JP2012024818A - Multi-layer heat insulation material, and method for embossing thin titanium sheet material - Google Patents

Multi-layer heat insulation material, and method for embossing thin titanium sheet material Download PDF

Info

Publication number
JP2012024818A
JP2012024818A JP2010166646A JP2010166646A JP2012024818A JP 2012024818 A JP2012024818 A JP 2012024818A JP 2010166646 A JP2010166646 A JP 2010166646A JP 2010166646 A JP2010166646 A JP 2010166646A JP 2012024818 A JP2012024818 A JP 2012024818A
Authority
JP
Japan
Prior art keywords
thin leaf
embossing
mold
leaf material
titanium thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166646A
Other languages
Japanese (ja)
Other versions
JP5501135B2 (en
Inventor
Osamu Hayashi
修 林
Kohei Oka
紘平 岡
Yoshikazu Tanaka
好和 田中
Koichi Mitsui
浩一 三井
Tomonori Matsuda
智規 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010166646A priority Critical patent/JP5501135B2/en
Publication of JP2012024818A publication Critical patent/JP2012024818A/en
Application granted granted Critical
Publication of JP5501135B2 publication Critical patent/JP5501135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a multi-layer insulation material (MLI) that can control heat in a stable manner under a high temperature condition of 500°C or more, and to obtain a processing method that is superior for mass production and can inexpensively perform heat-resistance processing of a thin titanium sheet material used for the multi-layer insulation material.SOLUTION: As a heat-resistant thin sheet material for forming multi layers, a titanium film 1 with a thickness of 10-30 μm which has protrusions 2 forming a plurality of concave and convex parts. Furthermore, after the thin titanium sheet material is annealed in a range of 700-740°C under a hydrogen gas atmosphere or an inert gas atmosphere, a plurality of concave and convex parts are formed by embosses so that the heat conduction as a result of composing a MLI by the lamination of the plurality of thin titanium sheet materials is reduced, thus improving the heat-resistance.

Description

この発明は、人工衛星等の宇宙飛翔体の外表面に使用される熱制御材などとして好ましく用いることができる多層断熱材、及び該多層断熱材に用いるチタン薄葉材のエンボス加工方法に関する。   The present invention relates to a multilayer heat insulating material that can be preferably used as a heat control material used on the outer surface of a space vehicle such as an artificial satellite, and an embossing method for a titanium thin leaf material used for the multilayer heat insulating material.

人工衛星、スペースシャトル、宇宙ステーションなどの宇宙飛翔体には熱制御材として多くの耐熱性フィルムが使用されている。代表的なものとして、ポリイミドフィルム、フッ素樹脂フィルムなどが挙げられる。これらの耐熱性フィルムは、宇宙空間において、衝突したゴミやチリが付着して熱制御材の機能を発揮できなくなる。このため、これらの欠点を補うべく種々の試みがなされている。例えば、ゴミやチリの付着を防止するための帯電防止化技術として、樹脂フィルムの表面にスパッタリング法によりステンレスのような金属の導電層を設けた帯電防止用保護フィルムがある(例えば特許文献1参照)。   Many heat-resistant films are used as thermal control materials in space vehicles such as artificial satellites, space shuttles, and space stations. Typical examples include polyimide films and fluororesin films. These heat-resistant films are unable to exhibit the function of the heat control material due to dust and dust that collide in space. For this reason, various attempts have been made to compensate for these drawbacks. For example, as an antistatic technique for preventing adhesion of dust and dirt, there is an antistatic protective film in which a metal conductive layer such as stainless steel is provided on the surface of a resin film by sputtering (see, for example, Patent Document 1). ).

また、樹脂中にカーボンブラック等の導電性物質を分散させたスラリー液から導電性フィルム(無端ベルト)を形成する技術がある(例えば特許文献2参照)。また、人工衛星に搭載する熱制御材として、金属を蒸着した高分子フィルムと高分子のネットから構成され、金属蒸着による低放射率面の放射断熱と、各フィルム間に挟み込んだ高分子のネットによるフィルム間の伝導断熱により断熱性を図った多層断熱ブランケットがある(例えば非特許文献1参照)。以下、このような多層断熱材あるいは多層断熱ブランケットをMLI(Multi Layer Insuration)と称す。   There is also a technique for forming a conductive film (endless belt) from a slurry liquid in which a conductive substance such as carbon black is dispersed in a resin (see, for example, Patent Document 2). In addition, as a thermal control material to be mounted on an artificial satellite, it is composed of a polymer film deposited with metal and a polymer net, and radiation insulation of a low emissivity surface by metal deposition and a polymer net sandwiched between each film. There is a multilayer heat insulation blanket that achieves heat insulation by conductive heat insulation between films (see Non-Patent Document 1, for example). Hereinafter, such a multilayer heat insulating material or multilayer heat insulating blanket is referred to as MLI (Multi Layer Insulation).

特開2001−115251号公報(第1頁、図1)JP 2001-115251 A (first page, FIG. 1) 特許第3463066号公報(第6頁、実施例)Japanese Patent No. 3463066 (page 6, example)

茂原正道「宇宙システム概論−衛星の設計と開発」培風館、1995年10月30日(第168−170頁)Masamichi Mobara "Introduction to Space Systems-Satellite Design and Development" Baifukan, October 30, 1995 (pp. 168-170)

