の切削工具および従来の切削工具の一例について、基体と被覆層との界面における原子間力顕微鏡分析(AFM)データであり、(a)上方から見た斜視図、(b)上面から見た平面図、(c)(b)のA−A線についての断面図である図2、3、(a)図1の切削工具、(b)従来の切削工具についての基体と被覆層との界面におけるオージェ電子分光分析(AES)データである図4を基に説明する。   FIG. 1 is a schematic step view of the vicinity of the coating layer for an example of the cutting tool of the present invention, and an example of the cutting tool of FIG. 1 and the conventional cutting tool is an atomic force microscope at the interface between the substrate and the coating layer. Analysis (AFM) data, (a) perspective view from above, (b) plan view from above, (c) cross-sectional view along line AA in (b), FIGS. A description will be given based on FIG. 4 which is Auger electron spectroscopic analysis (AES) data at the interface between the base and the coating layer of (a) the cutting tool of FIG. 1 and (b) the conventional cutting tool.

図1のスローアウェイチップ1は、超硬合金からなる基体6の表面を被覆層5で被覆した切削工具であって、すくい面2と逃げ面3との交差稜線部である切刃4における基体6と被覆層5との界面には、図4に示すように酸素含有量は10原子%以下で、かつ図2、3の原子間力顕微鏡分析(AFM)データから明らかなように、この界面には算術平均粗さRa値換算で50〜150nmの凹凸が存在する。これによって、基体6と被覆層5との間の密着性が良くてチッピングや膜剥離の発生がなく、切削工具として安定した切削が可能となる。   A throw-away tip 1 in FIG. 1 is a cutting tool in which the surface of a base body 6 made of cemented carbide is coated with a coating layer 5, and is a base body in a cutting edge 4 that is a cross ridge line portion between a rake face 2 and a flank face 3. As shown in FIG. 4, the oxygen content is 10 atomic% or less as shown in FIG. 4, and as shown in the atomic force microscope analysis (AFM) data of FIGS. Has an irregularity of 50 to 150 nm in terms of arithmetic average roughness Ra value. As a result, the adhesion between the substrate 6 and the coating layer 5 is good, no chipping or film peeling occurs, and stable cutting as a cutting tool is possible.

なお、実際の切削工具については基体6と被覆層5との界面は被覆層5で覆われているので、図2のような原子間力顕微鏡分析(AFM)で観察することができないが、基体6
と被覆層5との界面の状態の違いを示すために図2、3を示している。そのため、本発明においては、凹凸の状態を、基体6と被覆層5の界面については断面における顕微鏡写真から見積もっている。具体的には、透過型電子顕微鏡(TEM)観察を行い、界面の凹凸をトレースして、JISB01601に準拠して評価長さ500nm、カットオフ値100nmで算術平均粗さRaを算出することによって評価する。また、オージェ分光分析法にて基体6と被覆層5との界面での酸素含有量を測定する。
In an actual cutting tool, since the interface between the base 6 and the coating layer 5 is covered with the coating layer 5, it cannot be observed by atomic force microscope analysis (AFM) as shown in FIG. 6
2 and 3 are shown to show the difference in the state of the interface between the coating layer 5 and the coating layer 5. Therefore, in this invention, the uneven | corrugated state is estimated from the micrograph in a cross section about the interface of the base | substrate 6 and the coating layer 5. FIG. Specifically, it is evaluated by performing transmission electron microscope (TEM) observation, tracing the unevenness of the interface, and calculating the arithmetic average roughness Ra with an evaluation length of 500 nm and a cutoff value of 100 nm in accordance with JISB01601. To do. Further, the oxygen content at the interface between the substrate 6 and the coating layer 5 is measured by Auger spectroscopy.