上記特許文献1のような従来技術の場合、スパッタリングのための高真空や精度の高い雰囲気制御を備えた装置が必要で、コスト高になり、量産性にも欠ける。更に、耐熱性が400℃程度となる。特許文献2のような技術においても樹脂の熱的性質に左右され、やはり400℃程度が限界となる。近年、衛星の大型化、高精度化に伴い、推力発生装置の性能が向上してきたため、500℃を越える高温環境での熱制御材が求められているが、上記非特許文献1のような通常のMLIでは耐熱温度が低いため対応できないと言う課題がある。このため、海外では高温部分の熱制御材として、ステンレスの薄板や超耐熱性フィルムにステンレス、チタンなどの金属を蒸着した高温用MLIなどが使用されている。しかし、これらの熱制御材は質量、加工性、コストなどの点で問題があり、また更なる耐熱温度の要求に対し既存の材料では耐熱温度が低く、現在要求されている高温環境でも適用可能な技術は、実現化されていない。   In the case of the conventional technique such as the above-mentioned Patent Document 1, an apparatus having a high vacuum for sputtering and an atmosphere control with high accuracy is required, resulting in high cost and lack of mass productivity. Furthermore, the heat resistance is about 400 ° C. Even in the technique such as Patent Document 2, the temperature is limited to about 400 ° C., depending on the thermal properties of the resin. In recent years, as the size and accuracy of satellites have increased, the performance of thrust generators has improved, so a heat control material in a high temperature environment exceeding 500 ° C. has been demanded. However, the MLI has a problem that it cannot cope with the low heat-resistant temperature. For this reason, MLI for high temperatures in which a metal such as stainless steel or titanium is vapor-deposited on a stainless steel thin plate or a super heat resistant film is used as a heat control material in a high temperature part. However, these heat control materials have problems in terms of mass, workability, cost, etc., and the heat resistance temperature is low with existing materials to meet the demand for further heat resistance temperature, and can be applied even in the high temperature environment currently required Technology has not been realized.

この発明は、上記のような従来技術の問題点を解決するためになされたものであり、軽量でコストも抑えられ、500℃の高温下でも安定した状態で熱制御できる多層断熱材を得ることを第1の目的としている。また、該多層断熱材に用いるチタン薄葉材を、低コストで耐熱化加工できる量産性に優れた加工方法を得ることを第2の目的としている。   The present invention has been made to solve the above-described problems of the prior art, and obtains a multilayer heat insulating material that is lightweight and cost-effective and that can be thermally controlled in a stable state even at a high temperature of 500 ° C. Is the first purpose. A second object of the present invention is to obtain a processing method excellent in mass productivity that can heat-treat the titanium thin leaf material used for the multilayer heat insulating material at low cost.

この発明に係る多層断熱材は、多層を形成する耐熱性薄葉材として、複数の凹凸が形成された厚さ10〜30μmのチタン薄葉材を用いてなることを特徴とするものである。   The multilayer heat insulating material according to the present invention is characterized in that a titanium thin leaf material having a thickness of 10 to 30 μm on which a plurality of irregularities are formed is used as a heat-resistant thin leaf material for forming a multilayer.

また、この発明に係る多層断熱材に用いるチタン薄葉材のエンボス加工方法は、厚さ10〜30μmのチタン薄葉材を不活性ガス雰囲気下、700〜740℃で焼鈍した後、エンボス加工により複数の凹凸を形成することを特徴とするものである。   Moreover, the embossing method of the titanium thin leaf material used for the multilayer heat insulating material according to the present invention includes annealing a titanium thin leaf material having a thickness of 10 to 30 μm in an inert gas atmosphere at 700 to 740 ° C. It is characterized by forming irregularities.

この発明の多層断熱材においては、多層を形成する耐熱性薄葉材として、複数の凹凸が形成された厚さ10〜30μmのチタン薄葉材を用いたことにより、従来のMLIに比べて軽量性(低比重)、耐熱性、高強度等、金属材本来の物理的、機械的特性が保持され、さらに断熱特性が向上され、高温下で安定した状態で熱制御できる。また、加工が容易なことでコストも抑えられる。   In the multilayer heat insulating material of the present invention, a titanium thin leaf material having a thickness of 10 to 30 μm formed with a plurality of irregularities is used as the heat resistant thin leaf material for forming the multilayer, so that it is lighter than the conventional MLI ( (Low specific gravity), heat resistance, high strength, etc. The original physical and mechanical properties of the metal material are retained, the heat insulation properties are further improved, and the heat can be controlled in a stable state at high temperatures. In addition, the cost is reduced due to the ease of processing.

また、この発明の多層断熱材に用いるチタン薄葉材のエンボス加工方法によれば、厚さ10〜30μmのチタン薄葉材を不活性ガス雰囲気下で焼鈍した後、エンボス加工するようにしたので、一般的な設備を用いて低コストで量産性高く耐熱化加工することができる。   Further, according to the embossing method of the titanium thin leaf material used for the multilayer heat insulating material of the present invention, since the titanium thin leaf material having a thickness of 10 to 30 μm is annealed in an inert gas atmosphere, the embossing is performed. It is possible to perform heat-resistant processing at low cost and with high productivity by using conventional equipment.

本発明の実施の形態1による多層断熱材に用いる複数の凹凸が形成されたチタン薄葉材を示す平面図である。It is a top view which shows the titanium thin leaf material in which the several unevenness | corrugation used for the multilayer heat insulating material by Embodiment 1 of this invention was formed. 図1に示されたチタン薄葉材の凸部を模式的に説明する側面図である。It is a side view which illustrates typically the convex part of the titanium thin leaf material shown by FIG. 本発明の実施の形態2によるチタン薄葉材のエンボス加工方法を概略的に説明する図であり、(a)はエンボス加工装置の要部構成図、(b)は図3(a)に示されたプレス順送型を概念的に説明する斜視図である。It is a figure explaining roughly the embossing method of the titanium thin leaf material by Embodiment 2 of this invention, (a) is a principal part block diagram of an embossing apparatus, (b) is shown by Fig.3 (a). FIG. 2 is a perspective view conceptually illustrating the press progressive die. 本発明の実施の形態3によるチタン薄葉材のエンボス加工方法に用いるプレス順送型を概念的に説明する斜視図である。It is a perspective view which illustrates notionally the press progressive die used for the embossing method of the titanium thin leaf material by Embodiment 3 of this invention. 本発明の実施の形態4によるエンボス加工されたチタン薄葉材の広幅品の製造法を説明する図である。It is a figure explaining the manufacturing method of the wide product of the embossed titanium thin leaf material by Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1による多層断熱材に用いる複数の凹凸が形成されたチタン薄葉材を示す平面図、図2は図1に示されたチタン薄葉材の凸部(エンボス突起)を模式的に説明する側面図である。図において、チタン薄葉材としてのチタン箔1は、厚さtが10μm〜30μm、更に好ましくは20〜25μm、幅Wが250±1.0mmの金属チタンの長尺フィルム状(シート状、あるいは膜状)であり、エンボス加工によって形成されたエンボス突起である複数の凸部2が千鳥格子状に形成されている。
Embodiment 1 FIG.
FIG. 1 is a plan view showing a titanium thin leaf material having a plurality of projections and depressions used in the multilayer heat insulating material according to Embodiment 1 of the present invention, and FIG. 2 is a projection (embossing projection) of the titanium thin leaf material shown in FIG. It is a side view which illustrates typically. In the figure, a titanium foil 1 as a titanium thin leaf material is a long film (sheet or film) of titanium metal having a thickness t of 10 μm to 30 μm, more preferably 20 to 25 μm and a width W of 250 ± 1.0 mm. A plurality of convex portions 2 which are emboss projections formed by embossing are formed in a staggered pattern.

なお、上記凸部2は、図の左右両端部の接合代部を除く中央部の全領域に形成されている。なお、この例では、接合代部の幅Aは11±0.5mm、中央部の幅Bは228±0.5mmである。また、凸部2の直径φは3mm、高さhは0.3mm(+0.15mm、−0mm)、図1の上下方向に隣り合う凸部2相互の1/2ピッチ寸法Cは、2.9±0.1mm、図の左右方向に隣り合う凸部2相互の1/2ピッチ寸法Dは、2.9±0.1mmである。   In addition, the said convex part 2 is formed in the whole area | region of the center part except the joining margin part of the right-and-left both ends of a figure. In this example, the width A of the joining margin is 11 ± 0.5 mm, and the width B of the central portion is 228 ± 0.5 mm. Further, the diameter φ of the convex portion 2 is 3 mm, the height h is 0.3 mm (+0.15 mm, −0 mm), and the ½ pitch dimension C between the convex portions 2 adjacent in the vertical direction in FIG. The ½ pitch dimension D between the convex portions 2 adjacent to each other in the horizontal direction of 9 ± 0.1 mm is 2.9 ± 0.1 mm.

上記のようなチタン箔1への凸部2の形成加工は、後述する実施の形態2のチタン薄葉材のエンボス加工方法によって、プレスの順送型を用いてチタン箔1を図1の矢印E方向に逐次移動させつつ連続的に行われる。上記チタン箔1の厚さが10μmよりも薄くなると凸部2の形成加工が困難となり、また、弱い力でも破損し易くなるので好ましくない。一方、該厚さが30μmよりも厚くなると、得られるMLIの質量が大きくなり、効果の割にコストが増加するので好ましくない。従って、チタン箔1の厚さtは10μm〜30μmの範囲が好ましく、就中20μm〜25μmの範囲とすることは実用上更に好ましい。   The convex part 2 is formed on the titanium foil 1 as described above by embossing the titanium thin leaf material according to the second embodiment to be described later. It is continuously performed while sequentially moving in the direction. If the thickness of the titanium foil 1 is less than 10 μm, it is difficult to form the convex portion 2 and it is easy to break even with a weak force. On the other hand, if the thickness is greater than 30 μm, the mass of the obtained MLI increases, which is not preferable because the cost increases for the effect. Therefore, the thickness t of the titanium foil 1 is preferably in the range of 10 μm to 30 μm, and more preferably in the range of 20 μm to 25 μm.

なお、上記凸部2の直径φは、3mmに限定されるものではなく、適宜変更できる。直径φを3mmよりも小さくした場合は、直径φに応じて隣り合う凸部2相互の間隔を小さくし、大きくした場合は間隔を大きくすることが望ましい。一方、凸部2の高さhは、0.3mm以上、更に好ましくは0.35mm以上が良い。該高さhが0.3mm未満の場合、熱制御材としての隣接する薄葉材相互の間の伝熱特性を低下させる効果の発現が不十分となるので、0.3mm以上とすることが望ましい。   In addition, the diameter (phi) of the said convex part 2 is not limited to 3 mm, It can change suitably. When the diameter φ is smaller than 3 mm, it is desirable to reduce the interval between the adjacent convex portions 2 according to the diameter φ, and to increase the interval when the diameter φ is increased. On the other hand, the height h of the convex part 2 is 0.3 mm or more, more preferably 0.35 mm or more. When the height h is less than 0.3 mm, the effect of lowering the heat transfer characteristics between adjacent thin leaf materials as the heat control material becomes insufficient, so it is desirable that the height h be 0.3 mm or more. .