ここで、上記構成において、すくい面2および逃げ面3においては、基体6と被覆層5との界面には酸素量が10原子%より多く、かつ該界面の凹凸が表面粗さRa値換算で50nm未満であることが、被覆層5が摩耗して基体が露出する際にベラーグを生成して基体6の摩耗の進行を抑制できるとともに、製造が容易である点で望ましい。   Here, in the above configuration, in the rake face 2 and the flank face 3, the amount of oxygen is larger than 10 atomic% at the interface between the base 6 and the coating layer 5, and the unevenness of the interface is converted into the surface roughness Ra value. It is desirable that the thickness is less than 50 nm in that, when the coating layer 5 is worn and the substrate is exposed, a belag can be generated to suppress the progress of wear of the substrate 6 and the production is easy.

なお、図1(b)によれば、基体6の表面に被覆された被覆層5は、1層目がTiN層7、2層目がTiCN層8(8a、8b、8c)、3層目がTi(C)(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8)からなる中間層11、4層目がα型結晶構造のAl層(以下、単にAl層と略す。)12、5層目がTi(C(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8、1.0≦a≦1.7)からなる最表層14とが順に積層された構成からなる。 Note that, according to FIG. 1B, the coating layer 5 coated on the surface of the base 6 is a TiN layer 7 for the first layer, a TiCN layer 8 (8a, 8b, 8c) for the second layer, and a third layer. Is an intermediate layer 11 in which Ti (C x N y O z ) (x + y + z = 1, 0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8) Is an Al 2 O 3 layer (hereinafter simply referred to as Al 2 O 3 layer) 12 having an α-type crystal structure, and the fifth layer is Ti (C x N y O z ) a (x + y + z = 1, 0 ≦ x ≦ 0) .6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8, 1.0 ≦ a ≦ 1.7) and the outermost layer 14 are sequentially stacked.

なお、基体6は、WC相、結合相、および所望によりB1型固溶相から形成されている。   The substrate 6 is formed of a WC phase, a binder phase, and optionally a B1 type solid solution phase.

(製造方法)
また、本実施形態のスローアウェイチップ1の製造方法の一実施形態について説明する。
(Production method)
Moreover, one Embodiment of the manufacturing method of the throw away tip 1 of this embodiment is described.

まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形する。その後、得られた成形体を真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体を作製する。   First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides, and oxides that can be formed by firing the hard alloy described above, press molding, cast molding, A predetermined tool shape is formed by a known forming method such as extrusion molding or cold isostatic pressing. Thereafter, the obtained molded body is fired in a vacuum or in a non-oxidizing atmosphere to produce a substrate made of the hard alloy described above.

そして、上記基体の表面に所望によってチップの両面を研磨加工した後、切刃部にホーニング加工を施した後、砥粒#200〜#400の砥石を用いて、荷重15〜35Nで研磨加工する微細凹凸研磨加工を施し、酸洗浄した後に有機溶剤にて洗浄する。この工程によって、基体6の表面には所定の凹凸が形成されるとともに、基体の表面に残存している不純物酸素を除去することができる。   Then, after polishing the both surfaces of the chip as desired on the surface of the base, honing is performed on the cutting edge, and then polishing is performed with a load of 15 to 35 N using a grindstone of abrasive grains # 200 to # 400. Fine concavo-convex polishing is performed, and after acid cleaning, the substrate is cleaned with an organic solvent. By this step, predetermined irregularities are formed on the surface of the substrate 6, and impurity oxygen remaining on the surface of the substrate can be removed.

次に、得られた基体6の表面に化学気相蒸着(CVD)法によって被覆層を形成する。始めに、基体をCVD装置のチャンバ内にセットする。このとき、中央にネジ孔の空いた基体を串刺しにし、基体間の間隔を調整することにより、すくい面、逃げ面および切刃に成膜される被覆層の厚みを調整することができる。   Next, a coating layer is formed on the surface of the obtained substrate 6 by chemical vapor deposition (CVD). First, the substrate is set in the chamber of the CVD apparatus. At this time, the thickness of the coating layer formed on the rake face, the flank face, and the cutting edge can be adjusted by skewing a base having a screw hole in the center and adjusting the distance between the bases.