凸部2を側面から見たときの形状は図2に示すように、大凡半円形状ないしはドーム状である。凸部2のチタン箔1の平面部との境界部、及び凸部2の頂部の周囲部は滑らかな曲線状に形成されている。また、凸部2をチタン箔1の面方向に多数設ける場合のパターンとして、図2のように千鳥格子状に配設することは、チタン箔1を複数層に重ねた場合、隣接する層間で凸部2の位置が合致して一方の凸部の裏側の凹部に他方の凸部が入り込む確率が小さくなるので、正方格子状とするよりも望ましい。なお、凸部2はランダムに配置しても差し支えない。   The shape of the convex portion 2 when viewed from the side is generally semicircular or dome-shaped as shown in FIG. The boundary part of the convex part 2 with the plane part of the titanium foil 1 and the peripheral part of the top part of the convex part 2 are formed in a smooth curved line shape. In addition, as a pattern in the case where a large number of convex portions 2 are provided in the surface direction of the titanium foil 1, it is arranged in a staggered pattern as shown in FIG. Thus, the position of the convex portion 2 is matched and the probability that the other convex portion enters the concave portion on the back side of the one convex portion is reduced. The convex portions 2 may be arranged randomly.

上記のように形成されたチタン箔1は、千鳥格子状に多数の凸部(エンボス突起)2が形成されていることにより、複数層に重ねてMLI(図示省略)を構成したときのチタン箔1相互間の接触面積が小さくなることで伝導断熱を顕著に低下できる。本発明者らが鋭意研究を重ねた結果、実施の形態1のMLIは、従来の耐熱フィルムにアルミニウムをスパッタしたMLIに比べて、金属チタンフィルム本来の機械的性質、帯電防止特性が保持され、更に500℃以上に曝される環境でも十分な耐熱性及び断熱特性が向上されたものであることが確認された。   Titanium foil 1 formed as described above has a large number of convex portions (embossed projections) 2 formed in a staggered pattern, thereby forming a titanium layer when MLI (not shown) is formed on a plurality of layers. By reducing the contact area between the foils 1, the conductive heat insulation can be significantly reduced. As a result of intensive studies by the present inventors, the MLI of Embodiment 1 retains the original mechanical properties and antistatic properties of the metal titanium film, compared to the MLI obtained by sputtering aluminum on a conventional heat-resistant film, Furthermore, it was confirmed that sufficient heat resistance and heat insulation characteristics were improved even in an environment exposed to 500 ° C. or higher.

このため、該チタン箔1を複数層に重ねたMLIは、人工衛星の例えば推進エンジン部近傍の500℃を超える部分などに用いる熱制御材として好ましく、人工衛星を安定した状態で保護することができる。また、素材が薄いので得られるMLIは可撓性に富み、取り扱いが容易である。さらに質量を小さくできるので、人工衛星に用いる場合には特に有利である。なお、上記チタン箔1のみでMLIを構成しても良いが、目的、用途に応じてチタン箔1を他の薄葉材と組み合わせて複合素材からなるMLIとしても良い。   For this reason, the MLI in which the titanium foil 1 is laminated in a plurality of layers is preferable as a thermal control material used for, for example, a portion of the artificial satellite exceeding 500 ° C. in the vicinity of the propulsion engine, and can protect the artificial satellite in a stable state. it can. In addition, since the material is thin, the MLI obtained is rich in flexibility and easy to handle. Furthermore, since the mass can be reduced, it is particularly advantageous when used for an artificial satellite. In addition, although MLI may be comprised only with the said titanium foil 1, it is good also as MLI which consists of a composite material combining the titanium foil 1 with another thin leaf material according to the objective and a use.

実施の形態2.
図3は、本発明の実施の形態2に係るチタン薄葉材のエンボス加工方法を概略的に説明する図であり、(a)はエンボス加工装置の要部構成図、(b)は図3(a)に示されたプレス順送型を概念的に説明する斜視図である。図において、エンボス加工装置10は、ロール状ないしはコイル状に巻かれたチタン薄葉材であるチタン箔11を矢印E方向に送出する送出部12、この送出部12から送出されたチタン箔11を検出すると共にガイドするガイドロール部13、及びこのガイドロール部13を経たチタン箔11の挿入ガイド14aを有するエンボス加工プレス部14、図示省略している巻取装置などを備えている。エンボス加工プレス部14は、加圧&順送り構成となっているが、一般的なプレス装置を利用できる部分であるので、機構部等の詳細は図示省略している。
Embodiment 2. FIG.
FIG. 3 is a diagram schematically illustrating an embossing method for a titanium thin leaf material according to Embodiment 2 of the present invention. FIG. 3A is a configuration diagram of a main part of an embossing apparatus, and FIG. It is a perspective view explaining notionally the press progressive die shown by a). In the figure, an embossing device 10 detects a titanium foil 11 which is a titanium thin leaf material wound in a roll shape or a coil shape in a direction of arrow E, and detects the titanium foil 11 sent from the sending portion 12. And an embossing press part 14 having an insertion guide 14a for the titanium foil 11 that has passed through the guide roll part 13, a winding device (not shown), and the like. Although the embossing press part 14 has a pressurizing & sequential feed structure, since it is a part where a general press apparatus can be used, details of the mechanism part and the like are omitted.

エンボス加工プレス部14の要部構成物である金型は、図3(b)に示すように、複数の凹部15aが千鳥格子状に規則的に形成された第1の金型15と、この第1の金型15に対向する面に、例えばシリコーンラバーなどの弾性材16が設けられた第2の金型17を備えている。上記凹部15aは、直径3mm、深さ3mmで凹部15aの周縁部は所定半径のR状に形成されている。上記弾性材16は厚さ3mmの板状である。   As shown in FIG. 3 (b), the mold that is a main component of the embossing press section 14 includes a first mold 15 in which a plurality of recesses 15a are regularly formed in a staggered pattern, A second mold 17 provided with an elastic material 16 such as a silicone rubber is provided on a surface facing the first mold 15. The recess 15a has a diameter of 3 mm and a depth of 3 mm, and the periphery of the recess 15a is formed in an R shape with a predetermined radius. The elastic member 16 has a plate shape with a thickness of 3 mm.

上型である第2の金型17は、下型である第1の金型15との間に設けられたチタン箔11に対して弾性材16を介してプレス圧:40MPaで矢印F方向に加圧するように構成されている。上記チタン箔11は、厚さ10〜30μm好ましくは厚さ20〜25μmのもので、圧延後、巻出し及び巻取り機構を備えた、水素ガス、またはアルゴンガスあるいは窒素ガスなどの不活性ガス雰囲気下、700℃〜740℃の炉内で高温熱処理したものが好ましく用いられる。焼鈍したチタン箔11は、機械的破断時の伸びが15%以上になり、エンボス加工時の0.35mm以上の凸部高さに対し、先端クラックなどの欠陥発生が生じないものとなる。   The second mold 17 that is the upper mold is placed in the direction of arrow F at a press pressure of 40 MPa through the elastic material 16 against the titanium foil 11 provided between the first mold 15 that is the lower mold. It is comprised so that it may apply pressure. The titanium foil 11 has a thickness of 10 to 30 μm, preferably a thickness of 20 to 25 μm, and is provided with an unwinding and winding mechanism after rolling, and an inert gas atmosphere such as hydrogen gas, argon gas or nitrogen gas. Below, what was heat-processed at high temperature in the furnace of 700 to 740 degreeC is used preferably. The annealed titanium foil 11 has an elongation at the time of mechanical breakage of 15% or more, and no defect such as a tip crack occurs with respect to the height of the convex portion of 0.35 mm or more during embossing.

上記のように構成された実施の形態2によるエンボス加工装置10においては、送出部12から矢印E方向に送出されたチタン箔11に対し、エンボス加工プレス部14において、複数の凹部15aが千鳥格子状に規則的に形成された第1の金型15と第2の金型17の間に挿入されたチタン箔11を、弾性材16を介してプレスすることで、弾性材16の弾性変形圧力によって、チタン箔11に第1の金型15の凹部15aに対応した位置にエンボス突起である凸部2(図1、2)が千鳥格子状のパターンで形成される。チタン箔11は、順次エンボス加工プレス部14に送出され、エンボス突起である凸部2が連続的に形成され、図示省略している巻取装置に巻き取られる。なお、形成された凸部2は、上記の条件で設計寸法と略同じの直径3mm、凸部の高さ0.35mmで、マイクロクラックなど欠陥や加工むらの無いエンボス加工チタン箔を製造することができた。   In the embossing device 10 according to the second embodiment configured as described above, a plurality of recesses 15a are formed in a staggered pattern in the embossing press portion 14 with respect to the titanium foil 11 sent in the direction of arrow E from the sending portion 12. By pressing the titanium foil 11 inserted between the first mold 15 and the second mold 17 regularly formed in a child shape through the elastic material 16, the elastic deformation of the elastic material 16 is achieved. Due to the pressure, convex portions 2 (FIGS. 1 and 2) which are embossed protrusions are formed in a staggered pattern at positions corresponding to the concave portions 15a of the first mold 15 on the titanium foil 11. The titanium foil 11 is sequentially sent to the embossing press part 14, and the convex part 2 which is an embossing protrusion is continuously formed, and it is wound up by the winding device which is not illustrated. In addition, the formed convex part 2 manufactures the embossed titanium foil which is substantially the same as a design dimension on the above conditions, has a diameter of 3 mm, and has a convex part height of 0.35 mm, and is free from defects such as microcracks and processing irregularities. I was able to.

上記のように実施の形態2によれば、チタン箔1を水素ガスまたは不活性ガス雰囲気下で焼鈍した後、複数の凹部15aが千鳥格子状に規則的に形成された第1の金型15と第2の金型17の間でシリコーンラバーなどの弾性材16を介してプレスし、該弾性材16の弾性変形圧力でエンボス突起である凸部2を形成するようにしたので、一般的な設備を用いて量産性高く容易に製造することができる。加工コストも安価にできる。また、得られた多数の凸部2を有するチタン箔は、チタン金属箔本来の機械的、物理的性質が保持され、さらにMLIを構成したときの断熱特性が向上され、500℃以上に晒される人工衛星の推進エンジン部の熱制御材として実用に耐えるものである。   As described above, according to the second embodiment, after the titanium foil 1 is annealed in an atmosphere of hydrogen gas or inert gas, the first mold in which the plurality of recesses 15a are regularly formed in a staggered pattern. 15 and the second mold 17 are pressed through an elastic material 16 such as silicone rubber, and the convex portions 2 that are embossed protrusions are formed by the elastic deformation pressure of the elastic material 16. It can be easily manufactured with high productivity by using simple equipment. Processing costs can be reduced. Further, the obtained titanium foil having a large number of convex portions 2 retains the original mechanical and physical properties of the titanium metal foil, and further improves the heat insulating properties when constituting the MLI, and is exposed to 500 ° C. or higher. It can withstand practical use as a thermal control material for the propulsion engine of an artificial satellite.

なお、第1の金型15及び第2の金型17をローラー状に形成し、第2の金型17の外周面に弾性材16を設け、第2の金型17を第1の金型15に対して所定の圧力をかけつつ回転させ、第1、第2の金型15、17相互の間に介装されたチタン箔1に対して連続してエンボス加工するように構成することもできる。   In addition, the 1st metal mold | die 15 and the 2nd metal mold | die 17 are formed in roller shape, the elastic material 16 is provided in the outer peripheral surface of the 2nd metal mold | die 17, and the 2nd metal mold | die 17 is used as the 1st metal mold | die. It is also possible to rotate while applying a predetermined pressure to 15 and to continuously emboss the titanium foil 1 interposed between the first and second molds 15 and 17. it can.