成膜に際しては、まず、基体の直上に1層目としてTiN層を形成する。TiN層の成膜条件としては、混合ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を800〜940℃(チャンバ内)、圧力を8〜50kPaにて成膜される。 In film formation, first, a TiN layer is formed as a first layer directly on the substrate. The conditions for forming the TiN layer include, as a mixed gas composition, titanium tetrachloride (TiCl 4 ) gas in a ratio of 0.5 to 10% by volume and nitrogen (N 2 ) gas in a ratio of 10 to 60% by volume, with the remainder being hydrogen. Using a mixed gas composed of (H 2 ) gas, the film is formed at a film forming temperature of 800 to 940 ° C. (in the chamber) and a pressure of 8 to 50 kPa.

次に、2層目としてTiCN層を形成する。ここでは、TiCN層が、平均結晶幅が小さい微細柱状結晶層と、この層よりも平均結晶幅が大きい粗柱状結晶層とのMT−TiCN層と、HT−TiCN層との3層にて構成する場合の成膜条件について説明する。   Next, a TiCN layer is formed as a second layer. Here, the TiCN layer is composed of three layers of an MT-TiCN layer of a fine columnar crystal layer having a small average crystal width, a coarse columnar crystal layer having a larger average crystal width than this layer, and an HT-TiCN layer. The film forming conditions for this will be described.

MT−TiCN層のうちの微細柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。MT−TiCN層のうちの粗柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜4.0体積%、窒素(N)ガスを0〜40体積%、アセトニトリル(CHCN)ガスを0.4〜2.0体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。 The film formation conditions of the fine columnar crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, acetonitrile (CH 3 CN) gas in a ratio of 0.1 to 0.4% by volume, and the remaining gas is a hydrogen (H 2 ) gas, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. . The film formation conditions of the coarse columnar crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 4.0% by volume, nitrogen (N 2 ) gas is 0 to 40% by volume, acetonitrile (CH 3 CN) gas is contained at a ratio of 0.4 to 2.0% by volume, and the remaining gas is a hydrogen (H 2 ) gas mixed gas, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. And

HT−TiCN層の成膜条件は、四塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、窒素(N)ガスを0〜15体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を950〜1100℃、圧力を5〜40kPaとして成膜する。そして、チャンバ内を950〜1100℃、5〜40kPaとし、四塩化チタン(TiCl)ガスを1〜5体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを10〜30体積%、一酸化炭素(CO)ガスを4〜8体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に10〜60分導入して成膜した後、続いて体積%で二酸化炭素(CO)ガスを0.5〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を950〜1100℃、5〜40kPaにて、二酸化炭素(CO)ガスを0.5〜10体積%、残りが窒素(N)ガスからなる混合ガスを反応チャンバ内に10〜60分導入することによって、HT−TiCN層を酸化させてTiCNO層に変化させながら中間層を成膜する。なお、このCOガスを含む混合ガスを流す工程を経ることなく中間層を形成することもできるが、α型Al層を構成する結晶を微細なものとするためには、COガスを含む混合ガスを流す工程を経ることが望ましい。 The film forming conditions of the HT-TiCN layer were 0.1 to 3% by volume of titanium tetrachloride (TiCl 4 ) gas, 0.1 to 10% by volume of methane (CH 4 ) gas, and 0 of nitrogen (N 2 ) gas. The film is formed at a film forming temperature of 950 to 1100 ° C. and a pressure of 5 to 40 kPa, using a mixed gas containing hydrogen (H 2 ) gas in a ratio of ˜15% by volume. The chamber is 950 to 1100 ° C. and 5 to 40 kPa, titanium tetrachloride (TiCl 4 ) gas is 1 to 5% by volume, methane (CH 4 ) gas is 4 to 10% by volume, and nitrogen (N 2 ) gas is 10 to 30% by volume, carbon monoxide (CO) gas was 4 to 8% by volume, and the remaining mixed gas was hydrogen (H 2 ) gas, which was introduced into the reaction chamber for 10 to 60 minutes to form a film. Subsequently, a mixed gas consisting of 0.5% to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas in a volume% is prepared and introduced into the reaction chamber to form a film. At a temperature of 950 to 1100 ° C. and 5 to 40 kPa, a mixed gas composed of 0.5 to 10% by volume of carbon dioxide (CO 2 ) gas and the balance of nitrogen (N 2 ) gas is placed in the reaction chamber for 10 to 60 minutes. Oxidizing the HT-TiCN layer by introducing Then, an intermediate layer is formed while changing to a TiCNO layer. Note that the intermediate layer can be formed without passing the mixed gas containing CO 2 gas, but in order to make the crystals constituting the α-type Al 2 O 3 layer fine, CO 2 It is desirable to go through a process of flowing a mixed gas containing gas.