実施の形態3.
図4は本発明の実施の形態3によるチタン薄葉材のエンボス加工方法に用いるプレス順送型を概念的に説明する斜視図である。なお、この実施の形態3は、実施の形態2におけるエンボス加工プレス部14に用いる金型を以下説明するように変更したものである。図において、エンボス加工プレス部14に用いる金型は、千鳥格子状に突設された複数の突起18aを有する第1金型部材18と、この第1金型部材18に対向する面に上記突起18aの先端部を受入れ得るように各突起18aに対応された複数の凹部19aが形成された第2金型部材19と、これら第1金型部材18及び第2金型部材19の間に配設され上記突起19aを個々に挿通させる複数の貫通穴20aが形成された板状の第3金型部材20からなる。
Embodiment 3 FIG.
FIG. 4 is a perspective view conceptually illustrating a press progressive die used in the embossing method for titanium thin leaf material according to Embodiment 3 of the present invention. In the third embodiment, the mold used for the embossing press section 14 in the second embodiment is changed as described below. In the figure, the mold used for the embossing press section 14 includes a first mold member 18 having a plurality of protrusions 18a projecting in a staggered pattern, and a surface facing the first mold member 18 described above. Between the first mold member 18 and the second mold member 19, a second mold member 19 in which a plurality of recesses 19 a corresponding to the respective protrusions 18 a are formed so as to receive the tip of the protrusion 18 a is acceptable. It consists of a plate-shaped third mold member 20 provided with a plurality of through holes 20a that are arranged and through which the protrusions 19a are inserted.

なお、下型である第1金型部材18の上記突起18aは、直径3mm、高さ3mmで、突起18aの頂部は半球状ないしはドーム状で、周囲が滑らかな曲線状にR加工されている。中型である第3金型部材20は、板厚が2.5mmで、貫通穴20aの直径が3.2mmである。また、上型である第2金型部材19に設けられた凹部19aは、直径が3.2mm、深さ1.6mmである。その他の構成は実施の形態2と同様であるので説明を省略する。   The protrusion 18a of the first mold member 18 which is a lower mold has a diameter of 3 mm and a height of 3 mm. The top of the protrusion 18a is hemispherical or dome-shaped, and is rounded into a smooth curved shape. . The third mold member 20 which is a medium mold has a plate thickness of 2.5 mm and a diameter of the through hole 20a of 3.2 mm. Moreover, the recessed part 19a provided in the 2nd metal mold | die member 19 which is an upper mold | type is 3.2 mm in diameter and 1.6 mm in depth. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

上記のように構成された実施の形態3においては、焼鈍後のチタン箔11は、図示のように第2金型部材19と第3金型部材20の間に位置するように送給され、第3金型部材20の貫通穴20aを貫通される第1金型部材18の突起18aが第2金型部材19に設けられた凹部19aに進入するときに塑性変形され、チタン箔11に断熱性能を与える寸法である、高さが0.35mmのエンボス突起が形成される。なお、第3金型部材20の板厚を変えることで凸部(エンボス突起)2(図1、2)の高さを調整できる。   In the third embodiment configured as described above, the annealed titanium foil 11 is fed so as to be positioned between the second mold member 19 and the third mold member 20 as shown in the figure, When the projection 18a of the first mold member 18 penetrating through the through hole 20a of the third mold member 20 enters the recess 19a provided in the second mold member 19, it is plastically deformed to insulate the titanium foil 11. Embossed protrusions having a height of 0.35 mm, which are dimensions that give performance, are formed. In addition, the height of the convex part (embossing protrusion) 2 (FIGS. 1 and 2) can be adjusted by changing the plate thickness of the third mold member 20.

上記実施の形態3によれば、チタン薄葉材を不活性ガス雰囲気下で焼鈍した後、エンボス加工するようにしたので、汎用的な設備を用いて量産性高く加工することができるなど、上記実施の形態2と同様の効果が期待できる。また、エンボス加工プレス部14に弾性材16を用いていないので、金型のメンテナンスが容易となる。   According to the third embodiment, since the titanium thin leaf material is annealed in an inert gas atmosphere and then embossed, it can be processed with high productivity using general-purpose equipment. The effect similar to the form 2 can be expected. Moreover, since the elastic material 16 is not used for the embossing press part 14, the maintenance of a metal mold | die becomes easy.

実施の形態4.
図5は本発明の実施の形態4によるエンボス加工されたチタン薄葉材の広幅品の製造法を説明する図である。なお、この実施の形態4は、実施の形態2、3のような方法によって得られた図1に示すような実施の形態1の成形加工品から広幅品を得るものである。また、図5中、エンボス突起は図示していない。厚さが10〜30μm程度のチタン薄葉材は、通常のアルミニウムやステンレス箔のように500〜1000mm幅の広幅品を製造することが難しく、鉄鋼材メーカ等から得られる焼鈍したチタン箔は、現状では100〜280mm幅のものである。
Embodiment 4 FIG.
FIG. 5 is a diagram for explaining a method for manufacturing a wide-width product of embossed titanium thin leaf material according to Embodiment 4 of the present invention. In the fourth embodiment, a wide product is obtained from the molded product of the first embodiment as shown in FIG. 1 obtained by the method of the second and third embodiments. Moreover, the embossing protrusion is not shown in FIG. Titanium thin leaf material with a thickness of about 10 to 30 μm is difficult to produce a wide product with a width of 500 to 1000 mm like ordinary aluminum or stainless steel foil, and the annealed titanium foil obtained from steel material manufacturers etc. Then, the width is 100 to 280 mm.