続いて体積%で二酸化炭素(CO)ガスを0.3〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を1000〜1100℃、5〜40kPaにて、反応チャンバ内に5〜30分導入することによって、被覆層表面の表面粗さを粗くする。そして、引き続き、α型Al層を形成する。α型Al層の成膜条件としては、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.5〜5.0体積%、硫化水素(HS)ガスを0〜0.5体積%、残りが水素(H)ガスからなる混合ガスをチャンバ内に導入し、成膜温度を950〜1100℃、圧力を5〜10kPaとして成膜することが望ましい。 Subsequently, a mixed gas consisting of 0.3 to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas in a volume% is prepared and introduced into the reaction chamber. The surface roughness of the coating layer surface is roughened by introducing it into the reaction chamber at 1000 to 1100 ° C. and 5 to 40 kPa for 5 to 30 minutes. Subsequently, an α-type Al 2 O 3 layer is formed. As the film forming conditions for the α-type Al 2 O 3 layer, aluminum trichloride (AlCl 3 ) gas is 0.5 to 5.0% by volume, hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume, A mixed gas consisting of 0.5 to 5.0% by volume of carbon dioxide (CO 2 ) gas, 0 to 0.5% by volume of hydrogen sulfide (H 2 S) gas, and the remaining hydrogen (H 2 ) gas is contained in the chamber. It is desirable to form the film at a film forming temperature of 950 to 1100 ° C. and a pressure of 5 to 10 kPa.

さらに、α型Al層の上層に最表層を形成する。四塩化チタン(TiCl)ガスを1〜10体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを0〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを反応チャンバ内に導入し、チャンバの温度を960〜1100℃、圧力を10〜85kPaとして、成膜時間を1分〜10分の間で成膜することで膜厚みを調整した後、続いて体積%で二酸化炭素(CO)ガスを0.5〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を950〜1100℃、5〜40kPaにて、反応チャンバ内に5〜30分導入することによって、HT−TiCN層を酸化させてTiCNO層に変化させながら最表層を成膜する。Tiに対する酸素の比率は、二酸化炭素(CO)ガスの濃度や酸化時間により調整する。 Further, an outermost layer is formed on the α-type Al 2 O 3 layer. Titanium tetrachloride (TiCl 4 ) gas is contained in an amount of 1 to 10% by volume, methane (CH 4 ) gas is contained in an amount of 4 to 10% by volume, nitrogen (N 2 ) gas is contained in an amount of 0 to 60% by volume, and the remainder is hydrogen (H 2 ) A mixed gas composed of gas is introduced into the reaction chamber, the temperature of the chamber is set to 960 to 1100 ° C., the pressure is set to 10 to 85 kPa, and the film formation time is set to 1 to 10 minutes to form a film thickness. Then, a mixed gas consisting of 0.5 to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas is adjusted in volume% and introduced into the reaction chamber. The outermost layer is formed while the HT-TiCN layer is oxidized and changed into a TiCNO layer by introducing the film into the reaction chamber at 950 to 1100 ° C. and 5 to 40 kPa for 5 to 30 minutes. The ratio of oxygen to Ti is adjusted by the concentration of carbon dioxide (CO 2 ) gas and the oxidation time.