図において、幅Waが250mmのエンボス加工された第1のチタン箔1aと、幅Wbが250mmのエンボス加工された第2のチタン箔1bとは幅方向の端部10mmをオーバーラップさせ、オーバーラップした部分Gを図5のドット21で示すように約10mm〜20mm間隔でチタン箔1a、1b同士を、スポット溶接あるいはシーム溶接等の接合手段で接合する。これにより、全幅が490mmの広幅の熱制御材が得られる。
上記のように実施の形態4によれば、500℃以上に晒される人工衛星の推進エンジン部の熱制御材として適用する場合などに好適な広幅の大きな形状のMLIを製造することができる。なお、必要があれば更に広幅にできることは言うまでもない。
In the figure, an embossed first titanium foil 1a having a width Wa of 250 mm and an embossed second titanium foil 1b having a width Wb of 250 mm are overlapped by an end portion 10 mm in the width direction. As shown by the dots 21 in FIG. 5, the titanium foils 1 a and 1 b are joined to each other by a joining means such as spot welding or seam welding at intervals of about 10 mm to 20 mm. As a result, a wide thermal control material having a total width of 490 mm is obtained.
As described above, according to the fourth embodiment, it is possible to manufacture a large and wide MLI suitable for application as a heat control material for a propulsion engine portion of an artificial satellite exposed to 500 ° C. or higher. Needless to say, it can be made wider if necessary.

なお、上記実施の形態1〜4で例示したチタン箔1(1a、1b)の幅や厚さなどの寸法、エンボス突起を構成する凸部2の形状、各寸法、間隔、パターンなどは何れも一例に過ぎず、適宜変更し得るものであることは言うまでもない。また、チタン箔1、11の素材は純チタン金属、チタン合金の何れでも良い。ところで、上記実施の形態ではこの発明を宇宙飛翔体に用いる場合について説明したが、これに限定されるものではない。   It should be noted that the titanium foil 1 (1a, 1b) exemplified in the first to fourth embodiments has dimensions such as the width and thickness, the shape of the convex part 2 constituting the embossed protrusion, each dimension, the interval, and the pattern. It goes without saying that this is merely an example and can be changed as appropriate. The material of the titanium foils 1 and 11 may be pure titanium metal or titanium alloy. By the way, although the said embodiment demonstrated the case where this invention was used for a space flying body, it is not limited to this.

1(1a、1b) チタン箔(チタン薄葉材)、 2 凸部(エンボス突起)、 10 エンボス加工装置、 11 チタン箔、 12 送出部、 13 ガイドロール部、 14a 挿入ガイド、 14 エンボス加工プレス部、 15 第1の金型、 15a 凹部、 16 弾性材、 17 第2の金型、 18 第1金型部材、 18a 突起、 19a 凹部、 19 第2金型部材、 20 第3金型部材、 20a 貫通穴。   DESCRIPTION OF SYMBOLS 1 (1a, 1b) Titanium foil (titanium thin leaf material), 2 Convex part (embossing protrusion), 10 Embossing apparatus, 11 Titanium foil, 12 Sending part, 13 Guide roll part, 14a Insertion guide, 14 Embossing press part, DESCRIPTION OF SYMBOLS 15 1st metal mold | die, 15a recessed part, 16 elastic material, 17 2nd metal mold | die, 18 1st metal mold | die member, 18a protrusion, 19a recessed part, 19 2nd metal mold | die member, 20 3rd metal mold | die member, 20a penetration hole.

Claims (7)

多層を形成する耐熱性薄葉材として、複数の凹凸が形成された厚さ10〜30μmのチタン薄葉材を用いてなることを特徴とする多層断熱材。   A multilayer heat insulating material comprising a titanium thin leaf material having a thickness of 10 to 30 μm and having a plurality of irregularities formed thereon as a heat-resistant thin leaf material forming a multilayer. 上記凹凸は、高さが0.3mm以上の凸部を千鳥格子状にエンボス加工したものであることを特徴とする請求項1に記載の多層断熱材。   The multilayer heat insulating material according to claim 1, wherein the unevenness is obtained by embossing convex portions having a height of 0.3 mm or more in a staggered pattern. 上記凸部は、直径が3mmの断面が略半円形状またはドーム状に形成されたものであることを特徴とする請求項2に記載の多層断熱材。   The multilayer heat insulating material according to claim 2, wherein the convex portion has a cross section with a diameter of 3 mm formed in a substantially semicircular shape or a dome shape. 厚さ10〜30μmのチタン薄葉材を水素ガスまたは不活性ガス雰囲気下、700〜740℃で焼鈍した後、エンボス加工により複数の凹凸を形成することを特徴とするチタン薄葉材のエンボス加工方法。   An embossing method for a titanium thin leaf material, comprising: annealing a titanium thin leaf material having a thickness of 10 to 30 µm in a hydrogen gas or an inert gas atmosphere at 700 to 740 ° C, and then forming a plurality of irregularities by embossing. 複数の凹部が形成された第1の金型と、この第1の金型に対向する面に弾性材が設けられた第2の金型の間に、上記焼鈍後のチタン薄葉材を配設し、これら第1及び第2の金型を互に閉め合う方向に押したときの上記弾性材の弾性変形圧力によって上記チタン薄葉材にエンボス突起を形成することを特徴とする請求項4に記載のチタン薄葉材のエンボス加工方法。   The annealed titanium thin leaf material is disposed between a first mold having a plurality of recesses and a second mold having an elastic material on the surface facing the first mold. The embossed protrusion is formed on the titanium thin leaf material by the elastic deformation pressure of the elastic material when the first and second molds are pushed in a direction to close each other. Embossing method of titanium thin leaf material. 上記弾性材として、シリコーンラバーを用いることを特徴とする請求項5に記載のチタン薄葉材のエンボス加工方法。   6. The method for embossing a titanium thin leaf material according to claim 5, wherein silicone rubber is used as the elastic material. 複数の突起が形成された第1金型部材と、この第1金型部材に対向する面に上記突起の先端部を受入れ得るように上記各突起に対応された複数の凹部が形成された第2金型部材と、これら第1金型部材及び第2金型部材の間に配設され上記突起を個々に挿通させる複数の貫通穴が形成された板状の第3金型部材を用い、上記第2金型部材と上記第3金型部材の間に挿入された上記焼鈍後のチタン薄葉材にエンボス突起を形成することを特徴とする請求項4に記載のチタン薄葉材のエンボス加工方法。   A first mold member formed with a plurality of protrusions, and a plurality of recesses corresponding to the respective protrusions are formed on the surface facing the first mold member so as to receive the tips of the protrusions. 2 plate members and a plate-like third mold member formed between the first mold member and the second mold member and formed with a plurality of through holes through which the protrusions are individually inserted, are used. 5. The embossing method for a titanium thin leaf material according to claim 4, wherein an embossing protrusion is formed on the annealed titanium thin leaf material inserted between the second mold member and the third mold member. .
JP2010166646A 2010-07-26 2010-07-26 Multi-layer insulation material and embossing method of titanium thin leaf material Active JP5501135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166646A JP5501135B2 (en) 2010-07-26 2010-07-26 Multi-layer insulation material and embossing method of titanium thin leaf material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166646A JP5501135B2 (en) 2010-07-26 2010-07-26 Multi-layer insulation material and embossing method of titanium thin leaf material