そして、所望により形成した被覆層の表面の少なくとも切刃部、望ましくは切刃部とすくい面を研磨加工する。この研磨加工により、切刃部およびすくい面が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた切削工具となる。   Then, at least the cutting edge portion, preferably the cutting edge portion and the rake face of the surface of the coating layer formed as desired is polished. By this polishing process, the cutting edge part and the rake face are processed smoothly, suppressing welding of the work material, and a cutting tool having further excellent fracture resistance is obtained.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMG120412)に成形した。得られた成形体について、脱バインダ処理を施し、0.5〜100Paの真空中、1400℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金に対して、両頭加工を施した後、表1に示す条件でRホーニング加工および微細凹凸加工を施した。   A metal cobalt (Co) powder with an average particle diameter of 1.2 μm is added to and mixed with tungsten carbide (WC) powder with an average particle diameter of 1.5 μm at a ratio of 6% by mass, and the cutting tool shape ( CNMG120412). The obtained compact was subjected to a binder removal treatment and fired at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to produce a cemented carbide. Furthermore, after subjecting the produced cemented carbide to double head processing, R honing processing and fine unevenness processing were performed under the conditions shown in Table 1.

次に、上記の加工した超硬合金の表面に化学気相蒸着(CVD)法によって、0.5μmの窒化チタン(TiN)膜、9.0μmの柱状の結晶構造をなす炭窒化チタン(TiCN)膜、3μmのα型酸化アルミニウム(Al)膜の被覆層を順次成膜して、試料No.1〜7の表面被覆切削工具を作製した。 Next, a titanium carbide (TiCN) film having a 0.5 μm titanium nitride (TiN) film and a 9.0 μm columnar crystal structure is formed on the surface of the processed cemented carbide by chemical vapor deposition (CVD). A coating layer of a 3 μm α-type aluminum oxide (Al 2 O 3 ) film was sequentially formed. 1 to 7 surface-coated cutting tools were prepared.

得られた工具に対して、切刃およびすくい面における基体と被覆層との界面(表中、切刃界面およびすくい面界面と記す。)について透過型電子顕微鏡(TEM)観察を行い、界面の凹凸をトレースして、JISB01601に準拠して評価長さ500nm、カットオフ値100nmで算術平均粗さRaを算出した。また、オージェ分光分析法にて界面での酸素含有量を測定した。結果は表1に示した。   The obtained tool was observed with a transmission electron microscope (TEM) for the interface between the substrate and the coating layer on the cutting edge and the rake face (referred to as the cutting edge interface and the rake face interface in the table). The irregularities were traced, and the arithmetic average roughness Ra was calculated with an evaluation length of 500 nm and a cutoff value of 100 nm in accordance with JISB01601. In addition, the oxygen content at the interface was measured by Auger spectroscopy. The results are shown in Table 1.

そして、この工具を用いて下記の条件により強断続切削試験を行い、切削工具の耐欠損性を評価した。
(切削条件)
被削材 :FCD700
工具形状:CNMG120412
切削速度:150m/分
送り速度:0.15〜0.3mm/rev
切り込み:1.5mm
切削液 :エマルジョン15%+水85%混合液
評価項目:衝撃回数2000回以内に欠損した試料の個数(評価数20個)
および衝撃回数2000回で欠損しなかった試料の刃先状態の確認
結果は表1に示した。
Then, using this tool, a strong intermittent cutting test was performed under the following conditions to evaluate the fracture resistance of the cutting tool.
(Cutting conditions)
Work material: FCD700
Tool shape: CNMG12041
Cutting speed: 150 m / min Feeding speed: 0.15-0.3 mm / rev
Cutting depth: 1.5mm
Cutting fluid: mixture of 15% emulsion + 85% water Evaluation item: Number of samples missing within 2000 impacts (20 evaluations)
And confirmation of the cutting edge condition of the sample that was not damaged after 2000 impacts
The results are shown in Table 1.

表1に示す結果より、切刃における基体と被覆層との界面における酸素量が10原子%を超える試料No.5、および基体と被覆層との界面粗さが50nmより小さい試料No.6では、膜剥離が発生して少ない衝撃回数で寿命となった。また、基体と被覆層との界面における界面粗さが150nmより大きい試料No.7では、早期に膜剥離と欠損が発生してしまった。   From the results shown in Table 1, the sample No. 1 in which the oxygen content at the interface between the substrate and the coating layer in the cutting blade exceeds 10 atomic% is obtained. 5 and sample No. 5 having an interface roughness between the substrate and the coating layer of less than 50 nm. In No. 6, film peeling occurred and the life was reached with a small number of impacts. In addition, Sample No. with an interface roughness greater than 150 nm at the interface between the substrate and the coating layer. In No. 7, film peeling and defects occurred at an early stage.

これに対して、切刃における基体と被覆層との界面における酸素量が10原子%以下であり、かつ界面粗さが50〜150nmの微細凹凸が形成されている試料No.1〜4では、突発欠損の発生が抑制されて安定した切削加工が可能であった。   On the other hand, the sample No. 1 in which fine undulations having an oxygen amount of 10 atomic% or less at the interface between the substrate and the coating layer in the cutting edge and an interface roughness of 50 to 150 nm is formed. In 1-4, generation | occurrence | production of the sudden defect | deletion was suppressed and stable cutting was possible.

1 スローアウェイチップ
2 すくい面
3 逃げ面
4 切刃
5 被覆層
6 基体
7 TiN層
8(8a、8b、8c) TiCN層
11 Ti(C)(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8)からなる中間層
12 Al
14 最表層
1 throwaway insert 2 rake face 3 flank face 4 cutting edges 5 covering layer 6 substrate 7 TiN layer 8 (8a, 8b, 8c) TiCN layer 11 Ti (C x N y O z) (x + y + z = 1,0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8) The intermediate layer 12 Al 2 O 3 layer 14 The outermost layer

Claims (4)

超硬合金からなる基体の表面を被覆層で被覆した切削工具であって、切刃における前記基体と前記被覆層との界面にはオージェ分光分析法で測定される酸素量が10原子%以下であり、かつ該界面に算術平均粗さRa値換算で50〜150nmの微細凹凸が形成されている切削工具。   A cutting tool in which the surface of a substrate made of cemented carbide is coated with a coating layer, and the amount of oxygen measured by Auger spectroscopy is 10 atomic% or less at the interface between the substrate and the coating layer in the cutting blade. A cutting tool in which fine irregularities of 50 to 150 nm are formed on the interface in terms of arithmetic average roughness Ra value. すくい面および逃げ面においては、基体と前記被覆層との界面には酸素量が10原子%より多く、かつ該界面の凹凸が算術平均粗さRa値換算で50nm未満である請求項1記載の切削工具。   2. The rake face and the flank face have an oxygen content of more than 10 atomic% at the interface between the substrate and the coating layer, and the unevenness of the interface is less than 50 nm in terms of arithmetic mean roughness Ra value. Cutting tools. 焼成にて超硬合金からなる基体を作製する工程と、前記超硬合金の少なくとも切刃をホーニング加工する工程と、微細凹凸研磨加工する工程と、洗浄する工程と、該洗浄された基体に被覆層を成膜する工程とを含む切削工具の製造方法。   A step of producing a substrate made of a cemented carbide by firing, a step of honing at least the cutting edge of the cemented carbide, a step of polishing fine irregularities, a step of cleaning, and coating the cleaned substrate A method of manufacturing a cutting tool, including a step of forming a layer. 砥粒#200〜#400の砥石を用いて、荷重15〜35Nで微細凹凸研磨加工する請求項3記載の切削工具の製造方法。   The manufacturing method of the cutting tool of Claim 3 which grind | polishes a fine unevenness | corrugation with the load of 15-35N using the grindstone of abrasive grain # 200- # 400.
JP2010170753A 2010-07-29 2010-07-29 Cutting tool and manufacturing method therefor Pending JP2012030309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170753A JP2012030309A (en) 2010-07-29 2010-07-29 Cutting tool and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170753A JP2012030309A (en) 2010-07-29 2010-07-29 Cutting tool and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2012030309A true JP2012030309A (en) 2012-02-16