Publications (2)

Publication Number Publication Date
JP2012024818A true JP2012024818A (en) 2012-02-09
JP5501135B2 JP5501135B2 (en) 2014-05-21

Family

ID=45778406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166646A Active JP5501135B2 (en) 2010-07-26 2010-07-26 Multi-layer insulation material and embossing method of titanium thin leaf material

Country Status (1)

Country Link
JP (1) JP5501135B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773322A (en) * 2012-07-27 2012-11-14 东莞精锐电器五金有限公司 Honeycomb metal plate processing method and processing device
CN105665516A (en) * 2016-04-14 2016-06-15 河南金阳铝业有限公司 Bottom support for aluminum foil wrinkling machine
EP4122832A1 (en) * 2021-07-22 2023-01-25 Airbus Defence and Space SAS Manufacturing method of a spacecraft including a marking of a surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033968A (en) * 1973-07-30 1975-04-02
JPS6478615A (en) * 1987-09-22 1989-03-24 Yamaha Corp Manufacture of ti or ti-alloy wire rod
JPH01103734U (en) * 1987-12-28 1989-07-13
JPH0739963A (en) * 1993-08-03 1995-02-10 Nisshin Steel Co Ltd Manufacture of patterned metal sheet by using flexible elastic body
JP2004251369A (en) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp Multilayer heat insulating blanket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033968A (en) * 1973-07-30 1975-04-02
JPS6478615A (en) * 1987-09-22 1989-03-24 Yamaha Corp Manufacture of ti or ti-alloy wire rod
JPH01103734U (en) * 1987-12-28 1989-07-13
JPH0739963A (en) * 1993-08-03 1995-02-10 Nisshin Steel Co Ltd Manufacture of patterned metal sheet by using flexible elastic body
JP2004251369A (en) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp Multilayer heat insulating blanket

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773322A (en) * 2012-07-27 2012-11-14 东莞精锐电器五金有限公司 Honeycomb metal plate processing method and processing device
CN102773322B (en) * 2012-07-27 2015-03-11 东莞精锐电器五金有限公司 Honeycomb metal plate processing method and processing device
CN105665516A (en) * 2016-04-14 2016-06-15 河南金阳铝业有限公司 Bottom support for aluminum foil wrinkling machine
EP4122832A1 (en) * 2021-07-22 2023-01-25 Airbus Defence and Space SAS Manufacturing method of a spacecraft including a marking of a surface
WO2023001414A1 (en) * 2021-07-22 2023-01-26 Airbus Defence And Space Sas Manufacturing method of a spacecraft including a marking of a surface

Also Published As

Publication number Publication date
JP5501135B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US8720537B2 (en) Graphite sheet and heat transfer structure using same
JP5751248B2 (en) Membrane-electrode assembly manufacturing apparatus and method of manufacturing membrane-electrode assembly
US10710333B2 (en) Heat transport structure and manufacturing method thereof
US10392687B2 (en) Method for manufacturing a metal assembly having a sheet of thermally treated aluminum to obtain alpha alumina and another sheet having surface irregularities that become embedded in said surface during roll bonding
JP5501135B2 (en) Multi-layer insulation material and embossing method of titanium thin leaf material
CN219696674U (en) Electrode rolling device comprising a non-coated part pressing unit
JP4255580B2 (en) Method for producing single-sided metal-clad laminate
TWI290444B (en) Method of producing heat-resistant flexible laminate
US11745488B2 (en) Method for production of thin plate-like laminate having film-like resin layer
WO2014057771A1 (en) Metal substrate
JPH11240706A (en) Preparation of graphite sheet and graphite sheet laminate
JP2009059772A (en) Method of manufacturing solar battery
CN113725395B (en) Current collector production device and production method
JP6065702B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
TW200523102A (en) Method for producing flexible laminate
JP2004538146A (en) Method for producing separation plate or separation plate for multilayer press set
CN113891867B (en) Method for producing hollow glass, and hollow glass
EP3306698B1 (en) Battery armoring stainless steel foil and method of producing same
JP2012061616A (en) Single-sided metal-clad laminated sheet, and method of manufacturing the same
CA3134110A1 (en) Method for producing thin plate-like laminate having film-like resin layer
CN110328959A (en) The method of worked copper base-graphite alkene composite material and copper-based-graphene composite material
JP2010131856A (en) Method of manufacturing laminate sheet
JP2019121523A (en) Method of manufacturing fuel cell separator
KR101947419B1 (en) Sandwich panel, the manufacturing method for the same and sandwich panel structure
US20220161483A1 (en) Device for production of thin plate-like laminate having film-like resin layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250