Family

ID=45844368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170753A Pending JP2012030309A (en) 2010-07-29 2010-07-29 Cutting tool and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2012030309A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500028A (en) * 2012-10-16 2016-01-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool with patterned surface area
WO2018030329A1 (en) 2016-08-09 2018-02-15 三菱マテリアル株式会社 Surface-coated cutting tool with excellent adhesion-induced chipping resistance and peel resistance
WO2018037647A1 (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
JP2018030207A (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool and method for manufacturing the same
CN111867760A (en) * 2018-01-29 2020-10-30 京瓷株式会社 Coated cutting tool and cutting tool provided with same
JP2020185642A (en) * 2019-05-14 2020-11-19 株式会社タンガロイ Coated cutting tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500028A (en) * 2012-10-16 2016-01-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool with patterned surface area
WO2018030329A1 (en) 2016-08-09 2018-02-15 三菱マテリアル株式会社 Surface-coated cutting tool with excellent adhesion-induced chipping resistance and peel resistance
KR20190039749A (en) 2016-08-09 2019-04-15 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool with excellent adhesion and peeling properties
US11014168B2 (en) 2016-08-09 2021-05-25 Mitsubishi Materials Corporation Surface-coated cutting tool with excellent adhesion-induced chipping resistance and peel resistance
WO2018037647A1 (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
JP2018030207A (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool and method for manufacturing the same
CN109641284A (en) * 2016-08-25 2019-04-16 住友电工硬质合金株式会社 Cutting element and its manufacturing method
US11020805B2 (en) 2016-08-25 2021-06-01 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing the same
EP3505280B1 (en) * 2016-08-25 2023-04-12 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing the same
CN111867760A (en) * 2018-01-29 2020-10-30 京瓷株式会社 Coated cutting tool and cutting tool provided with same
JP2020185642A (en) * 2019-05-14 2020-11-19 株式会社タンガロイ Coated cutting tool

Similar Documents

Publication Publication Date Title
JP5890594B2 (en) Coated tool
JP5902865B2 (en) Coated tool
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP5841170B2 (en) Coated tool
JP2007260851A (en) Surface coated cutting tool
JP5918457B1 (en) Coated tool
JP2012030309A (en) Cutting tool and manufacturing method therefor
JP2012196726A (en) Cutting tool
JP2007229821A (en) Surface-coated cutting tool
US10744568B2 (en) Coated tool
JP2012144766A (en) Coated member
JP6556246B2 (en) Coated tool
JP5597469B2 (en) Cutting tools
JP2008238392A (en) Cutting tool
JP5419668B2 (en) Surface covering member
JP2008264988A (en) Manufacturing method of cutting tool
JP5693039B2 (en) Surface covering member
JP6522985B2 (en) Coated tools
JP5898394B1 (en) Coated tool
JP5864826B1 (en) Coated and cutting tools
JP6050183B2 (en) Cutting tools
JP6926389B2 (en) Cutting tools
WO2020250625A1 (en) Cutting tool
JP5822780B2 (en) Cutting tools
JP5111133B2 (en) Cutting tools